Decidability of Bisimulation for BPA with deadlock and the empty process

Paul van Tilburg*

February 18, 2009

1 Introduction

$2 \mathrm{BPA}_{0,1}$ and Context-Free Processes

The class of recursive $\mathrm{BPA}_{\mathbf{0}, \mathbf{1}}$ processes is defined by the following abstract syntax:

$$
P::=\mathbf{0}|\mathbf{1}| a \cdot P|X| P+P \mid P \cdot P
$$

where a ranges over the finite set of atomic actions $A c t$, and X ranges over the finite set of variables \mathcal{V}.

Introduce transparency, guardedness.
Definition 2.1 (Guardedness). ...
Definition 2.2. A $\mathrm{BPA}_{\mathbf{0}, \mathbf{1}}$ process is defined by a finite guarded recursive specification. Each such a finite guarded recursive specification corresponds to a finite transition system. We use structural operational semantics [?], with the rules given below, to give this correspondence.

$$
\begin{aligned}
& 1 \downarrow \quad a . x \xrightarrow{a} x \\
& \underset{x+y \xrightarrow{a} x^{\prime}}{\underset{\rightarrow}{a} x^{\prime}} \quad \frac{y \xrightarrow{a} y^{\prime}}{x+y \xrightarrow{a} y^{\prime}} \quad \frac{x \downarrow}{x+y \downarrow} \quad \frac{y \downarrow}{x+y \downarrow} \\
& \frac{x \xrightarrow{a} x^{\prime}}{x \cdot y \xrightarrow{a} x^{\prime} \cdot y} \quad \frac{x \downarrow y \xrightarrow{a} y^{\prime}}{x \cdot y \xrightarrow{a} y^{\prime}} \quad \frac{x \downarrow y \downarrow}{x \cdot y \downarrow} \\
& \frac{t_{X} \xrightarrow{a} x \quad X=t_{X}}{X \xrightarrow{a} x} \quad \frac{t_{X} \downarrow \quad X=t_{X}}{X \downarrow}
\end{aligned}
$$

[^0]
2.1 Bisimulation equivalence and Greibach normal form

Introduce (several?) bisimulation notions.
Definition 2.3 (Bisimulation). ...
Definition 2.4 (Bisimulation approximations). ...
Using the axioms, any guarded recursive specification E can be brought into Greibach normal form [?] such that bisimilarity is preserved:

$$
X=\sum_{i \in I_{X}} a_{i} \cdot \xi_{i}(+\mathbf{1}) \quad \text { for all } X \in \mathcal{V}_{E}
$$

In this form, every right-hand side of every equation consists of a number of summands, indexed by a finite set I_{X} (the empty sum is $\mathbf{0}$), each of which is 1, or of the form $a_{i} \cdot \xi_{i}$, where ξ_{i} is the sequential composition of a number of variables (the empty sequence is $\mathbf{1}$).

We define the set of context-free processes as the subset of the $\mathrm{BPA}_{\mathbf{0}, \mathbf{1}}$ processes that have bounded branching. (Introduce notion of bounded branching.) If we look at the GNF of $\mathrm{BPA}_{\mathbf{0}, \mathbf{1}}$ processes, we can see that if $X_{i} \xrightarrow{w} X_{i}^{\prime}$ for $w \in \mathcal{A}^{+}$, then X_{i}^{\prime} is just a sequence ξ_{i} of variables. This means that each state of the transition system of a $\mathrm{BPA}_{\mathbf{0}, \mathbf{1}}$ process is labelled with such a sequence.

We assume for now (prove!) that if a process is context-free, every state with be labelled by a sequential composition of variables of which on the last one may be transparent.

Conjecture: there is also an restrictive GNF for this?

3 Decidability of Bisimulation Equivalence

3.1 Self-bisimulations

Leave subsection as is?
Definition 3.1 (Least precongruence $\overleftrightarrow{R}^{*}$). ...
Definition 3.2 (Self-bisimulation R). ...
Lemma 3.1. If R is a self-bisimulation then $\underset{R}{\longleftrightarrow} \subseteq R$.
Corollary 3.1. $\alpha \sim \beta$ iff there is a self-bisimulation R such that $\alpha R \beta$.

3.2 Decompositions

We define the norm of a process P, written as $|P|$, is defined as follows:

$$
|P|=\min \left\{\operatorname{length}(w) \mid P \xrightarrow{w} P^{\prime} \text { s.t. } w \in \mathcal{A}^{*} \text { and } P^{\prime} \downarrow\right\} .
$$

A process P is normed if $|P|<\infty$.

We divide the variable set \mathcal{V} into disjoint subsets $\mathcal{V}_{\text {fin }}=\{X \in \mathcal{V} \mid X$ is normed $\}$ and $\mathcal{V}_{\infty}=\mathcal{V}-\mathcal{V}_{\text {fin }}$. We sometimes also distinguish between transparent finitely normed variables $\mathcal{V}_{\text {fin }}^{+1}$ and opaque finitely normed variables $\mathcal{V}_{\text {fin }}^{-1}$.

Rewrite: We can consider the cases $\xi_{i} \in \mathcal{V}_{\text {fin }} \mathcal{V}_{\infty} \cup \mathcal{V}_{\text {fin }}^{-1^{*}} \cup \mathcal{V}_{\text {fin }}^{-1^{*}} \mathcal{V}_{\text {fin }}^{+1}$ due the fact that everything after an unnormed variable can be thrown away preserving bisimulation.

Definition 3.3 (Decomposability). Might need to be adapted:
When $X \alpha \sim Y \beta$ we say that the pair $(X \alpha, Y \beta)$ is decomposable if $X, Y \in \mathcal{V}_{\text {fin }}$ and there is a γ such that

- $\alpha \sim \gamma \beta$ and $X \gamma \sim Y$ if $|X| \leq|Y|$
- $\gamma \alpha \sim \beta$ and $X \sim Y \gamma$ if $|Y| \leq|X|$

Lemma 3.2. If $\alpha \sim X \gamma \alpha$ and $\beta \sim X \gamma \beta$ then $a \sim \beta$.
Check/redo: looks good, what was the counter-example for the non-restricted sequences case?

Only consider $\mathcal{V}^{-1^{*}} \mathcal{V}$ and $\mathbf{1}$ here? We call $\phi \in \mathcal{V}^{*}$ a unifier for $\alpha, \beta \in \mathcal{V}^{*}$ if $\alpha \nsim \beta$ but $\alpha \phi \sim \beta \phi$.

We define the branching degree of a specification $E, \operatorname{deg}(E)$, as the size of the largest set $\{\alpha \mid X \xrightarrow{a} \alpha, a \in \mathcal{A}\}$ of all variable $X \in \mathcal{V}_{E}$.

Lemma 3.3. For any $\alpha, \beta \in \mathcal{V}^{*}$, if $\alpha \sim_{n} \beta$ then there are at most $(\operatorname{deg}(E))^{n-1}$ different unifiers up to \sim.

Proof. Induction on n using the previous lemma. For the base case if $\alpha \sim_{1} \beta$ then without loss of generality $\alpha \xrightarrow{a}$ but $\beta \stackrel{a}{\longrightarrow}$. But there cannot be a unifier ϕ giving $\alpha \phi \sim \beta \phi$.

No! Counter-example:

$$
\begin{aligned}
& X=a . X+\mathbf{1} \\
& Y=b . \mathbf{1}+\mathbf{1} \\
& Z=a . Z+b . Z+\mathbf{1}
\end{aligned}
$$

Then taking $\alpha=X, \beta=Y, \phi=Z$, we have $\alpha \phi \sim \beta \phi$.
Check/redo.
Lemma 3.4. For any $X, Y \in \mathcal{V}$ any set R of the form ...such that all pairs are distinct, is finite.

Adapt the form. Check/redo.

3.3 Finite representability of \sim

Introduce the notion of size. This might need to be adapted? Then introduce the well-founded ordering on all possible sequences.

Theorem 3.1. There is a finite relation R on (insert notation for all possible sequences) such that $\sim=\underset{R}{\longleftrightarrow^{*}}$.

Check/redo.
Definition 3.4. ...
Theorem 3.2. Bisimulation equivalence is decidable for all guarded context-free processes.

[^0]: *p.j.a.v.tilburg@tue.nl

