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an
im

portant
quantity

unchanged:
the

sum
S
for

the
G
auss

sum
or

the
centraltem

perature
for

the
pentagon

problem
.

The
m
oralofthis

analysis
is

therefore
the

follow
ing:W

hen
there

is
change,

look
for

w
hat

does
not

change.
These

unchanging
quantities

are
know

n
as

invariants;
they

are
very

likely
to

be
im

portant
features

of
a
problem

.
Then

search
for

sym
m
etries:

operations
thatpreserve

these
invariants.

This
philosophy

of
ignoring

the
changing

froth
and

instead
focusing

on
invariants—

the
underlying

order—
underlies

the
next

tw
o
tools

for
dis-

carding
apparentcom

plexity:
proportionalreasoning

(Section
1.2.2)

and
dim

ensions
(Section

1.2.3).

Problem
1.5

Tiling
a
term

ite-eaten
chessboard

Term
ites

found
your

w
ooden

chessboard
and

ate
aw

ay
the

low
er

left
square

and
the

upper
rightm

ostsquare.
You

have
an

unlim
ited

setof2
×

1
dom

inoes.
C
an

you
use

them
to

tile
the

m
odified

chessboard?
That

is,
can

you
lay

the
dom

inoes,
w
ithout

any
overlap,

to
cover

the
w
hole

m
odified

board
w
ithout

extending
beyond

the
board?

Problem
1.6

C
ube

solitaire

1
0 0

0

0
0 0

0
A

cube
starts

in
the

configuration
show

n
in

the
m
argin;the

goalis
to

m
ake

alleightvertices
be

m
ultiples

of
3
sim

ulta-
neously.The

possible
m
oves

are
ofthe

form
:Pick

any
edge

and
increm

entits
tw

o
vertices

by
1.Forexam

ple,ifyou
pick

the
bottom

edge
of

the
front

face,then
the

bottom
edge

of
the

back
face,the

configuration
becom

es
the

firstone
in

this
series,then

the
second

one:

2
1 0

0

0
0 0

0

2
1 0

0

1
1 0

0

A
las,neither

configuration
w
ins

the
gam

e.
C
an

the
gam

e
be

w
on?

If
so,give

a
sequence

of
m
oves

ending
w
ith

allvertices
at

m
ultiples

of
3.

If
it

cannot
be

w
on,explain

w
hy

no
m
ove

sequence
w
orks.
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sequence
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Com
m

ents
on

page
8

9

Com
m

ents
on

page
8

I
like

this
phrase.

I
feelitis

usefulin
other

areas
as

w
ell.

I
like

this
definition.

G
iven

this
in

our
toolbox,

w
e
can

also
look

for
w
ays

to
sim

plify
and

slightly
m
odify

problem
s
to

m
ake

a
sym

m
etricalm

odel,then
w
e
can

apply
this.

I
found

a
very

easy
w
ay

of
doing

it,butI
don’tthink

m
y
m
ethod

incorporates
abstraction

or
estim

ation.
W
ould

som
eone

be
w
illing

to
share

their
m
ethod

so
to

check
if

I’m
doing

som
ething

w
rong?
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tem
peratures

that
lie

on
top

of
one

another
to

produce
the

tem
perature

profile
ofa

new
sheet.

Is
adding

tem
perature

a
legitim

ate
operation?

A
dding

tem
perature

is
not

a
legitim

ate
operation

in
physics.

For
exam

-
ple,

it
is

nonsense
to

ask
for

the
total

tem
perature

of
a
hot

and
cold

cup
of

w
ater.

(It
is

legitim
ate

to
ask

for
the

totaltherm
alenergy

of
the

tw
o
cups.)

H
ow

ever,
this

physical
restriction

is
not

built
into

the
heat

equation.
Therefore,if

adding
tem

peratures
helps

us
find

a
solution

to
the

heat
equation—

as
it

shortly
w
ill—

then
the

solution
w
ill

be
physi-

cally
valid.

The
only

requirem
ent

em
bedded

into
the

heat
equation

is
thatalloperations

on
the

tem
peratures

be
linear

operations,because
the

heat
equation

is
a
linear

differential
equation.

Fortunately,
addition

is
the

canonical
linear

operation.
In

conclusion,adding
tem

peratures
is

a
legitim

ate
operation

here.

In
the

new
,com

bined
sheet,each

edge
has

a
tem

perature
of120

degrees:
80

10
10

10

10

+

10

80
10

10

10

+

10

10
80

10

10

+

10

10
10

80

10

+

10

10
10

10

80

=

120

120
120

120

120

Solving
the

tem
perature

distribution
of

this
new

sheet
does

not
require

solving
the

heatequation!
Because

allthe
new

sheet’s
edges

are
pinned

at120
degrees,the

new
sheethas

a
uniform

tem
perature

of120
degrees

throughout—
even

though
none

of
the

five
constituent

sheets
has

a
uni-

form
tem

perature.Look
again

atthe
analogy

w
ith

G
auss’sm

ethod,w
here

even
though

each
sum

had
varying

term
s
(from

1
to

100),the
com

bined
sum

consisted
ofconstants

(all101).H
ere,because

the
centers

ofthe
five

stacked
sheets

align
and

the
center

tem
peratures

are
the

sam
e
on

each
sheet,each

center
has

tem
perature

120/5
=

24
degrees.

N
ow

com
pare

the
tw

o
exam

ples—
the

G
ausssum

and
the

pentagon
tem

perature—
in

order
to

extracttheir
transferable

ideas
(the

usefulabstractions).
First,

both
problem

s
seem

diffi
cultupon

firstglance.
The

G
auss

sum
contains

100
term

s,alldifferent;the
pentagon

problem
seem

s
to

require
solving

a
diffi

cultpartialdifferentialequation.
Second,both

problem
s
contain

a
sym

m
etry

operation.In
the

G
ausssum

,the
sym

m
etry

operation
reversed

the
orderofthe

term
s;in

the
pentagon

problem
,the

sym
m
etry

operation
rotated

the
pentagon

by
72

degrees.
Third,the

sym
m
etry

operation
left
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operation
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Com
m

ents
on

page
7

8

Com
m

ents
on

page
7

A
hh!

N
otin

a
m
illion

years...
oh

that’s
clever.

I
knew

itw
ould

be
sym

m
etry

and
I
didn’teven

see
this

com
ing.

M
y
m
ind

is
blow

n!

That’s
am

azing!

Iagree.
This

trick
is

genius!

W
hen

I
saw

the
problem

,I
predicted

justtaking
the

average,butthen
I
thoughtthatthe

non-linear
m
agic

of
heatw

ould
m
ake

itnottrue.
Is

itsym
m
etry

thatim
plies

linearity?

H
ow

do
you

know
w
hen

the
G
auss

sum
can

be
used?

(in
general)
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∇
2T

=
0.

(1.22)

604020

10

10

80

10

H
ow

ever,even
thissim

plerequation
w
ith

no
tim

e
dependence

has
few

easy
solu-

tions.
A
nd

these
solutions

are
noteven

thatsim
ple.For

exam
ple,on

the
square

piece
of

foilw
ith

edge
tem

peratures
as

prescribed
in

the
figure

(10,10,10,and
80

degrees),the
tem

perature
distribution

ishighly
nonintuitive.The

contourlines,
spaced

every
10

degrees,are
a
hard-to-

predictshape.The
centeris

surrounded
by

the
20

and
30-degree

contour
lines,

so
the

centraltem
perature

issom
ew

here
betw

een
20

and
30

degrees.
Butthe

exactvalue
is

hardly
obvious

–
even

for
such

a
regular

shape.
For

a
pentagon,even

for
a
regular

pentagon,
the

fulltem
perature

distribution
is

even
less

intuitive.

Sym
m
etry,how

ever,m
akes

the
solution

flow
.
The

pentagon
is

regular,
so

itlooks
the

sam
e
w
hen

itis
rotated

aboutthe
center

by
one-fifth

ofa
circle

(an
angle

of72
degrees).The

only
effectsofthe

rotation
are

to
rotate

the
tem

perature
labels

on
the

edges
(the

80-degree
edge

m
oves

along
by

one
edge)and

to
rotate

the
entire

tem
perature

distribution.H
ow

ever,the
tem

perature
atthe

center
does

notchange.
Therefore,the

follow
ing

five
orientations

ofthe
pentagon

produce
the

identicalcenter
tem

perature:
80

10

10

10

10
10

80

10

10

10
10

10

80

10

10
10

10

10

80

10
10

10

10

10

80

N
ow

borrow
G
auss’s

idea
ofadding

the
tw

o
equivalent

w
ays

ofsum
m
ing

the
series:

1
+

2
+

3
+
·
·
·+

100
+100

+
99

+
98

+
·
·
·+

1

=101
+

101
+
·
·
·+

101.

(1.23)

A
nalogously,stack

the
five

equivalentpenatgons
(equivalentin

the
sense

ofhaving
the

sam
e
centraltem

perature);then,ateach
spot,add

the
five
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A
nalogously,stack

the
five

equivalentpenatgons
(equivalentin

the
sense

ofhaving
the

sam
e
centraltem

perature);then,ateach
spot,add

the
five

Com
m

ents
on

page
6

7

Com
m

ents
on

page
6

I’d
like

to
see

the
contourlines

on
the

pentagram
-Idon’tthink

itw
ould

m
ake

the
answ

er
too

obvious!

I
haven’t

done
m
uch

therm
o
but

it
looks

like
this

sam
e
sym

m
etricalization

could
w
ork

w
ith

E&
am

p;M
w
hen

looking
at

electric
and

m
agnetic

field
due

to
point

charges
spaced

sym
m
etrically.

or
w
ould

this
not

w
ork

because
electric

fields
are

vector
fields?

C
an

som
eone

answ
er

m
e?
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1
+

2
+

3
+
·
·
·+

100
+100

+
99

+
98

+
·
·
·+

1

=101
+

101
+
·
·
·+

101.

(1.19)

In
this

form
,the

doubled
sum

2S
consists

of
100

copies
of

101.
So

2S
=

100
×

101,w
herefore

S
=

12
×

100
×

101
=

5050.
(1.20)

The
tedium

and
com

plexity
ofthe

sum
vanished

by
finding

a
sym

m
etry

operation
or,m

ore
com

pactly,a
sym

m
etry:

a
transform

ation
or

change
thatpreserves

im
portantfeatures

ofthe
problem

.
In

the
G
auss

sum
,the

sym
m
etry

operation
isreversing

the
orderofthe

term
s;and

the
im

portant
feature

is
the

totalS,unchanged
by

perm
uting

the
individualterm

s.
80

10

10

10

10

T
=

?

Sym
m
etry

helps
sim

plify
not

only
m
athem

aticalprob-
lem

s.
For

a
physical

application,
im

agine
a
uniform

sheet
of

alum
inum

foilcut
into

the
shape

of
a
regular

pentagon.
To

its
edges

attach
heatsources

holding
the

edges
atthe

m
arked

tem
peratures.

W
hen

thetem
peraturedistribution

stopschanging
(‘com

esto
equilibrium

’),w
hat

is
the

tem
perature

atthe
center

ofthe
pentagon?

First
exam

ine
the

direct
but

diffi
cult

approach.
The

tem
perature

on
the

sheet
is

a
solution

of
the

heat
equation,w

hich
is

the
follow

ing
second-

order
partial-differentialequation:

κ∇
2T

=
∂T∂t
,

w
here

∇
2
is

the
Laplacian

operator,w
hich

is
the

tw
o-dim

ensionalana-
log

of
the

second
derivative;

T
is

the
tem

perature,
w
hich

is
a
function

of
position

and
tim

e;
and

κ
is

the
m
aterial’s

therm
al

diffusivity,w
hich

is
the

ratio
of

the
therm

al
conductivity

to
the

volum
etric

heat
capacity

(Section
4.4).

For
alum

inum
,

κ
∼

10
−4

m
eters 2

second
(1.21)

A
fter

a
long-enough

tim
e,the

tem
perature

distribution
settles

dow
n
and

stops
changing,so

the
tim

e
derivative

∂T
/∂tapproaches

zero.
The

right
side

ofthe
heatequation

vanishes,and
the

equation
sim

plifies
to
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1
+

2
+

3
+
·
·
·+

100
+100

+
99

+
98

+
·
·
·+

1

=101
+

101
+
·
·
·+

101.

(1.19)

In
this

form
,the

doubled
sum

2S
consists

of
100

copies
of

101.
So

2S
=

100
×

101,w
herefore

S
=

12
×

100
×

101
=

5050.
(1.20)

The
tedium

and
com

plexity
ofthe

sum
vanished

by
finding

a
sym

m
etry

operation
or,m

ore
com

pactly,a
sym

m
etry:

a
transform

ation
or

change
thatpreserves

im
portantfeatures

ofthe
problem

.
In

the
G
auss

sum
,the

sym
m
etry

operation
isreversing

the
orderofthe

term
s;and

the
im

portant
feature

is
the

totalS,unchanged
by

perm
uting

the
individualterm

s.
80

10

10

10

10

T
=

?

Sym
m
etry

helps
sim

plify
not

only
m
athem

aticalprob-
lem

s.
For

a
physical

application,
im

agine
a
uniform

sheet
of

alum
inum

foilcut
into

the
shape

of
a
regular

pentagon.
To

its
edges

attach
heatsources

holding
the

edges
atthe

m
arked

tem
peratures.

W
hen

thetem
peraturedistribution

stopschanging
(‘com

esto
equilibrium

’),w
hat

is
the

tem
perature

atthe
center

ofthe
pentagon?

First
exam

ine
the

direct
but

diffi
cult

approach.
The

tem
perature

on
the

sheet
is

a
solution

of
the

heat
equation,w

hich
is

the
follow

ing
second-

order
partial-differentialequation:

κ∇
2T

=
∂T∂t
,

w
here

∇
2
is

the
Laplacian

operator,w
hich

is
the

tw
o-dim

ensionalana-
log

of
the

second
derivative;

T
is

the
tem

perature,
w
hich

is
a
function

of
position

and
tim

e;
and

κ
is

the
m
aterial’s

therm
al

diffusivity,w
hich

is
the

ratio
of

the
therm

al
conductivity

to
the

volum
etric

heat
capacity

(Section
4.4).

For
alum

inum
,

κ
∼

10
−4

m
eters 2

second
(1.21)

A
fter

a
long-enough

tim
e,the

tem
perature

distribution
settles

dow
n
and

stops
changing,so

the
tim

e
derivative

∂T
/∂tapproaches

zero.
The

right
side

ofthe
heatequation

vanishes,and
the

equation
sim

plifies
to

Com
m

ents
on

page
5

6

Com
m

ents
on

page
5

I
did

it
a
bit

diff
erent,

but
incorporating

a
sim

ilar
concept.

I
saw

that
adding

the
tw

o
opposite

ends
=
101.Then

the
nextpairofnum

bers
on

the
opposite

end,and
so

on.Since
I’m

dividing
the

num
bers

into
tw

o
groups,a

frontend
and

a
back

end,I
realized

I’d
have

50
101’s

by
the

end
of

it,thereby
getting

the
result-5050.

A
w
esom

e.
and

greatexam
ple

W
hataboutthinking

aboutthe
tem

perature
in

the
m
iddle

asthe
average

ofthe
tem

perature
of

the
outside?

I
w
as

thinking
of

tem
perature

as
therm

alenergy,so
the

tem
perature

of
the

m
iddle

w
ould

be
the

average
of

the
therm

alenergy
of

the
sides.

80
+
10+10+10+10

=
120.

120/5
=
24

IfIdidn’tknow
betterIw

ould
have

said
this

is
a
betterm

ethod,butifyou
think

aboutit,
itisn’toriginally

apparentthatthe
tem

perature
in

the
m
iddle

is
the

average
ofalltem

ps.
Sanjoy

does
a
really

greatjob
explaining

w
hy

this
problem

is
com

plicated
ifyou

choose
this

m
ethod.
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Problem
1.4

C
oin-flip

gam
e

Tw
o
people

take
turns

flipping
a
fair

coin.W
hoever

firstturns
over

heads
w
ins.

W
hatis

the
probability

thatthe
firstplayer

w
ins?

1.2
D
iscarding

fake
com

plexity

Section
1.1

introduced
tw

o
tools

for
organizing

com
plexity:

divide-and-
conquer

reasoning
and

m
aking

abstractions.A
ter

splitting
problem

s
into

their
sim

plest
subproblem

s
or

finding
reusable

ideas,
the

subproblem
s

m
ay

stillbe
too

diffi
cult.

Then,discard
com

plexity!
W

hen
this

com
plex-

ity
is

only
apparent,discarding

it
sim

plifies
the

problem
w
ithout

losing
inform

ation.
Three

tools
for

discarding
apparentcom

plexity
are

sym
m
e-

try
and

conservation
(Section

1.2.1),proportionalreasoning
(Section

1.2.2),
and

dim
ensionalanalysis

(Section
1.2.3).

1.2.1
Sym

m
etry

and
conservation

Sym
m
etry

beautifully
sim

plifiesany
problem

to
w
hich

itapplies—
w
ithout

sacrificing
any

accuracy.
A

classic
exam

ple
is

the
follow

ing
story

about
the

brilliant
m
athem

atician
C
arlFriedrich

G
auss

(1777–1855).
The

story
m
ay

be
m
ere

legend,butitis
so

instructive
forourpurposes

thatitought
to

be
true.O

ne
day,w

hen
C
arlFriedrich

w
as

in
prim

ary
school,the

story
goes,his

schoolteacher
w
as

angry
atthe

students
and

w
anted

to
occupy

them
and

obtain
thereby

som
e
peace.

The
teacher

asked
the

students
to

com
pute

the
sum

S
=

1
+

2
+

3
+
·
·
·+

100,
(1.17)

and
satback

to
enjoy

a
w
elcom

e
break.

To
the

teacher’s
surprise,G

auss
returned

in
a
few

m
inutes

claim
ing

thatthe
sum

is
5050.

W
as

G
auss

right?
Ifso,how

can
the

sum
be

com
puted

so
quickly?

G
aussnoticed

thatthe
sum

rem
ainsunchanged

w
hen

the
term

sare
added

in
the

opposite
order,from

100
dow

n
to

1.
In

other
w
ords,

100
+

99
+

98
+
·
·
·+

1
=

1
+

2
+

3
+
·
·
·+

100.
(1.18)

Then
G
auss

added
the

tw
o
alternative

butequalsum
s:
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18
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18
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gam
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Tw
o
people

take
turns

flipping
a
fair

coin.W
hoever

firstturns
over

heads
w
ins.

W
hatis

the
probability

thatthe
firstplayer

w
ins?

1.2
D
iscarding

fake
com

plexity

Section
1.1

introduced
tw

o
tools

for
organizing

com
plexity:

divide-and-
conquer

reasoning
and

m
aking

abstractions.A
ter

splitting
problem

s
into

their
sim

plest
subproblem

s
or

finding
reusable

ideas,
the

subproblem
s

m
ay

stillbe
too

diffi
cult.

Then,discard
com

plexity!
W

hen
this

com
plex-

ity
is

only
apparent,discarding

it
sim

plifies
the

problem
w
ithout

losing
inform

ation.
Three

tools
for

discarding
apparentcom

plexity
are

sym
m
e-

try
and

conservation
(Section

1.2.1),proportionalreasoning
(Section

1.2.2),
and

dim
ensionalanalysis

(Section
1.2.3).

1.2.1
Sym

m
etry

and
conservation

Sym
m
etry

beautifully
sim

plifiesany
problem

to
w
hich

itapplies—
w
ithout

sacrificing
any

accuracy.
A

classic
exam

ple
is

the
follow

ing
story

about
the

brilliant
m
athem

atician
C
arlFriedrich

G
auss

(1777–1855).
The

story
m
ay

be
m
ere

legend,butitis
so

instructive
forourpurposes

thatitought
to

be
true.O

ne
day,w

hen
C
arlFriedrich

w
as

in
prim

ary
school,the

story
goes,his

schoolteacher
w
as

angry
atthe

students
and

w
anted

to
occupy

them
and

obtain
thereby

som
e
peace.

The
teacher

asked
the

students
to

com
pute

the
sum

S
=

1
+

2
+

3
+
·
·
·+

100,
(1.17)

and
satback

to
enjoy

a
w
elcom

e
break.

To
the

teacher’s
surprise,G

auss
returned

in
a
few

m
inutes

claim
ing

thatthe
sum

is
5050.

W
as

G
auss

right?
Ifso,how

can
the

sum
be

com
puted

so
quickly?

G
aussnoticed

thatthe
sum

rem
ainsunchanged

w
hen

the
term

sare
added

in
the

opposite
order,from

100
dow

n
to

1.
In

other
w
ords,

100
+

99
+

98
+
·
·
·+

1
=

1
+

2
+

3
+
·
·
·+

100.
(1.18)

Then
G
auss

added
the

tw
o
alternative

butequalsum
s:

Com
m

ents
on

page
4

5

Com
m

ents
on

page
4

W
hatdoes

"only
apparent"

m
ean?

O
nly

in
your

m
ind?

M
eaning

non-essentialto
the

problem
.

I
see.

the
com

plexity
is

"only
in

your
head"

here
because

of
the

w
ay

the
problem

is
phrased.

if
itw

ere
phrased

101*100
/2

then
itw

ould
be

sim
pler.
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M
ust

u(t)
=

d(t)
at

som
e
tim

e
t?

O
r
can

you
choose

u(t)
and

d(t)
so

that
u(t)

is
never

equalto
d(t)?

These
abstractions

m
ake

the
question

clean
but

not
clean

enough
to

an-
sw

er
ata

glance.The
goalofansw

ering
the

question
ata

glance
suggests

m
aking

a
visualrepresentation

or
diagram

.
H
ere

are
diagram

s
illustrat-

ing
possible

upw
ard

and
dow

nw
ard

schedules.

u(t)

t
w

alk

rest

run

d(t)

t

w
alk

The
upw

ard
schedule

has
three

8
hours

segm
ents.

In
the

first
segm

ent,
w
ith

its
gentle

slope,you
strollup

the
m
ountain;in

the
second,flatseg-

m
ent,you

take
an

8-hournap.Energized
by

the
nap,in

the
third

segm
ent,

w
ith

its
steep

slope,you
run

for
8
hours

and
reach

the
top.

O
n
the

w
ay

dow
n,you

w
alk

steadily
dow

n
the

m
ountain

over
24

hours.

t up

dow
n

N
ow

draw
these

upw
ard

and
dow

nw
ard

sched-
ules

on
the

sam
e
diagram

.
The

paths
intersect!

The
intersection

point
gives

the
tim

e
and

loca-
tion

w
here

the
upw

ard
and

dow
nw

ard
sched-

ules
landed

on
the

sam
e
pointatthe

sam
e
tim

e
ofday

(buton
separate

days).Furtherm
ore,the

diagram
show

s
thatthis

pattern
is

general.
N
o

m
atter

the
schedule,the

upw
ard

path
creates

a
path

thatthe
dow

nw
ard

path
m
ustcross.A

ttheirintersection,the
position

along
the

upw
ard

and
dow

nw
ard

paths
is

identical
as

is
the

tim
e
of

day.
Therefore,

there
is

alw
ays

a
point

that
you

reached
at

the
sam

e
tim

e
of

day
going

up
and

dow
n
–
a
conclusion

hard
to

reach
w
ithoutabstracting

aw
ay

the
unessen-

tialdetails
to

m
ake

a
diagram

.

The
toolofm

aking
abstractions

w
illreappear

in
m
any

guises.

Problem
1.3

W
hatdetails

are
relevant?

If
you

rest
at

the
top

for
48

hours
instead

of
24

hours,
does

the
conclusion

change?
W
hatifyou

restfor
12

hours?
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=
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at

som
e
tim

e
t?

O
r
can

you
choose

u(t)
and

d(t)
so

that
u(t)

is
never

equalto
d(t)?

These
abstractions

m
ake

the
question

clean
but

not
clean

enough
to

an-
sw

er
ata

glance.The
goalofansw

ering
the

question
ata

glance
suggests

m
aking

a
visualrepresentation

or
diagram

.
H
ere

are
diagram

s
illustrat-

ing
possible

upw
ard

and
dow

nw
ard

schedules.

u(t)

t
w

alk

rest

run

d(t)

t

w
alk

The
upw

ard
schedule

has
three

8
hours

segm
ents.

In
the

first
segm

ent,
w
ith

its
gentle

slope,you
strollup

the
m
ountain;in

the
second,flatseg-

m
ent,you

take
an

8-hournap.Energized
by

the
nap,in

the
third

segm
ent,

w
ith

its
steep

slope,you
run

for
8
hours

and
reach

the
top.

O
n
the

w
ay

dow
n,you

w
alk

steadily
dow

n
the

m
ountain

over
24

hours.

t up

dow
n

N
ow

draw
these

upw
ard

and
dow

nw
ard

sched-
ules

on
the

sam
e
diagram

.
The

paths
intersect!

The
intersection

point
gives

the
tim

e
and

loca-
tion

w
here

the
upw

ard
and

dow
nw

ard
sched-

ules
landed

on
the

sam
e
pointatthe

sam
e
tim

e
ofday

(buton
separate

days).Furtherm
ore,the

diagram
show

s
thatthis

pattern
is

general.
N
o

m
atter

the
schedule,the

upw
ard

path
creates

a
path

thatthe
dow

nw
ard

path
m
ustcross.A

ttheirintersection,the
position

along
the

upw
ard

and
dow

nw
ard

paths
is

identical
as

is
the

tim
e
of

day.
Therefore,

there
is

alw
ays

a
point

that
you

reached
at

the
sam

e
tim

e
of

day
going

up
and

dow
n
–
a
conclusion

hard
to

reach
w
ithoutabstracting

aw
ay

the
unessen-

tialdetails
to

m
ake

a
diagram

.

The
toolofm

aking
abstractions

w
illreappear

in
m
any

guises.

Problem
1.3

W
hatdetails

are
relevant?

If
you

rest
at

the
top

for
48

hours
instead

of
24

hours,
does

the
conclusion

change?
W
hatifyou

restfor
12

hours?

Com
m

ents
on

page
3

4

Com
m

ents
on

page
3

Is
there

a
w
ay

to
do

this
w
ith

partial
integrals

that
w
ould

be
convenient?

If
I
found

a
m
ore

generalm
ethod,thatw

ould
be

a
greater

degree
of

abstraction
right?

Is
there

a
w
ay

to
visualize

othertypes
ofproblem

s
thatdon’tinvolve

position
orany

other
equation

of
m
otion

w
ith

diagram
s?

The
firstexam

ple
(w

ith
the

series)and
problem

1.4
are

both
good

exam
ples

ofvisualizing
w
ith

num
bers.

Ireally
w
antto

be
able

to
solve

this
num

erically
w
ithoutthe

graph.
You

can.C
allv(t)=

u(t)-d(t),and
say

thath
is

the
totalheightofthe

m
ountain.A

tt
=
0,v

=
-h

and
atthe

end
tim

e,v
=
h.

V
is

continuous,so
by

the
interm

ediate
value

theorem
V

m
ustbe

0
atsom

e
point,w

hich
m
eans

thatu(t)=
d(t).

Butthe
picture

is
so

m
uch

prettier.
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1
+

23
+

49
+
·
·
·,

(1.13)

w
here

each
term

has
the

form
(2/3) n.

W
ith

slightly
blurry

vision,
the

entire
series

exceptfor
the

firstterm
looks

sim
ilar

to
the

entire
series:

23
+

49
+
·
·
·
=

23
× (1

+
23

+
·
·
· )
.

(1.14)

The
series

in
parenthesis

is
the

original
series!

Therefore,
the

original
series

is
a
reusable

m
odule.

G
ive

ita
nam

e;say,S.
Then

S
=

1
+

23 S.
(1.15)

W
ith

this
abstraction,the

sum
becom

es
easy

to
find:

S
=

3.
(1.16)

For
further

practice
m
aking

abstractions,see
w
hatrem

ains
in

the
follow

-
ing

problem
after

ignoring
the

froth.
Starting

on
June

5th
at

noon,you
hike

along
a
path

all
the

w
ay

up
M
ount

Fuji
over

a
24-hour

period,resting
along

the
w
ay

as
you

need.
A
t
the

top,
you

sleep
for

24
hours.

Starting
on

June
7th

at
noon,you

w
alk

allthe
w
ay

dow
n
the

sam
e
path

over
the

follow
ing

24
hours.

W
ere

you
atany

pointon
the

path
atthe

sam
e
tim

e
ofday

on
the

w
ay

up
and

on
the

w
ay

dow
n
(using

a
24-hour

clock
for

tim
e
ofday)?

A
lternatively,is

itpossible
to

w
alk

up
and

dow
n
on

a
carefulschedule

ensuring
thatthere

is
no

such
point?

Firstfind
the

details
thatdefinitely

do
notm

atterforansw
ering

the
ques-

tion.
These

include
the

nam
e
of

the
m
ountain,its

height,the
length

of
the

path,the
m
onth,and

the
day

of
the

m
onth.

A
llthat

m
atters

is
the

schedule
on

w
hich

you
w
alk

up
and

dow
n:

w
here

you
are

atw
hattim

e
ofday.A

schedule
can

be
represented

as
a
function

giving
your

position
on

the
path

as
a
function

oftim
e.Because

the
date

does
notm

atter,only
the

tim
e
of

day
(on

a
24-hour

clock),the
tim

e
t
w
ould

run
from

0
to

24
hours.

For
position

on
the

path,use
the

range
0
to

1,w
here

0
m
eans

the
bottom

ofthe
m
ountain,and

1
m
eansthe

top
ofthe

m
ountain.Thatrange

suggests
a
further

sim
plification:

Specify
the

tim
e
from

0
to

1
instead

of
0
to

24
hours.

A
journey

consists
oftw

o
schedules:u(t)forhiking

up
the

m
ountain

and
d(t)

for
hiking

dow
n

the
m
ountain.

In
this

abstract
representation,

the
problem

becom
es

the
follow

ing.
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1
+

23
+

49
+
·
·
·,

(1.13)

w
here

each
term

has
the

form
(2/3) n.

W
ith

slightly
blurry

vision,
the

entire
series

exceptfor
the

firstterm
looks

sim
ilar

to
the

entire
series:

23
+

49
+
·
·
·
=

23
× (1

+
23

+
·
·
· )
.

(1.14)

The
series

in
parenthesis

is
the

original
series!

Therefore,
the

original
series

is
a
reusable

m
odule.

G
ive

ita
nam

e;say,S.
Then

S
=

1
+

23 S.
(1.15)

W
ith

this
abstraction,the

sum
becom

es
easy

to
find:

S
=

3.
(1.16)

For
further

practice
m
aking

abstractions,see
w
hatrem

ains
in

the
follow

-
ing

problem
after

ignoring
the

froth.
Starting

on
June

5th
at

noon,you
hike

along
a
path

all
the

w
ay

up
M
ount

Fuji
over

a
24-hour

period,resting
along

the
w
ay

as
you

need.
A
t
the

top,
you

sleep
for

24
hours.

Starting
on

June
7th

at
noon,you

w
alk

allthe
w
ay

dow
n
the

sam
e
path

over
the

follow
ing

24
hours.

W
ere

you
atany

pointon
the

path
atthe

sam
e
tim

e
ofday

on
the

w
ay

up
and

on
the

w
ay

dow
n
(using

a
24-hour

clock
for

tim
e
ofday)?

A
lternatively,is

itpossible
to

w
alk

up
and

dow
n
on

a
carefulschedule

ensuring
thatthere

is
no

such
point?

Firstfind
the

details
thatdefinitely

do
notm

atterforansw
ering

the
ques-

tion.
These

include
the

nam
e
of

the
m
ountain,its

height,the
length

of
the

path,the
m
onth,and

the
day

of
the

m
onth.

A
llthat

m
atters

is
the

schedule
on

w
hich

you
w
alk

up
and

dow
n:

w
here

you
are

atw
hattim

e
ofday.A

schedule
can

be
represented

as
a
function

giving
your

position
on

the
path

as
a
function

oftim
e.Because

the
date

does
notm

atter,only
the

tim
e
of

day
(on

a
24-hour

clock),the
tim

e
t
w
ould

run
from

0
to

24
hours.

For
position

on
the

path,use
the

range
0
to

1,w
here

0
m
eans

the
bottom

ofthe
m
ountain,and

1
m
eansthe

top
ofthe

m
ountain.Thatrange

suggests
a
further

sim
plification:

Specify
the

tim
e
from

0
to

1
instead

of
0
to

24
hours.

A
journey

consists
oftw

o
schedules:u(t)forhiking

up
the

m
ountain

and
d(t)

for
hiking

dow
n

the
m
ountain.

In
this

abstract
representation,

the
problem

becom
es

the
follow

ing.

Com
m

ents
on

page
2

3

Com
m

ents
on

page
2

I
w
antto

practice
this

m
ore.

Itseem
s
really

useful.

This
m
ethod

can
be

also
be

used
to

elegantly
solve

a
generalcases

for
infinite

geom
etric

series.
S
=
r
+
rˆ2

+
rˆ3

S
/r

=
1
+
S
S
=
r
+
Sr

0
=
r
+
S(r-1)S

=
-r/(r-1)

S
-(2/3)S=

(1/3)S
=
1,so

S
=
3

I
didn’trealize

itw
as

so
sim

ple
atfirst.

H
a!

M
y
brother

put
this

question
to

m
e,

and
I
soon

saw
the

w
ay

to
the

answ
er,

but
I

tried
to

use
it

to
prove

that
you

’m
issed’yourself!

It
did

help
that

in
his

telling,all
the

extraneous
detailw

as
already

rem
oved
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1.1.2
A
bstraction

In
the

oil-im
ports

problem
,the

final
tree

w
ith

num
bers

com
pactly

rep-
resents

the
estim

ate.
The

tree
representation

is
an

exam
ple

of
an

ab-
straction

–
the

second
tool

for
organizing

com
plexity.

A
n

abstraction’s
essentialcharacteristic

is
reusability.

A
s
explained

in
softw

are
design

[1,
Section

1.1.8]:
The

im
portance

ofthis
decom

position
strategy

[abstraction]is
notsim

ply
that

one
is

dividing
the

program
into

parts.
A
fter

all,
w
e
could

take
any

large
program

and
divide

it
into

parts
–
the

first
ten

lines,the
next

ten
lines,the

nextten
lines,and

so
on.Rather,itiscrucialthateach

procedure
accom

plishes
an

identifiable
task

thatcan
be

used
asa

m
odule

in
defining

otherprocedures.

This
principle

applies
generally:Find

units
ofthoughtthatcan

be
reused

in
understanding

and
building

other
system

s.
The

tree
representation

for
divide-and-conquer

estim
ates

is
a
reusable

unitofthought.
A
nother,

m
ore

fam
iliar

unit,is
the

idea
ofa

fluid.
Itis

our
ow

n
m
entalconstruc-

tion
–
and

a
pow

erful,reusable
one.The

behaviorofw
ateris

farrem
oved

from
the

actorsoffundam
entalphysics:quarksand

electrons.Butquarks
com

bine
to

build
protons

and
neutrons.Protons,neutrons,and

electrons
com

bine
to

build
atom

s.
A
tom

s
com

bine
to

build
m
olecules.

A
nd

m
ole-

cules,in
large

collections,behave
in

such
repeatable

w
ays

thatw
e
collect

the
properties

together
into

a
single

group
and

give
it

a
nam

e:
fluid

behavior.

fluid
lots

ofm
olecules

atom
s

electrons
protons

and
neutrons

quarks
gluons

The
idea

of
a
fluid

becom
es

a
new

unit
of

thought
that

helps
explain

diverse
phenom

ena,
w
ithout

our
having

to
calculate

anew
or

even
to

know
how

quarks
and

electrons
eventually

produce
fluid

behavior.

The
preceding

definition
described

an
abstraction

by
the

constraintthatan
abstraction

m
ust

be
reusable.

That
constraint

helps
us

see
how

to
m
ake

reusable
units

of
thought.

Every
situation,

if
specified

in
full

detail,
is

unique.Therefore,a
fulldescription

cannotform
an

abstraction.Instead,
look

ata
situation

w
ith

slightly
blurry

vision
and

ignore
the

froth;w
hat

rem
ains

is
an

abstraction.

To
w
arm

up
w
ith

abstraction,w
e
firstfind

the
follow

ing
infinite

sum
:
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15
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num
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ate.
The

tree
representation

is
an

exam
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of
an

ab-
straction

–
the

second
tool

for
organizing

com
plexity.

A
n

abstraction’s
essentialcharacteristic

is
reusability.

A
s
explained

in
softw

are
design

[1,
Section

1.1.8]:
The

im
portance

ofthis
decom

position
strategy

[abstraction]is
notsim

ply
that

one
is

dividing
the

program
into

parts.
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all,
w
e
could

take
any

large
program

and
divide

it
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parts
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the

first
ten

lines,the
next

ten
lines,the

nextten
lines,and

so
on.Rather,itiscrucialthateach

procedure
accom

plishes
an

identifiable
task

thatcan
be

used
asa

m
odule

in
defining

otherprocedures.

This
principle

applies
generally:Find

units
ofthoughtthatcan

be
reused

in
understanding

and
building

other
system

s.
The

tree
representation

for
divide-and-conquer

estim
ates

is
a
reusable

unitofthought.
A
nother,

m
ore

fam
iliar

unit,is
the

idea
ofa

fluid.
Itis

our
ow

n
m
entalconstruc-

tion
–
and

a
pow

erful,reusable
one.The

behaviorofw
ateris

farrem
oved

from
the

actorsoffundam
entalphysics:quarksand

electrons.Butquarks
com

bine
to

build
protons

and
neutrons.Protons,neutrons,and

electrons
com

bine
to

build
atom

s.
A
tom

s
com

bine
to

build
m
olecules.

A
nd

m
ole-

cules,in
large

collections,behave
in

such
repeatable

w
ays

thatw
e
collect

the
properties

together
into

a
single

group
and

give
it

a
nam

e:
fluid

behavior.

fluid
lots

ofm
olecules

atom
s

electrons
protons

and
neutrons

quarks
gluons

The
idea

of
a
fluid

becom
es

a
new

unit
of

thought
that

helps
explain

diverse
phenom

ena,
w
ithout

our
having

to
calculate

anew
or

even
to

know
how

quarks
and

electrons
eventually

produce
fluid

behavior.

The
preceding

definition
described

an
abstraction

by
the

constraintthatan
abstraction

m
ust

be
reusable.

That
constraint

helps
us

see
how

to
m
ake

reusable
units

of
thought.

Every
situation,

if
specified

in
full

detail,
is

unique.Therefore,a
fulldescription

cannotform
an

abstraction.Instead,
look

ata
situation

w
ith

slightly
blurry

vision
and

ignore
the

froth;w
hat

rem
ains

is
an

abstraction.

To
w
arm

up
w
ith

abstraction,w
e
firstfind

the
follow

ing
infinite

sum
:

Com
m

ents
on

page
1

2

To
be

com
pletely

honest,I
feelthatw

e’ve
already

been
doing

this.
W
e
take

the
situation,

break
it

dow
n
to

several
general

ideas
that

helps
us

sim
plify

our
calculations.

In
fact,I

alm
ostfeelthatdivide

and
conquer

cannotbe
done

w
ithoutundergoing

this
process

first.
I’d

like
to

hear
other

people’s
opinions

on
this.

Yes,Ithink
itisrepetitive.M

aybe
reiterating

thism
ain

pointisim
portantso

w
e
rem

em
ber

itin
the

long
run?

I
think

the
m
ain

takeaw
ay

is
that

the
idea

is
reusable,w

hich
is

not
necessarily

true
of

divide
and

conquer.
I
actually

think
that

this
isn’t

really
saying

anything
about

actually
breaking

dow
n
the

situation
into

sim
ple

m
eans

to
divide

and
conquer.

I
think

this
particular

sentence
is

talking
aboutnotnarrow

ing
dow

n.Iknow
itsounds

the
sam

e.butIm
ean,being

able
to

keep
the

situation
broad

to
include

allpossible
branches

instead
ofsim

plifying
(though

iagree
thatsim

plifying
is

crucialin
the

end.)
You

do
seem

to
m
ake

a
point

untilthat
last

bit,w
here

you
talk

about
including

all
possible

branches.To
m
e,the

m
ajorpointis

quite
the

opposite
-ignore

som
e
ofthose

branches
to

sim
plify

the
situation,the

idea
w
hich

Iw
as

originally
referring

to.

It’s
interesting

that
you

can
get

a
solution

w
ith

greater
accuracy

by
elim

inating
inform

a-
tion.

confused
how

w
e
w
entfrom

abstraction
and

branching
straightinto

an
infinite

sum
.w

hat
are

w
e
trying

to
see

here?
You

probably
noticed

by
the

tim
e
you

reached
the

nextpage,butitseem
s
like

itw
as

just
an

exam
ple

ofsim
ple

abstraction
thatw

e
can

do,hence
"To

w
arm

up
w
ith

abstraction..."
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1.1.2
A
bstraction

In
the

oil-im
ports

problem
,the

final
tree

w
ith

num
bers

com
pactly

rep-
resents

the
estim

ate.
The

tree
representation

is
an

exam
ple

of
an

ab-
straction

–
the

second
tool

for
organizing

com
plexity.

A
n

abstraction’s
essentialcharacteristic

is
reusability.

A
s
explained

in
softw

are
design

[1,
Section

1.1.8]:
The

im
portance

ofthis
decom

position
strategy

[abstraction]is
notsim

ply
that

one
is

dividing
the

program
into

parts.
A
fter

all,
w
e
could

take
any

large
program

and
divide

it
into

parts
–
the

first
ten

lines,the
next

ten
lines,the

nextten
lines,and

so
on.Rather,itiscrucialthateach

procedure
accom

plishes
an

identifiable
task

thatcan
be

used
asa

m
odule

in
defining

otherprocedures.

This
principle

applies
generally:Find

units
ofthoughtthatcan

be
reused

in
understanding

and
building

other
system

s.
The

tree
representation

for
divide-and-conquer

estim
ates

is
a
reusable

unitofthought.
A
nother,

m
ore

fam
iliar

unit,is
the

idea
ofa

fluid.
Itis

our
ow

n
m
entalconstruc-

tion
–
and

a
pow

erful,reusable
one.The

behaviorofw
ateris

farrem
oved

from
the

actorsoffundam
entalphysics:quarksand

electrons.Butquarks
com

bine
to

build
protons

and
neutrons.Protons,neutrons,and

electrons
com

bine
to

build
atom

s.
A
tom

s
com

bine
to

build
m
olecules.

A
nd

m
ole-

cules,in
large

collections,behave
in

such
repeatable

w
ays

thatw
e
collect

the
properties

together
into

a
single

group
and

give
it

a
nam

e:
fluid

behavior.

fluid
lots

ofm
olecules

atom
s

electrons
protons

and
neutrons

quarks
gluons

The
idea

of
a
fluid

becom
es

a
new

unit
of

thought
that

helps
explain

diverse
phenom

ena,
w
ithout

our
having

to
calculate

anew
or

even
to

know
how

quarks
and

electrons
eventually

produce
fluid

behavior.

The
preceding

definition
described

an
abstraction

by
the

constraintthatan
abstraction

m
ust

be
reusable.

That
constraint

helps
us

see
how

to
m
ake

reusable
units

of
thought.

Every
situation,

if
specified

in
full

detail,
is

unique.Therefore,a
fulldescription

cannotform
an

abstraction.Instead,
look

ata
situation

w
ith

slightly
blurry

vision
and

ignore
the

froth;w
hat

rem
ains

is
an

abstraction.

To
w
arm

up
w
ith

abstraction,w
e
firstfind

the
follow

ing
infinite

sum
:
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num
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is
an
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of
an
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the

second
tool

for
organizing

com
plexity.
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n

abstraction’s
essentialcharacteristic

is
reusability.

A
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explained

in
softw

are
design

[1,
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1.1.8]:
The

im
portance

ofthis
decom

position
strategy

[abstraction]is
notsim

ply
that

one
is

dividing
the

program
into

parts.
A
fter

all,
w
e
could

take
any

large
program

and
divide

it
into

parts
–
the

first
ten

lines,the
next

ten
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nextten
lines,and

so
on.Rather,itiscrucialthateach

procedure
accom

plishes
an

identifiable
task

thatcan
be

used
asa

m
odule

in
defining

otherprocedures.

This
principle

applies
generally:Find

units
ofthoughtthatcan

be
reused

in
understanding

and
building

other
system

s.
The

tree
representation

for
divide-and-conquer

estim
ates

is
a
reusable

unitofthought.
A
nother,

m
ore

fam
iliar

unit,is
the

idea
ofa

fluid.
Itis

our
ow

n
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entalconstruc-

tion
–
and

a
pow

erful,reusable
one.The

behaviorofw
ateris
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oved

from
the
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entalphysics:quarksand

electrons.Butquarks
com

bine
to

build
protons

and
neutrons.Protons,neutrons,and

electrons
com

bine
to

build
atom

s.
A
tom

s
com

bine
to

build
m
olecules.

A
nd

m
ole-

cules,in
large

collections,behave
in

such
repeatable

w
ays

thatw
e
collect

the
properties

together
into

a
single

group
and

give
it

a
nam

e:
fluid

behavior.

fluid
lots

ofm
olecules

atom
s

electrons
protons

and
neutrons

quarks
gluons

The
idea

of
a
fluid

becom
es

a
new

unit
of

thought
that

helps
explain

diverse
phenom

ena,
w
ithout

our
having

to
calculate

anew
or

even
to

know
how

quarks
and

electrons
eventually

produce
fluid

behavior.

The
preceding

definition
described

an
abstraction

by
the

constraintthatan
abstraction

m
ust

be
reusable.

That
constraint

helps
us

see
how

to
m
ake

reusable
units

of
thought.

Every
situation,

if
specified

in
full

detail,
is

unique.Therefore,a
fulldescription

cannotform
an

abstraction.Instead,
look

ata
situation

w
ith

slightly
blurry

vision
and

ignore
the

froth;w
hat

rem
ains

is
an

abstraction.

To
w
arm

up
w
ith

abstraction,w
e
firstfind

the
follow

ing
infinite

sum
:

Com
m

ents
on

page
1

1

Com
m

ents
on

page
1

H
ere’s

the
second

reading!
It

introduces
tw

o
new

tools.
M
ake

your
com

m
ents

by
Tuesday

(2/8)atnoon.

For
the

hom
ew

ork,try
problem

s
1.3-1.6

thatare
in

the
text.

So
less

aboutdividing,m
ore

aboutbreaking
dow

n.

w
here

"breaking
dow

n"isdefined
as’usefully

and
selectively

separating
into

com
ponents’

So,the
softw

are
analogy

here
w
ould

be
classes,m

ethods,etc.
The

m
ore

often
a
block

of
code

is
used,the

m
ore

likely
itis

to
be

divided
into

its
ow

n
’unitof

thought.’

You
can

plug
one

tree
into

the
lim

b
of

another
tree

I
think

the
interesting

take-hom
e
here

is
the

im
portance

of
w
orking

the
problem

at
the

appropriate
level

of
abstraction.

W
hen

you
focus

at
too

specific
of

a
depth,the

problem
w
illtake

too
long

and
probably

be
too

com
plex

to
do

correctly
anyw

ays.
A
ttoo

high
of

a
level,you

m
iss

details
thatm

ake
a
m
eaningfuldiff

erence.

I’m
learning

about
nonlinear

dynam
ics

right
now

,
and

by
definition,

the
law

of
super-

position
w
ould

notw
ork

on
dynam

icalproblem
s.

H
ow

w
ould

you
estim

ate
for

a
chaotic

problem
?
Isuppose

the
only

w
ay

you
could

estim
ate

w
as

ifinstead
oflooking

atlocalized
pieces,you

attem
pted

to
estim

ate
the

big
picture

using
sym

m
etry

m
aybe?


