Decidability of Bisimulation for BPA with deadlock and the empty process

Paul van Tilburg*

February 18, 2009

1 Introduction

2 BPA_{0.1} and Context-Free Processes

The class of recursive $\mathrm{BPA}_{0,1}$ processes is defined by the following abstract syntax:

$$P ::= \mathbf{0} \mid \mathbf{1} \mid a.P \mid X \mid P + P \mid P \cdot P$$

where a ranges over the finite set of atomic actions Act, and X ranges over the finite set of variables \mathcal{V} .

 \odot

 \odot

Introduce transparency, guardedness.

Definition 2.1 (Guardedness). ...

Definition 2.2. A BPA_{0,1} process is defined by a finite guarded recursive specification. Each such a finite guarded recursive specification corresponds to a finite transition system. We use structural operational semantics [?], with the rules given below, to give this correspondence.

$$\begin{array}{c|c} & & \hline \mathbf{1} \downarrow & & \hline a.x \xrightarrow{a} x \\ \hline \mathbf{1} \downarrow & & \hline a.x \xrightarrow{a} x \\ \hline x + y \xrightarrow{a} x' & & y \xrightarrow{a} y' & x \downarrow & y \downarrow \\ \hline x + y \xrightarrow{a} x' & & x + y \xrightarrow{a} y' & x + y \downarrow \\ \hline x + y \xrightarrow{a} x' & & x + y \xrightarrow{a} y' & x + y \downarrow \\ \hline x \cdot y \xrightarrow{a} x' \cdot y & & x \cdot y \xrightarrow{a} y' & x \cdot y \downarrow \\ \hline t_X \xrightarrow{a} x & X = t_X & t_X \downarrow & X = t_X \\ \hline x \xrightarrow{a} x & & X \downarrow \end{array}$$

*p.j.a.v.tilburg@tue.nl

2.1 Bisimulation equivalence and Greibach normal form

Introduce (several?) bisimulation notions.

Definition 2.3 (Bisimulation). ...

Definition 2.4 (Bisimulation approximations). ...

Using the axioms, any guarded recursive specification E can be brought into *Greibach normal form* [?] such that bisimilarity is preserved:

$$X = \sum_{i \in I_X} a_i . \xi_i \ (+1) \qquad \text{for all } X \in \mathcal{V}_E.$$

In this form, every right-hand side of every equation consists of a number of summands, indexed by a finite set I_X (the empty sum is **0**), each of which is **1**, or of the form $a_i.\xi_i$, where ξ_i is the sequential composition of a number of variables (the empty sequence is **1**).

We define the set of context-free processes as the subset of the BPA_{0,1} processes that have bounded branching. (Introduce notion of bounded branching.) If we look at the GNF of BPA_{0,1} processes, we can see that if $X_i \xrightarrow{w} X'_i$ for $w \in \mathcal{A}^+$, then X'_i is just a sequence ξ_i of variables. This means that each state of the transition system of a BPA_{0,1} process is labelled with such a sequence.

We assume for now *(prove!)* that if a process is context-free, every state with be labelled by a sequential composition of variables of which on the last one may be transparent.

Conjecture: there is also an restrictive GNF for this?

3 Decidability of Bisimulation Equivalence

3.1 Self-bisimulations

Leave subsection as is?

Definition 3.1 (Least precongruence $\underset{R}{\longleftrightarrow}^*$). ...

Definition 3.2 (Self-bisimulation R). ...

Lemma 3.1. If R is a self-bisimulation then $\underset{P}{\longleftrightarrow}^* \subseteq R$.

Corollary 3.1. $\alpha \sim \beta$ iff there is a self-bisimulation R such that $\alpha R \beta$.

3.2 Decompositions

We define the *norm* of a process P, written as |P|, is defined as follows:

 $|P| = \min\{ \operatorname{length}(w) \mid P \xrightarrow{w} P's.t. \ w \in \mathcal{A}^* \text{ and } P' \downarrow \}.$

A process P is normed if $|P| < \infty$.

 \odot

 (\cdot)

 \odot

 \odot

 \odot

 \odot

 \odot

 (\cdot)

 \odot

We divide the variable set \mathcal{V} into disjoint subsets $\mathcal{V}_{\text{fin}} = \{X \in \mathcal{V} \mid X \text{ is normed}\}$ and $\mathcal{V}_{\infty} = \mathcal{V} - \mathcal{V}_{\text{fin}}$. We sometimes also distinguish between transparent finitely normed variables $\mathcal{V}_{\text{fin}}^{-1}$ and opaque finitely normed variables $\mathcal{V}_{\text{fin}}^{-1}$.

Rewrite: We can consider the cases $\xi_i \in \mathcal{V}_{\text{fin}} \mathcal{V}_{\infty} \cup \mathcal{V}_{\text{fin}}^{-1^*} \cup \mathcal{V}_{\text{fin}}^{-1^*} \mathcal{V}_{\text{fin}}^{+1}$ due the fact that everything after an unnormed variable can be thrown away preserving bisimulation.

Definition 3.3 (Decomposability). Might need to be adapted:

When $X\alpha \sim Y\beta$ we say that the pair $(X\alpha, Y\beta)$ is decomposable if $X, Y \in \mathcal{V}_{\text{fin}}$ and there is a γ such that

- $\alpha \sim \gamma \beta$ and $X\gamma \sim Y$ if $|X| \leq |Y|$
- $\gamma \alpha \sim \beta$ and $X \sim Y \gamma$ if $|Y| \leq |X|$

Lemma 3.2. If $\alpha \sim X\gamma\alpha$ and $\beta \sim X\gamma\beta$ then $a \sim \beta$.

Check/redo: looks good, what was the counter-example for the non-restricted sequences case?

Only consider $\mathcal{V}^{-1*}\mathcal{V}$ and 1 here? We call $\phi \in \mathcal{V}^*$ a unifier for $\alpha, \beta \in \mathcal{V}^*$ if $\alpha \not\sim \beta$ but $\alpha \phi \sim \beta \phi$.

We define the branching degree of a specification E, deg(E), as the size of the largest set $\{\alpha \mid X \xrightarrow{a} \alpha, a \in \mathcal{A}\}$ of all variable $X \in \mathcal{V}_E$.

Lemma 3.3. For any $\alpha, \beta \in \mathcal{V}^*$, if $\alpha \sim_n \beta$ then there are at most $(\deg(E))^{n-1}$ different unifiers up to \sim .

Proof. Induction on *n* using the previous lemma. For the base case if $\alpha \sim_1 \beta$ then without loss of generality $\alpha \xrightarrow{a}$ but $\beta \xrightarrow{q}$. But there cannot be a unifier ϕ giving $\alpha \phi \sim \beta \phi$.

No! Counter-example:

 $X = a.X + \mathbf{1}$ $Y = b.\mathbf{1} + \mathbf{1}$ $Z = a.Z + b.Z + \mathbf{1}$

Then taking $\alpha = X$, $\beta = Y$, $\phi = Z$, we have $\alpha \phi \sim \beta \phi$. Check/redo.

 (\cdot)

⊙ ⊙

 \odot

 \odot

 \odot

 \odot

 (\cdot)

Lemma 3.4. For any $X, Y \in \mathcal{V}$ any set R of the form ... such that all pairs are distinct, is finite.

Adapt the form. Check/redo.

3.3 Finite representability of \sim

Introduce the notion of size. This might need to be adapted? Then introduce the well-founded ordering on all possible sequences.

Theorem 3.1. There is a finite relation R on (insert notation for all possible	\odot
sequences) such that $\sim = \longleftrightarrow_{\mathcal{P}}^*$.	
Check/redo.	\odot
Definition 3.4	\odot

Theorem 3.2. Bisimulation equivalence is decidable for all guarded context-free processes.