carding apparent complexity: proportional reasoning (Section 1.2.2) and something wrong?
dimensions (Section 1.2.3).
 This philosophy of ignoring the changing froth and instead focusing on
 invariants; they are very likely to be important features of a problem. The moral of this analysis is therefore the following: When there is change,
look for what does not change. These unchanging quantities are known as central temperature for the pentagon problem.

[^0]
$\varepsilon \Sigma$

 both problems seem difficult upon first glance. The Gauss sum contains
 Now compare the two examples-the Gauss sum and the pentagon temperature-

 solving the heat equation! Because all the new sheet's edges are pinned
at 120 degrees, the new sheet has a uniform temperature of 120 degrees

 $\begin{array}{llll}10 & 10 & 80 & 10\end{array}$

In the new, combined sheet, each edge has a temperature of 120 degrees:

 Is adding temperature a legitimate operation?

In the new, combined sheet, each edge has a temperature of 120 degrees:

[^1]¡ви!zeure s,деч L

9 asud ио sұигшшол

 one edge) and to rotate the entire temperature distribytion. However, the
 so it looks the same when it is rotated about the center by one-fifth of a
circle (an angle of 72 degrees). The only effects of the rotation are to rotate Symmetry, however, makes the solution flow. The pentagon is regular,
so it looks the same when it is rotated about the center by for such a regular shape. For a pentagon, even for a regular pentagon,
the full temperature distribution is even less intuitive. between 20 and 30 degrees. But the exact value is hardly obvious even so the central temperature is somewhere by the 20 and 30 -degree contour lines, predict shape. The center is surrounded

 80 degrees), the temperature distribution

 However, even this simpler equation with ${ }^{\circ} 0=L_{z} \Delta$

G asvd ио sұиәшишоว
1.2.1 Symmetry and conservation

 Section 1.1 introduced two tools for organizing complexity: divide-and-
conquer reasoning and making abstractions. Ater splitting problems into --
1.2 Discarding fake complexity

Then Gauss added the two alternative but equal sums: (8ㄷㄷ)
$\cdot 00 \mathrm{~L}+\cdots+\varepsilon+\tau+\mathrm{I}=\mathrm{L}+\cdots+86+66+00 \mathrm{~L}$

 to be true. One day, when Car friedrich was in primary school, the story
goes, his schoolteacher was angry at the students and wanted to occupy
them and obtain thereby some peace. The teacher asked the students to to be true. One day, when Carl friedrich was in primary school, the story
goes, his schoolteacher was angry at the students and wanted to occupy
them and obtain thereby some peace. The teacher asked the students to

mpute the sum
What does "only apparent" mean? Only in your mind.

Comments on page 3
 down - a conclusion hard to reach without abstracting away the unessen-
tial details to make a diagram always a point that you reached at the same time of day going up and downward paths is identical as is the time of day. Therefore, there is matter the schedule, the upward path creates a path that/the downward
path must cross. At their intersection, the position along/the upward and th that the downward of day (but on separate days). Furthermore, the tion where the upward and downward sched-
ules landed on the same point at the same time
 Now draw these upward and downward sched-
ules on the same diagram. The paths intersect! with its steep slope, you run for 8 hours and reach the top. On the way
down, you walk steadily down the mountain over 24 hours. ment, you take an 8 -hour nap. Energized by the nap, in the third segment,
with its steep slope, you run for 8 hours and reach the top. On the way with its gentle slope, you stroll up the mountain; in the second, flat segThe upward schedule has three 8 hours segments. In the first segment, But the picture is so much prettier. $=0, \mathrm{v}=-\mathrm{h}$ and at the end time, $\mathrm{v}=\mathrm{h}$. V is continuous, so by the intermediate value
theorem V must be 0 at some point, which means that $\mathrm{u}(\mathrm{t})=\mathrm{d}(\mathrm{t})$. You can. Call $\mathrm{v}(\mathrm{t})=\mathrm{u}(\mathrm{t})-\mathrm{d}(\mathrm{t})$, and say that h is the total height of the mountain. At t I really want to be able to solve this numerically without the graph. The first example (with the series) and problem 1.4 are both good examples of visualizing
with numbers. equation of motion with diagrams? Is there a way to visualize other types of problems that don't involve position or any other

z a8vd ио sұиәuиио

 bottom of the mountain, and 1 means the top of the mountain. That range hours. For position on the path, use the range 0 to 1 , where 0 means the

 tion. These include the name of the mountain, its height, the length of First find the details that definitely do not matter for answering the ques-

 down the same path over the following 24 hours. Were you at any point on
the path at the same time of day on the way up and on the way down (using you sleep for 24 hours. Starting on June 7 th at noon, you walk all the way
down the same path over the following 24 hours. Were you at any point on

 -мо $[$ [әf әчt u! su!

 (II'L) $\left(\cdots+\frac{\varepsilon}{\tau}+\tau\right) \times \frac{\varepsilon}{\tau}=\cdots+\frac{6}{\tau}+\frac{\varepsilon}{\tau}$

$\cdots+\frac{6}{7}+\frac{\varepsilon}{\tau}+\tau$

 look at a situation with slightly blurry vision and ignore the froth. what
remains is an abstraction. unique. Therefore, afoll description cannot form an abstraction. Instead,

 (

 Section 1.1.8]:

 The preceding definition described an abstraction by the constraint that an
abstraction must be reusable. That constraint helps us see how to make diverse phenomena, without our having to calculate anew or even to
know how quarks and electrons eventually produce fluid behavior. иب̣ן

behavio

 Section 1.1.8]:

[^0]: Comments on page 8

[^1]: \angle agvd ио sұигшшод
 \angle asod uo sturmos

