
GBATEK
Gameboy Advance / Nintendo DS - Technical Info - Extracted from no$gba version 2.5

 GBA Reference

Overview
GBA Technical Data
GBA Memory Map
GBA I/O Map

Hardware Programming
GBA LCD Video Controller
GBA Sound Controller
GBA Timers
GBA DMA Transfers
GBA Communication Ports
GBA Keypad Input
GBA Interrupt Control
GBA System Control

Other
GBA Cartridges
BIOS Functions
Unpredictable Things
External Connectors

 NDS Reference

Overview
DS Technical Data
DS I/O Maps
DS Memory Maps

Hardware Programming
DS Memory Control
DS Video
DS 3D Video
DS Sound
DS System and Built-in Peripherals
DS Cartridges, Encryption, Firmware
DS Xboo
DS Wireless Communications

Other
DS GBA-Mode
BIOS Functions
CPU Reference
External Connectors

 CPU Reference

General Information
CPU Overview
CPU Register Set
CPU Flags
CPU Exceptions
CPU Memory Alignments

The Instruction Sets
THUMB Instruction Set
ARM Instruction Set
Pseudos & Directives

Further Information
ARM System Control CP15
CPU Clock Cycles
CPU Versions
CPU Data Sheet

About GBATEK
About this Document

 GBA Technical Data

CPU Modes
 ARM Mode ARM7TDMI 32bit RISC CPU, 16.78MHz, 32bit opcodes (GBA)
 THUMB Mode ARM7TDMI 32bit RISC CPU, 16.78MHz, 16bit opcodes (GBA)
 CGB Mode Z80/8080-style 8bit CPU, 4.2MHz or 8.4MHz (CGB compatibility)
 DMG Mode Z80/8080-style 8bit CPU, 4.2MHz (monochrome gameboy compatib.)

Internal Memory
 BIOS ROM 16 KBytes
 Work RAM 288 KBytes (32K in-chip + 256K on-board)
 VRAM 96 KBytes
 OAM 1 KByte (128 OBJs 3x16bit, 32 OBJ-Rotation/Scalings 4x16bit)
 Palette RAM 1 KByte (256 BG colors, 256 OBJ colors)

Video
 Display 240x160 pixels (2.9 inch TFT color LCD display)
 BG layers 4 background layers
 BG types Tile/map based, or Bitmap based
 BG colors 256 colors, or 16 colors/16 palettes, or 32768 colors
 OBJ colors 256 colors, or 16 colors/16 palettes
 OBJ size 12 types (in range 8x8 up to 64x64 dots)
 OBJs/Screen max. 128 OBJs of any size (up to 64x64 dots each)
 OBJs/Line max. 128 OBJs of 8x8 dots size (under best circumstances)
 Priorities OBJ/OBJ: 0-127, OBJ/BG: 0-3, BG/BG: 0-3
 Effects Rotation/Scaling, alpha blending, fade-in/out, mosaic, window
 Backlight GBA SP only (optionally by light on/off toggle button)

Sound
 Analogue 4 channel CGB compatible (3x square wave, 1x noise)
 Digital 2 DMA sound channels
 Output Built-in speaker (mono), or headphones socket (stereo)

Controls
 Gamepad 4 Direction Keys, 6 Buttons

Communication Ports
 Serial Port Various transfer modes, 4-Player Link, Single Game Pak play

External Memory
 GBA Game Pak max. 32MB ROM or flash ROM + max 64K SRAM
 CGB Game Pak max. 32KB ROM + 8KB SRAM (more memory requires banking)

Case Dimensions
 Size (mm) GBA: 145x81x25 - GBA SP: 82x82x24 (closed), 155x82x24 (stretch)

Power Supply
 Battery GBA GBA: 2x1.5V DC (AA), Life-time approx. 15 hours
 Battery SP GBA SP: Built-in rechargeable Lithium ion battery, 3.7V 600mAh
 External GBA: 3.3V DC 350mA - GBA SP: 5.2V DC 320mA

 --
 ____._____________...___.____ _______________________
 ____/ : CARTRIDGE SIO : ____ | _____________________ |
L _____________________ LED R								
					2.9" TFT SCREEN			
_		_	2.9" TFT SCREEN	(A)			240x160pix 61x40mm	
	_ _		240x160pix 61x40mm	(B)			WITH BACKLIGHT	
			NO BACKLIGHT	::::				
		SPEAKR			_____________________			
STRT()	_____________________	::::		GAME BOY ADVANCE SP				
SLCT() GAME BOY ADVANCE VOLUME		_______________________						
____ OFF-ON BATTERY 2xAA PHONES _==_		_	________	________	_	_		
 __.##.__________________,,___/ |L EXT1 EXT2 R|
 .::' | (*) LEDSo
 .::' (OPENED) (VOL_||_ (A) o
 GBA SP SIDE VIEW .::' | |_ _| ,,,,,(B) |
 (CLOSED) .::' (STRETCHED) | || ;SPK; |
 _ | ''''' ON #
 :_____________________(_).....................: | SLCT STRT OFF#
 |.'.'. _| | CART. () () |
 |_CARTRIDGE_:_BATT._:_|_| <-- EXT1/EXT2 |_:___________________:_|

 --

 | _____________________ |
 | | | |
 | | 3" TFT SCREEN | |
 | | 256x192pix 61x46mm | |
 | | BACKLIGHT | |
 | ::::: | | ::::: |
 | ::::: |_____________________| ::::: |
 _| _ ______ _ |_
 |L|_______| |________| |_| |_______|R|
 |_______ _____________________ _______|
PWR				SEL STA		
_		3" TFT SCREEN				
_		_		256x192pix 61x46mm		X
	_ _			BACKLIGHT		Y A
	_			TOUCH SCREEN		B

_______	NintendoDS	_______				
MIC LEDS						

 VOL SLOT2(GBA) MIC/PHONES

 | _____________________ |
 | | | |
 | | 3" TFT SCREEN | |
 | ... | 256x192pix 61x46mm | ... |
 | ... | BACKLIGHT | ... |
 | | DS LITE | |
 | |_____________________| |
 |___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____|
 L| _ |_____________MIC____________|LEDS|R
 | _ _____________________ |
 | _| |_ | | X |
 ||_ _|| 3" TFT SCREEN | Y A |PWR
 | |_| | 256x192pix 61x46mm | B |
 | | BACKLIGHT | |
 | | TOUCH SCREEN |oSTART |
 | |_____________________|oSELECT|
 |_____________________________________|
 VOL SLOT2(GBA) MIC/PHONES

The separate CPU modes cannot be operated simultaneously. Switching is allowed between ARM and THUMB modes only (that are the two GBA modes).
This manual does not describe CGB and DMG modes, both are completely different than GBA modes, and both cannot be accessed from inside of GBA modes anyways.

Gameboy Player
An GBA Adapter for the Gamecube console; allowing to play GBA games on a television set.
GBA Gameboy Player

GBA SP Notes
Deluxe version of the original GBA. With backlight, new folded laptop-style case, and built-in rechargeable battery. Appears to be 100% compatible with GBA, there seems to be no way to detect SPs by software.

Nintendo DS (Dual Screen) Notes
New handheld with two screens, backwards compatible with GBA games, it is NOT backwards compatible with older 8bit games (mono/color gameboys) though..
Also, the DS has no link port, so that GBA games will thus work only in single player mode, link-port accessoires like printers cannot be used, and most unfortunately multiboot won't work (trying to press Select+Start at powerup will just lock up the DS).

iQue Notes
iQue is a brand name used by Nintendo in China, iQue GBA and iQue DS are essentially same as Nintendo GBA and Nintendo DS .
The iQue DS contains a larger firmware chip (the charset additionally contains about 6700 simplified chinese characters), the bootmenu still allows to select (only) six languages (japanese has been replaced by chinese). The iQue DS can play normal international NDS games, plus chinese dedicated games. The latter ones won't work on normal NDS consoles (that, reportedly simply due to a firmware-version check contained in chinese dedicated games, aside from that check, the games should be fully compatible with NDS consoles).

 GBA Memory Map

General Internal Memory
 00000000-00003FFF BIOS - System ROM (16 KBytes)
 00004000-01FFFFFF Not used
 02000000-0203FFFF WRAM - On-board Work RAM (256 KBytes) 2 Wait
 02040000-02FFFFFF Not used
 03000000-03007FFF WRAM - In-chip Work RAM (32 KBytes)
 03008000-03FFFFFF Not used
 04000000-040003FE I/O Registers
 04000400-04FFFFFF Not used

Internal Display Memory
 05000000-050003FF BG/OBJ Palette RAM (1 Kbyte)
 05000400-05FFFFFF Not used
 06000000-06017FFF VRAM - Video RAM (96 KBytes)
 06018000-06FFFFFF Not used
 07000000-070003FF OAM - OBJ Attributes (1 Kbyte)
 07000400-07FFFFFF Not used

External Memory (Game Pak)
 08000000-09FFFFFF Game Pak ROM/FlashROM (max 32MB) - Wait State 0
 0A000000-0BFFFFFF Game Pak ROM/FlashROM (max 32MB) - Wait State 1
 0C000000-0DFFFFFF Game Pak ROM/FlashROM (max 32MB) - Wait State 2
 0E000000-0E00FFFF Game Pak SRAM (max 64 KBytes) - 8bit Bus width
 0E010000-0FFFFFFF Not used

Unused Memory Area
 10000000-FFFFFFFF Not used (upper 4bits of address bus unused)

Default WRAM Usage
By default, the 256 bytes at 03007F00h-03007FFFh in Work RAM are reserved for Interrupt vector, Interrupt S tack, and BIOS Call S tack. The remaining WRAM is free for whatever use (including User S tack, which is initially located at 03007F00h).

Address Bus Width and CPU Read/Write Access Widths
Shows the Bus-Width, supported read and write widths, and the c lock cycles for 8/16/32bit accesses.
 Region Bus Read Write Cycles
 BIOS ROM 32 8/16/32 - 1/1/1
 Work RAM 32K 32 8/16/32 8/16/32 1/1/1
 I/O 32 8/16/32 8/16/32 1/1/1
 OAM 32 8/16/32 16/32 1/1/1 *
 Work RAM 256K 16 8/16/32 8/16/32 3/3/6 **
 Palette RAM 16 8/16/32 16/32 1/1/2 *
 VRAM 16 8/16/32 16/32 1/1/2 *
 GamePak ROM 16 8/16/32 - 5/5/8 **/***
 GamePak Flash 16 8/16/32 16/32 5/5/8 **/***
 GamePak SRAM 8 8 8 5 **

Timing Notes:
 * Plus 1 cycle if GBA accesses video memory at the same time.
 ** Default waitstate settings, see System Control chapter.
 *** Separate timings for sequential, and non-sequential accesses.
 One cycle equals approx. 59.59ns (ie. 16.78MHz clock).

All memory (except GamePak SRAM) can be accessed by 16bit and 32bit DMA.

GamePak Memory
Only DMA3 (and the CPU of course) may access GamePak ROM. GamePak SRAM can be accessed by the CPU only - restricted to bytewise 8bit transfers. The SRAM region is supposed for as external FLASH backup memory, or for battery-backed SRAM.
For details about configuration of GamePak Waitstates, see:
GBA System Control

VRAM, OAM, and Palette RAM Access
These memory regions can be accessed during H-Blank or V-Blank only (unless display is disabled by Forced Blank bit in DISPCNT register).
There is an additional restriction for OAM memory: Accesses during H-Blank are allowed only if 'H-Blank Interval Free' in DISPCNT is set (which'd reduce number of display-able OBJs though).
The CPU appears to be able to access VRAM/OAM/Palette at any time, a waitstate (one c lock cycle) being inserted automatically in case that the display controller was accessing memory simultaneously. (Ie. unlike as in old 8bit gameboy, the data will not get lost.)

CPU Mode Performance
Note that the GamePak ROM bus is limited to 16bits, thus executing ARM instructions (32bit opcodes) from inside of GamePak ROM would result in a not so good performance. So, it'd be more recommended to use THUMB instruction (16bit opcodes) which'd allow each opcode to be read at once.
(ARM instructions can be used at best performance by copying code from GamePak ROM into internal Work RAM)

Data Format
Even though the ARM CPU itself would allow to select between Little-Endian and Big-Endian format by using an external c ircuit, in the GBA no such c ircuit exists, and the data format is always Little-Endian. That is, when accessing 16bit or 32bit data in memory, the least significant bits are stored in the first byte (smallest address), and the most significant bits in the last byte. (Ie. same as for 80x86 and Z80 CPUs.)

 GBA I/O Map

LCD I/O Registers
 4000000h 2 R/W DISPCNT LCD Control
 4000002h 2 R/W - Undocumented - Green Swap
 4000004h 2 R/W DISPSTAT General LCD Status (STAT,LYC)
 4000006h 2 R VCOUNT Vertical Counter (LY)
 4000008h 2 R/W BG0CNT BG0 Control
 400000Ah 2 R/W BG1CNT BG1 Control
 400000Ch 2 R/W BG2CNT BG2 Control
 400000Eh 2 R/W BG3CNT BG3 Control
 4000010h 2 W BG0HOFS BG0 X-Offset
 4000012h 2 W BG0VOFS BG0 Y-Offset
 4000014h 2 W BG1HOFS BG1 X-Offset
 4000016h 2 W BG1VOFS BG1 Y-Offset
 4000018h 2 W BG2HOFS BG2 X-Offset
 400001Ah 2 W BG2VOFS BG2 Y-Offset
 400001Ch 2 W BG3HOFS BG3 X-Offset
 400001Eh 2 W BG3VOFS BG3 Y-Offset
 4000020h 2 W BG2PA BG2 Rotation/Scaling Parameter A (dx)
 4000022h 2 W BG2PB BG2 Rotation/Scaling Parameter B (dmx)
 4000024h 2 W BG2PC BG2 Rotation/Scaling Parameter C (dy)
 4000026h 2 W BG2PD BG2 Rotation/Scaling Parameter D (dmy)
 4000028h 4 W BG2X BG2 Reference Point X-Coordinate
 400002Ch 4 W BG2Y BG2 Reference Point Y-Coordinate
 4000030h 2 W BG3PA BG3 Rotation/Scaling Parameter A (dx)
 4000032h 2 W BG3PB BG3 Rotation/Scaling Parameter B (dmx)
 4000034h 2 W BG3PC BG3 Rotation/Scaling Parameter C (dy)
 4000036h 2 W BG3PD BG3 Rotation/Scaling Parameter D (dmy)
 4000038h 4 W BG3X BG3 Reference Point X-Coordinate
 400003Ch 4 W BG3Y BG3 Reference Point Y-Coordinate
 4000040h 2 W WIN0H Window 0 Horizontal Dimensions
 4000042h 2 W WIN1H Window 1 Horizontal Dimensions
 4000044h 2 W WIN0V Window 0 Vertical Dimensions
 4000046h 2 W WIN1V Window 1 Vertical Dimensions
 4000048h 2 R/W WININ Inside of Window 0 and 1
 400004Ah 2 R/W WINOUT Inside of OBJ Window & Outside of Windows
 400004Ch 2 W MOSAIC Mosaic Size
 400004Eh - - Not used
 4000050h 2 R/W BLDCNT Color Special Effects Selection
 4000052h 2 W BLDALPHA Alpha Blending Coefficients
 4000054h 2 W BLDY Brightness (Fade-In/Out) Coefficient
 4000056h - - Not used

Sound Registers
 4000060h 2 R/W SOUND1CNT_L Channel 1 Sweep register (NR10)
 4000062h 2 R/W SOUND1CNT_H Channel 1 Duty/Length/Envelope (NR11, NR12)
 4000064h 2 R/W SOUND1CNT_X Channel 1 Frequency/Control (NR13, NR14)
 4000066h - - Not used
 4000068h 2 R/W SOUND2CNT_L Channel 2 Duty/Length/Envelope (NR21, NR22)
 400006Ah - - Not used
 400006Ch 2 R/W SOUND2CNT_H Channel 2 Frequency/Control (NR23, NR24)
 400006Eh - - Not used
 4000070h 2 R/W SOUND3CNT_L Channel 3 Stop/Wave RAM select (NR30)
 4000072h 2 R/W SOUND3CNT_H Channel 3 Length/Volume (NR31, NR32)
 4000074h 2 R/W SOUND3CNT_X Channel 3 Frequency/Control (NR33, NR34)
 4000076h - - Not used
 4000078h 2 R/W SOUND4CNT_L Channel 4 Length/Envelope (NR41, NR42)
 400007Ah - - Not used
 400007Ch 2 R/W SOUND4CNT_H Channel 4 Frequency/Control (NR43, NR44)
 400007Eh - - Not used
 4000080h 2 R/W SOUNDCNT_L Control Stereo/Volume/Enable (NR50, NR51)
 4000082h 2 R/W SOUNDCNT_H Control Mixing/DMA Control
 4000084h 2 R/W SOUNDCNT_X Control Sound on/off (NR52)
 4000086h - - Not used
 4000088h 2 BIOS SOUNDBIAS Sound PWM Control
 400008Ah .. - - Not used
 4000090h 2x10h R/W WAVE_RAM Channel 3 Wave Pattern RAM (2 banks!!)
 40000A0h 4 W FIFO_A Channel A FIFO, Data 0-3
 40000A4h 4 W FIFO_B Channel B FIFO, Data 0-3
 40000A8h - - Not used

DMA Transfer Channels
 40000B0h 4 W DMA0SAD DMA 0 Source Address
 40000B4h 4 W DMA0DAD DMA 0 Destination Address
 40000B8h 2 W DMA0CNT_L DMA 0 Word Count
 40000BAh 2 R/W DMA0CNT_H DMA 0 Control
 40000BCh 4 W DMA1SAD DMA 1 Source Address
 40000C0h 4 W DMA1DAD DMA 1 Destination Address
 40000C4h 2 W DMA1CNT_L DMA 1 Word Count
 40000C6h 2 R/W DMA1CNT_H DMA 1 Control
 40000C8h 4 W DMA2SAD DMA 2 Source Address
 40000CCh 4 W DMA2DAD DMA 2 Destination Address
 40000D0h 2 W DMA2CNT_L DMA 2 Word Count
 40000D2h 2 R/W DMA2CNT_H DMA 2 Control
 40000D4h 4 W DMA3SAD DMA 3 Source Address
 40000D8h 4 W DMA3DAD DMA 3 Destination Address
 40000DCh 2 W DMA3CNT_L DMA 3 Word Count
 40000DEh 2 R/W DMA3CNT_H DMA 3 Control
 40000E0h - - Not used

Timer Registers
 4000100h 2 R/W TM0CNT_L Timer 0 Counter/Reload
 4000102h 2 R/W TM0CNT_H Timer 0 Control
 4000104h 2 R/W TM1CNT_L Timer 1 Counter/Reload
 4000106h 2 R/W TM1CNT_H Timer 1 Control
 4000108h 2 R/W TM2CNT_L Timer 2 Counter/Reload
 400010Ah 2 R/W TM2CNT_H Timer 2 Control
 400010Ch 2 R/W TM3CNT_L Timer 3 Counter/Reload
 400010Eh 2 R/W TM3CNT_H Timer 3 Control
 4000110h - - Not used

Serial Communication (1)
 4000120h 4 R/W SIODATA32 SIO Data (Normal-32bit Mode) (shared with below!)
 4000120h 2 R/W SIOMULTI0 SIO Data 0 (Parent) (Multi-Player Mode)
 4000122h 2 R/W SIOMULTI1 SIO Data 1 (1st Child) (Multi-Player Mode)
 4000124h 2 R/W SIOMULTI2 SIO Data 2 (2nd Child) (Multi-Player Mode)
 4000126h 2 R/W SIOMULTI3 SIO Data 3 (3rd Child) (Multi-Player Mode)
 4000128h 2 R/W SIOCNT SIO Control Register
 400012Ah 2 R/W SIOMLT_SEND SIO Data (Local of Multi-Player) (shared below)
 400012Ah 2 R/W SIODATA8 SIO Data (Normal-8bit and UART Mode)
 400012Ch - - Not used

Keypad Input
 4000130h 2 R KEYINPUT Key Status
 4000132h 2 R/W KEYCNT Key Interrupt Control

Serial Communication (2)
 4000134h 2 R/W RCNT SIO Mode Select/General Purpose Data
 4000136h - - IR Ancient - Infrared Register (Prototypes only)
 4000138h - - Not used
 4000140h 2 R/W JOYCNT SIO JOY Bus Control
 4000142h - - Not used
 4000150h 4 R/W JOY_RECV SIO JOY Bus Receive Data
 4000154h 4 R/W JOY_TRANS SIO JOY Bus Transmit Data
 4000158h 2 R/? JOYSTAT SIO JOY Bus Receive Status
 400015Ah - - Not used

Interrupt, Waitstate, and Power-Down Control
 4000200h 2 R/W IE Interrupt Enable Register
 4000202h 2 R/W IF Interrupt Request Flags / IRQ Acknowledge
 4000204h 2 R/W WAITCNT Game Pak Waitstate Control
 4000206h - - Not used
 4000208h 2 R/W IME Interrupt Master Enable Register
 400020Ah - - Not used
 4000300h 1 R/W POSTFLG Undocumented - Post Boot Flag
 4000301h 1 W HALTCNT Undocumented - Power Down Control
 4000302h - - Not used
 4000410h ? ? ? Undocumented - Purpose Unknown / Bug ??? 0FFh
 4000411h - - Not used
 4000800h 4 R/W ? Undocumented - Internal Memory Control (R/W)
 4000804h - - Not used
 4xx0800h 4 R/W ? Mirrors of 4000800h (repeated each 64K)

All further addresses at 4XXXXXXh are unused and do not contain mirrors of the I/O area, with the only exception that 4000800h is repeated each 64K (ie. mirrored at 4010800h, 4020800h, etc.)

 GBA LCD Video Controller

Registers
LCD I/O Display Control
LCD I/O Interrupts and S tatus
LCD I/O BG Control
LCD I/O BG Scrolling
LCD I/O BG Rotation/Scaling
LCD I/O Window Feature
LCD I/O Mosaic Function
LCD I/O Color Special Effects

VRAM
LCD VRAM Overview
LCD VRAM Character Data
LCD VRAM BG Screen Data Format (BG Map)
LCD VRAM Bitmap BG Modes

Sprites
LCD OBJ - Overview
LCD OBJ - OAM Attributes
LCD OBJ - OAM Rotation/Scaling Parameters
LCD OBJ - VRAM Character (Tile) Mapping

Other
LCD Color Palettes
LCD Dimensions and Timings

 LCD I/O Display Control

4000000h - DISPCNT - LCD Control (Read/Write)
 Bit Expl.
 0-2 BG Mode (0-5=Video Mode 0-5, 6-7=Prohibited)
 3 Reserved / CGB Mode (0=GBA, 1=CGB; can be set only by BIOS opcodes)
 4 Display Frame Select (0-1=Frame 0-1) (for BG Modes 4,5 only)
 5 H-Blank Interval Free (1=Allow access to OAM during H-Blank)
 6 OBJ Character VRAM Mapping (0=Two dimensional, 1=One dimensional)
 7 Forced Blank (1=Allow FAST access to VRAM,Palette,OAM)
 8 Screen Display BG0 (0=Off, 1=On)
 9 Screen Display BG1 (0=Off, 1=On)
 10 Screen Display BG2 (0=Off, 1=On)
 11 Screen Display BG3 (0=Off, 1=On)
 12 Screen Display OBJ (0=Off, 1=On)
 13 Window 0 Display Flag (0=Off, 1=On)
 14 Window 1 Display Flag (0=Off, 1=On)
 15 OBJ Window Display Flag (0=Off, 1=On)

The table summarizes the facilities of the separate BG modes (video modes).
 Mode Rot/Scal Layers Size Tiles Colors Features
 0 No 0123 256x256..512x515 1024 16/16..256/1 SFMABP
 1 Mixed 012- (BG0,BG1 as above Mode 0, BG2 as below Mode 2)
 2 Yes --23 128x128..1024x1024 256 256/1 S-MABP
 3 Yes --2- 240x160 1 32768 --MABP
 4 Yes --2- 240x160 2 256/1 --MABP
 5 Yes --2- 160x128 2 32768 --MABP

Features: S)crolling, F)lip, M)osaic, A)lphaBlending, B)rightness, P)riority.

BG Modes 0-2 are Tile/Map-based. BG Modes 3-5 are Bitmap-based, in these modes 1 or 2 Frames (ie. bitmaps, or 'full screen tiles') exists, if two frames exist, either one can be displayed, and the other one can be redrawn in background.

Blanking Bits
Setting Forced Blank (Bit 7) causes the video controller to display white lines, and all VRAM, Palette RAM, and OAM may be accessed.
"When the internal HV synchronous counter cancels a forced blank during a display period, the display begins from the beginning, following the display of two vertical lines." What ?
Setting H-Blank Interval Free (Bit 5) allows to access OAM during H-Blank time - using this feature reduces the number of sprites that can be displayed per line.

Display Enable Bits
By default, BG0-3 and OBJ Display Flags (Bit 8-12) are used to enable/disable BGs and OBJ. When enabling Window 0 and/or 1 (Bit 13-14), color special effects may be used, and BG0-3 and OBJ are controlled by the window(s).

Frame Selection
In BG Modes 4 and 5 (Bitmap modes), either one of the two bitmaps/frames may be displayed (Bit 4), allowing the user to update the other (invisible) frame in background. In BG Mode 3, only one frame exists.
In BG Modes 0-2 (Tile/Map based modes), a similar effect may be gained by altering the base address(es) of BG Map and/or BG Character data.

4000002h - Undocumented - Green Swap (R/W)
Normally, red green blue intensities for a group of two pixels is output as BGRbgr (uppercase for left pixel at even xloc, lowercase for right pixel at odd xloc). When the Green Swap bit is set, each pixel group is output as BgRbGr (ie. green intensity of each two pixels exchanged).
 Bit Expl.
 0 Green Swap (0=Normal, 1=Swap)
 1-15 Not used

This feature appears to be applied to the final picture (ie. after mixing the separate BG and OBJ layers). Eventually intended for other display types (with other pin-outs). With normal GBA hardware it is just producing an interesting dirt effect.
The NDS DISPCNT registers are 32bit (4000000h..4000003h), so Green Swap doesn't exist in NDS mode, however, the NDS does support Green Swap in GBA mode.

 LCD I/O Interrupts and Status

4000004h - DISPSTAT - General LCD Status (Read/Write)
Display status and Interrupt control. The H-Blank conditions are generated once per scanline, including for the 'hidden' scanlines during V-Blank.
 Bit Expl.
 0 V-Blank flag (Read only) (1=VBlank) (set in line 160..226; not 227)
 1 H-Blank flag (Read only) (1=HBlank) (toggled in all lines, 0..227)
 2 V-Counter flag (Read only) (1=Match) (set in selected line)
 3 V-Blank IRQ Enable (1=Enable)
 4 H-Blank IRQ Enable (1=Enable)
 5 V-Counter IRQ Enable (1=Enable)
 6-7 Not used
 8-15 V-Count Setting (LYC) (0..227)

The V-Count-Setting value is much the same as LYC of older gameboys, when its value is identical to the content of the VCOUNT register then the V-Counter flag is set (Bit 2), and (if enabled in Bit 5) an interrupt is requested.
Although the drawing time is only 960 cycles (240*4), the H-Blank flag is "0" for a total of 1006 cycles.

4000006h - VCOUNT - Vertical Counter (Read only)
Indicates the currently drawn scanline, values in range from 160..227 indicate 'hidden' scanlines within VBlank area.
 Bit Expl.
 0-7 Current scanline (LY) (0..227)
 8-15 Not Used

Note: This is much the same than the 'LY' register of older gameboys.

 LCD I/O BG Control

4000008h - BG0CNT - BG0 Control (R/W) (BG Modes 0,1 only)
400000Ah - BG1CNT - BG1 Control (R/W) (BG Modes 0,1 only)
400000Ch - BG2CNT - BG2 Control (R/W) (BG Modes 0,1,2 only)
400000Eh - BG3CNT - BG3 Control (R/W) (BG Modes 0,2 only)
 Bit Expl.
 0-1 BG Priority (0-3, 0=Highest)
 2-3 Character Base Block (0-3, in units of 16 KBytes) (=BG Tile Data)
 4-5 Not used (must be zero)
 6 Mosaic (0=Disable, 1=Enable)
 7 Colors/Palettes (0=16/16, 1=256/1)
 8-12 Screen Base Block (0-31, in units of 2 KBytes) (=BG Map Data)
 13 Display Area Overflow (0=Transparent, 1=Wraparound; BG2CNT/BG3CNT only)
 14-15 Screen Size (0-3)

Internal Screen S ize (dots) and size of BG Map (bytes):
 Value Text Mode Rotation/Scaling Mode
 0 256x256 (2K) 128x128 (256 bytes)
 1 512x256 (4K) 256x256 (1K)
 2 256x512 (4K) 512x512 (4K)
 3 512x512 (8K) 1024x1024 (16K)

In case that some or all BGs are set to same priority then BG0 is having the highest, and BG3 the lowest priority.

In 'Text Modes', the screen size is organized as follows: The screen consists of one or more 256x256 pixel (32x32 tiles) areas. When S ize=0: only 1 area (SC0), when S ize=1 or S ize=2: two areas (SC0,SC1 either horizontally or vertically arranged next to each other), when S ize=3: four areas (SC0,SC1 in upper row, SC2,SC3 in lower row). Whereas SC0 is defined by the normal BG Map base address (Bit 8-12 of BG#CNT), SC1 uses same address +2K, SC2 address +4K, SC3 address +6K. When the screen is scrolled it'll always wraparound.

In 'Rotation/Scaling Modes', the screen size is organized as follows, only one area (SC0) of variable size 128x128..1024x1024 pixels (16x16..128x128 tiles) exists. When the screen is rotated/scaled (or scrolled?) so that the LCD viewport reaches outside of the background/screen area, then BG may be either displayed as transparent or wraparound (Bit 13 of BG#CNT).

 LCD I/O BG Scrolling

4000010h - BG0HOFS - BG0 X-Offset (W)
4000012h - BG0VOFS - BG0 Y-Offset (W)
 Bit Expl.
 0-8 Offset (0-511)
 9-15 Not used

Specifies the coordinate of the upperleft first visible dot of BG0 background layer, ie. used to scroll the BG0 area.

4000014h - BG1HOFS - BG1 X-Offset (W)
4000016h - BG1VOFS - BG1 Y-Offset (W)
Same as above BG0HOFS and BG0VOFS for BG1 respectively.

4000018h - BG2HOFS - BG2 X-Offset (W)
400001Ah - BG2VOFS - BG2 Y-Offset (W)
Same as above BG0HOFS and BG0VOFS for BG2 respectively.

400001Ch - BG3HOFS - BG3 X-Offset (W)
400001Eh - BG3VOFS - BG3 Y-Offset (W)
Same as above BG0HOFS and BG0VOFS for BG3 respectively.

The above BG scrolling registers are exclusively used in Text modes, ie. for all layers in BG Mode 0, and for the first two layers in BG mode 1.
In other BG modes (Rotation/Scaling and Bitmap modes) above registers are ignored. Instead, the screen may be scrolled by modifying the BG Rotation/Scaling Reference Point registers.

 LCD I/O BG Rotation/Scaling

4000028h - BG2X_L - BG2 Reference Point X-Coordinate, lower 16 bit (W)
400002Ah - BG2X_H - BG2 Reference Point X-Coordinate, upper 12 bit (W)
400002Ch - BG2Y_L - BG2 Reference Point Y-Coordinate, lower 16 bit (W)
400002Eh - BG2Y_H - BG2 Reference Point Y-Coordinate, upper 12 bit (W)
These registers are replacing the BG scrolling registers which are used for Text mode, ie. the X/Y coordinates specify the source position from inside of the BG Map/Bitmap of the pixel to be displayed at upper left of the GBA display. The normal BG scroll ing registers are ignored in Rotation/Scaling and Bitmap modes.
 Bit Expl.
 0-7 Fractional portion (8 bits)
 8-26 Integer portion (19 bits)
 27 Sign (1 bit)
 28-31 Not used

Because values are shifted left by eight, fractional portions may be specified in steps of 1/256 pixels (this would be relevant only if the screen is actually rotated or scaled). Normal signed 32bit values may be written to above registers (the most significant bits will be ignored and the value will be cut-down to 28bits, but this is no actual problem because signed values have set all MSBs to the same value).

Internal Reference Point Registers
The above reference points are automatically copied to internal registers during each vblank, specifying the origin for the first scanline. The internal registers are then incremented by dmx and dmy after each scanline.
Caution: Writing to a reference point register by software outside of the Vblank period does immediately copy the new value to the corresponding internal register, that means: in the current frame, the new value specifies the origin of the <current> scanl ine (instead of the topmost scanline).

4000020h - BG2PA - BG2 Rotation/Scaling Parameter A (alias dx) (W)
4000022h - BG2PB - BG2 Rotation/Scaling Parameter B (alias dmx) (W)
4000024h - BG2PC - BG2 Rotation/Scaling Parameter C (alias dy) (W)
4000026h - BG2PD - BG2 Rotation/Scaling Parameter D (alias dmy) (W)
 Bit Expl.
 0-7 Fractional portion (8 bits)
 8-14 Integer portion (7 bits)
 15 Sign (1 bit)

See below for details.

400003Xh - BG3X_L/H, BG3Y_L/H, BG3PA-D - BG3 Rotation/Scaling Parameters
Same as above BG2 Reference Point, and Rotation/Scaling Parameters, for BG3 respectively.

dx (PA) and dy (PC)
When transforming a horizontal line, dx and dy specify the resulting gradient and magnification for that line. For example:
Horizontal line, length=100, dx=1, and dy=1. The resulting line would be drawn at 45 degrees, f(y)=1/1*x. Note that this would involve that line is magnified, the new length is SQR(100^2+100^2)=141.42. Yup, exactly - that's the old a^2 + b^2 = c^2 formula.

dmx (PB) and dmy (PD)
These values define the resulting gradient and magnification for transformation of vertical lines. However, when rotating a square area (which is surrounded by horizontal and vertical lines), then the desired result should be usually a rotated <square> area (ie. not a parallelogram, for example).
Thus, dmx and dmy must be defined in direct relationship to dx and dy, taking the example above, we'd have to set dmx=-1, and dmy=1, f(x)=-1/1*y.

Area Overflow
In result of rotation/scaling it may often happen that areas outside of the actual BG area become moved into the LCD viewport. Depending of the Area Overflow bit (BG2CNT and BG3CNT, Bit 13) these areas may be either displayed (by wrapping the BG area), or may be displayed transparent.
This works only in BG modes 1 and 2. The area overflow is ignored in Bitmap modes (BG modes 3-5), the outside of the Bitmaps is always transparent.

--- more details and confusing or helpful formulas ---

The following parameters are required for Rotation/Scaling
 Rotation Center X and Y Coordinates (x0,y0)
 Rotation Angle (alpha)
 Magnification X and Y Values (xMag,yMag)

The display is rotated by 'alpha' degrees around the center.
The displayed picture is magnified by 'xMag' along x-Axis (Y=y0) and 'yMag' along y-Axis (X=x0).

Calculating Rotation/Scaling Parameters A-D
 A = Cos (alpha) / xMag ;distance moved in direction x, same line
 B = Sin (alpha) / xMag ;distance moved in direction x, next line
 C = Sin (alpha) / yMag ;distance moved in direction y, same line
 D = Cos (alpha) / yMag ;distance moved in direction y, next line

Calculating the position of a rotated/scaled dot
Using the following expressions,
 x0,y0 Rotation Center
 x1,y1 Old Position of a pixel (before rotation/scaling)
 x2,y2 New position of above pixel (after rotation scaling)
 A,B,C,D BG2PA-BG2PD Parameters (as calculated above)

the following formula can be used to calculate x2,y2:
 x2 = A(x1-x0) + B(y1-y0) + x0
 y2 = C(x1-x0) + D(y1-y0) + y0

 LCD I/O Window Feature

The Window Feature may be used to split the screen into four regions. The BG0-3,OBJ layers and Color Special Effects can be separately enabled or disabled in each of these regions.

The DISPCNT Register
DISPCNT Bits 13-15 are used to enable Window 0, Window 1, and/or OBJ Window regions, if any of these regions is enabled then the "Outside of Windows" region is automatically enabled, too.
DISPCNT Bits 8-12 are kept used as master enable bits for the BG0-3,OBJ layers, a layer is displayed only if both DISPCNT and WININ/OUT enable bits are set.

4000040h - WIN0H - Window 0 Horizontal Dimensions (W)
4000042h - WIN1H - Window 1 Horizontal Dimensions (W)
 Bit Expl.
 0-7 X2, Rightmost coordinate of window, plus 1
 8-15 X1, Leftmost coordinate of window

Garbage values of X2>240 or X1>X2 are interpreted as X2=240.

4000044h - WIN0V - Window 0 Vertical Dimensions (W)
4000046h - WIN1V - Window 1 Vertical Dimensions (W)
 Bit Expl.
 0-7 Y2, Bottom-most coordinate of window, plus 1
 8-15 Y1, Top-most coordinate of window

Garbage values of Y2>160 or Y1>Y2 are interpreted as Y2=160.

4000048h - WININ - Control of Inside of Window(s) (R/W)
 Bit Expl.
 0-3 Window 0 BG0-BG3 Enable Bits (0=No Display, 1=Display)
 4 Window 0 OBJ Enable Bit (0=No Display, 1=Display)
 5 Window 0 Color Special Effect (0=Disable, 1=Enable)
 6-7 Not used
 8-11 Window 1 BG0-BG3 Enable Bits (0=No Display, 1=Display)
 12 Window 1 OBJ Enable Bit (0=No Display, 1=Display)
 13 Window 1 Color Special Effect (0=Disable, 1=Enable)
 14-15 Not used

400004Ah - WINOUT - Control of Outside of Windows & Inside of OBJ Window (R/W)
 Bit Expl.
 0-3 Outside BG0-BG3 Enable Bits (0=No Display, 1=Display)
 4 Outside OBJ Enable Bit (0=No Display, 1=Display)
 5 Outside Color Special Effect (0=Disable, 1=Enable)
 6-7 Not used
 8-11 OBJ Window BG0-BG3 Enable Bits (0=No Display, 1=Display)
 12 OBJ Window OBJ Enable Bit (0=No Display, 1=Display)
 13 OBJ Window Color Special Effect (0=Disable, 1=Enable)
 14-15 Not used

The OBJ Window
The dimension of the OBJ Window is specified by OBJs which are having the "OBJ Mode" attribute being set to "OBJ Window". Any non-transparent dots of any such OBJs are marked as OBJ Window area. The OBJ itself is not displayed.
The color, palette, and display priority of these OBJs are ignored. Both DISPCNT Bits 12 and 15 must be set when defining OBJ Window region(s).

Window Priority
In case that more than one window is enabled, and that these windows do overlap, Window 0 is having highest priority, Window 1 medium, and Obj Window lowest priority. Outside of Window is having zero priority, it is used for all dots which are not inside of any window region.

 LCD I/O Mosaic Function

400004Ch - MOSAIC - Mosaic Size (W)
The Mosaic function can be separately enabled/disabled for BG0-BG3 by BG0CNT-BG3CNT Registers, as well as for each OBJ0-127 by OBJ attributes in OAM memory. Also, setting all of the bits below to zero effectively disables the mosaic function.
 Bit Expl.
 0-3 BG Mosaic H-Size (minus 1)
 4-7 BG Mosaic V-Size (minus 1)
 8-11 OBJ Mosaic H-Size (minus 1)
 12-15 OBJ Mosaic V-Size (minus 1)

Example: When setting H-S ize to 5, then pixels 0-5 of each display row are colorized as pixel 0, pixels 6-11 as pixel 6, pixels 12-17 as pixel 12, and so on.

Normally, a 'mosaic-pixel' is colorized by the color of the upperleft covered pixel. In many cases it might be more desireful to use the color of the pixel in the center of the covered area - this effect may be gained by scrolling the background (or by adjusting the OBJ position, as far as upper/left rows/columns of OBJ are transparent).

 LCD I/O Color Special Effects

Two types of Special Effects are supported: Alpha Blending (Semi-Transparency) allows to combine colors of two selected surfaces. Brightness Increase/Decrease adjust the brightness of the selected surface.

4000050h - BLDCNT - Color Special Effects Selection (R/W)
 Bit Expl.
 0 BG0 1st Target Pixel (Background 0)
 1 BG1 1st Target Pixel (Background 1)
 2 BG2 1st Target Pixel (Background 2)
 3 BG3 1st Target Pixel (Background 3)
 4 OBJ 1st Target Pixel (Top-most OBJ pixel)
 5 BD 1st Target Pixel (Backdrop)
 6-7 Color Special Effect (0-3, see below)
 0 = None (Special effects disabled)
 1 = Alpha Blending (1st+2nd Target mixed)
 2 = Brightness Increase (1st Target becomes whiter)
 3 = Brightness Decrease (1st Target becomes blacker)
 8 BG0 2nd Target Pixel (Background 0)
 9 BG1 2nd Target Pixel (Background 1)
 10 BG2 2nd Target Pixel (Background 2)
 11 BG3 2nd Target Pixel (Background 3)
 12 OBJ 2nd Target Pixel (Top-most OBJ pixel)
 13 BD 2nd Target Pixel (Backdrop)
 14-15 Not used

Selects the 1st Target layer(s) for special effects. For Alpha Blending/Semi-Transparency, it does also select the 2nd Target layer(s), which should have next lower display priority as the 1st Target.
However, any combinations are possible, including that all layers may be selected as both 1st+2nd target, in that case the top-most pixel will be used as 1st target, and the next lower pixel as 2nd target.

4000052h - BLDALPHA - Alpha Blending Coefficients (W)
Used for Color Special Effects Mode 1, and for Semi-Transparent OBJs.
 Bit Expl.
 0-4 EVA Coefficient (1st Target) (0..16 = 0/16..16/16, 17..31=16/16)
 5-7 Not used
 8-12 EVB Coefficient (2nd Target) (0..16 = 0/16..16/16, 17..31=16/16)
 13-15 Not used

For this effect, the top-most non-transparent pixel must be selected as 1st Target, and the next-lower non-transparent pixel must be selected as 2nd Target, if so - and only if so, then color intensities of 1st and 2nd Target are mixed together by using the parameters in BLDALPHA register, for each pixel each R, G, B intensities are calculated separately:
 I = MIN (31, I1st*EVA + I2nd*EVB)

Otherwise - for example, if only one target exists, or if a non-transparent non-2nd-target pixel is moved between the two targets, or if 2nd target has higher display priority than 1st target - then only the top-most pixel is displayed (at normal intensity, regardless of BLDALPHA).

4000054h - BLDY - Brightness (Fade-In/Out) Coefficient (W)
Used for Color Special Effects Modes 2 and 3.
 Bit Expl.
 0-4 EVY Coefficient (Brightness) (0..16 = 0/16..16/16, 17..31=16/16)
 5-15 Not used

For each pixel each R, G, B intensities are calculated separately:
 I = I1st + (31-I1st)*EVY ;For Brightness Increase
 I = I1st - (I1st)*EVY ;For Brightness Decrease

The color intensities of any selected 1st target surface(s) are increased or decreased by using the parameter in BLDY register.

Semi-Transparent OBJs
OBJs that are defined as 'Semi-Transparent' in OAM memory are always selected as 1st Target (regardless of BLDCNT Bit 4), and are always using Alpha Blending mode (regardless of BLDCNT Bit 6-7).
The BLDCNT register may be used to perform Brightness effects on the OBJ (and/or other BG/BD layers). However, if a semi-transparent OBJ pixel does overlap a 2nd target pixel, then semi-transparency becomes priority, and the brightness effect will not take place (neither on 1st, nor 2nd target).

The OBJ Layer
Before special effects are applied, the display controller computes the OBJ priority ordering, and isolates the top-most OBJ pixel. In result, only the top-most OBJ pixel is recursed at the time when processing special effects. Ie. alpha blending and semi-transparency can be used for OBJ-to-BG or BG-to-OBJ , but not for OBJ-to-OBJ.

 LCD VRAM Overview

The GBA contains 96 Kbytes VRAM built-in, located at address 06000000-06017FFF, depending on the BG Mode used as follows:

BG Mode 0,1,2 (Tile/Map based Modes)
 06000000-0600FFFF 64 KBytes shared for BG Map and Tiles
 06010000-06017FFF 32 KBytes OBJ Tiles

The shared 64K area can be split into BG Map area(s), and BG Tiles area(s), the respective addresses for Map and Tile areas are set up by BG0CNT-BG3CNT registers. The Map address may be specified in units of 2K (steps of 800h), the Tile address in units of 16K (steps of 4000h).

BG Mode 0,1 (Tile/Map based Text mode)
The tiles may have 4bit or 8bit color depth, minimum map size is 32x32 tiles, maximum is 64x64 tiles, up to 1024 tiles can be used per map.
 Item Depth Required Memory
 One Tile 4bit 20h bytes
 One Tile 8bit 40h bytes
 1024 Tiles 4bit 8000h (32K)
 1024 Tiles 8bit 10000h (64K) - excluding some bytes for BG map
 BG Map 32x32 800h (2K)
 BG Map 64x64 2000h (8K)

BG Mode 1,2 (Tile/Map based Rotation/Scaling mode)
The tiles may have 8bit color depth only, minimum map size is 16x16 tiles, maximum is 128x128 tiles, up to 256 tiles can be used per map.
 Item Depth Required Memory
 One Tile 8bit 40h bytes
 256 Tiles 8bit 4000h (16K)
 BG Map 16x16 100h bytes
 BG Map 128x128 4000h (16K)

BG Mode 3 (Bitmap based Mode for still images)
 06000000-06013FFF 80 KBytes Frame 0 buffer (only 75K actually used)
 06014000-06017FFF 16 KBytes OBJ Tiles

BG Mode 4,5 (Bitmap based Modes)
 06000000-06009FFF 40 KBytes Frame 0 buffer (only 37.5K used in Mode 4)
 0600A000-06013FFF 40 KBytes Frame 1 buffer (only 37.5K used in Mode 4)
 06014000-06017FFF 16 KBytes OBJ Tiles

Note
Additionally to the above VRAM, the GBA also contains 1 KByte Palette RAM (at 05000000h) and 1 KByte OAM (at 07000000h) which are both used by the display controller as well.

 LCD VRAM Character Data

Each character (tile) consists of 8x8 dots (64 dots in total). The color depth may be either 4bit or 8bit (see BG0CNT-BG3CNT).

4bit depth (16 colors, 16 palettes)
Each tile occupies 32 bytes of memory, the first 4 bytes for the topmost row of the tile, and so on. Each byte representing two dots, the lower 4 bits define the color for the left (!) dot, the upper 4 bits the color for the right dot.

8bit depth (256 colors, 1 palette)
Each tile occupies 64 bytes of memory, the first 8 bytes for the topmost row of the tile, and so on. Each byte selects the palette entry for each dot.

 LCD VRAM BG Screen Data Format (BG Map)

The display background consists of 8x8 dot tiles, the arrangement of these tiles is specified by the BG Screen Data (BG Map). The separate entries in this map are as follows:

Text BG Screen (2 bytes per entry)
Specifies the tile number and attributes. Note that BG tile numbers are always specified in steps of 1 (unlike OBJ tile numbers which are using steps of two in 256 color/1 palette mode).
 Bit Expl.
 0-9 Tile Number (0-1023) (a bit less in 256 color mode, because
 there'd be otherwise no room for the bg map)
 10 Horizontal Flip (0=Normal, 1=Mirrored)
 11 Vertical Flip (0=Normal, 1=Mirrored)
 12-15 Palette Number (0-15) (Not used in 256 color/1 palette mode)

A Text BG Map always consists of 32x32 entries (256x256 pixels), 400h entries = 800h bytes. However, depending on the BG S ize, one, two, or four of these Maps may be used together, allowing to create backgrounds of 256x256, 512x256, 256x512, or 512x512 pixels, if so, the first map (SC0) is located at base+0, the next map (SC1) at base+800h, and so on.

Rotation/Scaling BG Screen (1 byte per entry)
In this mode, only 256 tiles can be used. There are no x/y-flip attributes, the color depth is always 256 colors/1 palette.
 Bit Expl.
 0-7 Tile Number (0-255)

The dimensions of Rotation/Scaling BG Maps depend on the BG size. For size 0-3 that are: 16x16 tiles (128x128 pixels), 32x32 tiles (256x256 pixels), 64x64 tiles (512x512 pixels), or 128x128 tiles (1024x1024 pixels).

The size and VRAM base address of the separate BG maps for BG0-3 are set up by BG0CNT-BG3CNT registers.

 LCD VRAM Bitmap BG Modes

In BG Modes 3-5 the background is defined in form of a bitmap (unlike as for Tile/Map based BG modes). Bitmaps are implemented as BG2, with Rotation/Scaling support. As bitmap modes are occupying 80KBytes of BG memory, only 16KBytes of VRAM can be used for OBJ tiles.

BG Mode 3 - 240x160 pixels, 32768 colors
Two bytes are associated to each pixel, directly defining one of the 32768 colors (without using palette data, and thus not supporting a 'transparent' BG color).
 Bit Expl.
 0-4 Red Intensity (0-31)
 5-9 Green Intensity (0-31)
 10-14 Blue Intensity (0-31)
 15 Not used

The first 480 bytes define the topmost line, the next 480 the next line, and so on. The background occupies 75 KBytes (06000000-06012BFF), most of the 80 Kbytes BG area, not allowing to redraw an invisible second frame in background, so this mode is mostly recommended for still images only.

BG Mode 4 - 240x160 pixels, 256 colors (out of 32768 colors)
One byte is associated to each pixel, selecting one of the 256 palette entries. Color 0 (backdrop) is transparent, and OBJs may be displayed behind the bitmap.
The first 240 bytes define the topmost line, the next 240 the next line, and so on. The background occupies 37.5 KBytes, allowing two frames to be used (06000000-060095FF for Frame 0, and 0600A000-060135FF for Frame 1).

BG Mode 5 - 160x128 pixels, 32768 colors
Colors are defined as for Mode 3 (see above), but horizontal and vertical size are cut down to 160x128 pixels only - smaller than the physical dimensions of the LCD screen.
The background occupies exactly 40 KBytes, so that BG VRAM may be split into two frames (06000000-06009FFF for Frame 0, and 0600A000-06013FFF for Frame 1).

In BG modes 4,5, one Frame may be displayed (selected by DISPCNT Bit 4), the other Frame is invisible and may be redrawn in background.

 LCD OBJ - Overview

General
Objects (OBJs) are moveable sprites. Up to 128 OBJs (of any size, up to 64x64 dots each) can be displayed per screen, and under best c ircumstances up to 128 OBJs (of small 8x8 dots size) can be displayed per horizontal display line.

Maximum Number of Sprites per Line
The total available OBJ rendering cycles per line are
 1210 (=304*4-6) If "H-Blank Interval Free" bit in DISPCNT register is 0
 954 (=240*4-6) If "H-Blank Interval Free" bit in DISPCNT register is 1

The required rendering cycles are (depending on horizontal OBJ size)
 Cycles per <n> Pixels OBJ Type OBJ Type Screen Pixel Range
 n*1 cycles Normal OBJs 8..64 pixels
 10+n*2 cycles Rotation/Scaling OBJs 8..64 pixels (area clipped)
 10+n*2 cycles Rotation/Scaling OBJs 16..128 pixels (double size)

Caution:
The maximum number of OBJs per line is also affected by undisplayed (offscreen) OBJs which are having higher priority than displayed OBJs.
To avoid this, move displayed OBJs to the begin of OAM memory (ie. OBJ0 has highest priority, OBJ127 lowest).
Otherwise (in case that the program logic expects OBJs at fixed positions in OAM) at least take care to set the OBJ size of undisplayed OBJs to 8x8 with Rotation/Scaling disabled (this reduces the overload).
Does the above also apply for VERTICALLY OFFSCREEN (or VERTICALLY not on CURRENT LINE) sprites ?

VRAM - Character Data
OBJs are always combined of one or more 8x8 pixel Tiles (much like BG Tiles in BG Modes 0-2). However, OBJ Tiles are stored in a separate area in VRAM: 06010000-06017FFF (32 KBytes) in BG Mode 0-2, or 06014000-06017FFF (16 KBytes) in BG Mode 3-5.
Depending on the size of the above area (16K or 32K), and on the OBJ color depth (4bit or 8bit), 256-1024 8x8 dots OBJ Tiles can be defined.

OAM - Object Attribute Memory
This memory area contains Attributes which specify position, size, color depth, etc. appearance for each of the 128 OBJs. Additionally, it contains 32 OBJ Rotation/Scaling Parameter groups. OAM is located at 07000000-070003FF (sized 1 KByte).

 LCD OBJ - OAM Attributes

OBJ Attributes
There are 128 entries in OAM for each OBJ0-OBJ127. Each entry consists of 6 bytes (three 16bit Attributes). Attributes for OBJ0 are located at 07000000, for OBJ1 at 07000008, OBJ2 at 07000010, and so on.

As you can see, there are blank spaces at 07000006, 0700000E, 07000016, etc. - these 16bit values are used for OBJ Rotation/Scaling (as described in the next chapter) - they are not directly related to the separate OBJs.

OBJ Attribute 0 (R/W)
 Bit Expl.
 0-7 Y-Coordinate (0-255)
 8 Rotation/Scaling Flag (0=Off, 1=On)
 When Rotation/Scaling used (Attribute 0, bit 8 set):
 9 Double-Size Flag (0=Normal, 1=Double)
 When Rotation/Scaling not used (Attribute 0, bit 8 cleared):
 9 OBJ Disable (0=Normal, 1=Not displayed)
 10-11 OBJ Mode (0=Normal, 1=Semi-Transparent, 2=OBJ Window, 3=Prohibited)
 12 OBJ Mosaic (0=Off, 1=On)
 13 Colors/Palettes (0=16/16, 1=256/1)
 14-15 OBJ Shape (0=Square,1=Horizontal,2=Vertical,3=Prohibited)

Caution: A very large OBJ (of 128 pixels vertically, ie. a 64 pixels OBJ in a Double S ize area) located at Y>128 will be treated as at Y>-128, the OBJ is then displayed parts offscreen at the TOP of the display, it is then NOT displayed at the bottom.

OBJ Attribute 1 (R/W)
 Bit Expl.
 0-8 X-Coordinate (0-511)
 When Rotation/Scaling used (Attribute 0, bit 8 set):
 9-13 Rotation/Scaling Parameter Selection (0-31)
 (Selects one of the 32 Rotation/Scaling Parameters that
 can be defined in OAM, for details read next chapter.)
 When Rotation/Scaling not used (Attribute 0, bit 8 cleared):
 9-11 Not used
 12 Horizontal Flip (0=Normal, 1=Mirrored)
 13 Vertical Flip (0=Normal, 1=Mirrored)
 14-15 OBJ Size (0..3, depends on OBJ Shape, see Attr 0)
 Size Square Horizontal Vertical
 0 8x8 16x8 8x16
 1 16x16 32x8 8x32
 2 32x32 32x16 16x32
 3 64x64 64x32 32x64

OBJ Attribute 2 (R/W)
 Bit Expl.
 0-9 Character Name (0-1023=Tile Number)
 10-11 Priority relative to BG (0-3; 0=Highest)
 12-15 Palette Number (0-15) (Not used in 256 color/1 palette mode)

Notes:

OBJ Mode
The OBJ Mode may be Normal, Semi-Transparent, or OBJ Window.
Semi-Transparent means that the OBJ is used as 'Alpha Blending 1st Target' (regardless of BLDCNT register, for details see chapter about Color Special Effects).
OBJ Window means that the OBJ is not displayed, instead, dots with non-zero color are used as mask for the OBJ Window, see DISPCNT and WINOUT for details.

OBJ Tile Number
There are two situations which may divide the amount of available tiles by two (by four if both situations apply):

1. When using the 256 Colors/1 Palette mode, only each second tile may be used, the lower bit of the tile number should be zero (in 2-dimensional mapping mode, the bit is completely ignored).

2. When using BG Mode 3-5 (Bitmap Modes), only tile numbers 512-1023 may be used. That is because lower 16K of OBJ memory are used for BG. Attempts to use tiles 0-511 are ignored (not displayed).

Priority
In case that the 'Priority relative to BG' is the same than the priority of one of the background layers, then the OBJ becomes higher priority and is displayed on top of that BG layer.
Caution: Take care not to mess up BG Priority and OBJ priority. For example, the following would cause garbage to be displayed:
 OBJ No. 0 with Priority relative to BG=1 ;hi OBJ prio, lo BG prio
 OBJ No. 1 with Priority relative to BG=0 ;lo OBJ prio, hi BG prio

That is, OBJ0 is always having priority above OBJ1-127, so assigning a lower BG Priority to OBJ0 than for OBJ1-127 would be a bad idea.

 LCD OBJ - OAM Rotation/Scaling Parameters

As described in the previous chapter, there are blank spaces between each of the 128 OBJ Attribute Fields in OAM memory. These 128 16bit gaps are used to store OBJ Rotation/Scaling Parameters.

Location of Rotation/Scaling Parameters in OAM
Four 16bit parameters (PA,PB,PC,PD) are required to define a complete group of Rotation/Scaling data. These are spread across OAM as such:
 1st Group - PA=07000006, PB=0700000E, PC=07000016, PD=0700001E
 2nd Group - PA=07000026, PB=0700002E, PC=07000036, PD=0700003E
 etc.

By using all blank space (128 x 16bit), up to 32 of these groups (4 x 16bit each) can be defined in OAM.

OBJ Rotation/Scaling PA,PB,PC,PD Parameters (R/W)
Each OBJ that uses Rotation/Scaling may select between any of the above 32 parameter groups. For details, refer to the previous chapter about OBJ Attributes.
The meaning of the separate PA,PB,PC,PD values is identical as for BG, for details read the chapter about BG Rotation/Scaling.

OBJ Reference Point & Rotation Center
The OBJ Reference Point is the upper left of the OBJ, ie. OBJ X/Y coordinates: X+0, Y+0.
The OBJ Rotation Center is always (or should be usually?) in the middle of the object, ie. for a 8x32 pixel OBJ, this would be at the OBJ X/Y coordinates: X+4, and Y+16.

OBJ Double-Size Bit (for OBJs that use Rotation/Scaling)
When Double-S ize is zero: The sprite is rotated, and then display inside of the normal-sized (not rotated) rectangular area - the edges of the rotated sprite will become invisible if they reach outside of that area.
When Double-S ize is set: The sprite is rotated, and then display inside of the double-sized (not rotated) rectangular area - this ensures that the edges of the rotated sprite remain visible even if they would reach outside of the normal-sized area. (Except that, for example, rotating a 8x32 pixel sprite by 90 degrees would still cut off parts of the sprite as the double-size area isn't large enough.)

 LCD OBJ - VRAM Character (Tile) Mapping

Each OBJ tile consists of 8x8 dots, however, bigger OBJs can be displayed by combining several 8x8 tiles. The horizontal and vertical size for each OBJ may be separately defined in OAM, possible H/V sizes are 8,16,32,64 dots - allowing 'square' OBJs to be used (such like 8x8, 16x16, etc) as well as 'rectangular' OBJs (such like 8x32, 64x16, etc.)

When displaying an OBJ that contains of more than one 8x8 tile, one of the following two mapping modes can be used. In either case, the tile number of the upperleft tile must be specified in OAM memory.

Two Dimensional Character Mapping (DISPCNT Bit 6 cleared)
This mapping mode assumes that the 1024 OBJ tiles are arranged as a matrix of 32x32 tiles / 256x256 pixels (In 256 color mode: 16x32 tiles / 128x256 pixels). Ie. the upper row of this matrix contains tiles 00h-1Fh, the next row tiles 20h-3Fh, and so on.
For example, when displaying a 16x16 pixel OBJ, with tile number set to 04h; The upper row of the OBJ will consist of tile 04h and 05h, the next row of 24h and 25h. (In 256 color mode: 04h and 06h, 24h and 26h.)

One Dimensional Character Mapping (DISPCNT Bit 6 set)
In this mode, tiles are mapped each after each other from 00h-3FFh.
Using the same example as above, the upper row of the OBJ will consist of tile 04h and 05h, the next row of tile 06h and 07h. (In 256 color mode: 04h and 06h, 08h and 0Ah.)

 LCD Color Palettes

Color Palette RAM
BG and OBJ palettes are using separate memory regions:
 05000000-050001FF - BG Palette RAM (512 bytes, 256 colors)
 05000200-050003FF - OBJ Palette RAM (512 bytes, 256 colors)

Each BG and OBJ palette RAM may be either split into 16 palettes with 16 colors each, or may be used as a single palette with 256 colors.
Note that some OBJs may access palette RAM in 16 color mode, while other OBJs may use 256 color mode at the same time. Same for BG0-BG3 layers.

Transparent Colors
Color 0 of all BG and OBJ palettes is transparent. Even though palettes are described as 16 (256) color palettes, only 15 (255) colors are actually visible.

Backdrop Color
Color 0 of BG Palette 0 is used as backdrop color. This color is displayed if an area of the screen is not covered by any non-transparent BG or OBJ dots.

Color Definitions
Each color occupies two bytes (same as for 32768 color BG modes):
 Bit Expl.
 0-4 Red Intensity (0-31)
 5-9 Green Intensity (0-31)
 10-14 Blue Intensity (0-31)
 15 Not used

Intensities
Under normal c ircumstances (light source/viewing angle), the intensities 0-14 are practically all black, and only intensities 15-31 are resulting in visible medium..bright colors.

Note: The intensity problem appears in the 8bit CGB "compatibility" mode either. The original CGB display produced the opposite effect: Intensities 0-14 resulted in dark..medium colors, and intensities 15-31 resulted in bright colors. Any "medium" colors of CGB games will appear invisible/black on GBA hardware, and only very bright colors will be visible.

 LCD Dimensions and Timings

Horizontal Dimensions
The drawing time for each dot is 4 CPU cycles.
 Visible 240 dots, 57.221 us, 960 cycles - 78% of h-time
 H-Blanking 68 dots, 16.212 us, 272 cycles - 22% of h-time
 Total 308 dots, 73.433 us, 1232 cycles - ca. 13.620 kHz

VRAM and Palette RAM may be accessed during H-Blanking. OAM can accessed only if "H-B lank Interval Free" bit in DISPCNT register is set.

Vertical Dimensions
 Visible (*) 160 lines, 11.749 ms, 197120 cycles - 70% of v-time
 V-Blanking 68 lines, 4.994 ms, 83776 cycles - 30% of v-time
 Total 228 lines, 16.743 ms, 280896 cycles - ca. 59.737 Hz

All VRAM, OAM, and Palette RAM may be accessed during V-Blanking.
Note that no H-Blank interrupts are generated within V-Blank period.

System Clock
The system clock is 16.78MHz (16*1024*1024 Hz), one cycle is thus approx. 59.59ns.

(*) Even though vertical screen size is 160 lines, the upper 8 lines are not <really> visible, these lines are covered by a shadow when holding the GBA orientated towards a light source, the lines are effectively black - and should not be used to display important information.

 GBA Sound Controller

The GBA supplies four 'analogue' sound channels for Tone and Noise (mostly compatible to CGB sound), as well as two 'digital' sound channels (which can be used to replay 8bit DMA sample data).

GBA Sound Channel 1 - Tone & Sweep
GBA Sound Channel 2 - Tone
GBA Sound Channel 3 - Wave Output
GBA Sound Channel 4 - Noise
GBA Sound Channel A and B - DMA Sound

GBA Sound Control Registers
GBA Comparison of CGB and GBA Sound

The GBA includes only a single (mono) speaker built-in, each channel may be output to either left and/or right channels by using the external line-out connector (for stereo headphones, etc).

 GBA Sound Channel 1 - Tone & Sweep

4000060h - SOUND1CNT_L (NR10) - Channel 1 Sweep register (R/W)
 Bit Expl.
 0-2 R/W Number of sweep shift (n=0-7)
 3 R/W Sweep Frequency Direction (0=Increase, 1=Decrease)
 4-6 R/W Sweep Time; units of 7.8ms (0-7, min=7.8ms, max=54.7ms)
 7-15 - Not used

Sweep is disabled by setting Sweep Time to zero, if so, the direction bit should be set.
The change of frequency (NR13,NR14) at each shift is calculated by the following formula where X(0) is initial freq & X(t-1) is last freq:
 X(t) = X(t-1) +/- X(t-1)/2^n

4000062h - SOUND1CNT_H (NR11, NR12) - Channel 1 Duty/Len/Envelope (R/W)
 Bit Expl.
 0-5 W Sound length; units of (64-n)/256s (0-63)
 6-7 R/W Wave Pattern Duty (0-3, see below)
 8-10 R/W Envelope Step-Time; units of n/64s (1-7, 0=No Envelope)
 11 R/W Envelope Direction (0=Decrease, 1=Increase)
 12-15 R/W Initial Volume of envelope (1-15, 0=No Sound)

Wave Duty:
 0: 12.5% (-_______-_______-_______)
 1: 25% (--______--______--______)
 2: 50% (----____----____----____) (normal)
 3: 75% (------__------__------__)

The Length value is used only if Bit 6 in NR14 is set.

4000064h - SOUND1CNT_X (NR13, NR14) - Channel 1 Frequency/Control (R/W)
 Bit Expl.
 0-10 W Frequency; 131072/(2048-n)Hz (0-2047)
 11-13 - Not used
 14 R/W Length Flag (1=Stop output when length in NR11 expires)
 15 W Initial (1=Restart Sound)
 16-31 - Not used

 GBA Sound Channel 2 - Tone

This sound channel works exactly as channel 1, except that it doesn't have a Tone Envelope/Sweep Register.

4000068h - SOUND2CNT_L (NR21, NR22) - Channel 2 Duty/Length/Envelope (R/W)
400006Ah - Not used
400006Ch - SOUND2CNT_H (NR23, NR24) - Channel 2 Frequency/Control (R/W)
For details, refer to channel 1 description.

 GBA Sound Channel 3 - Wave Output

This channel can be used to output digital sound, the length of the sample buffer (Wave RAM) can be either 32 or 64 digits (4bit samples). This sound channel can be also used to output normal tones when initializ ing the Wave RAM by a square wave. This channel doesn't have a volume envelope register.

4000070h - SOUND3CNT_L (NR30) - Channel 3 Stop/Wave RAM select (R/W)
 Bit Expl.
 0-4 - Not used
 5 R/W Wave RAM Dimension (0=One bank/32 digits, 1=Two banks/64 digits)
 6 R/W Wave RAM Bank Number (0-1, see below)
 7 R/W Sound Channel 3 Off (0=Stop, 1=Playback)
 8-15 - Not used

The currently selected Bank Number (Bit 6) will be played back, while reading/writing to/from wave RAM will address the other (not selected) bank. When dimension is set to two banks, output will start by replaying the currently selected bank.

4000072h - SOUND3CNT_H (NR31, NR32) - Channel 3 Length/Volume (R/W)
 Bit Expl.
 0-7 W Sound length; units of (256-n)/256s (0-255)
 8-12 - Not used.
 13-14 R/W Sound Volume (0=Mute/Zero, 1=100%, 2=50%, 3=25%)
 15 R/W Force Volume (0=Use above, 1=Force 75% regardless of above)

The Length value is used only if Bit 6 in NR34 is set.

4000074h - SOUND3CNT_X (NR33, NR34) - Channel 3 Frequency/Control (R/W)
 Bit Expl.
 0-10 W Sample Rate; 2097152/(2048-n) Hz (0-2047)
 11-13 - Not used
 14 R/W Length Flag (1=Stop output when length in NR31 expires)
 15 W Initial (1=Restart Sound)
 16-31 - Not used

The above sample rate specifies the number of wave RAM digits per second, the actual tone frequency depends on the wave RAM content, for example:
 Wave RAM, single bank 32 digits Tone Frequency
 FFFFFFFFFFFFFFFF0000000000000000 65536/(2048-n) Hz
 FFFFFFFF00000000FFFFFFFF00000000 131072/(2048-n) Hz
 FFFF0000FFFF0000FFFF0000FFFF0000 262144/(2048-n) Hz
 FF00FF00FF00FF00FF00FF00FF00FF00 524288/(2048-n) Hz
 F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0 1048576/(2048-n) Hz

4000090h - WAVE_RAM0_L - Channel 3 Wave Pattern RAM (W/R)
4000092h - WAVE_RAM0_H - Channel 3 Wave Pattern RAM (W/R)
4000094h - WAVE_RAM1_L - Channel 3 Wave Pattern RAM (W/R)
4000096h - WAVE_RAM1_H - Channel 3 Wave Pattern RAM (W/R)
4000098h - WAVE_RAM2_L - Channel 3 Wave Pattern RAM (W/R)
400009Ah - WAVE_RAM2_H - Channel 3 Wave Pattern RAM (W/R)
400009Ch - WAVE_RAM3_L - Channel 3 Wave Pattern RAM (W/R)
400009Eh - WAVE_RAM3_H - Channel 3 Wave Pattern RAM (W/R)
This area contains 16 bytes (32 x 4bits) Wave Pattern data which is output by channel 3. Data is played back ordered as follows: MSBs of 1st byte, followed by LSBs of 1st byte, followed by MSBs of 2nd byte, and so on - this results in a confusing ordering when filling Wave RAM in units of 16bit data - ie. samples would be then located in Bits 4-7, 0-3, 12-15, 8-11.

In the GBA, two Wave Patterns exists (each 32 x 4bits), either one may be played (as selected in NR30 register), the other bank may be accessed by the users. After all 32 samples have been played, output of the same bank (or other bank, as specified in NR30) will be automatically restarted.

Internally, Wave RAM is a giant shift-register, there is no pointer which is addressing the currently played digit. Instead, the entire 128 bits are shifted, and the 4 least significant bits are output.
Thus, when reading from Wave RAM, data might have changed its position. And, when writing to Wave RAM all data should be updated (it'd be no good idea to assume that old data is still located at the same position where it has been written to previously).

 GBA Sound Channel 4 - Noise

This channel is used to output white noise. This is done by randomly switching the amplitude between high and low at a given frequency. Depending on the frequency the noise will appear 'harder' or 'softer'.

It is also possible to influence the function of the random generator, so the that the output becomes more regular, resulting in a limited ability to output Tone instead of Noise.

4000078h - SOUND4CNT_L (NR41, NR42) - Channel 4 Length/Envelope (R/W)
 Bit Expl.
 0-5 W Sound length; units of (64-n)/256s (0-63)
 6-7 - Not used
 8-10 R/W Envelope Step-Time; units of n/64s (1-7, 0=No Envelope)
 11 R/W Envelope Direction (0=Decrease, 1=Increase)
 12-15 R/W Initial Volume of envelope (1-15, 0=No Sound)
 16-31 - Not used

The Length value is used only if Bit 6 in NR44 is set.

400007Ch - SOUND4CNT_H (NR43, NR44) - Channel 4 Frequency/Control (R/W)
The amplitude is randomly switched between high and low at the given frequency. A higher frequency will make the noise to appear 'softer'.
When Bit 3 is set, the output will become more regular, and some frequencies will sound more like Tone than Noise.
 Bit Expl.
 0-2 R/W Dividing Ratio of Frequencies (r)
 3 R/W Counter Step/Width (0=15 bits, 1=7 bits)
 4-7 R/W Shift Clock Frequency (s)
 8-13 - Not used
 14 R/W Length Flag (1=Stop output when length in NR41 expires)
 15 W Initial (1=Restart Sound)
 16-31 - Not used

Frequency = 524288 Hz / r / 2^(s+1) ;For r=0 assume r=0.5 instead

Noise Random Generator (aka Polynomial Counter)
Noise randomly switches between HIGH and LOW levels, the output levels are calculated by a shift register (X), at the selected frequency, as such:
 7bit: X=X SHR 1, IF carry THEN Out=HIGH, X=X XOR 60h ELSE Out=LOW
 15bit: X=X SHR 1, IF carry THEN Out=HIGH, X=X XOR 6000h ELSE Out=LOW

The initial value when (re-)starting the sound is X=40h (7bit) or X=4000h (15bit). The data stream repeats after 7Fh (7bit) or 7FFFh (15bit) steps.

 GBA Sound Channel A and B - DMA Sound

The GBA contains two DMA sound channels (A and B), each allowing to replay digital sound (signed 8bit data, ie. -128..+127). Data can be transferred from INTERNAL memory (not sure if EXTERNAL memory works also ?) to FIFO by using DMA channel 1 or 2, the sample rate is generated by using one of the Timers.

40000A0h - FIFO_A_L - Sound A FIFO, Data 0 and Data 1 (W)
40000A2h - FIFO_A_H - Sound A FIFO, Data 2 and Data 3 (W)
These two registers may receive 32bit (4 bytes) of audio data (Data 0-3, Data 0 being located in least significant byte which is replayed first).
Internally, the capacity of the FIFO is 8 x 32bit (32 bytes), allowing to buffer a small amount of samples. As the name says (First In First Out), oldest data is replayed first.

40000A4h - FIFO_B_L - Sound B FIFO, Data 0 and Data 1 (W)
40000A6h - FIFO_B_H - Sound B FIFO, Data 2 and Data 3 (W)
Same as above, for Sound B.

Initializing DMA-Sound Playback
- Select Timer 0 or 1 in SOUNDCNT_H control register.
- Clear the FIFO.
- Manually write a sample byte to the FIFO.
- Initialize transfer mode for DMA 1 or 2.
- Initialize DMA Sound settings in sound control register.
- S tart the timer.

DMA-Sound Playback Procedure
The pseudo-procedure below is automatically repeated.
 If Timer overflows then
 Move 8bit data from FIFO to sound circuit.
 If FIFO contains only 4 x 32bits (16 bytes) then
 Request more data per DMA
 Receive 4 x 32bit (16 bytes) per DMA
 Endif
 Endif

This playback mechanism will be repeated forever, regardless of the actual length of the sample buffer.

Synchronizing Sample Buffers
The buffer-end may be determined by counting sound Timer IRQs (each sample byte), or sound DMA IRQs (each 16th sample byte). Both methods would require a lot of CPU time (IRQ processing), and both would fail if interrupts are disabled for a longer period.
Better solutions would be to synchronize the sample rate/buffer length with V-blanks, or to use a second timer (in count up/slave mode) which produces an IRQ after the desired number of samples.

The Sample Rate
The GBA hardware does internally re-sample all sound output to 32.768kHz (default SOUNDBIAS setting). It'd thus do not make much sense to use higher DMA/Timer rates. Best re-sampling accuracy can be gained by using DMA/Timer rates of 32.768kHz , 16.384kHz , or 8.192kHz (ie. fragments of the physical output rate).

 GBA Sound Control Registers

4000080h - SOUNDCNT_L (NR50, NR51) - Channel L/R Volume/Enable (R/W)
 Bit Expl.
 0-2 Sound 1-4 Master Volume RIGHT (0-7)
 3 Not used
 4-6 Sound 1-4 Master Volume LEFT (0-7)
 7 Not used
 8-11 Sound 1-4 Enable Flags RIGHT (each Bit 8-11, 0=Disable, 1=Enable)
 12-15 Sound 1-4 Enable Flags LEFT (each Bit 12-15, 0=Disable, 1=Enable)

4000082h - SOUNDCNT_H (GBA only) - DMA Sound Control/Mixing (R/W)
 Bit Expl.
 0-1 Sound # 1-4 Volume (0=25%, 1=50%, 2=100%, 3=Prohibited)
 2 DMA Sound A Volume (0=50%, 1=100%)
 3 DMA Sound B Volume (0=50%, 1=100%)
 4-7 Not used
 8 DMA Sound A Enable RIGHT (0=Disable, 1=Enable)
 9 DMA Sound A Enable LEFT (0=Disable, 1=Enable)
 10 DMA Sound A Timer Select (0=Timer 0, 1=Timer 1)
 11 DMA Sound A Reset FIFO (1=Reset)
 12 DMA Sound B Enable RIGHT (0=Disable, 1=Enable)
 13 DMA Sound B Enable LEFT (0=Disable, 1=Enable)
 14 DMA Sound B Timer Select (0=Timer 0, 1=Timer 1)
 15 DMA Sound B Reset FIFO (1=Reset)

4000084h - SOUNDCNT_X (NR52) - Sound on/off (R/W)
Bits 0-3 are automatically set when starting sound output, and are automatically c leared when a sound ends. (Ie. when the length expires, as far as length is enabled. The bits are NOT reset when an volume envelope ends.)
 Bit Expl.
 0 Sound 1 ON flag (Read Only)
 1 Sound 2 ON flag (Read Only)
 2 Sound 3 ON flag (Read Only)
 3 Sound 4 ON flag (Read Only)
 4-6 Not used
 7 PSG/FIFO Master Enable (0=Disable, 1=Enable) (Read/Write)
 8-31 Not used

While Bit 7 is c leared, both PSG and FIFO sounds are disabled, and all PSG registers (4000060h..4000081h) are reset to zero (and must be re-initialized after re-enabling sound). However, registers 4000082h and 4000088h are kept read/write-able (of which, 4000082h has no function when sound is off, whilst 4000088h does work even when sound is off).

4000088h - SOUNDBIAS - Sound PWM Control (R/W, see below)
This register controls the final sound output. The default setting is 0200h, it is normally not required to change this value.
 Bit Expl.
 0-9 Bias Level (Default=200h, converting signed samples into unsigned)
 10-13 Not used
 14-15 Amplitude Resolution/Sampling Cycle (Default=0, see below)
 16-31 Not used

Amplitude Resolution/Sampling Cycle (0-3):
 0 9bit / 32.768kHz (Default, best for DMA channels A,B)
 1 8bit / 65.536kHz
 2 7bit / 131.072kHz
 3 6bit / 262.144kHz (Best for PSG channels 1-4)

For more information on this register, read the descriptions below.

400008Ch - Not used
400008Eh - Not used

Max Output Levels (with max volume settings)
Each of the two FIFOs can span the FULL output range (+/-200h).
Each of the four PSGs can span one QUARTER of the output range (+/-80h).
The current output levels of all six channels are added together by hardware.
So together, the FIFOs and PSGs, could reach THRICE the range (+/-600h).
The BIAS value is added to that signed value. With default BIAS (200h), the possible range becomes -400h..+800h, however, values that exceed the unsigned 10bit output range of 0..3FFh are c lipped to MinMax(0,3FFh).

Resampling to 32.768kHz / 9bit (default)
The PSG channels 1-4 are internally generated at 262.144kHz , and DMA sound A-B could be theoretically generated at timer rates up to 16.78MHz. However, the final sound output is resampled to a rate of 32.768kHz , at 9bit depth (the above 10bit value, divided by two). If necessary, rates higher than 32.768kHz can be selected in the SOUNDBIAS register, that would result in a depth smaller than 9bit though.

PWM (Pulse Width Modulation) Output 16.78MHz / 1bit
Okay, now comes the actual output. The GBA can output only two voltages (low and high), these 'bits' are output at system clock speed (16.78MHz). If using the default 32.768kHz sampling rate, then 512 bits are output per sample (512*32K=16M). Each sample value (9bit range, N=0..511), would be then output as N low bits, followed by 512-N high bits. The resulting 'noise' is smoothed down by capacitors, by the speaker, and by human hearing, so that it will effectively sound like c lean D/A converted 9bit voltages at 32kHz sampling rate.

Changing the BIAS Level
Normally use 200h for c lean sound output. A value of 000h might make sense during periods when no sound is output (causing the PWM circuit to output low-bits only, which is eventually reducing the power consumption, and/or preventing 32KHz noise). Note: Using the SoundBias function (SWI 19h) allows to change the level by slowly incrementing or decrementing it (without hard scratch noise).

Low Power Mode
When not using sound output, power consumption can be reduced by setting both 4000084h (PSG/FIFO) and 4000088h (BIAS) to zero.

 GBA Comparison of CGB and GBA Sound

The GBA sound controller is mostly the same than that of older monochrome gameboy and CGB. The following changes have been done:

New Sound Channels
Two new sound channels have been added that may be used to replay 8bit digital sound. Sample rate and sample data must be supplied by using a Timer and a DMA channel.

New Control Registers
The SOUNDCNT_H register controls the new DMA channels - as well as mixing with the four old channels. The SOUNDBIAS register controls the final sound output.

Sound Channel 3 Changes
The length of the Wave RAM is doubled by dividing it into two banks of 32 digits each, either one or both banks may be replayed (one after each other), for details check NR30 Bit 5-6. Optionally, the sound may be output at 75% volume, for details check NR32 Bit 7.

Changed Control Registers
NR50 is not supporting Vin signals (that's been an external sound input from cartridge).

Changed I/O Addresses
The GBAs sound register are located at 04000060-040000AE instead of at FF10-FF3F as in CGB and monochrome gameboy. However, note that there have been new blank spaces inserted between some of the separate registers - therefore it is NOT possible to port CGB software to GBA just by changing the sound base address.

Accessing I/O Registers
In some cases two of the old 8bit registers are packed into a 16bit register and may be accessed as such.

 GBA Timers

The GBA includes four incrementing 16bit timers.
Timer 0 and 1 can be used to supply the sample rate for DMA sound channel A and/or B.

4000100h - TM0CNT_L - Timer 0 Counter/Reload (R/W)
4000104h - TM1CNT_L - Timer 1 Counter/Reload (R/W)
4000108h - TM2CNT_L - Timer 2 Counter/Reload (R/W)
400010Ch - TM3CNT_L - Timer 3 Counter/Reload (R/W)
Writing to these registers initializes the <reload> value (but does not directly affect the current counter value). Reading returns the current <counter> value (or the recent/frozen counter value if the timer has been stopped).
The reload value is copied into the counter only upon following two situations: Automatically upon timer overflows, or when the timer start bit becomes changed from 0 to 1.
Note: When simultaneously changing the start bit from 0 to 1, and setting the reload value at the same time (by a single 32bit I/O operation), then the newly written reload value is recognized as new counter value.

4000102h - TM0CNT_H - Timer 0 Control (R/W)
4000106h - TM1CNT_H - Timer 1 Control (R/W)
400010Ah - TM2CNT_H - Timer 2 Control (R/W)
400010Eh - TM3CNT_H - Timer 3 Control (R/W)
 Bit Expl.
 0-1 Prescaler Selection (0=F/1, 1=F/64, 2=F/256, 3=F/1024)
 2 Count-up Timing (0=Normal, 1=See below)
 3-5 Not used
 6 Timer IRQ Enable (0=Disable, 1=IRQ on Timer overflow)
 7 Timer Start/Stop (0=Stop, 1=Operate)
 8-15 Not used

When Count-up Timing is enabled, the prescaler value is ignored, instead the time is incremented each time when the previous counter overflows. This function cannot be used for Timer 0 (as it is the first timer).
F = System Clock (16.78MHz).

 GBA DMA Transfers

Overview
The GBA includes four DMA channels, the highest priority is assigned to DMA0, followed by DMA1, DMA2, and DMA3. DMA Channels with lower priority are paused until channels with higher priority have completed.
The CPU is paused when DMA transfers are active, however, the CPU is operating during the periods when Sound/Blanking DMA transfers are paused.

Special features of the separate DMA channels
DMA0 - highest priority, best for timing critical transfers (eg. HBlank DMA).
DMA1 and DMA2 - can be used to feed digital sample data to the Sound FIFOs.
DMA3 - can be used to write to Game Pak ROM/FlashROM (but not GamePak SRAM).
Beside for that, each DMA 0-3 may be used for whatever general purposes.

40000B0h,0B2h - DMA0SAD - DMA 0 Source Address (W) (internal memory)
40000BCh,0BEh - DMA1SAD - DMA 1 Source Address (W) (any memory)
40000C8h,0CAh - DMA2SAD - DMA 2 Source Address (W) (any memory)
40000D4h,0D6h - DMA3SAD - DMA 3 Source Address (W) (any memory)
The most significant address bits are ignored, only the least significant 27 or 28 bits are used (max 07FFFFFFh internal memory, or max 0FFFFFFFh any memory - except SRAM ?!).

40000B4h,0B6h - DMA0DAD - DMA 0 Destination Address (W) (internal memory)
40000C0h,0C2h - DMA1DAD - DMA 1 Destination Address (W) (internal memory)
40000CCh,0CEh - DMA2DAD - DMA 2 Destination Address (W) (internal memory)
40000D8h,0DAh - DMA3DAD - DMA 3 Destination Address (W) (any memory)
The most significant address bits are ignored, only the least significant 27 or 28 bits are used (max. 07FFFFFFh internal memory or 0FFFFFFFh any memory - except SRAM ?!).

40000B8h - DMA0CNT_L - DMA 0 Word Count (W) (14 bit, 1..4000h)
40000C4h - DMA1CNT_L - DMA 1 Word Count (W) (14 bit, 1..4000h)
40000D0h - DMA2CNT_L - DMA 2 Word Count (W) (14 bit, 1..4000h)
40000DCh - DMA3CNT_L - DMA 3 Word Count (W) (16 bit, 1..10000h)
Specifies the number of data units to be transferred, each unit is 16bit or 32bit depending on the transfer type, a value of zero is treated as max length (ie. 4000h, or 10000h for DMA3).

40000BAh - DMA0CNT_H - DMA 0 Control (R/W)
40000C6h - DMA1CNT_H - DMA 1 Control (R/W)
40000D2h - DMA2CNT_H - DMA 2 Control (R/W)
40000DEh - DMA3CNT_H - DMA 3 Control (R/W)
 Bit Expl.
 0-4 Not used
 5-6 Dest Addr Control (0=Increment,1=Decrement,2=Fixed,3=Increment/Reload)
 7-8 Source Adr Control (0=Increment,1=Decrement,2=Fixed,3=Prohibited)
 9 DMA Repeat (0=Off, 1=On) (Must be zero if Bit 11 set)
 10 DMA Transfer Type (0=16bit, 1=32bit)
 11 Game Pak DRQ - DMA3 only - (0=Normal, 1=DRQ <from> Game Pak, DMA3)
 12-13 DMA Start Timing (0=Immediately, 1=VBlank, 2=HBlank, 3=Special)
 The 'Special' setting (Start Timing=3) depends on the DMA channel:
 DMA0=Prohibited, DMA1/DMA2=Sound FIFO, DMA3=Video Capture
 14 IRQ upon end of Word Count (0=Disable, 1=Enable)
 15 DMA Enable (0=Off, 1=On)

After changing the Enable bit from 0 to 1, wait 2 c lock cycles before accessing any DMA related registers.

When accessing OAM (7000000h) or OBJ VRAM (6010000h) by HBlank Timing, then the "H-Blank Interval Free" bit in DISPCNT register must be set.

Source and Destination Address and Word Count Registers
The SAD, DAD, and CNT_L registers are holding the initial start addresses, and initial length. The hardware does NOT change the content of these registers during or after the transfer.
The actual transfer takes place by using internal pointer/counter registers. The init ial values are copied into internal regs under the following c ircumstances:
Upon DMA Enable (Bit 15) changing from 0 to 1: Reloads SAD, DAD, CNT_L.
Upon Repeat: Reloads CNT_L, and optionally DAD (Increment+Reload).

DMA Repeat bit
If the Repeat bit is c leared: The Enable bit is automatically c leared after the specified number of data units has been transferred.
If the Repeat bit is set: The Enable bit remains set after the transfer, and the transfer will be restarted each time when the S tart condition (eg. HBlank, Fifo) becomes true. The specified number of data units is transferred <each> time when the transfer is (re-)started. The transfer will be repeated forever, until it gets stopped by software.

Sound DMA (FIFO Timing Mode) (DMA1 and DMA2 only)
In this mode, the DMA Repeat bit must be set, and the destination address must be FIFO_A (040000A0h) or FIFO_B (040000A4h).
Upon DMA request from sound controller, 4 units of 32bits (16 bytes) are transferred (both Word Count register and DMA Transfer Type bit are ignored). The destination address will not be incremented in FIFO mode.
Keep in mind that DMA channels of higher priority may offhold sound DMA. For example, when using a 64 kHz sample rate, 16 bytes of sound DMA data are requested each 0.25ms (4 kHz), at this time another 16 bytes are still in the FIFO so that there's still 0.25ms time to satisfy the DMA request. Thus DMAs with higher priority should not be operated for longer than 0.25ms. (This problem does not arise for HBlank transfers as HBlank time is limited to 16.212us.)

Game Pak DMA
Only DMA 3 may be used to transfer data to/from Game Pak ROM or Flash ROM - it cannot access Game Pak SRAM though (as SRAM data bus is limited to 8bit units). In normal mode, DMA is requested as long until Word Count becomes zero. When setting the 'Game Pack DRQ' bit, then the cartridge must contain an external c ircuit which outputs a /DREQ signal. Note that there is only one pin for /DREQ and /IREQ, thus the cartridge may not supply /IREQs while using DRQ mode.

Video Capture Mode (DMA3 only)
Intended to copy a bitmap from memory (or from external hardware/camera) to VRAM. When using this transfer mode, set the repeat bit, and write the number of data units (per scanline) to the word count register. Capture works similar like HBlank DMA, however, the transfer is started when VCOUNT=2, it is then repeated each scanline, and it gets stopped when VCOUNT=162.

Transfer End
The DMA Enable flag (Bit 15) is automatically c leared upon completion of the transfer. The user may also c lear this bit manually in order to stop the transfer (obviously this is possible for Sound/Blanking DMAs only, in all other cases the CPU is stopped until the transfer completes by itself).

Transfer Rate/Timing
Except for the first data unit, all units are transferred by sequential reads and writes. For n data units, the DMA transfer time is:
 2N+2(n-1)S+xI

Of which, 1N+(n-1)S are read cycles, and the other 1N+(n-1)S are write cycles, actual number of cycles depends on the waitstates and bus-width of the source and destination areas (as described in CPU Instruction Cycle Times chapter). Internal time for DMA processing is 2I (normally), or 4I (if both source and destination are in gamepak memory area).

DMA lockup when stopping while starting ???
Capture delayed, Capture Enable=AutoCleared ???

 GBA Communication Ports

The GBAs Serial Port may be used in various different communication modes. Normal mode may exchange data between two GBAs (or to transfer data from master GBA to several slave GBAs in one-way direction).
Multi-player mode may exchange data between up to four GBAs. UART mode works much like a RS232 interface. JOY Bus mode uses a standardized Nintendo protocol. And General Purpose mode allows to mis-use the 'serial' port as bi-directional 4bit parallel port.
Note: The Nintendo DS does not include a Serial Port.

S IO Normal Mode
S IO Multi-Player Mode
S IO UART Mode
S IO JOY BUS Mode
S IO General-Purpose Mode
S IO Control Registers Summary

Infrared Communication Adapters
Even though early GBA prototypes have been intended to support IR communication, this feature has been removed.
However, Nintendo is apparently considering to provide an external IR adapter (to be connected to the S IO connector, being accessed in General Purpose mode).
Also, it'd be theoretically possible to include IR ports built-in in game cartridges (as done for some older 8bit/monochrome Hudson games).

 SIO Normal Mode

This mode is used to communicate between two units.
Transfer rates of 256Kbit/s or 2Mbit/s can be selected, however, the fast 2Mbit/s is intended ONLY for special hardware expansions that are DIRECTLY connected to the GBA link port (ie. without a cable being located between the GBA and expansion hardware). In normal cases, always use 256Kbit/s transfer rate which provides stable results.
Transfer lengths of 8bit or 32bit may be used, the 8bit mode is the same as for older DMG/CGB gameboys, however, the voltages for "GBA cartridges in GBAs" are different as for "DMG/CGB cartridges in DMG/CGB/GBAs", ie. it is not possible to communicate between DMG/CGB games and GBA games.

4000134h - RCNT (R) - Mode Selection, in Normal/Multiplayer/UART modes (R/W)
 Bit Expl.
 0-3 Undocumented (current SC,SD,SI,SO state, as for General Purpose mode)
 4-8 Not used (Should be 0, bits are read/write-able though)
 9-13 Not used (Always 0, read only)
 14 Not used (Should be 0, bit is read/write-able though)
 15 Must be zero (0) for Normal/Multiplayer/UART modes

4000128h - SIOCNT - SIO Control, usage in NORMAL Mode (R/W)
 Bit Expl.
 0 Shift Clock (SC) (0=External, 1=Internal)
 1 Internal Shift Clock (0=256KHz, 1=2MHz)
 2 SI State (opponents SO) (0=Low, 1=High/None) --- (Read Only)
 3 SO during inactivity (0=Low, 1=High) (applied ONLY when Bit7=0)
 4-6 Not used (Read only, always 0 ?)
 7 Start Bit (0=Inactive/Ready, 1=Start/Active)
 8-11 Not used (R/W, should be 0)
 12 Transfer Length (0=8bit, 1=32bit)
 13 Must be "0" for Normal Mode
 14 IRQ Enable (0=Disable, 1=Want IRQ upon completion)
 15 Not used (Read only, always 0)

The S tart bit is automatically reset when the transfer completes, ie. when all 8 or 32 bits are transferred, at that time an IRQ may be generated.

400012Ah - SIODATA8 - SIO Normal Communication 8bit Data (R/W)
For 8bit normal mode. Contains 8bit data (only lower 8bit are used). Outgoing data should be written to this register before starting the transfer. During transfer, transmitted bits are shifted-out (MSB first), and received bits are shifted-in simultaneously. Upon transfer completion, the register contains the received 8bit value.

4000120h - SIODATA32_L - SIO Normal Communication lower 16bit data (R/W)
4000122h - SIODATA32_H - SIO Normal Communication upper 16bit data (R/W)
Same as above S IODATA8, for 32bit normal transfer mode respectively.
S IOCNT/RCNT must be set to 32bit normal mode <before> writing to S IODATA32.

Initialization
First, initialize RCNT register. Second, set mode/clock bits in S IOCNT with startbit c leared. For master: select internal c lock, and (in most cases) specify 256KHz as transfer rate. For slave: select external c lock, the local transfer rate selection is then ignored, as the transfer rate is supplied by the remote GBA (or other computer, which might supply custom transfer rates).
Third, set the startbit in S IOCNT with mode/clock bits unchanged.

Recommended Communication Procedure for SLAVE unit (external clock)
- Initialize data which is to be sent to master.
- Set S tart flag.
- Set SO to LOW to indicate that master may start now.
- Wait for IRQ (or for S tart bit to become zero). (Check timeout here!)
- Set SO to HIGH to indicate that we are not ready.
- Process received data.
- Repeat procedure if more data is to be transferred.
(or is so=high done automatically? would be fine - more stable - otherwise master may still need delay)

Recommended Communication Procedure for SLAVE unit (external clock)
- Initialize data which is to be sent to master.
- Set S tart=0 and SO=0 (SO=LOW indicates that slave is (almost) ready).
- Set S tart=1 and SO=1 (SO=HIGH indicates not ready, applied after transfer).
 (Expl. Old SO=LOW kept output until 1st clock bit received).
 (Expl. New SO=HIGH is automatically output at transfer completion).

- Set SO to LOW to indicate that master may start now.
- Wait for IRQ (or for S tart bit to become zero). (Check timeout here!)
- Process received data.
- Repeat procedure if more data is to be transferred.

Recommended Communication Procedure for MASTER unit (internal clock)
- Initialize data which is to be sent to slave.
- Wait for S I to become LOW (slave ready). (Check timeout here!)
- Set S tart flag.
- Wait for IRQ (or for S tart bit to become zero).
- Process received data.
- Repeat procedure if more data is to be transferred.

Cable Protocol
During inactive transfer, the shift c lock (SC) is high. The transmit (SO) and receive (S I) data lines may be manually controlled as described above.
When master sends SC=LOW, each master and slave must output the next outgoing data bit to SO. When master sends SC=HIGH, each master and slave must read out the opponents data bit from S I. This is repeated for each of the 8 or 32 bits, and when completed SC will be kept high again.

Transfer Rates
Either 256KHz or 2MHz rates can be selected for SC, so max 32KBytes (256Kbit) or 128KBytes (2Mbit) can be transferred per second. However, the software must process each 8bit or 32bit of transmitted data separately, so the actual transfer rate will be reduced by the time spent on handling each data unit.
Only 256KHz provides stable results in most cases (such like when linking between two GBAs). The 2MHz rate is intended for special expansion hardware (with very short wires) only.

Using Normal mode for One-Way Multiplayer communication
When using normal mode with multiplay-cables, data isn't exchanged between first and second GBA as usually. Instead, data is shifted from first to last GBA (the first GBA receives zero, because master S I is shortcut to GND).
This behaviour may be used for fast ONE-WAY data transfer from master to all other GBAs. For example (3 GBAs linked):
 Step Sender 1st Recipient 2nd Recipient
 Transfer 1: DATA #0 --> UNDEF --> UNDEF -->
 Transfer 2: DATA #1 --> DATA #0 --> UNDEF -->
 Transfer 3: DATA #2 --> DATA #1 --> DATA #0 -->
 Transfer 4: DATA #3 --> DATA #2 --> DATA #1 -->

The recipients should not output any own data, instead they should forward the previously received data to the next recipient during next transfer (just keep the incoming data unmodified in the data register).
Due to the delayed forwarding, 2nd recipient should ignore the first incoming data. After the last transfer, the sender must send one (or more) dummy data unit(s), so that the last data is forwarded to the 2nd (or further) recipient(s).

 SIO Multi-Player Mode

Multi-Player mode can be used to communicate between up to 4 units.

4000134h - RCNT (R) - Mode Selection, in Normal/Multiplayer/UART modes (R/W)
 Bit Expl.
 0-3 Undocumented (current SC,SD,SI,SO state, as for General Purpose mode)
 4-8 Not used (Should be 0, bits are read/write-able though)
 9-13 Not used (Always 0, read only)
 14 Not used (Should be 0, bit is read/write-able though)
 15 Must be zero (0) for Normal/Multiplayer/UART modes

Note: Even though undocumented, many Nintendo games are using Bit 0 to test current S C state in multiplay mode.

4000128h - SIOCNT - SIO Control, usage in MULTI-PLAYER Mode (R/W)
 Bit Expl.
 0-1 Baud Rate (0-3: 9600,38400,57600,115200 bps)
 2 SI-Terminal (0=Parent, 1=Child) (Read Only)
 3 SD-Terminal (0=Bad connection, 1=All GBAs Ready) (Read Only)
 4-5 Multi-Player ID (0=Parent, 1-3=1st-3rd child) (Read Only)
 6 Multi-Player Error (0=Normal, 1=Error) (Read Only)
 7 Start/Busy Bit (0=Inactive, 1=Start/Busy) (Read Only for Slaves)
 8-11 Not used (R/W, should be 0)
 12 Must be "0" for Multi-Player mode
 13 Must be "1" for Multi-Player mode
 14 IRQ Enable (0=Disable, 1=Want IRQ upon completion)
 15 Not used (Read only, always 0)

The ID Bits are undefined until the first transfer has completed.

400012Ah - SIOMLT_SEND - Data Send Register (R/W)
Outgoing data (16 bit) which is to be sent to the other GBAs.

4000120h - SIOMULTI0 - SIO Multi-Player Data 0 (Parent) (R/W)
4000122h - SIOMULTI1 - SIO Multi-Player Data 1 (1st child) (R/W)
4000124h - SIOMULTI2 - SIO Multi-Player Data 2 (2nd child) (R/W)
4000126h - SIOMULTI3 - SIO Multi-Player Data 3 (3rd child) (R/W)
These registers are automatically reset to FFFFh upon transfer start.
After transfer, these registers contain incoming data (16bit each) from all remote GBAs (if any / otherwise still FFFFh), as well as the local outgoing S IOMLT_SEND data.
Ie. after the transfer, all connected GBAs will contain the same values in their S IOMULTI0-3 registers.

Initialization
- Initialize RCNT Bit 14-15 and S IOCNT Bit 12-13 to select Multi-Player mode.
- Read S IOCNT Bit 3 to verify that all GBAs are in Multi-Player mode.
- Read S IOCNT Bit 2 to detect whether this is the Parent/Master unit.

Recommended Transmission Procedure
- Write outgoing data to S IODATA_SEND.
- Master must set S tart bit.
- All units must process received data in S IOMULTI0-3 when transfer completed.
- After the first successful transfer, ID Bits in S IOCNT are valid.
- If more data is to be transferred, repeat procedure.
The parent unit blindly sends data regardless of whether childs have already processed old data/supplied new data. So, parent unit might be required to insert delays between each transfer, and/or perform error checking.
Also, slave units may signalize that they are not ready by temporarily switching into another communication mode (which does not output SD High, as Multi-Player mode does during inactivity).

Transfer Protocol
Beginning
- The masters S I pin is always LOW.
- When all GBAs are in Multiplayer mode (ready) SD is HIGH.
- When master starts the transfer, it sets SC=LOW, slaves receive Busy bit.
S tep A
- ID Bits in master unit are set to 0.
- Master outputs S tartbit (LOW), 16bit Data, S topbit (HIGH) through SD.
- This data is written to S IOMULTI0 of all GBAs (including master).
- Master forwards LOW from its SO to 1st childs S I.
- Transfer ends if next child does not output data after certain time.
S tep B
- ID Bits in 1st child unit are set to 1.
- 1st Child outputs S tartbit (LOW), 16bit Data, S topbit (HIGH) through SD.
- This data is written to S IOMULTI1 of all GBAs (including 1st child).
- 1st child forwards LOW from its SO to 2nd childs S I.
- Transfer ends if next child does not output data after certain time.
S tep C
- ID Bits in 2nd child unit are set to 2.
- 2nd Child outputs S tartbit (LOW), 16bit Data, S topbit (HIGH) through SD.
- This data is written to S IOMULTI2 of all GBAs (including 2nd child).
- 2nd child forwards LOW from its SO to 3rd childs S I.
- Transfer ends if next child does not output data after certain time.
S tep D
- ID Bits in 3rd child unit are set to 3.
- 3rd Child outputs S tartbit (LOW), 16bit Data, S topbit (HIGH) through SD.
- This data is written to S IOMULTI3 of all GBAs (including 3rd child).
- Transfer ends (this was the last child).
Transfer end
- Master sets SC=HIGH, all GBAs set SO=HIGH.
- The S tart/Busy bits of all GBAs are automatically c leared.
- Interrupts are requested in all GBAs (as far as enabled).

Error Bit
This bit is set when a slave did not receive S I=LOW even though SC=LOW signalized a transfer (this might happen when connecting more than 4 GBAs, or when the previous chi ld is not connected). Also, the bit is set when a S topbit wasn't HIGH.
The error bit may be undefined during active transfer - read only after transfer completion (the transfer continues and completes as normal even if errors have occurred for some or all GBAs).
Don't know: The bit is automatically reset/initialized with each transfer, or must be manually reset?

Transmission Time
The transmission time depends on the selected Baud rate. And on the amount of Bits (16 data bits plus start/stop bits for each GBA), delays between data for each GBA, plus final timeout (if less than 4 GBAs). That is, depending on the number of connected GBAs:
 GBAs Bits Delays Timeout
 1 18 None Yes
 2 36 1 Yes
 3 54 2 Yes
 4 72 3 None

(The average Delay and Timeout periods are unknown?)
Above is not counting the additional CPU time that must be spent on initiating and processing each transfer.

Fast One-Way Transmission
Beside for the actual S IO Multiplayer mode, you can also use S IO Normal mode for fast one-way data transfer from Master unit to all Child unit(s). See chapter about S IO Normal mode for details.

 SIO UART Mode

This mode works much like a RS232 port, however, the voltages are unknown, probably 0/3V rather than +/-12V ?. S I and SO are data lines (with crossed wires), SC and SD signalize Clear to Send (with crossed wires also, which requires special cable when linking between two GBAs ?)

4000134h - RCNT (R) - Mode Selection, in Normal/Multiplayer/UART modes (R/W)
 Bit Expl.
 0-3 Undocumented (current SC,SD,SI,SO state, as for General Purpose mode)
 4-8 Not used (Should be 0, bits are read/write-able though)
 9-13 Not used (Always 0, read only)
 14 Not used (Should be 0, bit is read/write-able though)
 15 Must be zero (0) for Normal/Multiplayer/UART modes

4000128h - SCCNT_L - SIO Control, usage in UART Mode (R/W)
 Bit Expl.
 0-1 Baud Rate (0-3: 9600,38400,57600,115200 bps)
 2 CTS Flag (0=Send always/blindly, 1=Send only when SC=LOW)
 3 Parity Control (0=Even, 1=Odd)
 4 Send Data Flag (0=Not Full, 1=Full) (Read Only)
 5 Receive Data Flag (0=Not Empty, 1=Empty) (Read Only)
 6 Error Flag (0=No Error, 1=Error) (Read Only)
 7 Data Length (0=7bits, 1=8bits)
 8 FIFO Enable Flag (0=Disable, 1=Enable)
 9 Parity Enable Flag (0=Disable, 1=Enable)
 10 Send Enable Flag (0=Disable, 1=Enable)
 11 Receive Enable Flag (0=Disable, 1=Enable)
 12 Must be "1" for UART mode
 13 Must be "1" for UART mode
 14 IRQ Enable (0=Disable, 1=IRQ when any Bit 4/5/6 become set)
 15 Not used (Read only, always 0)

400012Ah - SIODATA8 - usage in UART Mode (R/W)
Addresses the send/receive shift register, or (when FIFO is used) the send/receive FIFO. In either case only the lower 8bit of S IODATA8 are used, the upper 8bit are not used.
The send/receive FIFO may store up to four 8bit data units each. For example, while 1 unit is still transferred from the send shift register, it is possible to deposit another 4 units in the send FIFO, which are then automatically moved to the send shift register one after each other.

Send/Receive Enable, CTS Feedback
The receiver outputs SD=LOW (which is input as SC=LOW at the remote side) when it is ready to receive data (that is, when Receive Enable is set, and the Receive shift register (or receive FIFO) isn't full.
When CTS flag is set to always/blindly, then the sender transmits data immediately when Send Enable is set, otherwise data is transmitted only when Send Enable is set and SC is LOW.

Error Flag
The error flag is set when a bad stop bit has been received (stop bit must be 0), when a parity error has occurred (if enabled), or when new data has been completely received while the receive data register (or receive FIFO) is already full.
The error flag is automatically reset when reading from S IOCNT register.

Init & Initback
The content of the FIFO is reset when FIFO is disabled in UART mode, thus, when entering UART mode initially set FIFO=disabled.
The Send/Receive enable bits must be reset before switching from UART mode into another S IO mode!

 SIO JOY BUS Mode

This communication mode uses Nintendo's standardized JOY Bus protocol. When using this communication mode, the GBA is always operated as SLAVE!

In this mode, S I and SO pins are data lines (apparently synchronized by S tart/S top bits?), SC and SD are set to low (including during active transfer?), the transfer rate is unknown?

4000134h - RCNT (R) - Mode Selection, in JOY BUS mode (R/W)
 Bit Expl.
 0-3 Undocumented (current SC,SD,SI,SO state, as for General Purpose mode)
 4-8 Not used (Should be 0, bits are read/write-able though)
 9-13 Not used (Always 0, read only)
 14 Must be "1" for JOY BUS Mode
 15 Must be "1" for JOY BUS Mode

4000128h - SIOCNT - SIO Control, not used in JOY BUS Mode
This register is not used in JOY BUS mode.

4000140h - JOYCNT - JOY BUS Control Register (R/W)
 Bit Expl.
 0 Device Reset Flag (Command FFh) (Read/Acknowledge)
 1 Receive Complete Flag (Command 14h or 15h?) (Read/Acknowledge)
 2 Send Complete Flag (Command 15h or 14h?) (Read/Acknowledge)
 3-5 Not used
 6 IRQ when receiving a Device Reset Command (0=Disable, 1=Enable)
 7-15 Not used

Bit 0-2 are working much like the bits in the IF register: Write a "1" bit to reset (acknowledge) the respective bit.
UNCLEAR: Interrupts can be requested for Send/Receive commands also?

4000150h - JOY_RECV_L - Receive Data Register low (R/W)
4000152h - JOY_RECV_H - Receive Data Register high (R/W)
4000154h - JOY_TRANS_L - Send Data Register low (R/W)
4000156h - JOY_TRANS_H - Send Data Register high (R/W)
Send/receive data registers.

4000158h - JOYSTAT - Receive Status Register (R/W)
 Bit Expl.
 0 Not used
 1 Receive Status Flag (0=Remote GBA is/was receiving) (Read Only?)
 2 Not used
 3 Send Status Flag (1=Remote GBA is/was sending) (Read Only?)
 4-5 General Purpose Flag (Not assigned, may be used for whatever purpose)
 6-15 Not used

Bit 1 is automatically set when writing to local JOY_TRANS.
Bit 3 is automatically reset when reading from local JOY_RECV.

Below are the four possible commands which can be received by the GBA. Note that the GBA (slave) cannot send any commands itself, all it can do is to read incoming data, and to provide 'reply' data which may (or may not) be read out by the master unit.

Command FFh - Device Reset
 Receive FFh (Command)
 Send 00h (GBA Type number LSB (or MSB?))
 Send 04h (GBA Type number MSB (or LSB?))
 Send XXh (lower 8bits of SIOSTAT register)

Command 00h - Type/Status Data Request
 Receive 00h (Command)
 Send 00h (GBA Type number LSB (or MSB?))
 Send 04h (GBA Type number MSB (or LSB?))
 Send XXh (lower 8bits of SIOSTAT register)

Command 15h - GBA Data Write (to GBA)
 Receive 15h (Command)
 Receive XXh (Lower 8bits of JOY_RECV_L)
 Receive XXh (Upper 8bits of JOY_RECV_L)
 Receive XXh (Lower 8bits of JOY_RECV_H)
 Receive XXh (Upper 8bits of JOY_RECV_H)
 Send XXh (lower 8bits of SIOSTAT register)

Command 14h - GBA Data Read (from GBA)
 Receive 14h (Command)
 Send XXh (Lower 8bits of JOY_TRANS_L)
 Send XXh (Upper 8bits of JOY_TRANS_L)
 Send XXh (Lower 8bits of JOY_TRANS_H)
 Send XXh (Upper 8bits of JOY_TRANS_H)
 Send XXh (lower 8bits of SIOSTAT register)

 SIO General-Purpose Mode

In this mode, the S IO is 'misused' as a 4bit bi-directional parallel port, each of the S I,SO,SC,SD pins may be directly controlled, each can be separately declared as input (with internal pull-up) or as output signal.

4000134h - RCNT (R) - SIO Mode, usage in GENERAL-PURPOSE Mode (R/W)
Interrupts can be requested when S I changes from HIGH to LOW, as General Purpose mode does not require a serial shift c lock, this interrupt may be produced even when the GBA is in S top (low power standby) state.
 Bit Expl.
 0 SC Data Bit (0=Low, 1=High)
 1 SD Data Bit (0=Low, 1=High)
 2 SI Data Bit (0=Low, 1=High)
 3 SO Data Bit (0=Low, 1=High)
 4 SC Direction (0=Input, 1=Output)
 5 SD Direction (0=Input, 1=Output)
 6 SI Direction (0=Input, 1=Output, but see below)
 7 SO Direction (0=Input, 1=Output)
 8 SI Interrupt Enable (0=Disable, 1=Enable)
 9-13 Not used
 14 Must be "0" for General-Purpose Mode
 15 Must be "1" for General-Purpose or JOYBUS Mode

S I should be always used as Input to avoid problems with other hardware which does not expect data to be output there.

4000128h - SIOCNT - SIO Control, not used in GENERAL-PURPOSE Mode
This register is not used in general purpose mode. That is, the separate bits of S IOCNT still exist and are read- and/or write-able in the same manner as for Normal, Mult iplay, or UART mode (depending on S IOCNT Bit 12,13), but are having no effect on data being output to the link port.

 SIO Control Registers Summary

Mode Selection (by RCNT.15-14 and SIOCNT.13-12)
 R.15 R.14 S.13 S.12 Mode
 0 x 0 0 Normal 8bit
 0 x 0 1 Normal 32bit
 0 x 1 0 Multiplay 16bit
 0 x 1 1 UART (RS232)
 1 0 x x General Purpose
 1 1 x x JOY BUS

SIOCNT
 Bit 0 1 2 3 4 5 6 7 8 9 10 11
 Normal Master Rate SI/In SO/Out - - - Start - - - -
 Multi Baud Baud SI/In SD/In ID# Err Start - - - -
 UART Baud Baud CTS Parity S R Err Bits FIFO Parity Send Recv

 GBA Infrared Communication

Early GBA prototypes have been intended to include a built-in IR port for sending and receiving IR signals. Among others, this port could have been used to communicate with other GBAs, or older CGB models, or TV Remote Controls, etc.

[THE INFRARED COMMUNICATION FEATURE IS -NOT- SUPPORTED ANYMORE]
Anyways, the prototype specifications have been as shown below...

Keep in mind that the IR signal may be interrupted by whatever objects moved between sender and receiver - the IR port isn't recommended for programs that require realtime data exchange (such like action games).

4000136h - IR - Infrared Register (R/W)
 Bit Expl.
 0 Transmission Data (0=LED Off, 1=LED On)
 1 READ Enable (0=Disable, 1=Enable)
 2 Reception Data (0=None, 1=Signal received) (Read only)
 3 AMP Operation (0=Off, 1=On)
 4 IRQ Enable Flag (0=Disable, 1=Enable)
 5-15 Not used

When IRQ is enabled, an interrupt is requested if the incoming signal was 0.119us Off (2 cycles), followed by 0.536us On (9 cycles) - minimum timing periods each.

Transmission Notes
When transmitting an IR signal, note that it'd be not a good idea to keep the LED turned On for a very long period (such like sending a 1 second synchronization pulse). The recipient's c ircuit would treat such a long signal as "normal IR pollution which is in the air" after a while, and thus ignore the signal.

Reception Notes
Received data is internally latched. Latched data may be read out by setting both READ and AMP bits.
Note: Provided that you don't want to receive your own IR signal, be sure to set Bit 0 to zero before attempting to receive data.

Power-consumption
After using the IR port, be sure to reset the register to zero in order to reduce battery power consumption.

 GBA Keypad Input

The built-in GBA gamepad has 4 direction keys, and 6 buttons.

4000130h - KEYINPUT - Key Status (R)
 Bit Expl.
 0 Button A (0=Pressed, 1=Released)
 1 Button B (etc.)
 2 Select (etc.)
 3 Start (etc.)
 4 Right (etc.)
 5 Left (etc.)
 6 Up (etc.)
 7 Down (etc.)
 8 Button R (etc.)
 9 Button L (etc.)
 10-15 Not used

It'd be usually recommended to read-out this register only once per frame, and to store the current state in memory. As a side effect, this method avoids problems caused by switch bounce when a key is newly released or pressed.

4000132h - KEYCNT - Key Interrupt Control (R/W)
The keypad IRQ function is intended to terminate the very-low-power S top mode, it is not suitable for processing normal user input, to do this, most programs are invoking their keypad handlers from within VBlank IRQ.
 Bit Expl.
 0 Button A (0=Ignore, 1=Select)
 1 Button B (etc.)
 2 Select (etc.)
 3 Start (etc.)
 4 Right (etc.)
 5 Left (etc.)
 6 Up (etc.)
 7 Down (etc.)
 8 Button R (etc.)
 9 Button L (etc.)
 10-13 Not used
 14 IRQ Enable Flag (0=Disable, 1=Enable)
 15 IRQ Condition (0=Logical OR, 1=Logical AND)

In logical OR mode, an interrupt is requested when at least one of the selected buttons is pressed.
In logical AND mode, an interrupt is requested when ALL of the selected buttons are pressed.

Notes
In 8bit gameboy compatibility mode, L and R Buttons are used to toggle the screen siz e between normal 160x144 pixels and stretched 240x144 pixels.
The GBA SP is additionally having a * Button used to toggle the backlight on and off (controlled by separate hardware logic, there's no way to detect or change the current backlight state by software).

 GBA Interrupt Control

4000208h - IME - Interrupt Master Enable Register (R/W)
 Bit Expl.
 0 Disable all interrupts (0=Disable All, 1=See IE register)
 1-15 Not used

4000200h - IE - Interrupt Enable Register (R/W)
 Bit Expl.
 0 LCD V-Blank (0=Disable)
 1 LCD H-Blank (etc.)
 2 LCD V-Counter Match (etc.)
 3 Timer 0 Overflow (etc.)
 4 Timer 1 Overflow (etc.)
 5 Timer 2 Overflow (etc.)
 6 Timer 3 Overflow (etc.)
 7 Serial Communication (etc.)
 8 DMA 0 (etc.)
 9 DMA 1 (etc.)
 10 DMA 2 (etc.)
 11 DMA 3 (etc.)
 12 Keypad (etc.)
 13 Game Pak (external IRQ source) (etc.)
 14-15 Not used

Note that there is another 'master enable flag' directly in the CPUs S tatus Register (CPSR) accessible in privileged modes, see CPU reference for details.

4000202h - IF - Interrupt Request Flags / IRQ Acknowledge (R/W, see below)
 Bit Expl.
 0 LCD V-Blank (1=Request Interrupt)
 1 LCD H-Blank (etc.)
 2 LCD V-Counter Match (etc.)
 3 Timer 0 Overflow (etc.)
 4 Timer 1 Overflow (etc.)
 5 Timer 2 Overflow (etc.)
 6 Timer 3 Overflow (etc.)
 7 Serial Communication (etc.)
 8 DMA 0 (etc.)
 9 DMA 1 (etc.)
 10 DMA 2 (etc.)
 11 DMA 3 (etc.)
 12 Keypad (etc.)
 13 Game Pak (external IRQ source) (etc.)
 14-15 Not used

Interrupts must be manually acknowledged by writing a "1" to one of the IRQ bits, the IRQ bit will then be c leared.

"[Cautions regarding c learing IME and IE]
A corresponding interrupt could occur even while a command to c lear IME or each flag of the IE register is being executed. When clearing a flag of IE, you need to c lear IME in advance so that mismatching of interrupt checks will not occur." ?

"[When multiple interrupts are used]
When the timing of c learing of IME and the timing of an interrupt agree, multiple interrupts will not occur during that interrupt. Therefore, set (enable) IME after saving IME during the interrupt routine." ?

BIOS Interrupt handling
Upon interrupt execution, the CPU is switched into IRQ mode, and the physical interrupt vector is called - as this address is located in BIOS ROM, the BIOS will always execute the following code before it forwards control to the user handler:
 00000018 b 128h ;IRQ vector: jump to actual BIOS handler
 00000128 stmfd r13!,r0-r3,r12,r14 ;save registers to SP_irq
 0000012C mov r0,4000000h ;ptr+4 to 03FFFFFC (mirror of 03007FFC)
 00000130 add r14,r15,0h ;retadr for USER handler $+8=138h
 00000134 ldr r15,[r0,-4h] ;jump to [03FFFFFC] USER handler
 00000138 ldmfd r13!,r0-r3,r12,r14 ;restore registers from SP_irq
 0000013C subs r15,r14,4h ;return from IRQ (PC=LR-4, CPSR=SPSR)

As shown above, a pointer to the 32bit/ARM-code user handler must be setup in [03007FFCh]. By default, 160 bytes of memory are reserved for interrupt stack at 03007F00h-03007F9Fh.

Recommended User Interrupt handling
- If necessary switch to THUMB state manually (handler is called in ARM state)
- Determine reason(s) of interrupt by examining IF register
- User program may freely assign priority to each reason by own logic
- Process the most important reason of your choice
- User MUST manually acknowledge by writing to IF register
- If user wants to allow nested interrupts, save SPSR_irq, then enable IRQs.
- If using other registers than BIOS-pushed R0-R3, manually save R4-R11 also.
- Note that Interrupt S tack is used (which may have limited size)
- So, for memory consuming stack operations use system mode (=user stack).
- When calling subroutines in system mode, save LSR_usr also.
- Restore SPSR_irq and/or R4-R11 if you've saved them above.
- Finally, return to BIOS handler by BX LR (R14_irq) instruction.

Default memory usage at 03007FXX (and mirrored to 03FFFFXX)
 Addr. Size Expl.
 7FFCh 4 Pointer to user IRQ handler (32bit ARM code)
 7FF8h 4 Interrupt Check Flag (for IntrWait/VBlankIntrWait functions)
 7FF4h 4 Allocated Area
 7FF0h 4 Pointer to Sound Buffer
 7FE0h 16 Allocated Area
 7FA0h 64 Default area for SP_svc Supervisor Stack (4 words/time)
 7F00h 160 Default area for SP_irq Interrupt Stack (6 words/time)

Memory below 7F00h is free for User S tack and user data. The three stack pointers are initially initialized at the TOP of the respective areas:
 SP_svc=03007FE0h
 SP_irq=03007FA0h
 SP_usr=03007F00h

The user may redefine these addresses and move stacks into other locations, however, the addresses for system data at 7FE0h-7FFFh are fixed.

Not sure, is following free for user ?
Registers R8-R12_fiq, R13_fiq, R14_fiq, SPSR_fiq
Registers R13-R14_abt, SPSR_abt
Registers R13-R14_und, SPSR_und

Fast Interrupt (FIQ)
The ARM CPU provides two interrupt sources, IRQ and FIQ. In the GBA only IRQ is used. In normal GBAs, the FIQ signal is shortcut to VDD35, ie. the signal is always high, and there is no way to generate a FIQ by hardware. The registers R8..12_fiq could be used by software (when switching into FIQ mode by writing to CPSR) - however, this might make the game incompatible with hardware debuggers (which are reportedly using FIQs for debugging purposes).

 GBA System Control

4000204h - WAITCNT - Waitstate Control (R/W)
This register is used to configure game pak access timings. The game pak ROM is mirrored to three address regions at 08000000h, 0A000000h, and 0C000000h, these areas are called Wait S tate 0-2. Different access timings may be assigned to each area (this might be useful in case that a game pak contains several ROM chips with different access times each).
 Bit Expl.
 0-1 SRAM Wait Control (0..3 = 4,3,2,8 cycles)
 2-3 Wait State 0 First Access (0..3 = 4,3,2,8 cycles)
 4 Wait State 0 Second Access (0..1 = 2,1 cycles)
 5-6 Wait State 1 First Access (0..3 = 4,3,2,8 cycles)
 7 Wait State 1 Second Access (0..1 = 4,1 cycles; unlike above WS0)
 8-9 Wait State 2 First Access (0..3 = 4,3,2,8 cycles)
 10 Wait State 2 Second Access (0..1 = 8,1 cycles; unlike above WS0,WS1)
 11-12 PHI Terminal Output (0..3 = Disable, 4.19MHz, 8.38MHz, 16.78MHz)
 13 Not used
 14 Game Pak Prefetch Buffer (Pipe) (0=Disable, 1=Enable)
 15 Game Pak Type Flag (Read Only) (0=GBA, 1=CGB) (IN35 signal)

At startup, the default setting is 0000h. Currently manufactured cartridges are using the following settings: WS0/ROM=3,1 c lks; SRAM=8 clks; WS2/EEPROM: 8,8 c lks; prefetc h enabled; that is, WAITCNT=4317h, for more info see "GBA Cartridges" chapter.

First Access (Non-sequential) and Second Access (Sequential) define the waitstates for N and S cycles, the actual access time is 1 c lock cycle PLUS the number of waitstates.
GamePak uses 16bit data bus, so that a 32bit access is split into TWO 16bit accesses (of which, the second fragment is always sequential, even if the first fragment was non-sequential).

GamePak Prefetch

NOTES:
The GBA forcefully uses non-sequential timing at the beginning of each 128K-block of gamepak ROM, eg. "LDMIA [801fff8h],r0-r7" will have non-sequential timing at 8020000h.
The PHI Terminal output (PHI Pin of Gamepak Bus) should be disabled.

4000300h - POSTFLG - BYTE - Undocumented - Post Boot / Debug Control (R/W)
After initial reset, the GBA BIOS initializes the register to 01h, and any further execution of the Reset vector (00000000h) will pass control to the Debug vector (0000001Ch) when sensing the register to be still set to 01h.
 Bit Expl.
 0 Undocumented. First Boot Flag (0=First, 1=Further)
 1-7 Undocumented. Not used.

Normally the debug handler rejects control unless it detects Debug flags in cartridge header, in that case it may redirect to a cut-down boot procedure (bypassing Nintendo logo and boot delays, much like nocash burst boot for multiboot software). I am not sure if it is possible to reset the GBA externally without automatically resetting register 300h though.

4000301h - HALTCNT - BYTE - Undocumented - Low Power Mode Control (W)
Writing to this register switches the GBA into battery saving mode.
In Halt mode, the CPU is paused as long as (IE AND IF)=0, this should be used to reduce power-consumption during periods when the CPU is waiting for interrupt events.
In S top mode, most of the hardware including sound and video are paused, this very-low-power mode could be used much like a screensaver.
 Bit Expl.
 0-6 Undocumented. Not used.
 7 Undocumented. Power Down Mode (0=Halt, 1=Stop)

The current GBA BIOS addresses only the upper eight bits of this register (by writing 00h or 80h to address 04000301h), however, as the register isn't offic ially documented, some or all of the bits might have different meanings in future GBA models.
For best forwards compatibility, it'd generally be more recommended to use the BIOS Functions SWI 2 (Halt) or SWI 3 (S top) rather than writing to this register directly.

4000410h - Undocumented - Purpose Unknown ? 8bit (W)
The BIOS writes the 8bit value 0FFh to this address. Purpose Unknown.
Probably just another bug in the BIOS .

4000800h - 32bit - Undocumented - Internal Memory Control (R/W)
Supported by GBA and GBA SP only - NOT supported by DS (even in GBA mode).
Initialized to 0D000020h (by hardware). Unlike all other I/O registers, this register is mirrored across the whole I/O area (in increments of 64K, ie. at 4000800h, 4010800h, 4020800h, ..., 4FF0800h)
 Bit Expl.
 0 Disable 32K+256K WRAM (0=Normal, 1=Disable) (when off: empty/prefetch)
 1-3 Unknown (Read/Write-able)
 4 Unknown (Always zero, not used or write only)
 5 Enable 256K WRAM (0=Disable, 1=Normal) (when off: mirror of 32K WRAM)
 6-23 Unknown (Always zero, not used or write only)
 24-27 Wait Control WRAM 256K (0-14 = 15..1 Waitstates, 15=Lockup)
 28-31 Unknown (Read/Write-able)

The value 0Dh in Bits 24-27 selects 2 waitstates for 256K WRAM (ie. 3/3/6 cycles 8/16/32bit accesses). The fastest possible setting would be 0Eh (1 waitstate, 2/2/4 cycles for 8/16/32bit).

Note: One cycle equals approx. 59.59ns (ie. 16.78MHz clock).

 GamePak Prefetch

GamePak Prefetch can be enabled in WAITCNT register. When prefetch buffer is enabled, the GBA attempts to read opcodes from Game Pak ROM during periods when the CPU is not using the bus (if any). Memory access is then performed with 0 Waits if the CPU requests data which is already stored in the buffer. The prefetch buffer stores up to eight 16bit values.

GamePak ROM Opcodes
The prefetch feature works only with <opcodes> fetched from GamePak ROM. Opcodes exec uted in RAM or BIOS are not affected by the prefetch feature (even if that opcodes read <data> from GamePak ROM).

Prefetch Enable
For GamePak ROM opcodes, prefetch may occur in two situations:
 1) opcodes with internal cycles (I) which do not change R15, shift/rotate
 register-by-register, load opcodes (ldr,ldm,pop,swp), multiply opcodes
 2) opcodes that load/store memory (ldr,str,ldm,stm,etc.)

Prefetch Disable Bug
When Prefetch is disabled, the Prefetch Disable Bug will occur for all
 "Opcodes in GamePak ROM with Internal Cycles which do not change R15"

for those opcodes, the bug changes the opcode fetch time from 1S to 1N.
Note: Affected opcodes (with I cycles) are: Shift/rotate register-by-register opcodes, multiply opcodes, and load opcodes (ldr,ldm,pop,swp).

 GBA Cartridges

ROM
GBA Cartridge Header
GBA Cartridge ROM

Backup Media
Aside from ROM, cartridges may also include one of the following backup medias, used to store game positions, highscore tables, options, or other data.
GBA Cart Backup IDs
GBA Cart Backup SRAM/FRAM
GBA Cart Backup EEPROM
GBA Cart Backup Flash ROM
GBA Cart Backup DACS

Add-Ons
GBA Cart I/O Port (GPIO)
GBA Cart Real-Time Clock (RTC)
GBA Cart Solar Sensor
GBA Cart Tilt Sensor
GBA Cart Gyro Sensor
GBA Cart Rumble
GBA Cart e-Reader
GBA Cart Unknown Devices

Other Accessoires
GBA Flashcards
GBA Cheat Devices

 GBA Cartridge Header

The first 192 bytes at 8000000h-80000BFh in ROM are used as cartridge header. The same header is also used for Multiboot images at 2000000h-20000BFh (plus some additional multiboot entries at 20000C0h and up).

Header Overview
 Address Bytes Expl.
 000h 4 ROM Entry Point (32bit ARM branch opcode, eg. "B rom_start")
 004h 156 Nintendo Logo (compressed bitmap, required!)
 0A0h 12 Game Title (uppercase ascii, max 12 characters)
 0ACh 4 Game Code (uppercase ascii, 4 characters)
 0B0h 2 Maker Code (uppercase ascii, 2 characters)
 0B2h 1 Fixed value (must be 96h, required!)
 0B3h 1 Main unit code (00h for current GBA models)
 0B4h 1 Device type (usually 00h)
 0B5h 7 Reserved Area (should be zero filled)
 0BCh 1 Software version (usually 00h)
 0BDh 1 Complement check (header checksum, required!)
 0BEh 2 Reserved Area (should be zero filled)
 --- Additional Multiboot Header Entries ---
 0C0h 4 RAM Entry Point (32bit ARM branch opcode, eg. "B ram_start")
 0C4h 1 Boot mode (init as 00h - BIOS overwrites this value!)
 0C5h 1 Slave ID Number (init as 00h - BIOS overwrites this value!)
 0C6h 26 Not used (seems to be unused)
 0E0h 4 JOYBUS Entry Pt. (32bit ARM branch opcode, eg. "B joy_start")

Note: With all entry points, the CPU is initially set into system mode.

000h - Entry Point, 4 Bytes
Space for a single 32bit ARM opcode that redirects to the actual startaddress of the cartridge, this should be usually a "B <start>" instruction.
Note: This entry is ignored by Multiboot slave GBAs (in fact, the entry is then overwritten and redirected to a separate Multiboot Entry Point, as described below).

004h..09Fh - Nintendo Logo, 156 Bytes
Contains the Nintendo logo which is displayed during the boot procedure. Cartridge won't work if this data is missing or modified.
In detail: This area contains Huffman compression data (but excluding the compression header which is hardcoded in the BIOS , so that it'd be probably not possible to hack the GBA by producing de-compression buffer overflows).
A copy of the compression data is stored in the BIOS , the GBA will compare this data and lock-up itself if the BIOS data isn't exactly the same as in the cartridge (or multiboot header). The only exception are the two entries below which are allowed to have variable settings in some bits.

09Ch Bit 2,7 - Debugging Enable
This is part of the above Nintendo Logo area, and must be commonly set to 21h, however, Bit 2 and Bit 7 may be set to other values.
When both bits are set (ie. A5h), the FIQ/Undefined Instruction handler in the BIOS becomes unlocked, the handler then forwards these exceptions to the user handler in cartridge ROM (entry point defined in 80000B4h, see below).
Other bit combinations currently do not seem to have special functions.

09Eh Bit 0,1 - Cartridge Key Number MSBs
This is part of the above Nintendo Logo area, and must be commonly set to F8h, however, Bit 0-1 may be set to other values.
During startup, the BIOS performs some dummy-reads from a stream of pre-defined addresses, even though these reads seem to be meaningless, they might be intended to unloc k a read-protection inside of commercial cartridge. There are 16 pre-defined address streams - selected by a 4bit key number - of which the upper two bits are gained from 800009Eh Bit 0-1, and the lower two bits from a checksum across header bytes 09Dh..0B7h (bytewise XORed, divided by 40h).

0A0h - Game Title, Uppercase Ascii, max 12 characters
Space for the game title, padded with 00h (if less than 12 chars).

0ACh - Game Code, Uppercase Ascii, 4 characters
This is the same code as the AGB-UTTD code which is printed on the package and sticker on (commercial) cartridges (excluding the leading "AGB-" part).
 U Unique Code (usually "A" or "B" or special meaning)
 TT Short Title (eg. "PM" for Pac Man)
 D Destination/Language (usually "J" or "E" or "P" or specific language)

The first character (U) is usually "A" or "B", in detail:
 A Normal game; Older titles (mainly 2001..2003)
 B Normal game; Newer titles (2003..)
 C Normal game; Not used yet, but might be used for even newer titles
 F Classic NES Series (software emulated NES games)
 K Yoshi and Koro Koro Puzzle (acceleration sensor)
 P e-Reader (dot-code scanner)
 R Warioware Twisted (cartridge with rumble and z-axis gyro sensor)
 U Boktai 1 and 2 (cartridge with RTC and solar sensor)
 V Drill Dozer (cartridge with rumble)

The second/third characters (TT) are:
 Usually an abbreviation of the game title (eg. "PM" for "Pac Man") (unless
 that gamecode was already used for another game, then TT is just random)

The fourth character (D) indicates Destination/Language:
 J Japan P Europe/Elsewhere F French S Spanish
 E USA/English D German I Italian

0B0h - Maker code, Uppercase Ascii, 2 characters
Identifies the (commercial) developer. For example, "01"=Nintendo.

0B2h - Fixed value, 1 Byte
Must be 96h.

0B3h - Main unit code, 1 Byte
Identifies the required hardware. Should be 00h for current GBA models.

0B4h - Device type, 1 Byte
Normally, this entry should be zero. With Nintendo's hardware debugger Bit 7 identifies the debugging handlers entry point and size of DACS (Debugging And Communication S ystem) memory: Bit7=0: 9FFC000h/8MBIT DACS, Bit7=1: 9FE2000h/1MBIT DACS. The debugging handler can be enabled in 800009Ch (see above), normal cartridges do not have any memory (nor any mirrors) at these addresses though.

0B5h - Reserved Area, 7 Bytes
Reserved, zero filled.

0BCh - Software version number
Version number of the game. Usually zero.

0BDh - Complement check, 1 Byte
Header checksum, cartridge won't work if incorrect. Calculate as such:
chk=0:for i=0A0h to 0BCh:chk=chk-[i]:next:chk=(chk-19h) and 0FFh

0BEh - Reserved Area, 2 Bytes
Reserved, zero filled.

Below required for Multiboot/slave programs only. For Multiboot, the above 192 bytes are required to be transferred as header-block (loaded to 2000000h-20000BFh), and some additional header-information must be located at the beginning of the actual program/data-block (loaded to 20000C0h and up). This extended header consists of Multiboot Entry point(s) which must be set up correctly, and of two reserved bytes which are overwritten by the boot procedure:

0C0h - Normal/Multiplay mode Entry Point
This entry is used only if the GBA has been booted by using Normal or Multiplay transfer mode (but not by Joybus mode).
Typically deposit a ARM-32bit "B <start>" branch opcode at this location, which is pointing to your actual initialization procedure.

0C4h (BYTE) - Boot mode
The slave GBA download procedure overwrites this byte by a value which is indicating the used multiboot transfer mode.
 Value Expl.
 01h Joybus mode
 02h Normal mode
 03h Multiplay mode

Typically set this byte to zero by inserting DCB 00h in your source.
Be sure that your uploaded program does not contain important program code or data at this location, or at the ID-byte location below.

0C5h (BYTE) - Slave ID Number
If the GBA has been booted in Normal or Multiplay mode, this byte becomes overwritten by the slave ID number of the local GBA (that'd be always 01h for normal mode).
 Value Expl.
 01h Slave #1
 02h Slave #2
 03h Slave #3

Typically set this byte to zero by inserting DCB 00h in your source.
When booted in Joybus mode, the value is NOT changed and remains the same as uploaded from the master GBA.

0C6h..0DFh - Not used
Appears to be unused.

0E0h - Joybus mode Entry Point
If the GBA has been booted by using Joybus transfer mode, then the entry point is loc ated at this address rather than at 20000C0h. Either put your initialization procedure directly at this address, or redirect to the actual boot procedure by depositing a "B <start>" opcode here (either one using 32bit ARM code). Or, if you are not intending to support joybus mode (which is probably rarely used), ignore this entry.

 GBA Cartridge ROM

ROM Size
The games F-ZERO and Super Mario Advance use ROMs of 4 MBytes each. Zelda uses 8 MBytes. Not sure if other sizes are manufactured.

ROM Waitstates
The GBA starts the cartridge with 4,2 waitstates (N,S) and prefetch disabled. The program may change these settings by writing to WAITCNT, the games F-ZERO and Super Mario Advance use 3,1 waitstates (N,S) each, with prefetch enabled.
Third-party flashcards are reportedly running unstable with these settings. Also, prefetch and shorter waitstates are allowing to read more data and opcodes from ROM is less time, the downside is that it increases the power consumption.

ROM Chip
Because of how 24bit addresses are squeezed through the Gampak bus, the cartridge must include a c ircuit that latches the lower 16 address bits on non-sequential access, and that increments these bits on sequential access. Nintendo includes this c ircuit directly in the ROM chip.
Also, the ROM must have 16bit data bus (or a c ircuit which converts two 8bit data units into one 16bit unit - by not exceeding the waitstate timings).

 GBA Cart Backup IDs

Nintendo didn't include a backup-type entry in the ROM header, however, the required type can be detected by ID strings in the ROM-image. Nintendo's tools are automatical ly inserting these strings (as part of their library headers). When using other tools, you may insert ID strings by hand.

ID Strings
The ID string must be located at a word-aligned memory location, the string length should be a multiple of 4 bytes (padded with zero's).
 EEPROM_Vnnn EEPROM 512 bytes or 8 Kbytes (4Kbit or 64Kbit)
 SRAM_Vnnn SRAM 32 Kbytes (256Kbit)
 FLASH_Vnnn FLASH 64 Kbytes (512Kbit) (ID used in older files)
 FLASH512_Vnnn FLASH 64 Kbytes (512Kbit) (ID used in newer files)
 FLASH1M_Vnnn FLASH 128 Kbytes (1Mbit)

For Nintendo's tools, "nnn" is a 3-digit library version number. When using other tools, best keep it set to "nnn" rather than inserting numeric digits.

Notes
No$gba does auto-detect most backup types, even without ID strings, except for 128K FLASH (without ID "FLASH1M_Vnnn", the FLASH size defaults to 64K). Ideally, for faster detection, the ID should be put into the first some bytes of the ROM-image (ie. somewhere right after the ROM header).

 GBA Cart Backup SRAM/FRAM

SRAM - 32 KBytes (256Kbit) Lifetime: Depends on back-up battery
FRAM - 32 KBytes (256Kbit) Lifetime: 10,000,000,000 read/write per bit

Hyundai GM76V256CLLFW10 SRAM (S tatic RAM) (eg. F-Zero)
Fujitsu MB85R256 FRAM (Ferroelectric RAM) (eg. Warioware Twisted)

Addressing and Waitstates
SRAM/FRAM is mapped to E000000h-E007FFFh, it should be accessed with 8 waitstates (write a value of 3 into Bit0-1 of WAITCNT).

Databus Width
The SRAM/FRAM databus is restricted to 8 bits, it should be accessed by LDRB, LDRSB, and STRB opcodes only.

Reading and Writing
Reading from SRAM/FRAM should be performed by code executed in WRAM only (but not by code executed in ROM). There is no such restriction for writing.

Preventing Data Loss
The GBA SRAM/FRAM carts do not include a write-protect function (unlike older 8bit gameboy carts). This seems to be a problem and may cause data loss when a cartridge is removed or inserted while the GBA is still turned on. As far as I understand, this is not so much a hardware problem, but rather a software problem, ie. theoretically you could remove/insert the cartridge as many times as you want, but you should take care that your program does not crash (and write blindly into memory).

Recommended Workaround
Enable the Gamepak Interrupt (it'll most likely get triggered when removing the cartridge), and hang-up the GBA in an endless loop when your interrupt handler senses a Gamepak IRQ. For obvious reason, your interrupt handler should be located in WRAM, ie. not in the (removed) ROM cartridge. The handler should process Gamepak IRQs at highest priority. Periods during which interrupts are disabled should be kept as short as possible, if necessary allow nested interrupts.

When to use the above Workaround
A program that relies wholly on code and data in WRAM, and that does not crash even when ROM is removed, may keep operating without having to use the above mechanism.
Do NOT use the workaround for programs that run without a cartridge inserted (ie. single gamepak/multiboot slaves), or for programs that use Gamepak IRQ/DMA for other purposes.
All other programs should use it. It'd be eventually a good idea to include it even in programs that do not use SRAM/FRAM themselves (eg. otherwise removing a SRAM/FRAM-less cartridge may lock up the GBA, and may cause it to destroy backup data when inserting a SRAM/FRAM cartridge).

SRAM vs FRAM
FRAM (Ferroelectric RAM) is a newer technology, used in newer GBA carts, unlike SRAM (S tatic RAM), it doesn't require a battery to hold the data. At software side, it is accessed exactly like SRAM, ie. unlike EEPROM/FLASH, it doesn't require any Write/Erase commands/delays.

Note
In SRAM/FRAM cartridges, the /REQ pin (Pin 31 of Gamepak bus) should be a little bit shorter as than the other pins; when removing the cartridge, this causes the gamepak IRQ signal to get triggered before the other pins are disconnected.

 GBA Cart Backup EEPROM

9853 - EEPROM 512 Bytes (0200h) (4Kbit) (eg. used by Super Mario Advance)
9854 - EEPROM 8 KBytes (2000h) (64Kbit) (eg. used by Boktai)
Lifetime: 100,000 writes per address

Addressing and Waitstates
The eeprom is connected to Bit0 of the data bus, and to the upper 1 bit (or upper 17 bits in case of large 32MB ROM) of the cartridge ROM address bus, communication with the chip takes place serially.
The eeprom must be used with 8 waitstates (set WAITCNT=X3XXh; 8,8 c lks in WS2 area), the eeprom can be then addressed at DFFFF00h..DFFFFFFh.
Respectively, with eeprom, ROM is restricted to 8000000h-9FFFeFFh (max. 1FFFF00h bytes = 32MB minus 256 bytes). On carts with 16MB or smaller ROM, eeprom can be alternately accessed anywhere at D000000h-DFFFFFFh.

Data and Address Width
Data can be read from (or written to) the EEPROM in units of 64bits (8 bytes). Writing automatically erases the old 64bits of data. Addressing works in units of 64bits respectively, that is, for 512 Bytes EEPROMS: an address range of 0-3Fh, 6bit bus width; and for 8KByte EEPROMs: a range of 0-3FFh, 14bit bus width (only the lower 10 address bits are used, upper 4 bits should be zero).

Set Address (For Reading)
Prepare the following bitstream in memory:
 2 bits "11" (Read Request)
 n bits eeprom address (MSB first, 6 or 14 bits, depending on EEPROM)
 1 bit "0"

Then transfer the stream to eeprom by using DMA.

Read Data
Read a stream of 68 bits from EEPROM by using DMA,
then decipher the received data as follows:
 4 bits - ignore these
 64 bits - data (conventionally MSB first)

Write Data to Address
Prepare the following bitstream in memory, then transfer the stream to eeprom by using DMA, it'll take ca. 108368 clock cycles (ca. 6.5ms) until the old data is erased and new data is programmed.
 2 bits "10" (Write Request)
 n bits eeprom address (MSB first, 6 or 14 bits, depending on EEPROM)
 64 bits data (conventionally MSB first)
 1 bit "0"

After the DMA, keep reading from the chip, by normal LDRH [DFFFF00h], until Bit 0 of the returned data becomes "1" (Ready). To prevent your program from locking up in case of malfunction, generate a timeout if the chip does not reply after 10ms or longer.

Using DMA
Transferring a bitstream to/from the EEPROM by LDRH/STRH opcodes does not work, this might be because of timing problems, or because how the GBA squeezes non-sequential memory addresses through the external address/data bus.
For this reason, a buffer in memory must be used (that buffer would be typically allocated temporarily on stack, one halfword for each bit, bit1-15 of the halfwords are don't care, only bit0 is of interest).
The buffer must be transfered as a whole to/from EEPROM by using DMA3 (only DMA 3 is valid to read & write external memory), use 16bit transfer mode, both source and destination address incrementing (ie. DMA3CNT=80000000h+length).
DMA channels of higher priority should be disabled during the transfer (ie. H/V-Blank or Sound FIFO DMAs). And, of course any interrupts that might mess with DMA registers should be disabled.

Pin-Outs
The EEPROM chips are having only 8 pins, these are connected, Pin 1..8, to ROMCS, RD, WR, AD0, GND, GND, A23, VDD of the GamePak bus. Carts with 32MB ROM must have A7..A22 logically ANDed with A23.

Notes
There seems to be no autodection mechanism, so that a hardcoded bus width must be used.

 GBA Cart Backup Flash ROM

64 KBytes - 512Kbits Flash ROM - Lifetime: 10,000 writes per sector
128 KBytes - 1Mbit Flash ROM - Lifetime: ??? writes per sector

Chip Identification (all device types)
 [E005555h]=AAh, [E002AAAh]=55h, [E005555h]=90h (enter ID mode)
 dev=[E000001h], man=[E000000h] (get device & manufacturer)
 [E005555h]=AAh, [E002AAAh]=55h, [E005555h]=F0h (terminate ID mode)

Used to detect the type (and presence) of FLASH chips. See Device Types below.

Reading Data Bytes (all device types)
 dat=[E00xxxxh] (read byte from address xxxx)

Erase Entire Chip (all device types)
 [E005555h]=AAh, [E002AAAh]=55h, [E005555h]=80h (erase command)
 [E005555h]=AAh, [E002AAAh]=55h, [E005555h]=10h (erase entire chip)
 wait until [E000000h]=FFh (or timeout)

Erases all memory in chip, erased memory is FFh-filled.

Erase 4Kbyte Sector (all device types, except Atmel)
 [E005555h]=AAh, [E002AAAh]=55h, [E005555h]=80h (erase command)
 [E005555h]=AAh, [E002AAAh]=55h, [E00n000h]=30h (erase sector n)
 wait until [E00n000h]=FFh (or timeout)

Erases memory at E00n000h..E00nFFFh, erased memory is FFh-filled.

Erase-and-Write 128 Bytes Sector (only Atmel devices)
 old=IME, IME=0 (disable interrupts)
 [E005555h]=AAh, [E002AAAh]=55h, [E005555h]=A0h (erase/write sector command)
 [E00xxxxh+00h..7Fh]=dat[00h..7Fh] (write 128 bytes)
 IME=old (restore old IME state)
 wait until [E00xxxxh+7Fh]=dat[7Fh] (or timeout)

Interrupts (and DMAs) should be disabled during command/write phase. Target address must be a multiple of 80h.

Write Single Data Byte (all device types, except Atmel)
 [E005555h]=AAh, [E002AAAh]=55h, [E005555h]=A0h (write byte command)
 [E00xxxxh]=dat (write byte to address xxxx)
 wait until [E00xxxxh]=dat (or timeout)

The target memory location must have been previously erased.

Terminate Command after Timeout (only Macronix devices, ID=1CC2h)
 [E005555h]=F0h (force end of write/erase command)

Use if timeout occurred during "wait until" periods, for Macronix devices only.

Bank Switching (devices bigger than 64K only)
 [E005555h]=AAh, [E002AAAh]=55h, [E005555h]=B0h (select bank command)
 [E000000h]=bnk (write bank number 0..1)

Specifies 64K bank number for read/write/erase operations.
Required because gamepak flash/sram addressbus is limited to 16bit width.

Device Types
Nintendo puts different FLASH chips in commercial game cartridges. Developers should thus detect & support all chip types. For Atmel chips it'd be recommended to simulate 4K sectors by software, though reportedly Nintendo doesn't use Atmel chips in newer games anymore. Also mind that different timings should not disturb compatibility and performance.
 ID Name Size Sectors AverageTimings Timeouts/ms Waits
 D4BFh SST 64K 16x4K 20us?,?,? 10, 40, 200 3,2
 1CC2h Macronix 64K 16x4K ?,?,? 10,2000,2000 8,3
 1B32h Panasonic 64K 16x4K ?,?,? 10, 500, 500 4,2
 3D1Fh Atmel 64K 512x128 ?,?,? ...40.., 40 8,8
 1362h Sanyo 128K ? ?,?,? ? ? ? ?
 09C2h Macronix 128K ? ?,?,? ? ? ? ?

Identification Codes MSB=Device Type, LSB=Manufacturer.
S ize in bytes, and numbers of sectors * sector size in bytes.
Average medium Write, Erase Sector, Erase Chips timings are unknown?
Timeouts in milliseconds for Write, Erase Sector, Erase Chips.
Waitstates for Writes, and Reads in c lock cycles.

Accessing FLASH Memory
FLASH memory is located in the "SRAM" area at E000000h..E00FFFFh, which is restricted to 16bit address and 8bit data buswidths. Respectively, the memory can be accessed <only> by 8bit read/write LDRB/STRB opcodes.
Also, reading anything (data or status/busy information) can be done <only> by opcodes executed in WRAM (not from opcodes in ROM) (there's no such restriction for writing).

FLASH Waitstates
Use 8 c lk waitstates for initial detection (WAITCNT Bits 0,1 both set). After detection of certain device types smaller wait values may be used for write/erase, and even smaller wait values for raw reading, see Device Types table.
In practice, games seem to use smaller values only for write/erase (even though those operations are slow anyways), whilst raw reads are always done at 8 c lk waits (even though reads could actually benefit slightly from smaller wait values).

Verify Write/Erase and Retry
Even though device signalizes the completion of write/erase operations, it'd be recommended to read/confirm the content of the changed memory area by software. In practic e, Nintendo's "erase-write-verify-retry" function typically repeats the operation up to three times in case of errors.
Also, for SST devices only, the "erase-write" and "erase-write-verify-retry" functions repeat the erase command up to 80 times, additionally followed by one further erase command if no retries were needed, otherwise followed by six further erase commands.

Note
FLASH (64Kbytes) is used by the game Sonic Advance, and possibly others.

 GBA Cart Backup DACS

128 KBytes - 1Mbit DACS - Lifetime: 100,000 writes.
1024 KBytes - 8Mbit DACS - Lifetime: 100,000 writes.

DACS (Debugging And Communication System) is used in Nintendo's hardware debugger only, DACS is NOT used in normal game cartridges.

Parts of DACS memory is used to store the debugging exception handlers (entry point/size defined in cartridge header), the remaining memory could be used to store game positions or other data. The address space is the upper end of the 32MB ROM area, the memory can be read directly by the CPU, including for ability to execute program code in this area.

 GBA Cart I/O Port (GPIO)

4bit General Purpose I/O Port (GPIO) - contained in the ROM-chip

Used by Boktai for RTC and Solar Sensor:
GBA Cart Real-Time Clock (RTC)
GBA Cart Solar Sensor
And by Warioware Twisted for Rumble and Z-Axis Sensor:
GBA Cart Rumble
GBA Cart Gyro Sensor
Might be also used by other games for other purposes, such like other sensors, or SRAM bank switching, etc.

The I/O registers are mapped to a 6-byte region in the ROM-area at 80000C4h, the 6-byte region should be zero-filled in the ROM-image. In Boktai, the size of the zero-fil led region is 0E0h bytes - that probably due to an incorrect definition (the additional bytes do not contain any extra ports, nor mirrors of the ports in the 6-byte region). Observe that ROM-bus writes are limited to 16bit/32bit access (STRB opocdes are ignored; that, only in DS mode?).

80000C4h - I/O Port Data (selectable W or R/W)
 bit0-3 Data Bits 0..3 (0=Low, 1=High)
 bit4-15 not used (0)

80000C6h - I/O Port Direction (for above Data Port) (selectable W or R/W)
 bit0-3 Direction for Data Port Bits 0..3 (0=In, 1=Out)
 bit4-15 not used (0)

80000C8h - I/O Port Control (selectable W or R/W)
 bit0 Register 80000C4h..80000C8h Control (0=Write-Only, 1=Read/Write)
 bit1-15 not used (0)

In write-only mode, reads return 00h (or possible other data, if the rom contains non-zero data at that location).

Connection Examples
 GPIO | Boktai | Wario
 Bit Pin | RTC SOL | GYR RBL
 -----------+---------+---------
 0 ROM.1 | SCK CLK | RES -
 1 ROM.2 | SIO RST | CLK -
 2 ROM.21 | CS - | DTA -
 3 ROM.22 | - FLG | - MOT
 -----------+---------+---------
 IRQ ROM.43 | IRQ - | - -

Aside from the I/O Port, the ROM-chip also includes an inverter (used for inverting the RTC /IRQ signal), and some sort of an (unused) address decoder output (which appears to be equal or related to A23 signal) (ie. reacting on ROM A23, or SRAM D7, which share the same pin on GBA slot).

 GBA Cart Real-Time Clock (RTC)

S3511 - 8pin RTC with 3-wire serial bus (used in Boktai)

The RTC chip is (almost) the same as used in NDS consoles:
DS Real-Time Clock (RTC)
The chip is accessed via 4bit I/O port (only 3bits are used for RTC):
GBA Cart I/O Port (GPIO)

Comparision of RTC Registers
 NDS_________GBA_________GBA/Params___
 stat2 control (1-byte)
 datetime datetime (7-byte)
 time time (3-byte)
 stat1 force reset (0-byte)
 clkadjust force irq (0-byte)
 alarm1/int1 always FFh (boktai contains code for writing 1-byte to it)
 alarm2 always FFh (unused)
 free always FFh (unused)

Control Register
 Bit Dir Expl.
 0 - Not used
 1 R/W IRQ duty/hold related?
 2 - Not used
 3 R/W Per Minute IRQ (30s duty) (0=Disable, 1=Enable)
 4 - Not used
 5 R/W Unknown?
 6 R/W 12/24-hour Mode (0=12h, 1=24h) (usually 1)
 7 R Power-Off (auto cleared on read) (0=Normal, 1=Failure)

Setting after Battery-Shortcut is 82h. Setting after Force-Reset is 00h.
Unused bits seem to be always zero, but might be read-only or write-only?

Datetime and Time Registers
Same as NDS, except AM/PM flag moved from hour.bit6 (NDS) to hour.bit7 (GBA).

Force Reset/Irq Registers
Used to reset all RTC registers (all used registers become 00h, except day/month whic h become 01h), or to drag the IRQ output LOW for a short moment. These registers are strobed by ANY access to them, ie. by both writing to, as well as reading from these registers.

Pin-Outs / IRQ Signal
The package has identical pin-outs as in NDS, although it is slightly larger than the miniature chip in the DS .
For whatever reason, the RTC's /IRQ output is passed through an inverter (contained in the ROM-chip), the inverted signal is then passed to the /IRQ pin on the cartridge slot. So, IRQ's will be triggered on the "wrong" edge - possible somehow in relation with detecting cartridge-removal IRQs?

 GBA Cart Solar Sensor

Uses a Photo Diode as Solar Sensor (used in Boktai, allowing to defeat vampires when the cartridge is exposed to sunlight). The cartridge comes in transparent case, and it's slightly longer than normal carts, so the sensor reaches out of the cartridge slot. According to the manual, the sensor works only with sunlight, but actually it works with any strong light source (eg. a 100 Watt bulb at 1-2 centimeters distance). The sensor is accessed via 4bit I/O port (only 3bits used), which is contained in the ROM-chip.
GBA Cart I/O Port (GPIO)

A/D Conversion
The cartridge uses a self-made A/D converter, which is (eventually) better than measuring a capacitor charge-up time, and/or less expensive than a real ADC-chip:
It contains a 74LV4040 12bit binary counter (c locked by CPU via the I/O port), of which only the lower 8bit are used, which are passed to a resistor ladder-type D/A converter, which is generating a linear increasing voltage, which is passed to a TLV272 voltage comparator, which is passing a signal to the I/O port when the counter voltage becomes greater than the sensor voltage.

Example Code
 strh 0001h,[80000c8h] ;-enable R/W mode
 strh 0007h,[80000c6h] ;-init I/O direction
 strh 0002h,[80000c4h] ;-reset counter to zero (high=reset) (I/O bit0)
 strh 0000h,[80000c4h] ;-clear reset (low=normal)
 mov r0,0 ;-initial level
 @@lop:
 strh 0001h,[80000c4h] ;-clock high ;\increase counter (I/O bit1)
 strh 0000h,[80000c4h] ;-clock low ;/
 ldrh r1,[80000c4h] ;-read port (I/O bit3)
 tst r1,08h ;\
 addeq r0,1 ; loop until voltage match (exit with r0=00h..FFh),
 tsteq r0,100h ; or until failure/timeout (exit with r0=100h)
 beq @@lop ;/

The results vary depending on the c lock rate used. In above example, ensure that IRQs or DMAs do not interrupt the function. Alternately, use a super-slow clock rate (eg. like 666Hz used in Boktai) so that additional small IRQ/DMA delays have little effec t on the overall timing. Results should be somewhat:
 E8h total darkness (including daylight on rainy days)
 Dxh close to a 100 Watt Bulb
 5xh reaches max level in boktai's solar gauge
 00h close to a tactical nuclear bomb dropped on your city

The exact values may change from cartridge to cartridge, so it'd be recommened to inc lude a darkness calibration function, prompting the user to cover the sensor for a moment.

 GBA Cart Tilt Sensor

Yoshi's Universal Gravitation / Yoshi Topsy Turvy (X/Y-Axis)
Koro Koro Puzz le (probably same as Yoshi, X/Y-Axis, too) (?)

Yoshi-Type (X/Y-Axis)
All of the registers are one byte wide, mapped into the top "half" of the SRAM memory range.
 E008000h (W) Write 55h to start sampling
 E008100h (W) Write AAh to start sampling
 E008200h (R) Lower 8 bits of X axis
 E008300h (R) Upper 4 bits of X axis, and Bit7: ADC Status (0=Busy, 1=Ready)
 E008400h (R) Lower 8 bits of Y axis
 E008500h (R) Upper 4 bits of Y axis

You must set SRAM wait control to 8 c locks to access it correctly.
You must also set the cartridge PHI terminal to 4 MHz to make it work.
Sampling routine (typically executed once a frame during VBlank):
 wait until [E008300h].Bit7=1 or until timeout ;wait ready
 x = ([E008300h] AND 0Fh)*100h + [E008200h] ;get x
 y = ([E008500h] AND 0Fh)*100h + [E008400h] ;get y
 [E008000h]=55h, [E008100h]=AAh ;start next conversion

Example values (may vary on different carts and on temperature, etc):
 X ranged between 0x2AF to 0x477, center at 0x392. Huh?
 Y ranged between 0x2C3 to 0x480, center at 0x3A0. Huh?

Thanks to Flubba for Yoshi-Type information.
Unknown if the Yoshi-Type sensors are sensing rotation, or orientation, or motion, or something else? In case of rotation, rotation around X-axis would result in motion in Y-direction, so not too sure whether X and Y have which meaning?
Most probably, the sensors are measuring (both) static acceleration (gravity), and dynamic acceleration (eg. shaking the device left/right).
The X/Y values are likely to be mirrored depending on using a back-loading cartridge slot (original GBA), or front-loading cartridge slot (newer GBA SP, and NDS, and NDS-Lite).

 GBA Cart Gyro Sensor

Warioware Twisted (Z-Axis Gyro Sensor, plus Rumble)

Wario-Type (Z-Axis)
Uses a single-axis sensor, which senses rotation around the Z-axis. The sensor is connected to an analogue-in, serial-out ADC chip, which is accessed via lower 3 bits of the GPIO,
GBA Cart I/O Port (GPIO)
The four I/O Lines are connected like so,
 GPIO.Bit0 (W) Start Conversion
 GPIO.Bit1 (W) Serial Clock
 GPIO.Bit2 (R) Serial Data
 GPIO.Bit3 (W) Used for Rumble (not gyro related)

There should be at least <three sequential 32bit ARM opcodes executed in WS0 region> between the STRH opcodes which toggle the CLK signal. Wario uses WAITCNT=45B7h (SRAM=8clks, WS0/WS1/WS2=3,1clks, Prefetch=On, PHI=Off).
The data stream consists of: 4 dummy bits (usually zero), followed by 12 data bits, followed by endless unused bits (usually zero).
 read_gyro:
 mov r1,8000000h ;-cartridge base address
 mov r0,01h ;\enable R/W access
 strh r0,[r1,0c8h] ;/
 mov r0,0bh ;\init direction (gpio2=input, others=output)
 strh r0,[r1,0c6h] ;/
 ldrh r2,[r1,0c4h] ;-get current state (for keeping gpio3=rumble)
 orr r2,3 ;\
 strh r2,[r1,0c4h] ;gpio0=1 ; start ADC conversion
 bic r2,1 ;
 strh r2,[r1,0c4h] ;gpio0=0 ;/
 mov r0,00010000h ;stop-bit ;\
 bic r2,2 ;
 @@lop: ;
 ldrh r3,[r1,0c4h] ;get gpio2=data ; read 16 bits
 strh r2,[r1,0c4h] ;gpio1=0=clk=low ; (4 dummy bits, plus 12 data bits)
 movs r3,r3,lsr 3 ;gpio2 to cy=data ;
 adcs r0,r0,r0 ;merge data, cy=done;
 orr r3,r2,2 ;set bit1 and delay ;
 strh r3,[r1,0c4h] ;gpio1=1=clk=high ;
 bcc @@lop ;/
 bic r0,0f000h ;-strip upper 4 dummy bits (isolate 12bit adc)
 bx lr

Example values (may vary on different carts, battery charge, temperature, etc):
 354h rotated in anti-clockwise direction (shock-speed)
 64Dh rotated in anti-clockwise direction (normal fast)
 6A3h rotated in anti-clockwise direction (slow)
 6C0h no rotation (stopped)
 6DAh rotation in clockwise direction (slow)
 73Ah rotation in clockwise direction (normal fast)
 9E3h rotation in clockwise direction (shock-speed)

For detection, values 000h and FFFh would indicate that there's no sensor.
The Z-axis always points into same direction; no matter of frontloading or backloading cartridge slots.
Thanks to Momo Vampire for contributing a Wario cartridge.

X/Y/Z-Axes
X-Axis and Y-Axis are meant to be following the screens X and Y coordinates, so the Z-Axis would point into the screens depth direction.

 GBA Cart Rumble

Warioware Twisted (Rumble, plus Z-Axis Gyro Sensor)
Drill Dozer (Rumble only)

GBA Rumble Carts are containing a small motor, which is causing some vibration when/while it is switched on (that, unlike DS Rumble, which must be repeatedly toggled on/off).

In Warioware Twisted, rumble is controlled via GPIO.Bit3 (Data 0=Low=Off, 1=High=On) (and Direction 1=Output), the other GPIO Bits are used for the gyro sensor.
GBA Cart I/O Port (GPIO)
Note: GPIO3 is connected to an external pulldown resistor (so the HighZ level gets dragged to Low=Off when direction is set to Input).

Unknown if Drill Dozer is controlled via GPIO.Bit3, too?

DS Rumble Pak
Additionally, there's a Rumble Pak for the NDS, which connects to the GBA slot, so it can be used also for GBA games (provided that the game doesn't require the GBA slot, eg. GBA multiboot games).
DS Cart Rumble Pak

Gamecube Rumble
Moreover, GBA games that are running on a Gameboy Player are having access to the Rumble function of Gamecube joypads.
GBA Gameboy Player

 GBA Cart e-Reader

GBA Cart e-Reader Overview
GBA Cart e-Reader I/O Ports
GBA Cart e-Reader Dotcode Format
GBA Cart e-Reader Data Format
GBA Cart e-Reader Program Code
GBA Cart e-Reader API Functions
GBA Cart e-Reader VPK Decompression
GBA Cart e-Reader Error Correction
GBA Cart e-Reader File Formats

 | ShortStrip |
 |L L|
 |o Center o|
 |n Region n|
 |g g|
 | may contain |
 |S pictures, S|
 |t instructions t|
 |r etc. r|
 |i i|
 |p p|
 |___ShortStrip___|

 GBA Cart e-Reader Overview

The e-Reader is a large GBA cartridge (about as big as the GBA console), with built-in dotcode scanning hardware. Dotcodes are tiny strips of black and white pixels printed on the edges of cardboard cards. The cards have to be pulled through a slot on the e-Reader, which is giving it a feeling like using a magnet card reader. The binary data on the dotcodes contains small games, either in native GBA code (ARM/THUMB), or in software emulated 8bit Z80 or NES/Famicom (6502) code.

The e-Reader Hardware
The hardware consists of regular 8MByte ROM and 128KByte FLASH chips, two link ports, a custom PGA chip, the camera module (with two red LEDs, used as light source), and some analogue components for generating the LED voltages, etc. The camera supports 402x302 pixels with 7bit monochrome color depth, but the PGA clips it to max 320 pixels per scanline with 1bit color depth.

Link Port Plug/Socket
The e-Reader's two link ports are simply interconnected with each other; without connection to the rest of the e-Reader hardware. These ports are used only on the original GBA (where the large e-Reader cartridge would be covering the GBA's link socket). When trying to insert the e-Reader into an original NDS, then the e-Reader's link plug will hit against the case of the NDS, so it works only with some minor modification to the hardware. There's no such problem with GBA-SP and NDS-Lite.

Region/Version
There are 3 different e-Reader's: Japanese/Original, Japanese/Plus, and Non-Japanese. The Original version has only 64K FLASH, no Link Port, and reportedly supports only Z80 code, but no NES/GBA code. The Plus and Non-Japanese versions should be almost identical, except that they reject cards from the wrong region, and that the title strings aren't ASCII in Japan, the Plus version should be backwards compatible to the Original one.

The Problem
Nintendo's current programmers are definetly unable to squeeze a Pac-Man style game into less than 4MBytes. Their solution has been: MORE memory. That is, they've put a whopping 8MByte BIOS ROM into the e-Reader, which contains the User Interface, and software emulation for running some of their 20 years old 8bit NES and Game&Watch titles, which do fit on a few dotcode strips.

 GBA Cart e-Reader I/O Ports

DF80000h Useless Register (R/W)
 0 Output to PGA.Pin93 (which seems to be not connected to anything)
 1-3 Unknown, read/write-able (not used by e-Reader BIOS)
 4-15 Always zero (0)

DFA0000h Reset Register (R/W)
 0 Always zero (0)
 1 Reset Something? (0=Normal, 1=Reset)
 2 Unknown, always set (1)
 3 Unknown, read/write-able (not used by e-Reader BIOS)
 4-7 Always zero (0)
 8 Unknown, read/write-able (not used by e-Reader BIOS)
 9-15 Always zero (0)

DFC0000h..DFC0027h Scanline Data (R)
Scanline data (40 bytes, for 320 pixels, 1bit per pixel, 0=black, 1=white).
The first (leftmost) pixel is located in the LSB of the LAST byte.
Port E00FFB1h.Bit1 (and [4000202h].Bit13) indicates when a new scanline is present, the data should be then transferred to RAM via DMA3 (SAD=DFC0000h, DAD=buf+y*28h, CNT=80000014h; a slower non-DMA transfer method would result in missed scanlines). After the DMA, software must reset E00FFB1h.Bit1.
Note: The scanning resolution is 1000 DPI.

DFC0028h+(0..2Fh*2) Brightest Pixels of 8x6 Blocks (R)
 0-6 Max Brightness (00h..7Fh; 00h=All black, 7Fh=One or more white)
 7-15 Always zero

Can be used to adjust the Port E00FF80h..E00FFAFh settings.

DFC0088h Darkest Pixel of whole Image (R)
 0-7 Max Darkness (00h..7Fh; 00h=One or more black, 7Fh=All white)
 8-15 Always zero

Can be used to adjust the Port E00FF80h..E00FFAFh settings.

E00FF80h..E00FFAFh Intensity Boundaries for 8x6 Blocks (R/W)
The 320x246 pixel camera input is split into 8x6 blocks (40x41 pixels each), with Block00h=Upper-right, Block07h=Upper-left, ..., Block27h=Lower-left. The boundary values for the separate blocks are used for 128-grayscale to 2-color conversion, probably done like "IF Pixel>Boundary THEN white ELSE black".
 0-6 Block Intensity Boundaries (0..7Fh; 7Fh=Whole block gets black)
 7 Always zero

The default boundary values are stored in FLASH memory, the values are typically ranging from 28h (outer edges) to 34h (center image), that in respect to the light source (the two LEDs are emitting more light to the center region).

E00FFB0h Control Register 0 (R/W)
 0 Serial Data (Low/High)
 1 Serial Clock (Low/High)
 2 Serial Direction (0=Input, 1=Output)
 3 Led/Irq Enable (0=Off, 1=On; Enable LED and Gamepak IRQ)
 4 Start Scan (0=Off, 1=Start) (0-to-1 --> Resync line 0)
 5 Phi 16MHz Output (0=Off, 1=On; Enable Clock for Camera, and for LED)
 6 Power 3V Enable (0=Off, 1=On; Enable 3V Supply for Camera)
 7 Not used (always 0) (sometimes 1) (Read only)

E00FFB1h Control Register 1 (R/W)
 0 Not used (always 0)
 1 Scanline Flag (1=Scanline Received, 0=Acknowledge)
 2-3 Not used (always 0)
 4 Strange Bit (0=Normal, 1=Force Resync/Line0 on certain interval?)
 5 LED Anode Voltage (0=3.0V, 1=5.1V; requires E00FFB0h.Bit3+5 to be set)
 6 Not used (always 0)
 7 Input from PGA.Pin22, always high (not used by e-Reader) (Read Only)

Bit1 can be SET by hardware only, software can only RESET that bit, the Gamepak IRQ flag (Port 4000202h.Bit13) becomes set on 0-to-1 transitions.

E00FFB2h Light Source LED Kathode Duration (LSB) (R/W)
E00FFB3h Light Source LED Kathode Duration (MSB) (R/W)
Selects the LED Kathode=LOW Duration, aka the LED=ON Duration. That does act as pulse width modulated LED brightness selection (the camera seems to react slowly enough to view the light as being dimmed to medium, rather than seeing the actual light ON and OFF states). The PWM timer seems to be c locked at 8MHz . The hardware c lips timer values 2000h..FFFFh to max 2000h (=1ms). Additionally, the e-Reader BIOS clips values to max 11B3h. Default setting is found in FLASH calibration data. A value of 0000h disables the LED.

Serial Port Registers (Camera Type 1) (DV488800) (calib_data[3Ch]=1)
All 16bit values are ordered MSB,LSB. All registers are whole 8bit Read/Write-able, except 00h,57h-5Ah (read only), and 53h-55h (2bit only).
 Port Expl. (e-Reader Setting)
 00h Maybe Chip ID (12h) (not used by e-Reader BIOS) (Read Only)
 01h (05h) ;-Bit0: 1=auto-repeat scanning?
 02h (0Eh)
 10h-11h Vertical Scroll (calib_data[30h]+7)
 12h-13h Horizontal Scroll (0030h)
 14h-15h Vertical Size (00F6h=246)
 16h-17h Horizontal Size (0140h=320)
 20h-21h H-Blank Duration (00C4h)
 22h-23h (0400h) ;-Upper-Blanking in dot-clock units?
 25h (var) ;-bit1: 0=enable [57h..5Ah] ?
 26h (var) ;\maybe a 16bit value
 27h (var) ;/
 28h (00h)
 30h Brightness/contrast (calib_data[31h]+/-nn)
 31h-33h (014h,014h,014h)
 34h Brightness/contrast (02h)
 50h-52h 8bit Read/Write (not used by e-Reader BIOS)
 53h-55h 2bit Read/Write (not used by e-Reader BIOS)
 56h 8bit Read/Write (not used by e-Reader BIOS)
 57h-58h 16bit value, used to autodetect/adjust register[30h] (Read Only)
 59h-5Ah 16bit value, used to autodetect/adjust register[30h] (Read Only)
 80h-FFh Mirrors of 00h..7Fh (not used by e-Reader BIOS)

All other ports are unused, writes to those ports are ignored, and reads are returning data mirrored from other ports; that is typically data from 2 or more ports, ORed together.

Serial Port Registers (Camera Type 2) (calib_data[3Ch]=2)
All 16bit values are using more conventional LSB,MSB ordering, and port numbers are arranged in a more reasonable way. The e-Reader BIOS doesn't support (or doesn't require) brightness adjustment for this camera module.
 Port Expl. (e-Reader Setting)
 00h (22h)
 01h (50h)
 02h-03h Vertical Scroll (calib_data[30h]+28h)
 04h-05h Horizontal Scroll (001Eh)
 06h-07h Vertical Size (00F6h) ;=246
 08h-09h Horizontal Size (0140h) ;=320
 0Ah-0Ch (not used by e-Reader BIOS)
 0Dh (01h)
 0Eh-0Fh (01EAh) ;=245*2
 10h-11h (00F5h) ;=245
 12h-13h (20h,F0h) ;maybe min/max values?
 14h-15h (31h,C0h) ;maybe min/max values?
 16h (00h)
 17h-18h (77h,77h)
 19h-1Ch (30h,30h,30h,30h)
 1Dh-20h (80h,80h,80h,80h)
 21h-FFh (not used by e-Reader BIOS)

My own e-Reader uses a Type 1 camera module. Not sure if Nintendo has ever manufactured any e-Readers with Type 2 cameras?

Calibration Data in FLASH Memory (Bank 0, Sector 0Dh)
 E00D000 14h ID String ('Card-E Reader 2001',0,0)
 E00D014 2 Sector Checksum (NOT(x+x/10000h); x=sum of all other halfwords)

Begin of actual data (40h bytes)
 E00D016 8x6 [00h] Intensity Boundaries for 8x6 blocks ;see E00FF80h..AFh
 E00D046 1 [30h] Vertical scroll (0..36h) ;see type1.reg10h/type2.reg02h
 E00D047 1 [31h] Brightness or contrast ;see type1.reg30h
 E00D048 2 [32h] LED Duration ;see E00FFB2h..B3h
 E00D04A 2 [34h] Not used? (0000h)
 E00D04C 2 [36h] Signed value, related to adjusting the 8x6 blocks
 E00D04E 4 [38h] Not used? (00000077h)
 E00D052 4 [3Ch] Camera Type (0=none,1=DV488800,2=Whatever?)

Remaining bytes in this Sector...
 E00D056 FAAh Not used (zerofilled) (included in above checksum)

Flowchart for Overall Camera Access
ereader_scan_camera:
 call ereader_power_on
 call ereader_initialize
 for z=1 to number_of_frames
 for y=0 to 245
 Wait until E00FFB1h.Bit1 gets set by hardware (can be handled by IRQ)
 Copy 14h halfwords from DFC0000h to buf+y*28h via DMA3
 Reset E00FFB1h.Bit1 by software
 next y
 ;(could now check DFC0028h..DFC0086h/DFC0088h for adjusting E00FF00h..2Fh)
 ;(could now show image on screen, that may require to stop/pause scanning)
 next z
 call ereader_power_off
 Ret

ereader_power_on:
 [4000204h]=5803h ;Init waitstates, and enable Phi 16MHz
 [DFA0000h].Bit1=1
 Wait(10ms)
 [E00FFB0h]=40h ;Enable Power3V and reset other bits
 [DFA0000h].Bit1=0
 [E00FFB1h]=20h ;Enable Power5V and reset other bits
 Wait(40ms)
 [E00FFB1h].Bit4=0 ;...should be already 0 ?
 [E00FFB0h]=40h+27h ;Phi16MHz=On, SioDtaClkDir=HighHighOut
 Ret

ereader_power_off:
 [E00FFB0h]=04h ;Power3V=Off, Disable Everything, SioDtaClkDir=LowLowOut
 [DFA0000h].Bit1=0 ;...should be already 0
 [E00FFB1h].Bit5=0 ;Power5V=Off
 Ret

ereader_initialize:
 IF calib_data[3Ch] AND 03h = 1 THEN init_camera_type1
 [E00FFB0h].Bit4=1 ;ScanStart
 IF calib_data[3Ch] AND 03h = 2 THEN init_camera_type2
 Copy calib_data[00h..2Fh] to [E00FF80h+00h..2Fh] ;Intensity Boundaries
 Copy calib_data[32h..33h] to [E00FFB2h+00h..01h] ;LED Duration LSB,MSB
 [E00FFB0h].Bit3=1 ;LedIrqOn
 Ret

init_camera_type1:
 x=MIN(0,calib_data[31h]-0Bh)
 Set Sio Registers (as shown for Camera Type 1, except below values...)
 Set Sio Registers [30h]=x [25h]=04h, [26h]=58h, [27h]=6Ch
 ;(could now detect/adjust <x> based on Sio Registers [57h..5Ah])
 Set Sio Registers [30h]=x [25h]=06h, [26h]=E8h, [27h]=6Ch
 Ret

init_camera_type2:
 Wait(0.5ms)
 Set Sio Registers (as shown for Camera Type 2)
 Ret

Accessing Serial Registers via E00FFB0h
 Begin Write(A) Write(B) Read(C) Read(D) End Idle PwrOff
 Dir ooooooo ooooooo ooooooo iiiiiii iiiiiii ooooooo ooooooo ooooooo
 Dta ---____ AAAAAAA BBBBBBB xxxxxCx xxxxxDx ______- ------- _______
 Clk ------_ ___---_ ___---_ ___---_ ___---_ ___---- ------- _______

Flowchart for accessing Serial Registers via E00FFB0h
 Delay:
 Wait circa 2.5us, Ret
 SioBegin:
 SioDta=1, SioDir=Out, SioClk=1, Delay, SioDta=0, Delay, SioClk=0, Ret
 SioEnd:
 SioDta=0, SioDir=Out, Delay, SioClk=1, Delay, SioDta=1, Ret
 SioRead1bit: ;out: databit
 SioDir=In, Delay, SioClk=1, Delay, databit=SioDta, SioClk=0, Ret
 SioWrite1bit: ;in: databit
 SioDta=databit, SioDir=Out, Delay, SioClk=1, Delay, SioClk=0, Ret
 SioReadByte: ;in: endflag - out: data
 for i=7 to 0, data.bit<i>=SioRead1bit, next i, SioWrite1bit(endflag), Ret
 SioWriteByte: ;in: data - out: errorflag
 for i=7 to 0, Delay(huh/why?), SioWrite1bit(data.bit<i>), next i
 errorflag=SioRead1bit, SioDir=Out(huh/why?), Ret
 SioWriteRegisters: ;in: index, len, buffer
 SioBegin
 SioWriteByte(22h) ;command (set_index) (and write_data)
 SioWriteByte(index) ;index
 for i=0 to len-1
 SioWriteByte(buffer[i]) ;write data (and auto-increment index)
 next
 SioEnd
 ret
 SioReadRegisters: ;in: index, len - out: buffer
 SioBegin
 SioWriteByte(22h) ;command (set_index) (without any write_data here)
 SioWriteByte(index) ;index
 SioBegin
 SioWriteByte(23h) ;command (read_data) (using above index)
 for i=0 to len-1
 if i=len-1 then endflag=1 else endflag=0
 buffer[i]=SioReadByte(endflag) ;read data (and auto-increment index)
 next
 SioEnd
 Ret

Caution: Accessing the S IO registers appears highly unstable, and seems to require error handling with retries. Not sure what is causing that problem, possibly the registers cannot be accessed during camera-data-scans...?

WAITCNT
The e-Reader BIOS uses WAITCNT [4000204h]=5803h when accessing the PGA, that is, gamepak 16.78MHz phi output (bit11-12=3), 8 waits for SRAM region (bit0-1=3), gamepak prefetch enabled (bit14=1), also sets WS0 to 4,2 waits (bit2-4=0), and sets WS2 to odd 4,8 waits (bit8-10=0). The WS2 (probably WS0 too) settings are nonsense, and should work with faster timings (the e-Reader can be accessed in NDS mode, which doesn't support that slow timings).

e-Reader Memory and I/O Map (with all used/unused/mirrored regions)
 C000000h-C7FFFFFh ROM (8MB)
 C800000h-DF7FFFFh Open Bus
 DF80000h-DF80001h Useless Register (R/W)
 DF80002h-DF9FFFFh Mirrors of DF80000h-DF80001h
 DFA0000h-DFA0001h Reset Register (R/W)
 DFA0002h-DFBFFFFh Mirrors of DFA0000h-DFA0001h
 DFC0000h-DFC0027h Scanline Data (320 Pixels) (R)
 DFC0028h-DFC0087h Brightest Pixels of 8x6 Blocks (R)
 DFC0088h Darkest Pixel of whole Image (R)
 DFC0089h-DFC00FFh Always zero
 DFC0100h-DFDFFFFh Mirrors of DFC0000h-DFC00FFh
 DFE0000h-DFFFFFFh Open Bus
 E000000h-E00CFFFh FLASH Bank 0 - Data
 E00D000h-E00DFFFh FLASH Bank 0 - Calibration Data
 E00E000h-E00EFFFh FLASH Bank 0 - Copy of Calibration Data
 E00F000h-E00FF7Fh FLASH Bank 0 - Unused region
 E000000h-E00EFFFh FLASH Bank 1 - Data
 E00F000h-E00FF7Fh FLASH Bank 1 - Unused region
 E00FF80h-E00FFAFh Intensity Boundaries for 8x6 Blocks (R/W)
 E00FFB0h Control Register 0 (R/W)
 E00FFB1h Control Register 1 (R/W)
 E00FFB2h-E00FFB3h LED Duration (16bit) (R/W)
 E00FFB4h-E00FFBFh Always zero
 E00FFC0h-E00FFFFh Mirror of E00FF80h-E00FFBFh

Mind that WS2 should be accessed by LDRH/STRH, and SRAM region by LDRB/STRB.
Additionally about 32 serial bus registers are contained in the camera module.

Camera Module Notes
The Type 1 initial setting on power-on is 402x302 pixels, the e-Reader uses only 320x246 pixels. The full vertical resolution could be probably used without problems. Port DFC0000h-DFC0027h are restricted to 320 pixels, so larger horizontal resolutions could be probably obtained only by changing the horizontal scroll offset on each 2nd sc an.
The camera output is 128 grayscales (via parallel 7bit databus), but the PGA converts it to 2 colors (1bit depth). For still images, it might be possible to get 4 grayshades via 3 scans with different block intensity boundary settings.
No idea if the camera supports serial commands other than 22h and 23h. Namely, it <would> be a quite obvious and basic feature to allow to receive the bitmap via the 2-wire serial bus (alternately to the 7bit databus), if supported, it'd allow to get 7bit images, bypassing 1bit PGA conversion.
When used as actual camera (by cutting an opening in the case), the main problem is the 1bit color depth, which allows only black and white schemes, when/if solving that problem, focusing might be also a problem.

Either the camera or the PGA seem to have a problem on white-to-black transitions in vertical direction, the upper some black pixels are sorts of getting striped or dithered. For example, scanning the large sync marks appears as:
 Actual Shape Scanned Shape
 XXXXX X X
 XXXXXXX X X X
 XXXXXXXXX X X X XX
 XXXXXXXXX X X X XX
 XXXXXXX XXXXXXX
 XXXXX XXXXX

That appears only on large black shapes (the smaller data dots look better).

 GBA Cart e-Reader Dotcode Format

Resolution is 342.39 DPI (almost 10 blocks per inch).
Resolution is 134.8 dots/cm (almost 4 blocks per centimeter).
The width and height of the each block, and the spacing to the bottom edge of the card is ca. 1/10 inch, or ca. 4 millimeters.

 XXX BLOCK 1 XXX BLOCK 2 XXX
 XXXXX XXXXX XXXXX
 XXXXX X X X X X X X X X X X X XXXXX X X X X X X X X X X X X XXXXX
 XXXXX XXXXX XXXXX
 XXX HHHHHHHHHHHHHHHHHHHH...... XXX HHHHHHHHHHHHHHHHHHHH...... XXX

 3 short lines
 A..................................A..................................A..
 A.... 26 long lines A........ X = Sync Marks A..
 A.... (each 34 data dots) A........ H = Block HeaderA..
 A....(not all lines shown here)....A........ . = Data Bits A..
 A..................................A........ A = Address BitsA..
 3 short lines
 ...(each 26 data dots)....
 XXX XXX XXX
 XXXXX XXXXX XXXXX
 XXXXX X X X X X X X X X X X X XXXXX X X X X X X X X X X X X XXXXX
 XXXXX XXXXX XXXXX
 XXX XXX XXX
 <ca. 35 blank lines>
 ___Snip__

Address Columns
Each Column consists of 26 dots. From top to bottom: 1 black dot, 8 blank dots, 16 address dots (MSB topmost), and 1 blank dot. The 16bit address values can be calculated as:
 addr[0] = 03FFh
 for i = 1 to 53
 addr[i] = addr[i-1] xor ((i and (-i)) * 769h)
 if (i and 07h)=0 then addr[i] = addr[i] xor (769h)
 if (i and 0Fh)=0 then addr[i] = addr[i] xor (769h*2)
 if (i and 1Fh)=0 then addr[i] = addr[i] xor (769h*4) xor (769h)
 next i

Short strips use addr[1..19], long strips use addr[25..53], left to right.

Block Header
The 18h-byte Block Header is taken from the 1st two bytes (20 dots) of the 1st 0Ch blocks (and is then repeated in the 1st two bytes of further blocks).
 00h Unknown (00h)
 01h Dotcode type (02h=Short, 03h=Long)
 02h Unknown (00h)
 03h Address of 1st Block (01h=Short, 19h=Long)
 04h Total Fragment Size (40h) ;64 bytes per fragment, of which,
 ;48 bytes are actual data, the remaining
 05h Error-Info Size (10h) ;16 bytes are error-info
 06h Unknown (00h)
 07h Interleave Value (1Ch=Short, 2Ch=Long)
 08h..17h 16 bytes Reed-solomon error correction info for Block Header

Data 4-Bit to 5-bit Conversion
In the Block Header (HHHHH), and Data Region (.....), each 4bit are expanded to 5bit, so one byte occupies 10 dots, and each block (1040 data dots) contains 104 bytes.
 4bit 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh
 5bit 00h 01h 02h 12h 04h 05h 06h 16h 08h 09h 0Ah 14h 0Ch 0Dh 11h 10h

That formatting ensures that there are no more than two continous black dots (in horizontal direction), neither inside of a 5bit value, nor between two 5bit values, however, the address bars are violating that rule, and up to 5 continous black dots can appear at the (..A..) block boundaries.

Data Order
Data starts with the upper bit of the 5bit value for the upper 4bit of the first byte, which is located at the leftmost dot of the upper line of the leftmost block, it does then extend towards rightmost dot of that block, and does then continue in the next line, until reaching the bottom of the block, and does then continue in the next block. The 1st two bytes of each block contain a portion of the Block Header, the remaining 102 bytes in each block contain data.

Data Size
A long strip consists of 28 blocks (28*104 = 2912 bytes), a short strip of 18 blocks (18*104 = 1872 bytes). Of which, less than 75% can be actually used for program code, the remaing data contains error correction info, and various headers. See Data Format for more info.

Interleaved Fragments
The Interleave Value (I) specifies the number of fragments, and does also specify the step to the next byte inside of a fragment; except that, at the block boundaries (every 104 bytes), the step is 2 bigger (for skipping the next two Block Header bytes).
 RAW Offset Content
 000h..001h 1st 2 bytes of RAW Header
 002h 1st byte of 1st fragment
 003h 1st byte of 2nd fragment

 002h+I-1 1st byte of last fragment
 002h+I 2nd byte of 1st fragment
 003h+I 2nd byte of 2nd fragment

 002h+I*2-1 2nd byte of last fragment

Each fragment consists of 48 actual data bytes, followed by 16 error correction bytes, followed by 0..2 unused bytes (since I*40h doesn't exactly match num_blocks*102).

 GBA Cart e-Reader Data Format

Data Strip Format
The size of the data region is I*48 bytes (I=Interleave Value, see Dotcode Format), the first 48-byte fragment contains the Data Header, the remaining (I-1) fragments are Data Fragments (which contain title(s), and VPK compressed program code).

First Strip
 Data Header (48 bytes)
 Main-Title (17 bytes, or 33 bytes)
 Sub-Title(s) (3+18 bytes, or 33 bytes) (for each strip) (optional)
 VPK Size (2 byte value, total length of VPK Data in ALL strips)
 NULL Value (4 bytes, contained ONLY in 1st strip of GBA strips)
 VPK Data (length as defined in VPK Size entry, see above)

Further Strip(s)
 Data Header (48 bytes)
 Main-Title (17 bytes, or 33 bytes)
 Sub-Title(s) (3+18 bytes, or 33 bytes) (for each strip) (optional)
 VPK Data (continued from previous strip)

Data Header (30h bytes) (1st fragment)
 00h-01h Fixed (00h,30h)
 02h Fixed (01h) ;01h="Do not calculate Global Checksum" ?
 03h Primary Type (see below)
 04h-05h Fixed (00h,01h) (don't care)
 06h-07h Strip Size (0510h=Short, 0810h=Long Strip) ((I-1)*30h) (MSB,LSB)
 08h-0Bh Fixed (00h,00h,10h,12h)
 0Ch-0Dh Region/Type (see below)
 0Eh Strip Type (02h=Short Strip, 01h=Long Strip) (don't care)
 0Fh Fixed (00h) (don't care)
 10h-11h Unknown (whatever) (don't care)
 12h Fixed (10h) ;10h="Do calculate Data Checksum" ?
 13h-14h Data Checksum (see below) (MSB,LSB)
 15h-19h Fixed (19h,00h,00h,00h,08h)
 1Ah-21h ID String ('NINTENDO')
 22h-25h Fixed (00h,22h,00h,09h)
 26h-29h Size Info (see below)
 2Ah-2Dh Flags (see below)
 2Eh Header Checksum (entries [0Ch-0Dh,10h-11h,26h-2Dh] XORed together)
 2Fh Global Checksum (see below)

Primary Type [03h] is 8bit,
 0 Card Type (upper bit) (see below)
 1 Unknown (usually opposite of Bit0) (don't care)
 2-7 Unknown (usually zero)

Region/Type [0Ch..0Dh] is 16bit,
 0-3 Unknown (don't care)
 4-7 Card Type (lower bits) (see below)
 8-11 Region/Version (0=Japan/Original, 1=Non-japan, 2=Japan/Plus)
 12-15 Unknown (don't care)

S ize Info [26h-29h] is 32bit,
 0 Unknown (don't care)
 1-4 Strip Number (01h..Number of strips)
 5-8 Number of Strips (01h..0Ch) (01h..08h for Japan/Original version)
 9-23 Size of all Strips (excluding Headers and Main/Sub-Titles)
 (same as "VPK Size", but also including the 2-byte "VPK Size" value,
 plus the 4-byte NULL value; if it is present)
 24-31 Fixed (02h) (don't care)

Flags [2Ah-2Dh] is 32bit,
 0 Permission to save (0=Start Immediately, 1=Prompt for FLASH Saving)
 1 Sub-Title Flag (0=Yes, 1=None) (Japan/Original: always 0=Yes)
 2 Application Type (0=GBA/Z80, 1=NES) (Japan/Original: always 0=Z80)
 3-31 Zero (0) (don't care)

Data Checksum [13h-14h] is the complement (NOT) of the sum of all halfwords in all Data Fragments, however, it's all done in reversed byte order: checksum is calculated with halfwords that are read in MSB,LSB order, and the resulting checksum is stored in MSB,LSB order in the Header Fragment.
Global Checksum [2Fh] is the complement (NOT) of the sum of the first 2Fh bytes in the Data Header plus the sum of all Data Fragment checksums; the Data Fragment checksums are all 30h bytes in a fragment XORed with each other.

Titles (3+N bytes, or N bytes)
Titles can be 33 bytes for both Main and Sub (Format 0Eh), or Main=17 bytes and Sub=3+18 bytes (Formats 02h..05h). In the 3+N bytes form, the first 3 bytes (24bit) are are used to display "stats" information in form of "HP: h1 ID: i1-i2-i3", defined as:
 Bit Expl.
 0-3 h1, values 1..15 shown as "10..150", value 0 is not displayed
 4-6 i3, values 0..7 shown as "A..G,#"
 7-13 i2, values 0..98 shown as "01..99" values 99..127 as "A0..C8"
 14-18 i1, values 0..31 shown as "A..Z,-,_,{HP},.,{ID?},:"
 19-22 Unknown
 23 Disable stats (0=Show as "HP: h1 ID: i1-i2-i3", 1=Don't show it)

The N bytes portion contains the actual title, which must be terminated by 00h (so the max length is N-1 characters, if it is shorter than N-1, then the unused bytes are padded by further 00h's). The character set is normal ASCII for non-Japan (see Region/Version entry in header), and 2-byte SHIFT-JIS for Japanese long-titles (=max 16 2-byte chars) with values as so:
 00h --> end-byte
 81h,40h --> SPC
 81h,43h..97h --> punctuation marks
 82h,4Fh..58h --> "0..9"
 82h,60h..79h --> "A..Z"
 82h,81h..9Ah --> "a..z"

And 1-byte chars for Japanese short-titles,
 00 = end-byte
 01 = spc
 02..0B = 0..9
 0C..AF = japanese
 B0..B4 = dash, male, female, comma, round-dot
 B5..C0 = !"%&~?/+-:.'
 C1..DA = A..Z
 DB..DF = unused (blank)
 E0..E5 = japanese
 E6..FF = a..z
 N/A = #$()*;<=>@[\]^_`{|}

Additionally to the Main-Title, optional Sub-Titles for each strip can be included (see Sub-Title Flag in header). If enabled, then ALL strip titles are included in each strip (allowing to show a preview of which strips have/haven't been scanned yet).
The e-Reader can display maximum of 8 sub-titles, if the data consists of more than 8 strips, then sub-titles aren't displayed (so it'd be waste of space to include them in the dotcodes).
The Main Title gets c lipped to 128 pixels width (that are, c irca 22 characters), and, the e-Reader BIOS acts confused on multi-strip games with Main Titles longer than 26 characters (so the full 33 bytes may be used only in Japan; with 16bit charset).
If the title is empty (00h-filled), and there is only one card in the application, then the application is started immediately. That, without allowing the user to save it in FLASH memory.
Caution: Although shorter Titles do save memory, they do act unpleasant: the text "(C) P-Letter" will be displayed at the bottom of the loading screen.
On Japanese/Original, 8bit sub-titles can be up to 18 characters (without any end-byte) (or less when stats are enabled, due to limited screen width).

Card Types (Primary Type.Bit0 and Region/Type.Bit12-15)
 00h..01h Blank Screen (?)
 02h..03h Dotcode Application with 17byte-title, with stats, load music A
 04h..05h Dotcode Application with 17byte-title, with stats, load music B
 06h..07h P-Letter Attacks
 08h..09h Construction Escape
 0Ah..0Bh Construction Action
 0Ch..0Dh Construction Melody Box
 0Eh Dotcode Application with 33byte-title, without stats, load music A
 0Fh Game specific cards
 10h..1Dh P-Letter Viewer
 1Eh..1Fh Same as 0Eh and 0Fh (see above)

The 'Application' types are meant to be executable GBA/Z80/NES programs.

 GBA Cart e-Reader Program Code

The GBA/Z80/NES program code is stored in the VPK compressed area.
NES-type is indicated by header [2Ah].Bit2, GBA-type is indicated by the NULL value inserted between VPK S ize and VPK Data, otherwise Z80-type is used.

GBA Format
Load Address and Entrypoint are at 2000000h (in ARM state). The 32bit word at 2000008h is eventually destroyed by the e-Reader. Namely,
 IF e-Reader is Non-Japanese,
 AND [2000008h] is outside of range of 2000000h..20000E3h,
 AND only if booted from camera (not when booted from FLASH?),
 THEN [2000008h]=[2000008h]-0001610Ch ELSE [2000008h] kept intact

Existing multiboot-able GBA binaries can be converted to e-Reader format by,
 Store "B 20000C0h" at 2000000h ;redirect to RAM-entrypoint
 Zerofill 2000004h..20000BFh ;erase header (for better compression rate)
 Store 01h,01h at 20000C4h ;indicate RAM boot

The GBA code has full access to the GBA hardware, and may additionally use whatever API functions contained in the e-Reader BIOS . With the incoming LR register value, "mov r0,N, bx lr" returns to the e-Reader BIOS (with N being 0=Restart, or 2=To_Menu). No idea if it's necessary to preserve portions of RAM when returning to the e-Reader B IOS?
Caution: Unlike for normal GBA cartridges/multiboot files, the hardware is left uninitialized when booting dotcodes (among others: sound DMA is active, and brightness is set to zero), use "mov r0,0feh, swi 010000h" to get the normal settings.

NES Format
Emulates a NES (Nintendo Entertainment System) console (aka Family Computer).
The visible 240x224 pixel NES /NTSC screen resolution is resampled to 240x160 to match the smaller vertical resolution of the GBA hardware. So, writing e-Reader games in NES format will result in blurred screen output. The screen/sound/joypad is accessed via emulated NES I/O ports, program code is running on an emulated 6502 8bit CPU, for more info on the NES hardware, see no$nes debugger specifications, or
 http://nocash.emubase.de/everynes.htm

The e-Reader's NES emulator supports only 16K PRG ROM, followed by 8K VROM. The emulation accuracy is very low, barely working with some of Nintendo's own NES titles; running the no$nes diagnostics program on it has successfully failed on ALL hardware tests ;-)
The load address for the 16K PRG-ROM is C000h, the 16bit NMI vector at [FFFAh] is enc rypted like so:
 for i=17h to 0
 for j=07h to 0, nmi = nmi shr 1, if carry then nmi = nmi xor 8646h, next j
 nmi = nmi xor (byte[dmca_data+i] shl 8)
 next i
 dmca_data: db 0,0,'DMCA NINTENDO E-READER'

The 16bit reset vector at [FFFCh] contains:
 Bit0-14 Lower bits of Entrypoint (0..7FFFh = Address 8000h..FFFFh)
 Bit15 Nametable Mode (0=Vertical Mirroring, 1=Horizontal Mirroring)

reportedly,
 (NES limitations, 1 16K program rom + 1-2 8K CHR rom, mapper 0 and 1)
 ines mapper 1 would be MMC1, rather than CNROM (ines mapper 3)?
 but, there are more or less NONE games that have 16K PRG ROM + 16K VROM?

The L+R Button key-combination allows to reset the NES , however, there seems to be no way to return to the e-Reader BIOS .

Z80/8080 Format
The e-Reader doesn't support the following Z80 opcodes:
 CB [Prefix] E0 RET PO E2 JP PO,nn E4 CALL PO,nn 27 DAA 76 HALT
 ED [Prefix] E8 RET PE EA JP PE,nn EC CALL PE,nn D3 OUT (n),A
 DD [IX Prefix] F3 DI 08 EX AF,AF' F4 CALL P,nn DB IN A,(n)
 FD [IY Prefix] FB EI D9 EXX FC CALL M,nn xx RST 00h..38h

That is leaving not more than six supported Z80 opcodes (DJNZ, JR, JR c/nc/z /nz), everything else are 8080 opcodes. Custom opcodes are:
 76 WAIT A frames, D3 WAIT n frames, and C7/CF RST 0/8 used for API calls.

The load address and entrypoint are at 0100h in the emulated Z80 address space. The Z80 doesn't have direct access to the GBA hardware, instead video/sound/joypad are acc essed via API functions, invoked via RST 0 and RST 8 opcodes, followed by an 8bit data byte, and with parameters in the Z80 CPU registers. For example, "ld a,02h, rst 8, db 00h" does return to the e-Reader BIOS .
The Z80/8080 emulation is incredibly ineffic ient, written in HLL code, developed by somebody whom knew nothing about emulation nor about ARM nor about Z80/8080 processors.

Running GBA-code on Japanese/Original e-Reader
Original e-Reader supports Z80 code only, but can be tweaked to run GBA-code:
 retry:
 ld bc,data // ld hl,00c8h ;src/dst
 lop:
 ld a,[bc] // inc bc // ld e,a ;lsb
 ld a,[bc] // inc bc // ld d,a ;msb
 dw 0bcfh ;aka rst 8 // db 0bh ;[4000000h+hl]=de
 inc hl // inc hl // ld a,l
 cp a,0dch // jr nz,lop
 mod1 equ $+1
 dw 37cfh ;aka rst 8 // db 37h ;bx 3E700F0h
 ;below executed only on jap/plus... on jap/plus, above 37cfh is hl=[400010Ch]
 ld a,3Ah // ld [mod1],a ;bx 3E700F0h (3Ah instead 37h)
 ld hl,1 // ld [mod2],hl // ld [mod3],hl ;base (0200010Ch instead 0201610Ch)
 jr retry
 data:
 mod2 equ $+1
 dd loader ;40000A4h dma2sad (loader)
 dd 030000F0h ;40000A8h dma2dad (mirrored 3E700F0h)
 dd 8000000ah ;40000ACh dma2cnt (copy 0Ah x 16bit)
 mod3 equ $+1
 dd main ;40000B0h dma3sad (main)
 dd 02000000h ;40000B4h dma3dad (2000000h)
 org $+201600ch ;jap/plus: adjusted to org $+200000ch
 .align 2 ;alignment for 16bit-halfword
 loader:
 mov r0,80000000h ;(dma3cnt, copy 10000h x 16bit)
 mov r1,04000000h ;i/o base
 strb r1,[r1,208h] ;ime=0 (better disable ime before moving ram)
 str r0,[r1,0DCh] ;dma3cnt (relocate to 2000000h)
 mov r15,2000000h ;start relocated code at 2000000h in ARM state
 main:
 ;...insert/append whatever ARM code here...
 end

 GBA Cart e-Reader API Functions

Z80 Interface (Special Opcodes)
 db 76h ;Wait8bit A
 db D3h,xxh ;Wait8bit xxh
 db C7h,xxh ;RST0_xxh
 db CFh,xxh ;RST8_xxh
 ld r,[00xxh] ;get system values (addresses differ on jap/ori)
 ld r,[00C2h..C3h] ;GetKeyStateSticky (jap/ori: 9F02h..9F03h)
 ld r,[00C4h..C5h] ;GetKeyStateRaw (jap/ori: 9F04h..9F05h)
 ld r,[00C0h..C1h] ;see Exit and ExitRestart
 ld r,[00D0h..D3h] ;see Mul16bit

For jap/ori, 9Fxxh isn't forwards compatible with jap/plus, so it'd be better to chec k joypad via IoRead.

GBA Interface
 bx [30075FCh] ;ApiVector ;in: r0=func_no,r1,r2,r3,[sp+0],[sp+4],[sp+8]=params
 bx lr ;Exit ;in: r0 (0=Restart, 2=To_Menu)

Wait8bit/Wait16bit
The various Wait opcodes and functions are waiting as many frames as specified. Many API functions have no effect until the next Wait occurs.

Z80 RST0_xxh Functions / GBA Functions 02xxh
 RST0_00h FadeIn, A speed, number of frames (0..x)
 RST0_01h FadeOut
 RST0_02h BlinkWhite
 RST0_03h (?)
 RST0_04h (?) blend_func_unk1
 RST0_05h (?)
 RST0_06h (?)
 RST0_07h (?)
 RST0_08h (?)
 RST0_09h (?) _020264CC_check
 RST0_0Ah (?) _020264CC_free
 RST0_0Bh N/A (bx 0)
 RST0_0Ch N/A (bx 0)
 RST0_0Dh N/A (bx 0)
 RST0_0Eh N/A (bx 0)
 RST0_0Fh N/A (bx 0)
 RST0_10h LoadSystemBackground, A number of background (1..101), E bg# (0..3)
 RST0_11h SetBackgroundOffset, A=bg# (0..3), DE=X, BC=Y
 RST0_12h SetBackgroundAutoScroll
 RST0_13h SetBackgroundMirrorToggle
 RST0_14h (?)
 RST0_15h (?)
 RST0_16h (?) write_000000FF_to_02029494_
 RST0_17h (?)
 RST0_18h (?)
 RST0_19h SetBackgroundMode, A=mode (0..2)
 RST0_1Ah (?)
 RST0_1Bh (?)
 RST0_1Ch (?)
 RST0_1Dh (?)
 RST0_1Eh (?)
 RST0_1Fh (?)
 RST0_20h LayerShow
 RST0_21h LayerHide
 RST0_22h (?)
 RST0_23h (?)
 RST0_24h ... [20264DCh+A*20h+1Ah]=DE, [20264DCh+A*20h+1Ch]=BC
 RST0_25h (?)
 RST0_26h (?)
 RST0_27h (?)
 RST0_28h (?)
 RST0_29h (?)
 RST0_2Ah (?)
 RST0_2Bh (?)
 RST0_2Ch (?)
 RST0_2Dh LoadCustomBackground, A bg# (0..3), DE pointer to struct_background,
 max. tile data size = 3000h bytes, max. map data size = 1000h bytes
 RST0_2Eh GBA: N/A - Z80: (?)
 RST0_2Fh (?)
 RST0_30h CreateSystemSprite, - - (what "- -" ???)
 RST0_31h SpriteFree, HL sprite handle
 RST0_32h SetSpritePos, HL=sprite handle, DE=X, BC=Y
 RST0_33h (?) sprite_unk2
 RST0_34h SpriteFrameNext
 RST0_35h SpriteFramePrev
 RST0_36h SetSpriteFrame, HL=sprite handle, E=frame number (0..x)
 RST0_37h (?) sprite_unk3
 RST0_38h (?) sprite_unk4
 RST0_39h SetSpriteAutoMove, HL=sprite handle, DE=X, BC=Y
 RST0_3Ah (?) sprite_unk5
 RST0_3Bh (?) sprite_unk6
 RST0_3Ch SpriteAutoAnimate
 RST0_3Dh (?) sprite_unk7
 RST0_3Eh SpriteAutoRotateUntilAngle
 RST0_3Fh SpriteAutoRotateByAngle
 RST0_40h SpriteAutoRotateByTime
 RST0_41h (?) sprite_unk8
 RST0_42h SetSpriteAutoMoveHorizontal
 RST0_43h SetSpriteAutoMoveVertical
 RST0_44h (?) sprite_unk9
 RST0_45h SpriteDrawOnBackground
 RST0_46h SpriteShow, HL=sprite handle
 RST0_47h SpriteHide, HL=sprite handle
 RST0_48h SpriteMirrorToggle
 RST0_49h (?) sprite_unk10
 RST0_4Ah (?) sprite_unk11
 RST0_4Bh (?) sprite_unk12
 RST0_4Ch GetSpritePos
 RST0_4Dh CreateCustomSprite
 RST0_4Eh (?)
 RST0_4Fh (?) sprite_unk14
 RST0_50h (?) sprite_unk15
 RST0_51h (?) sprite_unk16
 RST0_52h (?) sprite_unk17
 RST0_53h (?) sprite_unk18
 RST0_54h (?)
 RST0_55h (?) sprite_unk20
 RST0_56h (?)
 RST0_57h SpriteMove
 RST0_58h (?) sprite_unk22
 RST0_59h (?) sprite_unk23
 RST0_5Ah (?) sprite_unk24
 RST0_5Bh SpriteAutoScaleUntilSize, C=speed (higher value is slower),
 HL=sprite handle, DE=size (0100h = normal size,
 lower value = larger, higher value = smaller)
 RST0_5Ch SpriteAutoScaleBySize
 RST0_5Dh SpriteAutoScaleWidthUntilSize
 RST0_5Eh SpriteAutoScaleHeightBySize
 RST0_5Fh (?)
 RST0_60h (?)
 RST0_61h (?)
 RST0_62h (?)
 RST0_63h (?)
 RST0_64h hl=[[2024D28h+a*4]+12h]
 RST0_65h (?) sprite_unk25
 RST0_66h SetSpriteVisible, HL=sprite handle, E=(0=not visible, 1=visible)
 RST0_67h (?) sprite_unk26
 RST0_68h (?) set_sprite_unk27
 RST0_69h (?) get_sprite_unk27
 RST0_6Ah (?)
 RST0_6Bh (?)
 RST0_6Ch (?)
 RST0_6Dh (?)
 RST0_6Eh hl=[hl+000Ah] ;r0=[r1+0Ah]
 RST0_6Fh (?)
 RST0_70h (?)
 RST0_71h (?)
 RST0_72h (?)
 RST0_73h (?)
 RST0_74h (?)
 RST0_75h (?)
 RST0_76h (?)
 RST0_77h (?)
 RST0_78h (?)
 RST0_79h (?)
 RST0_7Ah (?)
 RST0_7Bh (?)
 RST0_7Ch (?) _0202FD2C_unk12
 RST0_7Dh Wait16bit ;HL=num_frames (16bit variant of Wait8bit opcode/function)
 RST0_7Eh SetBackgroundPalette, HL=src_addr, DE=offset, C=num_colors (1..x)
 RST0_7Fh GetBackgroundPalette(a,b,c)
 RST0_80h SetSpritePalette, HL=src_addr, DE=offset, C=num_colors (1..x)
 RST0_81h GetSpritePalette(a,b,c)
 RST0_82h ClearPalette
 RST0_83h (?) _0202FD2C_unk11
 RST0_84h (?)
 RST0_85h (?)
 RST0_86h (?)
 RST0_87h (?) _0202FD2C_unk8
 RST0_88h (?) _0202FD2C_unk7
 RST0_89h (?)
 RST0_8Ah (?) _0202FD2C_unk6
 RST0_8Bh (?) _0202FD2C_unk5
 RST0_8Ch GBA: N/A - Z80: (?)
 RST0_8Dh GBA: N/A - Z80: (?)
 RST0_8Eh (?)
 RST0_8Fh WindowHide
 RST0_90h CreateRegion, H=bg# (0..3), L=palbank# (0..15),
 D,E,B,C=x1,y1,cx,cy (in tiles), return: n/a (no$note: n/a ???)
 RST0_91h SetRegionColor
 RST0_92h ClearRegion
 RST0_93h SetPixel
 RST0_94h GetPixel
 RST0_95h DrawLine
 RST0_96h DrawRect
 RST0_97h (?) _0202FD2C_unk4
 RST0_98h SetTextColor, A=region handle, D=color foreground (0..15),
 E=color background (0..15)
 RST0_99h DrawText, A=region handle, BC=pointer to text, D=X, E=Y
 (non-japan uses ASCII text, but japanese e-reader's use STH ELSE?)
 RST0_9Ah SetTextSize
 RST0_9Bh (?) RegionUnk7
 RST0_9Ch (?) _0202FD2C_unk3
 RST0_9Dh (?) _0202FD2C_unk2
 RST0_9Eh (?) _0202FD2C_unk1
 RST0_9Fh Z80: (?) - GBA: SetBackgroundModeRaw
 RST0_A0h (?)
 RST0_A1h (?)
 RST0_A2h (?) RegionUnk6
 RST0_A3h GBA: N/A - Z80: (?)
 RST0_A4h GBA: N/A - Z80: (?)
 RST0_A5h (?)
 RST0_A6h (?)
 RST0_A7h (?)
 RST0_A8h (?)
 RST0_A9h (?)
 RST0_AAh (?)
 RST0_ABh (?)
 RST0_ACh (?)
 RST0_ADh (?) RegionUnk5
 RST0_AEh [202FD2Ch+122h]=A
 RST0_AFh [202FD2Ch+123h]=A
 RST0_B0h [202FD2Ch+124h]=A
 RST0_B1h (?)
 RST0_B2h (?)
 RST0_B3h GBA: N/A - Z80: Sqrt ;hl=sqrt(hl)
 RST0_B4h GBA: N/A - Z80: ArcTan ;hl=ArcTan2(hl,de)
 RST0_B5h Sine ;hl=sin(a)*de
 RST0_B6h Cosine ;hl=cos(a)*de
 RST0_B7h (?)
 RST0_B8h (?)
 RST0_B9h N/A (bx 0)
 RST0_BAh N/A (bx 0)
 RST0_BBh N/A (bx 0)
 RST0_BCh N/A (bx 0)
 RST0_BDh N/A (bx 0)
 RST0_BEh N/A (bx 0)
 RST0_BFh N/A (bx 0)
 Below Non-Japan and Japan/Plus only (not Japan/Ori)
 RST0_C0h GetTextWidth(a,b)
 RST0_C1h GetTextWidthEx(a,b,c)
 RST0_C2h (?)
 RST0_C3h Z80: N/A (bx 0) - GBA: (?)
 RST0_C4h (?)
 RST0_C5h (?)
 RST0_C6h (?)
 RST0_C7h (?)
 RST0_C8h (?)
 RST0_C9h (?)
 RST0_CAh (?)
 RST0_CBh (?)
 RST0_CCh (?)
 RST0_CDh N/A (bx lr)
 RST0_CEh ;same as RST0_3Bh, but with 16bit mask
 RST0_CFh ;same as RST0_3Eh, but with 16bit de
 RST0_D0h ;same as RST0_3Fh, but with 16bit de
 RST0_D1h ;same as RST0_5Bh, but with 16bit de
 RST0_D2h ;same as RST0_5Ch, but with 16bit de
 RST0_D3h ;same as RST0_5Dh, but with 16bit de
 RST0_D4h ;same as RST0_5Eh, but with 16bit de
 RST0_D5h (?)
 RST0_D6h (?)
 RST0_D7h ;[202FD2Ch+125h]=A
 RST0_D8h (?)
 RST0_D9h (?)
 RST0_DAh (?)
 RST0_DBh ;A=[3003E51h]
 RST0_DCh ;[3004658h]=01h
 RST0_DDh DecompressVPKorNonVPK
 RST0_DEh FlashWriteSectorSingle(a,b)
 RST0_DFh FlashReadSectorSingle(a,b)
 RST0_E0h SoftReset
 RST0_E1h GetCartridgeHeader ;[hl+0..BFh]=[8000000h..80000BFh]
 RST0_E2h GBA: N/A - Z80: bx hl ;in: hl=addr, af,bc,de,sp=param, out: a
 RST0_E3h Z80: N/A (bx 0) - GBA: (?)
 RST0_E4h (?)
 RST0_E5h (?)
 RST0_E6h (?)
 RST0_E7h (?)
 RST0_E8h (?)
 RST0_E9h ;[2029498h]=0000h
 RST0_EAh Z80: N/A (bx 0) - GBA: InitMemory(a)
 RST0_EBh (?) BL_irq_sio_dma3
 RST0_ECh ;hl = [3003E30h]*100h + [3003E34h]
 RST0_EDh FlashWriteSectorMulti(a,b,c)
 RST0_EEh FlashReadPart(a,b,c)
 RST0_EFh ;A=((-([2029416h] xor 1)) OR (+([2029416h] xor 1))) SHR 31
 RST0_F0h (?) _unk1
 RST0_F1h RandomInit ;in: hl=random_seed
 RST0_F2h (?)
 Below Japan/Plus only
 RST0_F3h (?)
 RST0_F4h (?)
 RST0_F5h (?)
 RST0_F6h (?)
 RST0_F7h GBA: N/A - Z80: (?)
 Below is undefined/garbage (values as so in Z80 mode)
 Jap/Ori: RST0_C0h N/A (bx 0)
 Jap/Ori: RST0_C1h..FFh Overlaps RST8 jump list
 Non-Jap: RST0_F3h..FFh Overlaps RST8 jump list
 Jap/Pls: RST0_F8h..FFh Overlaps RST8 jump list

Z80 RST8_xxh Functions / GBA Functions 01xxh
 RST8_00h GBA: N/A - Z80: Exit ;[00C0h]=a ;(1=restart, 2=exit)
 RST8_01h GBA: N/A - Z80: Mul8bit ;hl=a*e
 RST8_02h GBA: N/A - Z80: Mul16bit ;hl=hl*de, s32[00D0h]=hl*de
 RST8_03h Div ;hl=hl/de
 RST8_04h DivRem ;hl=hl mod de
 RST8_05h PlaySystemSound ;in: hl=sound_number
 RST8_06h (?) sound_unk1
 RST8_07h Random8bit ;a=random(0..FFh)
 RST8_08h SetSoundVolume
 RST8_09h BcdTime ;[de+0..5]=hhmmss(hl*bc)
 RST8_0Ah BcdNumber ;[de+0..4]=BCD(hl), [de+5]=00h
 RST8_0Bh IoWrite ;[4000000h+hl]=de
 RST8_0Ch IoRead ;de=[4000000h+hl]
 RST8_0Dh GBA: N/A - Z80: (?)
 RST8_0Eh GBA: N/A - Z80: (?)
 RST8_0Fh GBA: N/A - Z80: (?)
 RST8_10h GBA: N/A - Z80: (?)
 RST8_11h DivSigned ;hl=hl/de, signed
 RST8_12h RandomMax ;a=random(0..a-1)
 RST8_13h SetSoundSpeed
 RST8_14h hl=[202FD20h]=[2024CACh]
 RST8_15h hl=[2024CACh]-[202FD20h]
 RST8_16h SoundPause
 RST8_17h SoundResume
 RST8_18h PlaySystemSoundEx
 RST8_19h IsSoundPlaying
 RST8_1Ah (?)
 RST8_1Bh (?)
 RST8_1Ch (?)
 RST8_1Dh GetExitCount ;a=[2032D34h]
 RST8_1Eh Permille ;hl=de*1000/hl
 RST8_1Fh GBA: N/A - Z80: ExitRestart;[2032D38h]=a, [00C0h]=0001h ;a=?
 RST8_20h GBA: N/A - Z80: WaitJoypad ;wait until joypad<>0, set hl=joypad
 RST8_21h GBA: N/A - Z80: (?)
 RST8_22h (?) _sound_unk7
 RST8_23h (?) _sound_unk8
 RST8_24h (?) _sound_unk9
 RST8_25h (?) _sound_unk10
 RST8_26h Mosaic ;bg<n>cnt.bit6=a.bit<n>, [400004Ch]=de
 RST8_27h (?)
 RST8_28h (?)
 RST8_29h (?)
 RST8_2Ah (?) get_8bit_from_2030110h
 RST8_2Bh (?)
 RST8_2Ch (?) get_16bit_from_2030112h ;jap/ori: hl=[20077B2h]
 RST8_2Dh (?) get_16bit_from_2030114h ;jap/ori: hl=[20077B4h]
 RST8_2Eh (?)
 RST8_2Fh PlayCustomSound(a,b)
 Below not for Japanese/Original
 (the renumbered functions can be theoretically used on japanese/original)
 (but, doing so would blow forwards compatibility with japanese/plus)
 RST8_30h (ori: none) GBA: N/A - Z80: (?)
 RST8_31h (ori: none) PlayCustomSoundEx(a,b,c)
 RST8_32h (ori: RST8_30h) BrightnessHalf ;[4000050h]=00FFh,[4000054h]=0008h
 RST8_33h (ori: RST8_31h) BrightnessNormal ;[4000050h]=0000h
 RST8_34h (ori: RST8_32h) N/A (bx lr)
 RST8_35h (ori: RST8_33h) (?)
 RST8_36h (ori: RST8_34h) ResetTimer ;[400010Ch]=00000000h, [400010Eh]=A+80h
 RST8_37h (ori: RST8_35h) GetTimer ;hl=[400010Ch]
 RST8_38h (ori: none) GBA: N/A - Z80: (?)
 Below is undefined/reserved/garbage (values as so in Z80 mode)
 (can be used to tweak jap/ori to start GBA-code from inside of Z80-code)
 (that, after relocating code to 3000xxxh via DMA via IoWrite function)
 RST8_39h (ori: RST8_36h) bx 0140014h
 RST8_3Ah (ori: RST8_37h) bx 3E700F0h
 RST8_3Bh (ori: RST8_38h) bx 3E70000h+1
 RST8_3Ch (ori: RST8_39h) bx 3E703E6h+1
 RST8_3Dh (ori: RST8_3Ah) bx 3E703E6h+1
 RST8_3Eh (ori: RST8_3Bh) bx 3E703E6h+1
 RST8_3Fh (ori: RST8_3Ch) bx 3E703E6h+1
 40h-FFh (ori: 3Dh-FFh) bx ...

GBA Functions 03xxh (none such in Z80 mode)
 RSTX_00h Wait8bit ;for 16bit: RST0_7Dh
 RSTX_01h GetKeyStateSticky()
 RSTX_02h GetKeyStateRaw()
 RSTX_03h (?)
 RSTX_04h (?)

 GBA Cart e-Reader VPK Decompression

vpk_decompress(src,dest)
 collected32bit=80000000h ;initially empty (endflag in bit31)
 for i=0 to 3, id[i]=read_bits(8), next i, if id[0..3]<>'vpk0' then error
 dest_end=dest+read_bits(32) ;size of decompressed data (of all strips)
 method=read_bits(8), if method>1 then error
 tree_index=0, read_huffman_tree, disproot=tree_index
 tree_index=tree_index+1, read_huffman_tree, lenroot=tree_index
 ;above stuff is contained only in the first strip. below loop starts at
 ;current location in first strip, and does then continue in further strips.
 decompress_loop:
 if read_bits(1)=0 then ;copy one uncompressed data byte,
 [dest]=read_bits(8), dest=dest+1 ;does work without huffman trees
 else
 if disproot=-1 or lenroot=-1 then error ;compression does require trees
 disp=read_tree(disproot)
 if method=1 ;disp*4 is good for 32bit ARM opcodes
 if disp>2 then disp=disp*4-8 else disp=disp+4*read_tree(disproot)-7
 len=read_tree(lenroot)
 if len=0 or disp<=0 or dest+len-1>dest_end then error ;whoops
 for j=1 to len, [dest]=[dest-disp], dest=dest+1, next j
 if dest<dest_end then decompress_loop
 ret

read_bits(num)
 mov data=0
 for i=1 to num
 shl collected32bit,1 ;move next bit to carry, or set zeroflag if empty
 if zeroflag
 collected32bit=[src+0]*1000000h+[src+1]*10000h+[src+2]*100h+[src+3]
 src=src+4 ;read data in 32bit units, in reversed byte-order
 carryflag=1 ;endbit
 rcl collected32bit,1 ;move bit31 to carry (and endbit to bit0)
 rcl data,1 ;move carry to data
 next i
 ret(data)

read_tree(root_index)
 i=root_index
 while node[i].right<>-1 ;loop until reaching data node
 if read_bits(1)=1 then i=node[i].right else i=node[i].left
 i=node[i].left ;get number of bits
 i=read_bits(i) ;read that number of bits
 ret(i) ;return that value

load_huffman_tree
 stacktop=sp
 if read_bits(1)=1 then tree_index=-1, ret ;exit (empty)
 node[tree_index].right=-1 ;indicate data node
 node[tree_index].left=read_bits(8) ;store data value
 if read_bits(1)=1 then ret ;exit (only 1 data node at root)
 push tree_index ;save previous (child) node
 tree_index=tree_index+1
 jmp data_injump
 load_loop:
 push tree_index ;save previous (child) node
 tree_index=tree_index+1
 if read_bits(1)=1 then parent_node
 data_injump:
 node[tree_index].right=-1 ;indicate data node
 node[tree_index].left=read_bits(8) ;store data value
 jmp load_loop
 parent_node:
 pop node[tree_index].right ;store 1st child
 pop node[tree_index].left ;store 2nd child
 if sp<>stacktop then jmp load_loop
 if read_bits(1)=0 then error ;end bit (must be 1)
 ret

The best values for the huffman trees that I've found are 6,9,12-bit displacements for method 0 (best for NES /Z80 code), and two less for method 1, ie. 4,7,10-bit (best for GBA code). And 2,4,10-bit for the length values. The smallest value in node 0, and the other values in node 10 and 11.

Notes
The decompression works similar to the GBA BIOS 'es LZ77 decompression function, but without using fixed bit-widths of length=4bit and displacement=12bit, instead, the bit-widths are read from huffman trees (which can also define fixed bit-widths; if data is located directly in the root node).
Unlike the GBA BIOS 'es Huffman decompression function, the trees are starting with data entries, end are ending with the root entry. The above load function deciphers the data, and returns the root index.
With the variable bit-widths, the VPK compression rate is quite good, only, it's a pity that the length/disp values are zero-based, eg. for 2bit and 4bit lengths, it'd be much better to assign 2bit as 2..5, and 4bit as 6..21.

Non-VPK
The e-Reader additionally supports an alternate decompression function, indicated by the absence of the "vpk0" ID, which supports compression of increasing byte-values, which isn't useful for program code.
Bit15 of the VPK S ize value seems to disable (de-)compression, the VPK Data field is then containing plain uncompressed data.

 GBA Cart e-Reader Error Correction

The Error Correction Information that is appended at the end of the Block Header & Data Fragments consists of standard Reed-Solomon codes, which are also used for CD/DVD disks, DSL modems, and digital DVB television signals. That info allows to locate and repair a number of invalid data bytes.

Below code shows how to create and verify error-info (but not how to do the actual error correction). The dtalen,errlen values should be 18h,10h for the Block Header, and 40h,10h for Data Fragments; the latter settings might be possible to get changed to other values though?

append_error_info(data,dtalen,errlen)
 reverse_byte_order(data,dtalen)
 zerofill_error_bytes(data,errlen)
 for i=dtalen-1 to errlen ;loop accross data portion
 z = rev[data[i] xor data[errlen-1]] ;
 for j=errlen-1 to 0 ;loop accross error-info portion
 if j=0 then x=00h else x=data[j-1]
 if z<>FFh then
 y=gg[j], if y<>FFh then
 y=y+z, if y>=FFh then y=y-FFh
 x=x xor pow[y]
 data[j]=x
 next j
 next i
 invert_error_bytes(data,errlen)
 reverse_byte_order(data,dtalen)

verify_error_info(data,dtalen,errlen)
 reverse_byte_order(data,dtalen)
 invert_error_bytes(data,errlen)
 make_rev(data,dtalen)
 for i=78h to 78h+errlen-1
 x=0, z=0
 for j=0 to dtalen-1
 y=data[j]
 if y<>FFh then
 y=y+z, if y>=FFh then y=y-FFh
 x=x xor pow[y]
 z=z+i, if z>=FFh then z=z-FFh
 next j
 if x<>0 then error
 next i
 ;(if errors occured, could correct them now)
 make_pow(data,dtalen)
 invert_error_bytes(data,errlen)
 reverse_byte_order(data,dtalen)

make_rev(data,len)
 for i=0 to len-1, data[i]=rev[data[i]], next i

make_pow(data,len)
 for i=0 to len-1, data[i]=pow[data[i]], next i

invert_error_bytes(data,len)
 for i=0 to len-1, data[i]=data[i] xor FFh, next i

zerofill_error_bytes(data,len)
 for i=0 to len-1, data[i]=00h, next i

reverse_byte_order(data,len)
 for i=0 to (len-1)/2, x=data[i], data[i]=data[len-i], data[len-i]=x, next i

create_pow_and_rev_tables
 x=01h, pow[FFh]=00h, rev[00h]=FFh
 for i=00h to FEh
 pow[i]=x, rev[x]=i, x=x*2, if x>=100h then x=x xor 187h
 next i

create_gg_table
 gg[0]=pow[78h]
 for i=1 to errlen-1
 gg[i]=01h
 for j=i downto 0
 if j=0 then y=00h else y=gg[j-1]
 x=gg[j], if x<>00h then
 x=rev[x]+78h+i, if x>=FFh then x=x-FFh
 y=y xor pow[x]
 gg[j]=y
 next j
 next i
 make_rev(gg,errlen)

With above value of 78h, and errlen=10h, gg[00h..0Fh] will be always:
 00h,4Bh,EBh,D5h,EFh,4Ch,71h,00h,F4h,00h,71h,4Ch,EFh,D5h,EBh,4Bh

So using a hardcoded table should take up less memory than calculating it.

Notes
The actual error correction should be able to fix up to "errlen" errors at known locations (eg. data from blocks that haven't been scanned, or whose 5bit-to-4bit conversion had failed due to an invalid 5bit value), or up to "errlen/2" errors at unknown locations. The corrected data isn't guaranteed to be correct (even if it looks okay to the "verify" function), so the Data Header checksums should be checked, too.

More Info
For more info, I've found Reed-Solomon source code from S imon Rockliff, and an updated version from Robert Morelos-Zaragoza and Hari Thirumoorthy to be useful. For getting started with that source, some important relationships & differences are:
 pow = alpha_to, but generated as shown above
 rev = index_of, dito
 b0 = 78h
 nn = dtalen
 kk = dtalen-errlen
 %nn = MOD FFh (for the ereader that isn't MOD dtalen)
 -1 = FFh

And, the ereader processes data/errinfo backwards, starting at the last byte.

 GBA Cart e-Reader File Formats

.BMP Files (homebrew 300 DPI strips)
Contains a picture of the whole dotcode strip with address bars and sync marks (see Dotcode chapter) in Microsoft's Bitmap format. The image is conventionally surrounded by a blank 2-pixel border, resulting in a size of 989x44 pixels for long strips. The file should should have 1bit color depth. The pixels per meter entry should match the desired printing resolution, either 300 DPI or 360 DPI. But, resolution of printer hardware is typically specified in inch rather than in meters, so an exact match isn't supported by Microsoft. Most homebrew .BMP files contain nonsense resolutions like 200 DPI, or 300 dots per meter (ca. 8 DPI).

.JPG Files (scanned 1200 DPI strips)
Same as BMP, but should contain a dotcode scanned at 1200 DPI, with correct orientation (the card-edge side at the bottom of the image), and containing only the dotcode (not the whole card), so the JPG size should be about 3450x155 pixels for long strips.
No$gba currently doesn't work with progressive JPGs. Scans with white background can be saved as monochrome JPG. Scans with red/yellow background should contain a correct RED layer (due to the red LED light source) (the brightness of the green/blue layers can be set to zero for better compression).

.RAW Files
Contains the "raw" information from the BMP format, that is, 2-byte block header, 102-byte data, 2-byte block header, 102-byte data, etc. The data portion is interleaved, and includes the full 48-byte data header, titles, vpk compressed data, error-info, and unused bytes. RAW files are excluding Address Bars, Sync Marks, and 4bit-to-5bit encoding.
Each RAW file contains one or more strip(s), so the RAW filesize is either 18*104 bytes (short strip), or 28*104 bytes (long strip), or a multiple thereof (if it contains more than one strip) (although multi-strip games are often stored in separate files for each strip; named file1.raw, file2.raw, etc).

.BIN Files
Filesize should be I*30h, with I=1Ch for short strips, and I=2Ch for long strips, or a multiple thereof (if it contains more than one strip). Each strip consists of the 48-byte Data Header, followed by title(s), and vpk compressed data. Unlike .RAW files, .BIN files aren't interleaved, and do not contain Block Headers, nor error-info, nor unused bytes (in last block). The files do contain padding bytes to match a full strip-size of I*30h.
Caution: Older .BIN files have been using a size-reduced 12-byte header (taken from entries 0Dh, 0Ch, 10h-11h, 26h-2Dh of the 48-byte Data Header; in that order), that fi les have never contained more than one strip per file, so the filesize should be exac tly I*30h-36, the size-reduced header doesn't contain a Primary Type entry, so it's everyone's bet which Card Type is to be used (hint: the 12-byte headers were based on the assumption that Primary Type would be always 01h on Short S trips, and 02h on Long S trips).

.SAV Files
Contains a copy of the e-Reader's 128Kbyte FLASH memory. With the saved e-Reader application being located in the 2nd 64K-bank, the data consists of a header with title and gba/nes/z80 format info, followed by the vpk compressed data. The FLASH memory does also contain e-Reader calibration settings, the remaining 100Kbytes are typically FFh-filled.

 GBA Cart Unknown Devices

GBA Infra-Red Port (AGB-006)
No info?

GBA Wireless Adapter (AGB-015 or OXY-004)
No info?

 GBA Flashcards

Flashcards are re-writable cartridges using FLASH memory, allowing to test even multiboot-incompatible GBA software on real hardware, providing a good development environment when used in combination with a reasonable software debugger.

The carts can be written to from external tools, or directly from GBA programs.
Below are pseudo code flowcharts for detect, erase, and write operations.
All flash reads/writes are meant to be 16bit (ldrh/strh) memory accesses.

detect_flashcard:
 configure_flashcard(9E2468Ah,9413h) ;unlock flash advance cards
 turbo=1, send_command(8000000h,90h) ;enter ID mode (both chips, if any)
 maker=[8000000h], device=[8000000h+2]
 IF maker=device THEN device=[8000000h+4] ELSE turbo=0
 flashcard_read_mode ;exit ID mode
 search (maker+device*10000h) in device_list
 total/erase/write_block_size = list_entry SHL turbo

flashcard_erase(dest,len):
 FOR x=1 to len/erase_block_size
 send_command(dest,20h) ;erase sector command
 send_command(dest,D0h) ;confirm erase sector
 dest=dest+erase_block_size
 IF wait_busy=okay THEN NEXT x
 enter_read_mode ;exit erase/status mode

flashcard_write(src,dest,len):
 siz=write_block_size
 FOR x=1 to len/siz
 IF siz=2 THEN send_command(dest,10h) ;write halfword command
 IF siz>2 THEN send_command(dest,E8h) ;write to buffer command
 IF siz>2 THEN send_command(dest,16-1) ;buffer size 16 halfwords (per chip)
 FOR y=1 TO siz/2
 [dest]=[src], dest=dest+2, src=src+2 ;write data to buffer
 NEXT y
 IF siz>2 THEN send_command(dest,D0h) ;confirm write to buffer
 IF wait_busy=okay THEN NEXT x
 enter_read_mode ;exit write/status mode

send_command(adr,val):
 [adr]=val
 IF turbo THEN [adr+2]=val

enter_read_mode:
 send_command(8000000h,FFh) ;exit status mode
 send_command(8000000h,FFh) ;again maybe more stable (as in jeff's source)

flashcard_wait_busy:
 start=time
 REPEAT
 stat=[8000000h] XOR 80h
 IF turbo THEN stat=stat OR ([8000000h+2] XOR 80h)
 IF (stat AND 7Fh)>0 THEN error
 IF (stat AND 80h)=0 THEN ready
 IF time-start>5secs THEN timeout
 UNTIL ready OR error OR timeout
 IF error OR timeout THEN send_command(8000000h,50h) ;clear status

configure_flashcard(adr,val): ;required for Flash Advance cards only
 [930ECA8h]=5354h
 [802468Ah]=1234h, repeated 500 times
 [800ECA8h]=5354h
 [802468Ah]=5354h
 [802468Ah]=5678h, repeated 500 times
 [930ECA8h]=5354h
 [802468Ah]=5354h
 [8ECA800h]=5678h
 [80268A0h]=1234h
 [802468Ah]=ABCDh, repeated 500 times
 [930ECA8h]=5354h
 [adr]=val

init_backup: ;no info how to use that exactly
 configure_flashcard(942468Ah,???)

device_list: (id code, total/erase/write sizes in bytes)
 ID Code Total Erase Write Name
 -??-00DCh ? ? ? Hudson Cart (???)
 00160089h 4M 128K 32 Intel i28F320J3A (Flash Advance)
 00170089h 8M 128K 32 Intel i28F640J3A (Flash Advance)
 00180089h 16M 128K 32 Intel i28F128J3A (Flash Advance)
 00E200B0h ? 64K 2 Sharp LH28F320BJE ? (Nintendo)

Notes
All flashcards should work at 4,2 waitstates (power on default), most commercial games change waits to 3,1 which may work unstable with some/older FA flashcards. Intel FLASH specified to have a lifetime of 100,000 erases, and average block erase time 1 second (up to 5 second in worst cases).
Aside from the main FLASH memory, Flash Advance (FA) (aka Visoly) cards additionally contain battery buffered SRAM backup, and FLASH backup, and in some cases also EEPROM backup.
Turbo FA cards are containing two chips interlaced (at odd/even halfword addresses), allowing to write/erase both chips simultaneously, resulting in twice as fast programming time.
S tandard Nintendo flash carts have to be modified before you can actually write to them. This is done by removing resistor R7 and putting it at empty location R8.
Mind that write/erase/detect modes output status information in ROM area, so that in that modes all GBA program code (and any interrupt handlers) must be executed in WRAM, not in ROM.

Thanks to Jeff Frohwein for his FAQ and CARTLIB sample in FLGBA at devrs.com

 GBA Cheat Devices

Codebreaker (US) aka Xploder (EUR).
Gameshark (US) aka Action Replay (EUR).

GBA Cheat Codes - General Info
GBA Cheat Codes - Codebreaker/Xploder
GBA Cheat Codes - Gameshark/Action Replay V1/V2
GBA Cheat Codes - Pro Action Replay V3

 GBA Cheat Codes - General Info

Cheat devices are external adapters, connected between the GBA and the game cartridge. The devices include a BIOS ROM which is, among others, used to prompt the user to enter cheat codes.
These codes are used to patch specified memory locations for a certain GBA game, allowing the user to gain goodies such like Infinite sex, 255 Cigarettes, etc.

ROM and RAM Patches
For ROM Patches, the device watches the address bus, if it matches a specified address then it outputs a patched value to the data bus, that mechanism is implemented by hardware, aside from the Hook Enable Code some devices also allow a limited number of cheats to use ROM patches.
Most cheat codes are RAM patches, each time when the hook procedure is executed it wi ll process all codes and overwrite the specified addresses in RAM (or VRAM or I/O area) by the desired values.

Enable Codes (Must Be On)
Enable codes usually consist of the Game ID, Hook Address, and eventually a third code used to encrypt all following codes. The Game ID is used to confirm that the correc t cartridge is inserted, just a verification, though the device may insist on the ID code.
The Hook Address specifies an address in cartridge ROM, and should point to an opcode which is executed several times per second (eg. once per frame, many codes place the hook in the joypad handler). At the hook address, the device redirects to its own BIOS , processes the RAM patches, and does then return control to the game cartridge.
Note: The hook address should not point to opcodes with relative addressing (eg. B, BL, LDR Rd,=Imm, ADD Rd,=Imm opcodes - which are all relative to PC program counter register).

Alignment
Addresses for 16bit or 32bit values should be properly aligned.

 GBA Cheat Codes - Codebreaker/Xploder

Codebreaker Codes
 0000xxxx 000y Enable Code 1 - Game ID
 1aaaaaaa 000z Enable Code 2 - Hook Address
 2aaaaaaa yyyy [aaaaaaa]=[aaaaaaa] OR yyyy
 3aaaaaaa 00yy [aaaaaaa]=yy
 4aaaaaaa yyyy [aaaaaaa+0..(cccc-1)*ssss]=yyyy+0..(cccc-1)*ssss
 iiiicccc ssss parameters for above code
 5aaaaaaa cccc [aaaaaaa+0..(cccc-1)]=11,22,33,44,etc.
 11223344 5566 parameter bytes 1..6 for above code (example)
 77880000 0000 parameter bytes 7..8 for above code (padded with zero)
 6aaaaaaa yyyy [aaaaaaa]=[aaaaaaa] AND yyyy
 7aaaaaaa yyyy IF [aaaaaaa]=yyyy THEN (next code)
 8aaaaaaa yyyy [aaaaaaa]=yyyy
 9xyyxxxx xxxx Enable Code 0 - Encrypt all following codes (optional)
 Aaaaaaaa yyyy IF [aaaaaaa]<>yyyy THEN (next code)
 Baaaaaaa yyyy IF [aaaaaaa]>yyyy THEN (next code) (signed comparison)
 Caaaaaaa yyyy IF [aaaaaaa]<yyyy THEN (next code) (signed comparison)
 D0000020 yyyy IF [joypad] AND yyyy = 0 THEN (next code)
 Eaaaaaaa yyyy [aaaaaaa]=[aaaaaaa]+yyyy
 Faaaaaaa yyyy IF [aaaaaaa] AND yyyy THEN (next code)

Codebreaker Enable Codes
Hook Address 'aaaaaaa' is a 25bit offset in ROM-image (0-1FFFFFFh).
Flag byte 'y' (usually 0Ah), Bit1=Disable IRQs, Bit3=CRC Exists.
Code Handler S tore Address 'z ' (0-7, usually 7) (8000100h+z*400000h).
Checksum 'xxxx' for first 64Kbytes of cartridge (no$gba pads by FFh if ROM is smaller than 64K). Calculated, by using unsigned 16bit values, as such:
 crc=FFFFh
 for i=0 to FFFFh
 x=byte[i] xor (crc/100h)
 x=x xor (x/10h)
 crc=(crc*100h) xor (x*1001h) xor (x*20h)
 next i

Codebreaker Encryption
codebreaker_change_encryption:
Encryption can be (optionally) activated by code "9xyyxxxx xxxx",
 for i=0 to 2Fh, swaplist[i]=i, next i
 randomizer = 1111h xor byte[code+4] ;LSB value
 for i=0 to 4Fh
 exchange swaplist[random MOD 30h] with swaplist[random MOD 30h]
 next i
 halfword[seedlist+0] = halfword[code+0] ;LSW address
 randomizer = 4EFAD1C3h
 for i=0 to byte[code+3]-91h, randomizer=random, next i ;MSB address
 word[seedlist+2]=random, halfword[seedlist+6]=random
 randomizer = F254h xor byte[code+5] ;MSB value
 for i=0 to byte[code+5]-01h, randomizer=random, next i ;MSB value
 word[seedlist+8]=random, halfword[seedlist+12]=random
 ;note: byte[code+2] = don't care
 ret

The above random function works like so:
 randomizer=randomizer*41C64E6Dh+3039h, x=(randomizer SHL 14 AND C0000000h)
 randomizer=randomizer*41C64E6Dh+3039h, x=(randomizer SHR 1 AND 3FFF8000h)+x
 randomizer=randomizer*41C64E6Dh+3039h, x=(randomizer SHR 16 AND 00007FFFh)+x
 return(x)

Once when encryption is activated, all following codes are decrypted like so:
 for i=2Fh to 0
 j=swaplist[i]
 bitno1=(i AND 7), index1=xlatlist[i/8]
 bitno2=(j AND 7), index2=xlatlist[j/8]
 exchange [code+index1].bitno1 with [code+index2].bitno2
 next i
 word[code+0] = word[code+0] xor word[seedlist+8]
 i = (byte[code+3]*1010000h + byte[code+0]*100h + byte[code+5])
 i = (halfword[code+1]*10001h) xor (word[seedlist+2]) xor i
 i = (byte[seedlist+0]*1010101h) xor (byte[seedlist+1]*1000000h) xor i
 j = (byte[code+5] + (byte[code+0] xor byte[code+4])*100h)
 j = (byte[seedlist+0]*101h) xor halfword[seedlist+6] xor j
 word[code+0] = i, halfword[code+4] = j

The above xlatlist is fixed: xlatlist[0..5] = 3,2,1,0,5,4

 GBA Cheat Codes - Gameshark/Action Replay V1/V2

Gameshark RAW Codes (These codes must be encrypted before using them)
 0aaaaaaa 000000xx [aaaaaaa]=xx
 1aaaaaaa 0000xxxx [aaaaaaa]=xxxx
 2aaaaaaa xxxxxxxx [aaaaaaa]=xxxxxxxx
 3000cccc xxxxxxxx write xxxxxxxx to (cccc-1) addresses (list in next codes)
 aaaaaaaa aaaaaaaa parameter for above code, containing two addresses each
 aaaaaaaa 00000000 last parameter for above, zero-padded if only one address
 60aaaaaa y000xxxx [8000000h+aaaaaa*2]=xxxx (ROM Patch)
 8a1aaaaa 000000xx IF GS_Button_Down THEN [a0aaaaa]=xx
 8a2aaaaa 0000xxxx IF GS_Button_Down THEN [a0aaaaa]=xxxx
 80F00000 0000xxxx IF GS_Button_Down THEN slowdown xxxx * ??? cycles per hook
 Daaaaaaa 0000xxxx IF [aaaaaaa]=xxxx THEN (next code)
 E0zzxxxx 0aaaaaaa IF [aaaaaaa]=xxxx THEN (next 'zz' codes)
 Faaaaaaa 00000x0y Enable Code - Hook Routine
 xxxxxxxx 001DC0DE Enable Code - Game Code ID (value at [0ACh] in cartridge)
 DEADFACE 0000xxyy Change Encryption Seeds

Enable Code - Hook Routine
Hook Address 'aaaaaaa' is a 28bit ROM address (8FFFFFFh-9FFFFFFh).
Used to insert the GS code handler routine where it will be executed at
least 20 times per second. Without this code, GSA can not write to RAM.
 y=1 - Executes code handler without backing up the LR register.
 y=2 - Executes code handler and backs up the LR register.
 y=3 - Replaces a 32-bit pointer used for long-branches.
 x=0 - Must turn GSA off before loading game.
 x=1 - Must not do that.

ROM Patch
This type allows GSA to intercept ROM reads and returns the value xxxx.
 y=0 wait for the code handler to enable the patch
 y=1 patch is enabled before the game starts
 y=2 unknown ???

Note: V1/V2 hardware can only have up to 1 user-defined rom patch max. V3 can have up to 4. Some enable code types can shorten the amount of user-defined rom patches avai lable.

Gameshark Encryption
A=Left half, and V=Right half of code.
 FOR I=1 TO 32
 A=A + (V*16+S0) XOR (V+I*9E3779B9h) XOR (V/32+S1)
 V=V + (A*16+S2) XOR (A+I*9E3779B9h) XOR (A/32+S3)
 NEXT I

Upon startup, the initial encryption seeds are:
 S0=09F4FBBDh S1=9681884Ah S2=352027E9h S3=F3DEE5A7h

Upon DEADFACE 0000xxyy, the S0..S3 seeds are changed like so:
 FOR y=0 TO 3
 FOR x=0 TO 3
 z = T1[(xx+x) AND FFh] + T2[(yy+y) AND FFh]
 Sy = Sy*100h + (z AND FFh)
 NEXT x
 NEXT y

All calculations truncated to unsigned 32bit integer values.
T1 and T2 are translation tables contained in the gameshark cartridge.

 GBA Cheat Codes - Pro Action Replay V3

Pro Action Replay V3 - RAW Codes
 C4aaaaaa 0000yyyy Enable Code - Hook Routine at [8aaaaaa]
 xxxxxxxx 001DC0DE Enable Code - ID Code [080000AC]
 DEADFACE 0000xxxx Enable Code - Change Encryption Seeds
 00aaaaaa xxxxxxyy [a0aaaaa..a0aaaaa+xxxxxx]=yy
 02aaaaaa xxxxyyyy [a0aaaaa..a0aaaaa+xxxx*2]=yyyy
 04aaaaaa yyyyyyyy [a0aaaaa]=yyyyyyyy
 40aaaaaa xxxxxxyy [[a0aaaaa] + xxxxxx]=yy (Indirect)
 42aaaaaa xxxxyyyy [[a0aaaaa] + xxxx*2]=yyyy (Indirect)
 44aaaaaa yyyyyyyy [[a0aaaaa]]=yyyyyyyy (Indirect)
 80aaaaaa 000000yy [a0aaaaa]=[a0aaaaa]+yy
 82aaaaaa 0000yyyy [a0aaaaa]=[a0aaaaa]+yyyy
 84aaaaaa yyyyyyyy [a0aaaaa]=[a0aaaaa]+yyyyyyyy
 C6aaaaaa 0000yyyy [4aaaaaa]=yyyy (I/O Area)
 C7aaaaaa yyyyyyyy [4aaaaaa]=yyyyyyyy (I/O Area)
 iiaaaaaa yyyyyyyy IF [a0aaaaa] <cond> <value> THEN <action>
 00000000 60000000 ELSE (?)
 00000000 40000000 ENDIF (?)
 00000000 0800xx00 AR Slowdown : loops the AR xx times
 00000000 00000000 End of the code list
 00000000 10aaaaaa 000000zz 00000000 IF AR_BUTTON THEN [a0aaaaa]=zz
 00000000 12aaaaaa 0000zzzz 00000000 IF AR_BUTTON THEN [a0aaaaa]=zzzz
 00000000 14aaaaaa zzzzzzzz 00000000 IF AR_BUTTON THEN [a0aaaaa]=zzzzzzzz
 00000000 18aaaaaa 0000zzzz 00000000 [8000000+aaaaaa*2]=zzzz (ROM Patch 1)
 00000000 1Aaaaaaa 0000zzzz 00000000 [8000000+aaaaaa*2]=zzzz (ROM Patch 2)
 00000000 1Caaaaaa 0000zzzz 00000000 [8000000+aaaaaa*2]=zzzz (ROM Patch 3)
 00000000 1Eaaaaaa 0000zzzz 00000000 [8000000+aaaaaa*2]=zzzz (ROM Patch 4)

 00000000 80aaaaaa 000000yy ssccssss repeat cc times [a0aaaaa]=yy
 (with yy=yy+ss, a0aaaaa=a0aaaaa+ssss after each step)

 00000000 82aaaaaa 0000yyyy ssccssss repeat cc times [a0aaaaa]=yyyy
 (with yyyy=yyyy+ss, a0aaaaa=a0aaaaa+ssss*2 after each step)

 00000000 84aaaaaa yyyyyyyy ssccssss repeat cc times [a0aaaaa]=yyyyyyyy
 (with yyyy=yyyy+ss, a0aaaaa=a0aaaaa+ssss*4 after each step)

Warning: There is a bug on the real AR (v2 upgraded to v3, and maybe on real v3) with the 32bit Increment S lide code. You HAVE to add a code (best choice is 80000000 00000000 : add 0 to value at address 0) right after it, else the AR will erase the 2 last 8 digits lines of the 32 Bits Inc. S lide code when you enter it !!!

Final Notes
The 'turn off all codes' makes an infinite loop (that can't be broken, unless the condition becomes True). - How? By Interrupt? Huh?
ROM Patch1 works on real V3 and, on V1/V2 upgraded to V3.
ROM Patch2,3,4 work on real V3 hardware only.

Pro Action Replay V3 Conditional Codes - iiaaaaaa yyyyyyyy
The 'ii' is composed of <cond> + <value> + <action>.
 <cond> <value> <action>
 08 Equal = 00 8bit zz 00 execute next code
 10 Not equal <> 02 16bit zzzz 40 execute next two codes
 18 Signed < 04 32bit zzzzzzzz 80 execute all following
 20 Signed > 06 (always false) codes until ELSE or ENDIF
 28 Unsigned < C0 normal ELSE turn off all codes
 30 Unsigned >
 38 Logical AND

For example, ii=18h+02h+40h=5Ah, produces IF [a0aaaaa]<zzzz THEN next 2 codes.

Always... Codes
 For the "Always..." codes:
 - XXXXXXXX can be any authorised address except 00000000 (eg. use 02000000).
 - ZZZZZZZZ can be anything.
 - The "y" in the code data must be in the [1-7] range (which means not 0).
 typ=y,sub=0,siz=3 Always skip next line.
 typ=y,sub=1,siz=3 Always skip next 2 lines.
 typ=y,sub=2,siz=3 Always Stops executing all the codes below.
 typ=y,sub=3,siz=3 Always turn off all codes.

Code Format (ttaaaaaa xxxxyyzz)
 adr mask = 003FFFFF
 n/a mask = 00C00000 ;not used
 xtr mask = 01000000 ;used only by I/O write, and MSB of Hook
 siz mask = 06000000
 typ mask = 38000000 ;0=normal, other=conditional
 sub mask = C0000000

Pro Action Replay V3 Encryption
Works exactly as for Gameshark Encryption, but with different initial seeds,
 S0=7AA9648Fh S1=7FAE6994h S2=C0EFAAD5h S3=42712C57h

And, the T1 and T2 translation tables are different, too.

 GBA Gameboy Player

The Gameboy Player is an "adapter" for the Gamecube console. It's basic ly is a GBA in a black box without LCD screen and without buttons, connected to an expansion port at the bottom of the Gamecube. The Gamecube is then capturing the GBA video output (and passing it to the television set), and in the other direction, passing the Gamecube joypad input to the GBA inputs.

Unlocking and Detecting Gameboy Player Functions
Both unlocking and detection requires to display the 240x160 pixel Gameboy Player logo (44 colors) for a number of frames... maybe at least 3-4 frames? not sure if it checks the color of the logo... so maybe it can be hidden by using dark gray on black background?
While displaying this logo, the joypad data will switch between values 03FFh (2 frames duration) and 030Fh (1 frame duration). The latter value (left, right, up, down all pressed) indicates that it's a Gameboy Player.

Palette
Knowing Nintendo, they've probably not reproduced the blurred GBA colors (?), so the games won't look as desired on the TV screen. Unless the game does detect the Gameboy Player, and adjust the colors accordingly by software.

Rumble
The only known existing special function is the joypad rumble function, still, it's unknown HOW it works exactly - it's somehow (?) controlled by sending data through the serial port (the normal GBA port, even though it also has the connectors).

Note
If it's having a similar range of functions as the 8bit Super Gameboy, then the Gameboy Player might be also able to access analogue joypad input, and to access other features of the Gamecube hardware, up to possibly executing code on the Gamecube CPU...?

 BIOS Functions

The GBA BIOS includes several System Call Functions which can be accessed by SWI instructions. Incoming parameters are usually passed through registers R0,R1,R2,R3. Outgoing registers R0,R1,R3 are typically containing either garbage, or return value(s). All other registers (R2,R4-R14) are kept unchanged.

Caution
When invoking SWIs from inside of ARM state specify SWI NN*10000h, instead of SWI NN as in THUMB state.

Overview
BIOS Function Summary
BIOS Differences between GBA and NDS functions

All Functions Described
BIOS Arithmetic Functions
BIOS Rotation/Scaling Functions
BIOS Decompression Functions
BIOS Memory Copy
BIOS Halt Functions
BIOS Reset Functions
BIOS Misc Functions
BIOS Multi Boot (S ingle Game Pak)
BIOS Sound Functions

How BIOS Processes SWIs
SWIs can be called from both within THUMB and ARM mode. In ARM mode, only the upper 8bit of the 24bit comment field are interpreted.
Each time when calling a BIOS function 4 words (SPSR, R11, R12, R14) are saved on Supervisor stack (_svc). Once it has saved that data, the SWI handler switches into System mode, so that all further stack operations are using user stack.
In some cases the BIOS may allow interrupts to be executed from inside of the SWI procedure. If so, and if the interrupt handler calls further SWIs, then care should be taken that the Supervisor S tack does not overflow.

 BIOS Function Summary

 GBA NDS7 NDS9 Function
 00h 00h 00h SoftReset
 01h - - RegisterRamReset
 02h 06h 06h Halt
 03h 07h - Stop/Sleep
 04h 04h 04h IntrWait
 05h 05h 05h VBlankIntrWait
 06h 09h 09h Div
 07h - - DivArm
 08h 0Dh 0Dh Sqrt
 09h - - ArcTan
 0Ah - - ArcTan2
 0Bh 0Bh 0Bh CpuSet
 0Ch 0Ch 0Ch CpuFastSet
 0Dh - - GetBiosChecksum
 0Eh - - BgAffineSet
 0Fh - - ObjAffineSet
 10h 10h 10h BitUnPack
 11h 11h 11h LZ77UnCompWram
 12h 12h 12h LZ77UnCompVram
 13h 13h 13h HuffUnComp
 14h 14h 14h RLUnCompWram
 15h 15h 15h RLUnCompVram
 16h - 16h Diff8bitUnFilterWram
 17h - - Diff8bitUnFilterVram
 18h - 18h Diff16bitUnFilter
 19h 08h - SoundBias
 1Ah - - SoundDriverInit
 1Bh - - SoundDriverMode
 1Ch - - SoundDriverMain
 1Dh - - SoundDriverVSync
 1Eh - - SoundChannelClear
 1Fh - - MidiKey2Freq
 20h - - SoundWhatever0
 21h - - SoundWhatever1
 22h - - SoundWhatever2
 23h - - SoundWhatever3
 24h - - SoundWhatever4
 25h - - MultiBoot
 26h - - HardReset
 27h 1Fh - CustomHalt
 28h - - SoundDriverVSyncOff
 29h - - SoundDriverVSyncOn
 2Ah - - SoundGetJumpList
 - 03h 03h WaitByLoop
 - 0Eh 0Eh GetCRC16
 - 0Fh 0Fh IsDebugger
 - 1Ah - GetSineTable
 - 1Bh - GetPitchTable
 - 1Ch - GetVolumeTable
 - 1Dh - GetBootProcs
 - - 1Fh CustomPost

The BIOS SWI handler does not perform any range checks, so calling GBA SWI 2Bh-FFh or NDS SWI 20h-FFh will blindly jump to garbage addresses.
Also, NDS7 SWI 01h, 02h, 0Ah, 16h-19h, 1Eh, and NDS9 SWI 01h, 02h, 07h, 08h, 0Ah, 17h, 19h-1Eh will jump to zero (ie. to the NDS7 reset vector, or to NDS9 unused (usually PU-locked ITCM) memory, which will be both redirected to the debug handler, if any).

 BIOS Differences between GBA and NDS functions

Differences between GBA and NDS BIOS functions
- SoftReset uses different addresses
- SWI numbers for Halt, S top/S leep, Div, Sqrt have changed
- Halt destroys r0 on NDS9, IntrWait bugged on NDS9
- CpuFastSet allows 4-byte blocks (nice), but...
- CpuFastSet works very SLOW because of a programming bug (uncool)
- LZ77UnCompVram, HuffUnComp, RLUnCompVram use callbacks
- SoundBias uses new delay parameter
And, a number of GBA functions have been removed, and some new NDS functions have been added, see:
BIOS Function Summary

 BIOS Arithmetic Functions

Div
DivArm
Sqrt
ArcTan
ArcTan2

SWI 06h (GBA) or SWI 09h (NDS7/NDS9) - Div
S igned Division, r0/r1.
 r0 signed 32bit Number
 r1 signed 32bit Denom

Return:
 r0 Number DIV Denom ;signed
 r1 Number MOD Denom ;signed
 r3 ABS (Number DIV Denom) ;unsigned

For example, incoming -1234, 10 should return -123, -4, +123.
The function usually gets caught in an endless loop upon division by zero.
Note: The NDS9 additionally supports hardware division, by math coprocessor, accessed via I/O Ports, however, the SWI function is a raw software division.

SWI 07h (GBA) - DivArm
Same as above (SWI 06h Div), but incoming parameters are exchanged, r1/r0 (r0=Denom, r1=number). For compatibility with ARM's library. S lightly slower (3 c lock cycles) than SWI 06h.

SWI 08h (GBA) or SWI 0Dh (NDS7/NDS9) - Sqrt
Calculate square root.
 r0 unsigned 32bit number

Return:
 r0 unsigned 16bit number

The result is an integer value, so Sqrt(2) would return 1, to avoid this inaccuracy, shift left incoming number by 2*N as much as possible (the result is then shifted left by 1*N). Ie. Sqrt(2 shl 30) would return 1.41421 shl 15.
Note: The NDS9 additionally supports hardware square root calculation, by math coproc essor, accessed via I/O Ports, however, the SWI function is a raw software calculation.

SWI 09h (GBA) - ArcTan
Calculates the arc tangent.
 r0 Tan, 16bit (1bit sign, 1bit integral part, 14bit decimal part)

Return:
 r0 "-PI/2<THETA/<PI/2" in a range of C000h-4000h.

Note: there is a problem in accuracy with "THETA<-PI/4, PI/4<THETA".

SWI 0Ah (GBA) - ArcTan2
Calculates the arc tangent after correction processing.
Use this in normal situations.
 r0 X, 16bit (1bit sign, 1bit integral part, 14bit decimal part)
 r1 Y, 16bit (1bit sign, 1bit integral part, 14bit decimal part)

Return:
 r0 0000h-FFFFh for 0<=THETA<2PI.

 BIOS Rotation/Scaling Functions

BgAffineSet
ObjAffineSet

SWI 0Eh (GBA) - BgAffineSet
Used to calculate BG Rotation/Scaling parameters.
 r0 Pointer to Source Data Field with entries as follows:
 s32 Original data's center X coordinate (8bit fractional portion)
 s32 Original data's center Y coordinate (8bit fractional portion)
 s16 Display's center X coordinate
 s16 Display's center Y coordinate
 s16 Scaling ratio in X direction (8bit fractional portion)
 s16 Scaling ratio in Y direction (8bit fractional portion)
 u16 Angle of rotation (8bit fractional portion) Effective Range 0-FFFF
 r1 Pointer to Destination Data Field with entries as follows:
 s16 Difference in X coordinate along same line
 s16 Difference in X coordinate along next line
 s16 Difference in Y coordinate along same line
 s16 Difference in Y coordinate along next line
 s32 Start X coordinate
 s32 Start Y coordinate
 r2 Number of Calculations

Return: No return value, Data written to destination address.

SWI 0Fh (GBA) - ObjAffineSet
Calculates and sets the OBJ's affine parameters from the scaling ratio and angle of rotation.
The affine parameters are calculated from the parameters set in S rcp.
The four affine parameters are set every Offset bytes, starting from the Destp address.
If the Offset value is 2, the parameters are stored contiguously. If the value is 8, they match the structure of OAM.
When Srcp is arrayed, the calculation can be performed continuously by specifying Num.
 r0 Source Address, pointing to data structure as such:
 s16 Scaling ratio in X direction (8bit fractional portion)
 s16 Scaling ratio in Y direction (8bit fractional portion)
 u16 Angle of rotation (8bit fractional portion) Effective Range 0-FFFF
 r1 Destination Address, pointing to data structure as such:
 s16 Difference in X coordinate along same line
 s16 Difference in X coordinate along next line
 s16 Difference in Y coordinate along same line
 s16 Difference in Y coordinate along next line
 r2 Number of calculations
 r3 Offset in bytes for parameter addresses (2=continuous, 8=OAM)

Return: No return value, Data written to destination address.

For both Bg- and ObjAffineSet, Rotation angles are specified as 0-FFFFh (covering a range of 360 degrees), however, the GBA BIOS recurses only the upper 8bit; the lower 8bit may contain a fractional portion, but it is ignored by the BIOS .

 BIOS Decompression Functions

BitUnPack
Diff8bitUnFilterWram
Diff8bitUnFilterVram
Diff16bitUnFilter
HuffUnComp
LZ77UnCompWram
LZ77UnCompVram
RLUnCompVram
RLUnCompWram

SWI 10h (GBA/NDS7/NDS9) - BitUnPack
Used to increase the color depth of bitmaps or tile data. For example, to convert a 1bit monochrome font into 4bit or 8bit GBA tiles. The Unpack Info is specified separately, allowing to convert the same source data into different formats.
 r0 Source Address (no alignment required)
 r1 Destination Address (must be 32bit-word aligned)
 r2 Pointer to UnPack information:
 16bit Length of Source Data in bytes (0-FFFFh)
 8bit Width of Source Units in bits (only 1,2,4,8 supported)
 8bit Width of Destination Units in bits (only 1,2,4,8,16,32 supported)
 32bit Data Offset (Bit 0-30), and Zero Data Flag (Bit 31)
 The Data Offset is always added to all non-zero source units.
 If the Zero Data Flag was set, it is also added to zero units.

Data is written in 32bit units, Destination can be Wram or Vram. The size of unpacked data must be a multiple of 4 bytes. The width of source units (plus the offset) should not exceed the destination width.
Return: No return value, Data written to destination address.

SWI 16h (GBA/NDS9) - Diff8bitUnFilterWram
SWI 17h (GBA) - Diff8bitUnFilterVram
SWI 18h (GBA/NDS9) - Diff16bitUnFilter
These aren't actually real decompression functions, destination data will have exactly the same size as source data. However, assume a bitmap or wave form to contain a stream of increasing numbers such like 10..19, the filtered/unfiltered data would be:
 unfiltered: 10 11 12 13 14 15 16 17 18 19
 filtered: 10 +1 +1 +1 +1 +1 +1 +1 +1 +1

In this case using filtered data (combined with actual compression algorithms) will obviously produce better compression results.
Data units may be either 8bit or 16bit used with Diff8bit or Diff16bit functions respectively. The 8bitVram function allows to write to VRAM directly (which uses 16bit data bus) by writing two 8bit values at once, the downside is that it is eventually slower as the 8bitWram function.
 r0 Source address (must be aligned by 4) pointing to data as follows:
 Data Header (32bit)
 Bit 0-3 Data size (must be 1 for Diff8bit, 2 for Diff16bit)
 Bit 4-7 Type (must be 8 for DiffFiltered)
 Bit 8-31 24bit size after decompression
 Data Units (each 8bit or 16bit depending on used SWI function)
 Data0 ;original data
 Data1-Data0 ;difference data
 Data2-Data1 ;...
 Data3-Data2
 ...
 r1 Destination address

Return: No return value, Data written to destination address.

SWI 13h (GBA/NDS7/NDS9) - HuffUnComp (NDS: with Callback)
The decoder starts in root node, the separate bits in the bitstream specify if the next node is node0 or node1, if that node is a data node, then the data is stored in memory, and the decoder is reset to the root node. The most often used data should be as c lose to the root node as possible. For example, the 4-byte string "Huff" could be compressed to 6 bits: 10-11-0-0, with root.0 pointing directly to data "f", and root.1 pointing to a child node, whose nodes point to data "H" and data "u".
Data is written in units of 32bits, if the size of the compressed data is not a multiple of 4, please adjust it as much as possible by padding with 0.
Align the source address to a 4Byte boundary.
 r0 Source Address, aligned by 4, pointing to:
 Data Header (32bit)
 Bit0-3 Data size in bit units (normally 4 or 8)
 Bit4-7 Compressed type (must be 2 for Huffman)
 Bit8-31 24bit size of decompressed data in bytes
 Tree Size (8bit)
 Bit0-7 Size of Tree Table/2-1 (ie. Offset to Compressed Bitstream)
 Tree Table (list of 8bit nodes, starting with the root node)
 Root Node and Non-Data-Child Nodes are:
 Bit0-5 Offset to next child node,
 Next child node0 is at (CurrentAddr AND NOT 1)+Offset*2+2
 Next child node1 is at (CurrentAddr AND NOT 1)+Offset*2+2+1
 Bit6 Node1 End Flag (1=Next child node is data)
 Bit7 Node0 End Flag (1=Next child node is data)
 Data nodes are (when End Flag was set in parent node):
 Bit0-7 Data (upper bits should be zero if Data Size is less than 8)
 Compressed Bitstream (stored in units of 32bits)
 Bit0-31 Node Bits (Bit31=First Bit) (0=Node0, 1=Node1)
 r1 Destination Address
 r2 Callback parameter (NDS SWI 13h only, see Callback notes below)
 r3 Callback structure (NDS SWI 13h only, see Callback notes below)

Return: No return value, Data written to destination address.

 lea ebx,[esi+1] ;\
 mov @@root,ebx ; init source pointers
 movzx eax,byte ptr ds:[esi] ;
 lea esi,[esi+eax*2+2] ;/
 mov edx,80000000h ;stop-bit

@@data_lop:
 mov dword ptr [@@data],0
 mov byte ptr [@@cnt],-32
 ;--- bit loop ---

@@lop:
 mov al,byte ptr ds:[ebx] ;\
 mov ch,al ;bit6,bit7 ; get node entry (offset/flags)
 and eax,0000003fh ;offset ;/
 and ebx,not 1 ;addr AND not 1;-align curr addr (for below offset)
 lea ebx,[ebx+eax*2+2] ;-and add offset to node0 (node1 if at addr+1)
 add edx,edx ;=cy ;\
 jz @@collect_bits ; get next bit to carry

@@collect_back: ;/
 jnc short @@node0 ;\
 inc ebx ;addr+1 ; node0 or node1
 add ch,ch ;bit6 to bit7 ;

@@node0: ;/
 add ch,ch ;bit7 to cy ;\check if next node is data
 jnc short @@lop ;next child ;/
 ;--- data node ---
 mov al,byte ptr ds:[ebx] ;\

;XXX AND AL,MASK(bitwidth) ;
 or byte ptr [@@data],al ;
 ror dword ptr [@@data],cl ;/
 mov ebx,@@root ;-back to root node
 add byte ptr [@@cnt],cl ;\check if collected 32bit data
 js short @@lop ;/which would be to be stored in RAM now
 mov eax,dword ptr [@@data] ;\
 stosd ; store data, check if done
 sub @@len,4 ;
 ja short @@data_lop ;/

@@done:
 ret

;---
@@collect_bits: ;in: cy=1 (stop-bit)
 lodsd ;cy=same (!)
 adc eax,eax ;bit31 to cy, and bit0=1 (=incoming cy=stop-bit)
 mov edx,eax
 jmp short @@collect_back ;out: cy

;---

SWI 11h (GBA/NDS7/NDS9) - LZ77UnCompWram
SWI 12h (GBA/NDS7/NDS9) - LZ77UnCompVram (NDS: with Callback)
Expands LZ77-compressed data. The Wram function is faster, and writes in units of 8bits. For the Vram function the destination must be halfword aligned, data is written in units of 16bits.
If the size of the compressed data is not a multiple of 4, please adjust it as much as possible by padding with 0. Align the source address to a 4-Byte boundary.
 r0 Source address, pointing to data as such:
 Data header (32bit)
 Bit 0-3 Reserved
 Bit 4-7 Compressed type (must be 1 for LZ77)
 Bit 8-31 Size of decompressed data
 Repeat below. Each Flag Byte followed by eight Blocks.
 Flag data (8bit)
 Bit 0-7 Type Flags for next 8 Blocks, MSB first
 Block Type 0 - Uncompressed - Copy 1 Byte from Source to Dest
 Bit 0-7 One data byte to be copied to dest
 Block Type 1 - Compressed - Copy N+3 Bytes from Dest-Disp-1 to Dest
 Bit 0-3 Disp MSBs
 Bit 4-7 Number of bytes to copy (minus 3)
 Bit 8-15 Disp LSBs
 r1 Destination address
 r2 Callback parameter (NDS SWI 12h only, see Callback notes below)
 r3 Callback structure (NDS SWI 12h only, see Callback notes below)

Return: No return value.

SWI 14h (GBA/NDS7/NDS9) - RLUnCompWram
SWI 15h (GBA/NDS7/NDS9) - RLUnCompVram (NDS: with Callback)
Expands run-length compressed data. The Wram function is faster, and writes in units of 8bits. For the Vram function the destination must be halfword aligned, data is written in units of 16bits.
If the size of the compressed data is not a multiple of 4, please adjust it as much as possible by padding with 0. Align the source address to a 4Byte boundary.
 r0 Source Address, pointing to data as such:
 Data header (32bit)
 Bit 0-3 Reserved
 Bit 4-7 Compressed type (must be 3 for run-length)
 Bit 8-31 Size of decompressed data
 Repeat below. Each Flag Byte followed by one or more Data Bytes.
 Flag data (8bit)
 Bit 0-6 Expanded Data Length (uncompressed N-1, compressed N-3)
 Bit 7 Flag (0=uncompressed, 1=compressed)
 Data Byte(s) - N uncompressed bytes, or 1 byte repeated N times
 r1 Destination Address
 r2 Callback parameter (NDS SWI 15h only, see Callback notes below)
 r3 Callback structure (NDS SWI 15h only, see Callback notes below)

Return: No return value, Data written to destination address.

NDS Decompression Callbacks
On NDS7/NDS9, the SWI 12h, 13h, 15h functions are reading source data from callback functions (rather than directly from memory). The callback functions may read normal data from memory, or from other devices, such like directly from the gamepak bus, without storing the source data in memory. The downside is that the callback mechanism makes the function very slow, furthermore, NDS7/NDS9 SWI 12h, 13h, 15h are using THUMB code, and variables on stack, alltogether that makes the whole shit very-very-very slow.
 r2 = user defined callback parameter (passed on to Open function)
 r3 = pointer to callback structure

Callback structure (five 32bit pointers to callback functions)
 Open_and_get_32bit (eg. LDR r0,[r0], get header)
 Close (optional, 0=none)
 Get_8bit (eg. LDRB r0,[r0])
 Get_16bit (not used)
 Get_32bit (used by Huffman only)

All functions may use ARM or THUMB code (indicated by address bit0). The current source address (r0) is passed to all callback functions. Additionally, the initial destination address (r1), and a user defined parameter (r2) are passed to the Open function. All functions have return values in r0. The Open function normally returns the first word (containing positive length and type), alternatively it may return a negative error code to abort/reject decompression. The Close function, if it is defined, should return zero (or any positive value), or a negative errorcode. The other functions return raw data, without errorcodes. The SWI returns the length of decompressed data, or the signed errorcode from the Open/Close functions.

 BIOS Memory Copy

CpuFastSet
CpuSet

SWI 0Ch (GBA/NDS7/NDS9) - CpuFastSet
Memory copy/fill in units of 32 bytes. Memcopy is implemented as repeated LDMIA/STMIA [Rb]!,r2-r9 instructions. Memfill as single LDR followed by repeated STMIA [Rb]!,r2-r9. After processing all 32-byte-blocks, the NDS additonally processes the remaining words as 4-byte blocks. BUG: The NDS uses the fast 32-byte-block processing only for the first N bytes (not for the first N words), so only the first quarter of the memory block is FAST, the remaining three quarters are SLOWLY copied word-by-word.
The length is specifed as wordcount, ie. the number of bytes divided by 4.
On the GBA, the length must be a multiple of 8 words (32 bytes). On NDS, the length may be any number of words (4 bytes).
 r0 Source address (must be aligned by 4)
 r1 Destination address (must be aligned by 4)
 r2 Length/Mode
 Bit 0-20 Wordcount (GBA: must be a multiple of 8 words)
 Bit 24 Fixed Source Address (0=Copy, 1=Fill by WORD[r0])

Return: No return value, Data written to destination address.

SWI 0Bh (GBA/NDS7/NDS9) - CpuSet
Memory copy/fill in units of 4 bytes or 2 bytes. Memcopy is implemented as repeated LDMIA/STMIA [Rb]!,r3 or LDRH/STRH r3,[r0,r5] instructions. Memfill as single LDMIA or LDRH followed by repeated STMIA [Rb]!,r3 or STRH r3,[r0,r5].
The length must be a multiple of 4 bytes (32bit mode) or 2 bytes (16bit mode). The (half)wordcount in r2 must be length/4 (32bit mode) or length/2 (16bit mode), ie. length in word/halfword units rather than byte units.
 r0 Source address (must be aligned by 4 for 32bit, by 2 for 16bit)
 r1 Destination address (must be aligned by 4 for 32bit, by 2 for 16bit)
 r2 Length/Mode
 Bit 0-20 Wordcount (for 32bit), or Halfwordcount (for 16bit)
 Bit 24 Fixed Source Address (0=Copy, 1=Fill by {HALF}WORD[r0])
 Bit 26 Datasize (0=16bit, 1=32bit)

Return: No return value, Data written to destination address.

Note: On GBA and NDS7, these two functions will silently reject to do anything if the source start or end addresses are reaching into the BIOS area. The NDS9 doesn't have such read-proctection.

 BIOS Halt Functions

Halt
IntrWait
VBlankIntrWait
S top/S leep
CustomHalt

SWI 02h (GBA) or SWI 06h (NDS7/NDS9) - Halt
Halts the CPU until an interrupt request occurs. The CPU is switched into low-power mode, all other c ircuits (video, sound, timers, serial, keypad, system clock) are kept operating.
Halt mode is terminated when any enabled interrupts are requested, that is when (IE AND IF) is not zero, the GBA locks up if that condition doesn't get true. However, the state of CPUs IRQ disable bit in CPSR register, and the IME register are don't care, Halt passes through even if either one has disabled interrupts.
On GBA and NDS7, Halt is implemented by writing to HALTCNT, Port 4000301h. On NDS9, Halt is implemted by writing to System Control Coprocessor (mov p15,0,c7,c0,4,r0 opcode), this opcode hangs if IME=0.
No parameters, no return value.
(GBA/NDS7: all registers unchanged, NDS9: R0 destroyed)

SWI 04h (GBA/NDS7/NDS9) - IntrWait
Continues to wait in Halt state until one (or more) of the specified interrupt(s) do occur. The function forcefully sets IME=1. When using multiple interrupts at the same time, this function is having less overhead than repeatedly calling the Halt function.
 r0 0=Return immediately if an old flag was already set (NDS9: bugged!)
 1=Discard old flags, wait until a NEW flag becomes set
 r1 Interrupt flag(s) to wait for (same format as IE/IF registers)

Caution: When using IntrWait or VBlankIntrWait, the user interrupt handler MUST update the BIOS Interrupt Flags value in RAM; when acknowleding processed interrupt(s) by writing a value to the IF register, the same value should be also ORed to the BIOS Interrupt Flags value, at following memory location:
 Host GBA (16bit) NDS7 (32bit) NDS9 (32bit)
 Address [3007FF8h] [380FFF8h] [DTCM+3FF8h]

NDS9: BUG: No Discard (r0=0) doesn't work. The function always waits for at least one IRQ to occur (no matter which, including IRQs that are not selected in r1), even if the desired flag was already set. NB. the same bug is also found in the GBA/NDS7 func tions, but it's compensated by a second bug, ie. the GBA/NDS7 functions are working okay because their "bug doesn't work".
Return: No return value, the selected flag(s) are automatically reset in BIOS Interrupt Flags value in RAM upon return.

SWI 05h (GBA/NDS7/NDS9) - VBlankIntrWait
Continues to wait in Halt status until a new V-Blank interrupt occurs.
The function sets r0=1 and r1=1 and then executes IntrWait (SWI 04h), see IntrWait for details.
No parameters, no return value.

SWI 03h (GBA) - Stop
Switches the GBA into very low power mode (to be used similar as a screen-saver). The CPU, System Clock, Sound, Video, S IO-Shift Clock, DMAs, and Timers are stopped.
S top state can be terminated by the following interrupts only (as far as enabled in IE register): Joypad, Game Pak, or General-Purpose-S IO.
"The system clock is stopped so the IF flag is not set."
Preparation for S top:
Disable Video before implementing S top (otherwise Video just freezes, but still keeps consuming battery power). Possibly required to disable Sound also? Obviously, it'd be also recommended to disable any external hardware (such like Rumble or Infra-Red) as far as possible.
No parameters, no return value.

SWI 07h (NDS7) - Sleep
No info, probably similar as GBA SWI 03h (S top). S leep is implemented for NDS7 only, not for NDS9, not sure if the functions stops BOTH NDS7 and NDS9?

SWI 27h (GBA) or SWI 1Fh (NDS7) - CustomHalt (Undocumented)
Writes the 8bit parameter value to HALTCNT, below values are equivalent to Halt and S top/S leep functions, other values reserved, purpose unknown.
 r2 8bit parameter (GBA: 00h=Halt, 80h=Stop) (NDS7: 80h=Halt, C0h=Sleep)

No return value.

 BIOS Reset Functions

SoftReset
RegisterRamReset
HardReset

SWI 00h - SoftReset
Clears 200h bytes of RAM (containing stacks, and BIOS IRQ vector/flags), initializes system, supervisor, and irq stack pointers, sets R0-R12, LR_svc, SPSR_svc, LR_irq, and SPSR_irq to zero, and enters system mode.
Note that the NDS9 stack registers are hardcoded (the DTCM base should be set to the default setting of 0800000h). The NDS9 function additionally flushes caches and write buffer, and sets the CP15 control register to 12078h.
 Host sp_svc sp_irq sp_sys zerofilled area return address
 GBA 3007FE0h 3007FA0h 3007F00h [3007E00h..3007FFFh] Flag[3007FFAh]
 NDS7 380FFDCh 380FFB0h 380FF00h [380FE00h..380FFFFh] Addr[27FFE34h]
 NDS9 0803FC0h 0803FA0h 0803EC0h [DTCM+3E00h..3FFFh] Addr[27FFE24h]

The NDS7/NDS9 return addresses at [27FFE34h/27FFE24h] are usually containing copies of Cartridge Header [034h/024h] entry points, which may select ARM/THUMB state via bit0. The GBA return address 8bit flag is interpreted as 00h=8000000h (ROM), or 01h-FFh=2000000h (RAM), entered in ARM state.
Note: The reset is applied only to the CPU that has executed the SWI (ie. on the NDS, the other CPU will remain unaffected).
Return: Does not return to calling procedure, instead, loads the above return address into R14, and then jumps to that address by a "BX R14" opcode.

SWI 01h (GBA) - RegisterRamReset
Resets the I/O registers and RAM specified in ResetFlags. However, it does not c lear the CPU internal RAM area from 3007E00h-3007FFFh.
 r0 ResetFlags
 Bit Expl.
 0 Clear 256K on-board WRAM ;-don't use when returning to WRAM
 1 Clear 32K in-chip WRAM ;-excluding last 200h bytes
 2 Clear Palette
 3 Clear VRAM
 4 Clear OAM ;-zerofilled! does NOT disable OBJs!
 5 Reset SIO registers ;-switches to general purpose mode!
 6 Reset Sound registers
 7 Reset all other registers (except SIO, Sound)

Return: No return value.
Bug: LSBs of S IODATA32 are always destroyed, even if Bit5 of R0 was cleared.
The function always switches the screen into forced blank by setting DISPCNT=0080h (regardless of incoming R0, screen becomes white).

SWI 26h (GBA) - HardReset (Undocumented)
This function reboots the GBA (including for getting through the time-consuming nintendo intro, which is making the function particularly useless and annoying).
Parameters: None. Return: Never/Reboot.
Execution Time: About 2 seconds (!)

 BIOS Misc Functions

GetBiosChecksum
WaitByLoop
GetCRC16
IsDebugger
GetS ineTable
GetPitchTable
GetVolumeTable
CustomPost
GetBootProcs

SWI 0Dh (GBA) - GetBiosChecksum (Undocumented)
Calculates the checksum of the BIOS ROM (by reading in 32bit units, and adding up these values). IRQ and FIQ are disabled during execution.
The checksum is BAAE187Fh (GBA and GBA SP), or BAAE1880h (DS in GBA mode, whereas the only difference is that the byte at [3F0Ch] is changed from 00h to 01h, otherwise the BIOS is 1:1 same as GBA BIOS , it does even include multiboot code).
Parameters: None. Return: r0=Checksum.

SWI 03h (NDS7/NDS9) - WaitByLoop
Performs a "LOP: SUB R0,1 / BGT LOP" wait loop, the loop is executed in BIOS memory, which provides reliable timings (regardless of the memory waitstates & cache state of the calling procedure). Intended only for short delays (eg. flash memory programming cycles).
 r0 Delay value (should be in range 1..7FFFFFFFh)

Execution Time: NDS7: R0*4 cycles, plus some overload on SWI handling.
Execution Time: NDS9: R0*2 (cache on), or R0*8 (cache off), plus overload.
Note: Both NDS7 and NDS9 timings are counted in 33.51MHz units.
Return: No return value.

SWI 0Eh (NDS7/NDS9) - GetCRC16
 r0 Initial CRC value (16bit, usually FFFFh)
 r1 Start Address (must be aligned by 2)
 r2 Length in bytes (must be aligned by 2)

CRC16 checksums can be calculated as such:
 val[0..7] = C0C1h,C181h,C301h,C601h,CC01h,D801h,F001h,A001h
 for i=start to end
 crc=crc xor byte[i]
 for j=0 to 7
 crc=crc shr 1:if carry then crc=crc xor (val[j] shl (7-j))
 next j
 next i

Return:
 r0 Calculated 16bit CRC Value

Additionally, if the length is nonzero, r3 contains the last processed halfword at [addr+len-2]. Unlike most other NDS7 SWI functions which reject to read from BIOS memory, this allows to dump the NDS7 BIOS (except for the memory region that is locked via BIOSPROT Port 4000308h).

SWI 0Fh (NDS7/NDS9) - IsDebugger
Detects if 4MB (normal) or 8MB (debug version) Main RAM installed.
Return: r0 = result (0=normal console 4MB, 1=debug version 8MB)
Destroys halfword at [27FFFFAh] (NDS7) or [27FFFF8h] (NDS9)!
The SWI 0Fh function doesn't work stable if it gets interrupted by an interrupt which is calling SWI 0Fh, which would destroy the above halfword scratch value (unless the IRQ handler has saved/restored the halfword).

SWI 1Ah (NDS7) - GetSineTable
 r0 Index (0..3Fh) (must be in that range, otherwise returns garbage)

Return: r0 = Desired Entry (0000h..7FF5h) ;S IN(0 .. 88.6 degrees)*8000h

SWI 1Bh (NDS7) - GetPitchTable
 r0 Index (0..2FFh) (must be in that range, otherwise returns garbage)

Return: r0 = Desired Entry (0000h..FF8Ah) (unsigned)

SWI 1Ch (NDS7) - GetVolumeTable
 r0 Index (0..2D3h) (must be in that range, otherwise returns garbage)

Return: r0 = Desired Entry (00h..7Fh) (unsigned)

SWI 1Fh (NDS9) - CustomPost
Writes to the POSTFLG register, probably for use by Firmware boot procedure.
 r0 32bit value, to be written to POSTFLG, Port 4000300h

Return: No return value.

SWI 1Dh (NDS7) - GetBootProcs
Returns addresses of Gamecart boot procedure/interrupt handler, probably for use by F irmware boot procedure. The return values are somewhat XORed by each other. Most of the returned functions won't work if the POSTFLG register is set.

 BIOS Multi Boot (Single Game Pak)

MultiBoot

SWI 25h (GBA) - MultiBoot
This function uploads & starts program code to slave GBAs, allowing to launch programs on slave units even if no cartridge is inserted into the slaves (this works because all GBA BIOSes contain built-in download procedures in ROM).
However, the SWI 25h BIOS upload function covers only 45% of the required Transmission Protocol, the other 55% must be coded in the master cartridge (see Transmission Protocol below).
 r0 Pointer to MultiBootParam structure
 r1 Transfer Mode (undocumented)
 0=256KHz, 32bit, Normal mode (fast and stable)
 1=115KHz, 16bit, MultiPlay mode (default, slow, up to three slaves)
 2=2MHz, 32bit, Normal mode (fastest but maybe unstable)
 Note: HLL-programmers that are using the MultiBoot(param_ptr) macro cannot
 specify the transfer mode and will be forcefully using MultiPlay mode.

Return:
 r0 0=okay, 1=failed

See below for more details.

Multiboot Parameter Structure
S ize of parameter structure should be 4Ch bytes (the current GBA BIOS uses only first 44h bytes though). The following entries must be set before calling SWI 25h:
 Addr Size Name/Expl.
 14h 1 handshake_data (entry used for normal mode only)
 19h 3 client_data[1,2,3]
 1Ch 1 palette_data
 1Eh 1 client_bit (Bit 1-3 set if child 1-3 detected)
 20h 4 boot_srcp (typically 8000000h+0C0h)
 24h 4 boot_endp (typically 8000000h+0C0h+length)

The transfer length (excluding header data) should be a multiple of 10h, minimum length 100h, max 3FF40h (ca. 256KBytes). Set palette_data as "81h+color*10h+direction*8+speed*2", or as "0f1h+color*2" for fixed palette, whereas color=0..6, speed=0..3, direction=0..1. The other entries (handshake_data, c lient_data[1-3], and client_bit) must be same as specified in Transmission Protocol (see below hh,cc,y).

Multiboot Transfer Protocol
Below describes the complete transfer protocol, normally only the Initiation part must be programmed in the master cartridge, the main data transfer can be then performed by calling SWI 25h, the slave program is started after SWI 25h completion.
The ending handshake is normally not required, when using it, note that you will need custom code in BOTH master and slave programs.
 Times Send Receive Expl.
 -----------------------Required Transfer Initiation in master program
 ... 6200 FFFF Slave not in multiplay/normal mode yet
 1 6200 0000 Slave entered correct mode now
 15 6200 720x Repeat 15 times, if failed: delay 1/16s and restart
 1 610y 720x Recognition okay, exchange master/slave info
 60h xxxx NN0x Transfer C0h bytes header data in units of 16bits
 1 6200 000x Transfer of header data completed
 1 620y 720x Exchange master/slave info again
 ... 63pp 720x Wait until all slaves reply 73cc instead 720x
 1 63pp 73cc Send palette_data and receive client_data[1-3]
 1 64hh 73uu Send handshake_data for final transfer completion
 -----------------------Below is SWI 25h MultiBoot handler in BIOS
 DELAY - - Wait 1/16 seconds at master side
 1 llll 73rr Send length information and receive random data[1-3]
 LEN yyyy nnnn Transfer main data block in units of 16 or 32 bits
 1 0065 nnnn Transfer of main data block completed, request CRC
 ... 0065 0074 Wait until all slaves reply 0075 instead 0074
 1 0065 0075 All slaves ready for CRC transfer
 1 0066 0075 Signalize that transfer of CRC follows
 1 zzzz zzzz Exchange CRC must be same for master and slaves
 -----------------------Optional Handshake (NOT part of master/slave BIOS)
 Exchange whatever custom data

Legend for above Protocol
 y client_bit, bit(s) 1-3 set if slave(s) 1-3 detected
 x bit 1,2,or 3 set if slave 1,2,or 3
 xxxx header data, transferred in 16bit (!) units (even in 32bit normal mode)
 nn response value for header transfer, decreasing 60h..01h
 pp palette_data
 cc random client_data[1..3] from slave 1-3, FFh if slave not exists
 hh handshake_data, 11h+client_data[1]+client_data[2]+client_data[3]
 uu random data, not used, ignore this value

Below automatically calculated by SWI 25h BIOS function (don't care about)
 llll download length/4-34h
 rr random data from each slave for encryption, FFh if slave not exists
 yyyy encoded data in 16bit (multiplay) or 32bit (normal mode) units
 nnnn response value, lower 16bit of destadr in GBA memory (00C0h and up)
 zzzz 16bit download CRC value, must be same for master and slaves

Pseudo Code for SWI 25h Transfer with Checksum and Encryption calculations
 if normal_mode then c=C387h:x=C37Bh:k=43202F2Fh
 if multiplay_mode then c=FFF8h:x=A517h:k=6465646Fh
 m=dword(pp,cc,cc,cc):f=dword(hh,rr,rr,rr)
 for ptr=000000C0h to (file_size-4) step 4
 c=c xor data[ptr]:for i=1 to 32:c=c shr 1:if carry then c=c xor x:next
 m=(6F646573h*m)+1
 send_32_or_2x16 (data[ptr] xor (-2000000h-ptr) xor m xor k)
 next
 c=c xor f:for i=1 to 32:c=c shr 1:if carry then c=c xor x:next
 wait_all_units_ready_for_checksum:send_32_or_1x16 (c)

Whereas, explained: c=chksum,x=chkxor,f=chkfin,k=keyxor,m=keymul

Multiboot Communication
In Multiplay mode, master sends 16bit data, and receives 16bit data from each slave (or FFFFh if none). In Normal mode, master sends 32bit data (upper 16bit zero, lower 16bit as for multipay mode), and receives 32bit data (upper 16bit as for multiplay mode, and lower 16bit same as lower 16bit previously sent by master). Because S IODATA32 occupies same addresses as S IOMULTI0-1, the same transfer code can be used for both multiplay and normal mode (in normal mode S IOMULTI2-3 should be forced to FFFFh though). After each transfer, master should wait for S tart bit c leared in S IOCNT register, followed by a 36us delay.
Note: The multiboot slave would also recognize data being sent in Joybus mode, however, master GBAs cannot use joybus mode (because GBA hardware cannot act as master in joybus mode).

Multiboot Slave Header
The transferred Header block is written to 2000000-20000BFh in slave RAM, the header must contain valid data (identically as for normal ROM-cartridge headers, including a copy of the Nintendo logo, correct header CRC, etc.), in most cases it'd be recommended just to transfer a copy of the master cartridges header from 8000000h-80000BFh.

Multiboot Slave Program/Data
The transferred main program/data block is written to 20000C0h and up (max 203FFFFh) in slave RAM, note that absolute addresses in the program must be then originated at 2000000h rather than 8000000h. In case that the master cartridge is 256K or less, it could just transfer a copy of the whole cartridge at 80000C0h and up, the master should then copy & execute its own ROM data into RAM as well.

Multiboot Slave Extended Header
For Multiboot slaves, separate Entry Point(s) must be defined at the beginning of the Program/Data block (the Entry Point in the normal header is ignored), also some reserved bytes in this section are overwritten by the Multiboot procedure. For more information see chapter about Cartridge Header.

Multiboot Slave with Cartridge
Beside for slaves without cartridge, multiboot can be also used for slaves which do have a cartridge inserted, if so, SELECT and START must be kept held down during power-on in order to switch the slave GBA into Multiboot mode (ie. to prevent it from starting the cartridge as normally).
The general idea is to enable newer programs to link to any existing older GBA programs, even if these older programs originally didn't have been intended to support linking.
The uploaded program may access the slaves SRAM, Flash ROM, or EEPROM (if any, allowing to read out or modify slave game positions), as well as cartridge ROM at 80000A0h-8000FFFh (the first 4KBytes, excluding the nintendo logo, allowing to read out the cartridge name from the header, for example).
The main part of the cartridge ROM is meant to be locked out in order to prevent software pirates from uploading "intruder" programs which would send back a copy of the whole cartridge to the master, however, for good or evil, at present time, current GBA models and GBA carts do not seem to contain any such protection.

Uploading Programs from PC
Beside for the ability to upload a program from one GBA to another, this feature can be also used to upload small programs from a PC to a GBA. For more information see chapter about External Connectors.

Nintendo DS
The GBA multiboot function requires a link port, and so, works on GBA and GBA SP only. The Nintendo DS in GBA mode does include the multiboot BIOS function, but it won't be of any use as the DS doesn't have a link port.

 BIOS Sound Functions

MidiKey2Freq
SoundBias
SoundChannelClear
SoundDriverInit
SoundDriverMain
SoundDriverMode
SoundDriverVSync
SoundDriverVSyncOff
SoundDriverVSyncOn
SoundWhatever0..4
SoundGetJumpList

SWI 1Fh (GBA) - MidiKey2Freq
Calculates the value of the assignment to ((SoundArea)sa).vchn[x].fr when playing the wave data, wa, with the interval (MIDI KEY) mk and the fine adjustment value (halftones=256) fp.
 r0 WaveData* wa
 r1 u8 mk
 r2 u8 fp

Return:
 r0 u32

This function is particularly popular because it allows to read from BIOS memory without copy protection range checks. The formula to read one byte (a) from address (i, 0..3FFF) is:
a = (MidiKey2Freq(i-(((i AND 3)+1)OR 3), 168, 0) * 2) SHR 24

SWI 19h (GBA) or SWI 08h (NDS7) - SoundBias
Increments or decrements the current level of the SOUNDBIAS register (with short delays) until reaching the desired new level. The upper bits of the register are kept unc hanged.
 r0 BIAS level (0=Level 000h, any other value=Level 200h)
 r1 Delay Count (NDS only) (GBA uses a fixed delay count of 8)

Return: No return value.

SWI 1Eh (GBA) - SoundChannelClear
Clears all direct sound channels and stops the sound.
This function may not operate properly when the library which expands the sound driver feature is combined afterwards. In this case, do not use it.
No parameters, no return value.

SWI 1Ah (GBA) - SoundDriverInit
Initializes the sound driver. Call this only once when the game starts up.
It is essential that the work area already be secured at the time this function is called.
You cannot execute this driver multiple times, even if separate work areas have been prepared.
 r0 Pointer to work area for sound driver, SoundArea structure as follows:
 SoundArea (sa) Structure
 u32 ident Flag the system checks to see whether the
 work area has been initialized and whether it
 is currently being accessed.
 vu8 DmaCount User access prohibited
 u8 reverb Variable for applying reverb effects to direct sound
 u16 d1 User access prohibited
 void (*func)() User access prohibited
 int intp User access prohibited
 void* NoUse User access prohibited
 SndCh vchn[MAX] The structure array for controlling the direct
 sound channels (currently 8 channels are
 available). The term "channel" here does
 not refer to hardware channels, but rather to
 virtual constructs inside the sound driver.
 s8 pcmbuf[PCM_BF*2]
 SoundChannel Structure
 u8 sf The flag indicating the status of this channel.
 When 0 sound is stopped.
 To start sound, set other parameters and
 then write 80h to here.
 To stop sound, logical OR 40h for a
 release-attached off (key-off), or write zero
 for a pause. The use of other bits is
 prohibited.
 u8 r1 User access prohibited
 u8 rv Sound volume output to right side
 u8 lv Sound volume output to left side
 u8 at The attack value of the envelope. When the
 sound starts, the volume begins at zero and
 increases every 1/60 second. When it
 reaches 255, the process moves on to the
 next decay value.
 u8 de The decay value of the envelope. It is
 multiplied by "this value/256" every 1/60
 sec. and when sustain value is reached, the
 process moves to the sustain condition.
 u8 su The sustain value of the envelope. The
 sound is sustained by this amount.
 (Actually, multiplied by rv/256, lv/256 and
 output left and right.)
 u8 re The release value of the envelope. Key-off
 (logical OR 40h in sf) to enter this state.
 The value is multiplied by "this value/256"
 every 1/60 sec. and when it reaches zero,
 this channel is completely stopped.
 u8 r2[4] User access prohibited
 u32 fr The frequency of the produced sound.
 Write the value obtained with the
 MidiKey2Freq function here.
 WaveData* wp Pointer to the sound's waveform data. The waveform
 data can be generated automatically from the AIFF
 file using the tool (aif2agb.exe), so users normally
 do not need to create this themselves.
 u32 r3[6] User access prohibited
 u8 r4[4] User access prohibited
 WaveData Structure
 u16 type Indicates the data type. This is currently not used.
 u16 stat At the present time, non-looped (1 shot) waveform
 is 0000h and forward loop is 4000h.
 u32 freq This value is used to calculate the frequency.
 It is obtained using the following formula:
 sampling rate x 2^((180-original MIDI key)/12)
 u32 loop Loop pointer (start of loop)
 u32 size Number of samples (end position)
 s8 data[] The actual waveform data. Takes (number of samples+1)
 bytes of 8bit signed linear uncompressed data. The last
 byte is zero for a non-looped waveform, and the same
 value as the loop pointer data for a looped waveform.

Return: No return value.

SWI 1Ch (GBA) - SoundDriverMain
Main of the sound driver.
Call every 1/60 of a second. The flow of the process is to call SoundDriverVSync, which is explained later, immediately after the V-Blank interrupt.
After that, this routine is called after BG and OBJ processing is executed.
No parameters, no return value.

SWI 1Bh (GBA) - SoundDriverMode
Sets the sound driver operation mode.
 r0 Sound driver operation mode
 Bit Expl.
 0-6 Direct Sound Reverb value (0-127, default=0) (ignored if Bit7=0)
 7 Direct Sound Reverb set (0=ignore, 1=apply reverb value)
 8-11 Direct Sound Simultaneously-produced (1-12 channels, default 8)
 12-15 Direct Sound Master volume (1-15, default 15)
 16-19 Direct Sound Playback Frequency (1-12 = 5734,7884,10512,13379,
 15768,18157,21024,26758,31536,36314,40137,42048, def 4=13379 Hz)
 20-23 Final number of D/A converter bits (8-11 = 9-6bits, def. 9=8bits)
 24-31 Not used.

Return: No return value.

SWI 1Dh (GBA) - SoundDriverVSync
An extremely short system call that resets the sound DMA. The timing is extremely critical, so call this function immediately after the V-Blank interrupt every 1/60 second.
No parameters, no return value.

SWI 28h (GBA) - SoundDriverVSyncOff
Due to problems with the main program if the V-Blank interrupts are stopped, and SoundDriverVSync cannot be called every 1/60 a second, this function must be used to stop sound DMA.
Otherwise, even if you exceed the limit of the buffer the DMA will not stop and noise will result.
No parameters, no return value.

SWI 29h (GBA) - SoundDriverVSyncOn
This function restarts the sound DMA stopped with the previously described SoundDriverVSyncOff.
After calling this function, have a V-Blank occur within 2/60 of a second and call SoundDriverVSync.
No parameters, no return value.

SWI 20h..24h (GBA) - SoundWhatever0..4 (Undocumented)
Whatever undocumented sound-related BIOS functions.

SWI 2Ah (GBA) - SoundGetJumpList (Undocumented)
Receives pointers to 36 additional sound-related BIOS functions.
 r0 Destination address (must be aligned by 4) (120h bytes buffer)

 Unpredictable Things

Forward
Most of the below is caused by 'traces' from previous operations which have used the databus. No promises that the results are stable on all current or future GBA models, and/or under all temperature and interference c ircumstances.
Also, below specifies 32bit data accesses only. When reading units less than 32bit, data is rotated depending on the alignment of the originally specified address, and 8bit or 16bit are then isolated from the 32bit value as usually.

Reading from BIOS Memory (00000000-00003FFF)
The BIOS memory is protected against reading, the GBA allows to read opcodes or data only if the program counter is located inside of the BIOS area. If the program counter is not in the BIOS area, reading will return the most recent successfully fetched B IOS opcode (eg. the opcode at [00DCh+8] after startup and SoftReset, the opcode at [0134h+8] during IRQ execution, and opcode at [013Ch+8] after IRQ execution, and opcode at [0188h+8] after SWI execution).

Reading from Unused Memory (00004000-1FFFFFF0,10000000-FFFFFFFF)
Accessing unused memory returns the recently pre-fetched opcode, ie. the 32bit opcode at $+8 in ARM state, or the 16bit-opcode at $+4 in THUMB state, in the later case the 16bit opcode is mirrored across both upper/lower 16bits of the returned 32bit data.
The same effect occurs on disabled WRAM (2000000h-3FFFFFFh), see Port 4000800h.
Note: This is caused by the prefetch pipeline in the CPU itself, not by the external gamepak prefetch, ie. it works for code in RAM as well.

Reading from Unused or Write-Only I/O Ports
Works like above unused memory when the entire 32bit memory fragment is Unused (eg. 0E0h) and/or Write-Only (eg. DMA0SAD). And otherwise, returns zero if the lower 16bit fragment is readable (eg. 04C=MOSAIC, 04E=NOTUSED/ZERO).

Reading from GamePak ROM when no Cartridge is inserted
Because Gamepak uses the same signal-lines for both 16bit data and for lower 16bit halfword address, the entire gamepak ROM area is effectively filled by incrementing 16bit values (Address/2 AND FFFFh).

Memory Mirrors
Most internal memory is mirrored across the whole 24bit/16MB address space in which it is located: S low On-board RAM at 2XXXXXX, Fast In-Chip RAM at 3XXXXXXh, Palette RAM at 5XXXXXXh, VRAM at 6XXXXXXh, and OAM at 7XXXXXXh. Even though VRAM is sized 96K (64K+32K), it is repeated in steps of 128K (64K+32K+32K, the two 32K blocks itself being mirrors of each other).
BIOS ROM, Normal ROM Cartridges, and I/O area are NOT mirrored, the only exception is the undocumented I/O port at 4000800h (repeated each 64K).
The 64K SRAM area is mirrored across the whole 32MB area at E000000h-FFFFFFFh, also, inside of the 64K SRAM field, 32K SRAM chips are repeated twice.

Writing 8bit Data to Video Memory
Video Memory (BG, OBJ, OAM, Palette) can be written to in 16bit and 32bit units only. Attempts to write 8bit data (by STRB opcode) won't work:
Writes to OBJ (6010000h-6017FFFh) (or 6014000h-6017FFFh in Bitmap mode) and to OAM (7000000h-70003FFh) are ignored, the memory content remains unchanged.
Writes to BG (6000000h-600FFFFh) (or 6000000h-6013FFFh in Bitmap mode) and to Palette (5000000h-50003FFh) are writing the new 8bit value to BOTH upper and lower 8bits of the addressed halfword, ie. "[addr AND NOT 1]=data*101h".

Using Invalid Tile Numbers
In Text mode, large tile numbers (combined with a non-zero character base setting in BGnCNT register) may exceed the available 64K of BG VRAM.
On GBA and GBA SP, such invalid tiles are displayed as if the character data is filled by the 16bit BG Map entry value (ie. as vertically striped tiles). Above applies only if there is only one BG layer enable, with two or more layers, things are getting much more complicated: tile-data is then somehow derived from the other layers, depending on their priority order and scrolling offsets.
On NDS (in GBA mode), such invalid tiles are displayed as if the character data is zero-filled (ie. as invisible/transparent tiles).

Accessing SRAM Area by 16bit/32bit
Reading retrieves 8bit value from specified address, multiplied by 0101h (LDRH) or by 01010101h (LDR). Writing changes the 8bit value at the specified address only, being set to LSB of (source_data ROR (address*8)).

 External Connectors

External Connectors
AUX GBA Game Pak Bus
AUX DS Game Card S lot
AUX Link Port
AUX Sound/Headphone Socket and Battery/Power Supply

Getting access to Internal Pins
AUX Opening the GBA
AUX Mainboard

More Internal Stuff
Pinouts - CPU - S ignal Summary
Pinouts - CPU - Pinouts
Pinouts - Audio Amplifiers
Pinouts - LCD Cables
Pinouts - Power Switches, DC/DC Converters, Reset Generators
Pinouts - Wifi
Pinouts - Various

Xboo Multiboot Cable
AUX Xboo PC-to-GBA Multiboot Cable
AUX Xboo Flashcard Upload
AUX Xboo Burst Boot Backdoor
DS Xboo

 AUX GBA Game Pak Bus

Game Pak Bus - 32pin cartridge slot
The cartridge bus may be used for both CGB and GBA game paks. In GBA mode, it is used as follows:
 Pin Name Dir Expl.
 1 VDD O Power Supply 3.3V DC
 2 PHI O System Clock (selectable none, 4.19MHz, 8.38MHz, 16.78MHz)
 3 /WR O Write Select ;\latched address to be incremented on
 4 /RD O Read Select ;/rising edges of /RD or /WR signals
 5 /CS O ROM Chip Select ;-A0..A15 to be latched on falling edge
 6-21 AD0-15 I/O lower 16bit Address and/or 16bit ROM-data (see below)
 22-29 A16-23 I/O upper 8bit ROM-Address or 8bit SRAM-data (see below)
 30 /CS2 O SRAM Chip Select
 31 /REQ I Interrupt request (/IREQ) or DMA request (/DREQ)
 32 GND O Ground 0V

When accessing game pak SRAM, a 16bit address is output through AD0-AD15, then 8bit of data are transferred through A16-A23.
When accessing game pak ROM, a 24bit address is output through AD0-AD15 and A16-A23, then 16bit of data are transferred through AD0-AD15.
The 24bit address is formed from the actual 25bit memory address (byte-steps), divided by two (halfword-steps).

8bit-Gamepak-Switch (GBA, GBA SP only) (not DS)
A small switch is located inside of the cartridge slot, the switch is pushed down when an 8bit cartridge is inserted, it is released when a GBA cartridge is inserted (or if no cartridge is inserted).
The switch mechanically controls whether VDD3 or VDD5 are output at VDD35; ie. in GBA mode 3V power supply/signals are used for the cartridge slot and link port, while in 8bit mode 5V are used.
The switch additionally drags IN35 to 3V when an 8bit cart is inserted, the current state of IN35 can be determined in GBA mode via Port 4000204h (WAITCNT), if the switch is pushed, then CGB mode can be activated via Port 4000000h (DISPCNT.3), this bit can be set ONLY by opcodes in BIOS region (eg. via CpuSet SWI function).
In 8bit mode, the cartridge bus works much like for GBA SRAM, however, the 8bit /CS signal is expected at Pin 5, while GBA SRAM /CS2 at Pin 30 is interpreted as /RESET signal by the 8bit MBC chip (if any). In practice, this appears to result in 00h being received as data when attempting to read-out 8bit cartridges from inside of GBA mode.

 AUX DS Game Card Slot

 Pin Dir Name Connection in cartridge
 1 > - GND (ROM all unused Pins, EEPROM Pin 4 = VSS)
 2 Out CLK (4MB/s, ROM Pin 5, EEPROM Pin 6 = CLK)
 3 N ? ? (ROM Pin 17) (Seems to be not connected in console)
 4 i Out /CS1 (ROM Pin 44) ROM Chipselect
 5 n Out /RES (ROM Pin 42) Reset, switches ROM to unencrypted mode
 6 t Out /CS2 (EPROM Pin 1) EEPROM Chipselect
 7 e In IRQ (GND)
 8 n - 3.3V (ROM Pins 2, 23, EEPROM Pins 3,7,8 = /W,/HOLD,VCC)
 9 d I/O D0 (ROM Pin 18)
 10 o I/O D1 (ROM Pin 19)
 11 I/O D2 (ROM Pin 20)
 12 C I/O D3 (ROM Pin 21)
 13 0 I/O D4 (ROM Pin 24)
 14 1 I/O D5 (ROM Pin 25)
 15 - I/O D6 (ROM Pin 26, EEPROM Pin 2 = Q = Data EEPROM to NDS)
 16 0 I/O D7 (ROM Pin 27, EEPROM Pin 5 = D = Data NDS to EEPROM)
 17 1 - GND (ROM all unused Pins, EEPROM Pin 4 = VSS)

Chipselect High-to-Low transitions are invoking commands, which are transmitted through data lines during next following eight CLK pulses, after the command transmission, further CLK pulses are used to transfer data, the data transfer ends at chipselect Low-to-High transition.
Data should be stable during CLK=LOW period throughout CLK rising edge.
Note: Supply Pins (1,8,17) are slightly longer than other pins.

The DS does also have a 32pin cartridge slot, that slot is used to run GBA carts in GBA mode, it can be also used as expansion port in DS mode.

 AUX Link Port

Serial Link Port Pin-Out (GBA:"EXT" - GBA SP:"EXT.1")
 Pin Name Cable
 1 VDD35 N/A GBA Socket GBA Plug Old "8bit" Plug
 2 SO Red ___________ _________ ___________
 3 SI Orange | 2 4 6 | / 2 4 6 \ | 2 4 6 |
 4 SD Brown _1_ 3 _5_/ _1_ 3 _5_/ _1__3__5_/
 5 SC Green '-' '-'
 6 GND Blue Socket Outside View / Plug Inside View
 Shield Shield

Note: The pin numbers and names are printed on the GBA mainboard, colors as used in Nintendo's AGB-005 and older 8bit cables.

Cable Diagrams (Left: GBA Cable, Right: 8bit Gameboy Cable)
 Big Plug Middle Socket Small Plug Plug 1 Plug 2
 SI _________________ ____ SI SI ______ ______SI
 SO ____________SO |__ | ___ SO SO ______><______SO
 GND____________GND______|____GND GND_____________GND
 SD ____________SD____________ SD SD SD
 SC ____________SC____________ SC SC _____________ SC
 Shield_______Shield_______Shield Shield_______Shield

Normal Connection
Just connect the plugs to the two GBAs and leave the Middle Socket disconnected, in this mode both GBAs may behave as master or slave, regardless of whether using big or small plugs.
The GBA is (NOT ???) able to communicate in Normal mode with MultiPlay cables which do not have crossed S I/SO lines.

Multi-Play Connection
Connect two GBAs as normal, for each further GBAs connect an additional cable to the Middle socket of the first (or further) cable(s), up to four GBAs may be connected by using up to three cables.
The GBA which is connected to a Small Plug is master, the slaves are all connected to Large Plugs. (Only small plugs fit into the Middle Socket, so it's not possible to mess up something here).

Multi-Boot Connection
MultiBoot (S ingleGamepak) is typically using Multi-Play communication, in this case i t is important that the Small plug is connected to the master/sender (ie. to the GBA that contains the cartridge).

Non-GBA Mode Connection
First of all, it is not possible to link between 32bit GBA games and 8bit games, parts because of different cable protocol, and parts because of different signal voltages.
However, when a 8bit cartridge is inserted (the GBA is switched into 8bit compatibili ty mode) it may be connected to other 8bit games (monochrome gameboys, CGBs, or to other GBAs which are in 8bit mode also, but not to GBAs in 32bit mode).
When using 8bit link mode, an 8bit link cable must be used. The GBA link cables won't work, see below modification though.

Using a GBA 32bit cable for 8bit communication
Open the middle socket, and disconnect Small Plugs S I from GND, and connect S I to Large Plugs SO instead. You may also want to install a switch that allows to switch between SO and GND, the GND signal should be required for MultiPlay communication only though.
Also, cut off the plastic ledge from the plugs so that they fit into 8bit gameboy soc kets.

Using a GBA 8bit cable for 32bit communication
The cable should theoretically work as is, as the grounded S I would be required for MultiPlay communication only. However, software that uses SD for S lave-Ready detection won't work unless when adding a SD-to-SD connection (the 8bit plugs probably do not even contain SD pins though).

 AUX Sound/Headphone Socket and Battery/Power Supply

GBA and NDS and NDS-Lite: Stereo Sound Connector (3.5mm, female)
 Tip Audio Left ___ ___ _____+-----------+
 Middle Audio Right (___|___|_____| |
 Base Ground L R GND +-----------+

The NDS socket doesn't fully match regular 3.5mm plugs, one needs to cut-off a portion of the DS case to be able to fully insert the plug, which still requires a lot of pressure, furthermore, when fully inserted, left/right become shortcut to mono, so one needs to pull-back the plug a bit to gain stereo output.

GBA SP and NDS - Power/Headphone Socket (EXT.2)
 Pin SP NDS Expl.
 1 P31 SL Audio LOUT _____________
 2 P32 VIN Supply Input (DC 5.2V) SW| 5 ___ 1 |SL
 3 P33 SR Audio ROUT | ---- ---- |
 4 P34 SG Audio GND (via 100uF to GND) |_6__4 3__2_|
 5 P35 SW Audio Speaker Disable (GND=Dis) GND SG_/SR VIN
 6 GND Supply GND
 Shield GND

External power input is used to charge the built-in battery, it cannot be used to run the SP without that battery.

NDS-Lite - Power Socket
 Pin Expl. __________
 1 Supply Input (DC 5.2V) / ====== \
 2 Supply GND GND |___2__1___| VIN

External Power Supply
GBA: DC 3.3V (no separate power socket, requires 2xAA-battery-shaped adapter)
GBA-SP/NDS: DC 5.2V (or DC 5V) (special connector on power/headphone socket)
NDS-Lite: DC 5.2V (or DC 5V) (another special connector on power socket)

Internal Battery Supply
GBA: 2xAA (3V)
GBA-SP: Li-ion 3.7V, 600mAh (built-in, recharge-able)
NDS: Li-ion 3.7V, 850mAh (built-in, recharge-able)
NDS-Lite: Li-ion 3.7V, 1000mAh (built-in, recharge-able)

Using PC +5V DC as Power Supply
Developers whom are using a PC for GBA programming will probably want to use the PC power supply (gained from disk drive power supply cable) for the GBA as well rather than dealing with batteries or external power supplies.
GBA: To lower the voltage to approximately 3 Volts use two diodes, type 1N 4004 or similar, the ring printed onto the diodes points towards the GBA side, connected as suc h:
 PC +5V (red) --------|>|---|>|-------- GBA BT+
 PC GND (black) ------------------------- GBA BT-

GBA SP and DS: Works directly at +5V connected to EXT.2 socket (not to the internal battery pins), without any diodes.

 AUX Opening the GBA

Since Nintendo uses special screws with Y-shaped heads to seal the GBA (as well as older 8bit gameboys), it's always a bit difficult to loosen these screws.

Using Screwdrivers
One possible method is to use a small flat screwdriver, which might work, even though it'll most likely damage the screwdriver.
Reportedly, special Y-shaped screwdrivers for gameboys are available for sale somewhere (probably not at your local dealer, but you might find some in the internet or elsewhere).

Destroying the Screws
A more violent method is to take an electric drill, and drill-off the screw heads, this might also slightly damage the GBA plastic chase, also take care that the metal spoons from the destroyed screws don't produce shortcuts on the GBA mainboard.

Using a selfmade Screwdriver
A possible method is to take a larger screw (with a normal I-shaped, or X-shaped head), and to cut the screw-tip into Y-shape, you'll then end up with an "adapter" which can be placed in the middle between a normal screwdriver and gameboy screws.
Preferably, first cut the screw-tip into a shape like a "sharp three sided pyramid", next cut notches into each side. Access to a grinding-machine will be a great benefit , but you might get it working by using a normal metal-file as well.

 AUX Mainboard

Other possibly useful signals on the mainboard...

FIQ Signal
The FIQ (Fast Interrupt) signal (labeled FIQ on the mainboard) could be used as external interrupt (or debugging break) signal.
Caution: By default, the FIQ input is directly shortcut to VDD35 (+3V or +5V power supply voltage), this can be healed by scratching off the CL1 connection located c lose to the FIQ pin (FIQ still appears to have an internal pull-up, so that an external resistor is not required).
The GBA BIOS rejects FIQs if using normal ROM cartridge headers (or when no cartridge is inserted). When using a FIQ-compatible ROM header, Fast Interrupts can be then requested by pulling FIQ to ground, either by a push button, or by remote controlled signals.

RESET Signal
The RESET signal (found on the mainboard) could be used to reset the GBA by pulling the signal to ground for a few microseconds (or longer). The signal can be directly used (it is not shortcut to VDD35, unlike FIQ).
Note: A reset always launches Nintendo's time-consuming and annoying boot/logo procedure, so that it'd be recommend to avoid this "feature" when possible.

Joypad Signals
The 10 direction/button signals are each directly shortcut to ground when pressed, and pulled up high otherwise (unlike 8bit gameboys which used a 2x4 keyboard matrix), i t'd be thus easy to connect a remote keyboard, keypad, joypad, or read-only 12bit parallel port.

 Pinouts - CPU - Signal Summary

Advance Gameboy CPU Signal Summary
Cart Bus: D0-D7, A0-A15, /CS , /RD, /WR (different usage in GBA/DMG mode)
WRAM Bus: WA0-WA16, WD0-WD15, /WLB, /WUB, /WWE, /WOE (used in GBA mode only)
LCD Bus : LDR1-5, LDG1-5, LDB1-5, DCK, LP, PS , SPL, CLS , SPS , MOD, REVC
Joypad: TP0-3 (Buttons), TP4-7 (Directions), TP8-9 (L/R-Buttons, via R43/R44)
Serial Link: SC, SD (aka P14?), S I, SO - Audio: SO1-2, Vin
Other: CK1-2, PHI, IN35, VCNT5, /FIQ (via CL1 to VDD3), /RESET (IN), /RES (OUT)
Supply: VDD35, VDD3, VDD2, GND (some are probably undoc inputs)
GBA SP: Same as GBA, plus VDD1, plus duplicated supply pins, plus pin 152.

 Pinouts - CPU - Pinouts

Advance Gameboy CPU Pinouts (CPU AGB)
 1 VDD3 17 D0 33 A0 49 WA4 65 VDD2 81 WD9 97 LDB5 113 CK1
 2 IN35 18 A15 34 /CS 50 WA5 66 WD5 82 WD1 98 LDB4 114 CK2
 3 TP8 19 A14 35 /RD 51 WA6 67 WD13 83 /WOE 99 LDB3 115 VDD2
 4 TP0 20 A13 36 /WR 52 WA7 68 WD6 84 DCK 100 LDB2 116 GND
 5 TP1 21 A12 37 PHI 53 /WLB 69 WD14 85 LP 101 LDB1 117 VDD2
 6 SO1 22 A11 38 VDD35 54 /WUB 70 WD7 86 PS 102 GND 118 VCNT5
 7 SO2 23 A10 39 GND 55 /WWE 71 WD15 87 LDR5 103 VDD3 119 TP9
 8 Vin 24 A9 40 SC 56 WA8 72 WD8 88 LDR4 104 SPL 120 TP6
 9 /RES 25 A8 41 SD 57 WA9 73 WD16 89 LDR3 105 CLS 121 TP5
 10 D7 26 A7 42 SI 58 WA10 74 WA16 90 LDR2 106 SPS 122 TP7
 11 D6 27 A6 43 SO 59 WA11 75 WD12 91 LDR1 107 MOD 123 TP4
 12 D5 28 A5 44 VDD2 60 WA12 76 WD4 92 LDG5 108 REVC 124 /FIQ
 13 D4 29 A4 45 WA0 61 WA13 77 WD11 93 LDG4 109 GNDed 125 /RESET
 14 D3 30 A3 46 WA1 62 WA14 78 WD3 94 LDG3 110 GNDed 126 TP2
 15 D2 31 A2 47 WA2 63 WA15 79 WD10 95 LDG2 111 GNDed 127 TP3
 16 D1 32 A1 48 WA3 64 GND 80 WD2 96 LDG1 112 GNDed 128 GND

GBA SP CPU Pinouts (CPU AGB B)
 1 IN35 21 D0 41 A0 61 WA4 81 WD13 101 GND 121 LDB4 141 GND
 2 TP8 22 A15 42 /CS 62 WA5 82 WD6 102 VDD1 122 LDB3 142 VDD3
 3 TP0 23 A14 43 /RD 63 WA6 83 WD14 103 GND 123 LDB2 143 GND
 4 TP1 24 A13 44 /WR 64 WA7 84 WD7 104 VDD3 124 LDB1 144 VCNT5
 5 SO1 25 A12 45 PHI 65 /WLB 85 WD15 105 DCK 125 GND 145 TP9
 6 SO2 26 A11 46 VDD35 66 /WUB 86 WD8 106 LP 126 VDD3 146 TP6
 7 Vin 27 GND 47 GND 67 GND 87 WD16 107 PS 127 SPL 147 TP5
 8 VDD1 28 VDD35 48 SC 68 VDD2 88 WA16 108 LDR5 128 CLS 148 TP7
 9 GND 29 A10 49 SD 69 /WWE 89 VDD2 109 LDR4 129 SPS 149 TP4
 10 VDD35 30 A9 50 SI 70 WA8 90 GND 110 LDR3 130 MOD 150 /FIQ
 11 /RES 31 A8 51 SO 71 WA9 91 WD12 111 LDR2 131 REVC 151 /RESET
 12 D7 32 A7 52 VDD35 72 WA10 92 WD4 112 LDR1 132 GND 152 ?
 13 D6 33 A6 53 GND 73 WA11 93 WD11 113 LDG5 133 GND 153 TP3
 14 D5 34 A5 54 VDD1 74 WA12 94 WD3 114 LDG4 134 GND 154 TP2
 15 D4 35 A4 55 GND 75 WA13 95 WD10 115 LDG3 135 GND 155 VDD3
 16 D3 36 GND 56 VDD2 76 WA14 96 WD2 116 LDG2 136 VDD1 156 GND
 17 D2 37 VDD35 57 WA0 77 WA15 97 WD9 117 LDG1 137 GND
 18 GND 38 A3 58 WA1 78 GND 98 WD1 118 GND 138 CK1
 19 VDD35 39 A2 59 WA2 79 VDD2 99 /WOE 119 VDD3 139 CK2
 20 D1 40 A1 60 WA3 80 WD5 100 VDD2 120 LDB5 140 VDD2

Pin 152 seems to be not connected on the mainboard, maybe an undoc output.

NDS CPU Pinouts
Unknown. The CPU is hidden underneath of the DS Cartridge S lot - and to the worst, the CPU Pins are hidden underneath of the CPU itself.

 Pinouts - Audio Amplifiers

Advance Gameboy Audio Amplifier (AMP AGB IR3R60N) (U6)
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 C38 FR1 FR2 FL1 FL2 GND RIN LIN C39 VOL SW VDD5 LOUT VCC3 ROUT VCC3 SP GND

SW=Headphone Switch (grounded when none connected).

GBA SP Audio Amplifier (uses AMB AGB IR3R60N, too) (U3)
Same connection as in GBA, except that pin14/16 connect to VR21 (instead VCC3), and pin1/9 connect to different capacitors.

NDS - National Semiconductor LM4880M Dual 250mW Audio Power Amplifier (U12)
 1-OUT A 2-IN A 3-BYPASS 4-GND 5-SHUTDOWN 6-IN B 7-OUT A 8-VDD.VQ5

NDS-Lite: No external amplifier (Mitsumi 3205B Powermanagment Device contains internal amplifier).

 Pinouts - LCD Cables

Advance Gameboy Display Socket
 1 ? 6 GND 11 LDR2 16 LDG2 21 LDB3 26 SPS 31 P2-VSS 36 V4
 2 VSHD 7 VSHD 12 LDR1 17 LDG1 22 LDB2 27 ? 32 P2-VCC 37 V3
 3 DCK 8 LDR5 13 LDG5 18 GND 23 LDB1 28 MOD 33 ? 38 V2
 4 LP 9 LDR4 14 LDG4 19 LDB5 24 SPL 29 VCOM 34 VDD5 39 V1
 5 PS 10 LDR3 15 LDG3 20 LDB4 25 CLS 30 P2-VEE 35 GND 40 V0

GBA SP Display Socket
 1 VSHD 5 VSHD 9 LDR3 13 LDG4 17 GND 21 LDB2 25 SPS 29 P2VSS 33 U83
 2 DCK 6 GND 10 LDR2 14 LDG3 18 LDB5 22 LDB1 26 MOD 30 COM 34 VDD5
 3 LP 7 LDR5 11 LDR1 15 LDG2 19 LDB4 23 SPL 27 REVC 31 VDD5
 4 PS 8 LDR4 12 LDG5 16 LDG1 20 LDB3 24 CLS 28 P2VDD 32 GND

NDS Upper/Lower Display Sockets
 ___NDS upper screen/upper backlight/speakers socket (P3)_____________________
 1-SPLO 7-PS2 13-LDR2 19-GND 25-LDG2 31-LDB2 37-MOD2 43-VDD15 49-SPRO
 2-SPLO 8-REV2 14-LDR1 20-DCLK2 26-LDG1 32-LDB1 38-GND 44-VDD-5 50-GND
 3-SSC2 9-GND 15-LDR0 21-GND 27-LDG0 33-LDB0 39-VDD5 45-VDD-10 51-GND
 4-ASC2 10-LDR5 16-LS2 22-LDG5 28-LDB5 34-GCK2 40-VDD10 46-LEDC2
 5-GND 11-LDR4 17-VSHD 23-LDG4 29-LDB4 35-GSP2 41-COM2 47-LEDA2
 6-SPL2 12-LDR3 18-DISP1 24-LDG3 30-LDB3 36-GND 42-GND 48-SPRO
 ___NDS lower screen socket (P4)__
 1-SSC1 6-REV1 11-LDR2 16-DISP0 21-LDG4 26-LDB5 31-LDB0 36-GND 41-VDD15
 2-ASC1 7-GND 12-LDR1 17-SPL1 22-LDG3 27-LDB4 32-GCK1 37-? 42-VDD10
 3-GND 8-LDR5 13-LDR0 18-DCLK1 23-LDG2 28-LDB3 33-GSP1 38-VDD5 43-GND
 4-? 9-LDR4 14-LS1 19-GND 24-LDG1 29-LDB2 34-VSHD 39-COM1 44-VDD-5
 5-PS1 10-LDR3 15-VSHD 20-LDG5 25-LDG0 30-LDB1 35-MOD1 40-GND 45-VDD-10
 ___NDS lower backlight socket (P5)____ ___NDS touchscreen socket (P6)______
 1:LEDA1 2:LEDA1 3:LEDC1 4:LEDC1 1:Y- 2:X- 3:Y+ 4:X+

NDS-Lite Upper/Lower Display Sockets
 ___NDS-Lite upper screen/upper backlight/speakers socket (P3)________________
 1-VDD-5 6-MOD 11-LD2xx 16-LD2xx 21-LD2xx 26-LD2xx 31-LS 36-GND 41-SPRO
 2-VDD10 7-GSP 12-LD2xx 17-LD2xx 22-LD2xx 27-LD2xx 32-VSHD 37-COM2 42-SG
 3-VDD5 8-GCK 13-LD2xx 18-GND 23-LD2xx 28-GND 33-GND 38-LEDA2 43-SG
 4-GND 9-LD2xx 14-LD2xx 19-LD2xx 24-LD2xx 29-DCLK 34-xx2? 39-LEDC2 44-SPLO
 5-VSHD 10-LD2xx 15-LD2xx 20-LD2xx 25-LD2xx 30-SPL 35-REV 40-SPRO 45-SPLO
 ___NDS-Lite lower screen/lower backlight (P4)________________________________
 1-VDD-5 6-MOD 11-LD1xx 16-LD1xx 21-LD1xx 26-LD1xx 31-LS 36-GND
 2-VDD10 7-GSP 12-LD1xx 17-LD1xx 22-LD1xx 27-LD1xx 32-VSHD 37-COM1
 3-VDD5 8-GCK 13-LD1xx 18-GND 23-LD1xx 28-GND 33-GND 38-LEDA1
 4-GND 9-LD1xx 14-LD1xx 19-LD1xx 24-LD1xx 29-DCLK 34-xx1? 39-LEDC1
 5-VSHD 10-LD1xx 15-LD1xx 20-LD1xx 25-LD1xx 30-SPL 35-REV
 ___NDS-Lite touchscreen socket (P6)______ ___NDS-Lite white coax (P12)_____
 1:X- 2:Y- 3:X+ 4:Y+ Center:MICIN Shield:GND

 Pinouts - Power Switches, DC/DC Converters, Reset Generators

Advance Gameboy Power Switch (2-position slider, with two common pins)
GBA SP Power Switch (same as GBA)
 1 via resistor to GND (OFF)
 2 VS (BT+) (ON)
 C VCC (to board)

Advance Gameboy Cartridge Slot Switch (integrated 4pin micro switch)
GBA SP Cartridge Slot Switch (separate 4pin micro switch)
 C1 VDD35 (to S2 when PRESSED, to S1 when RELEASED)
 S1 VDD3 (to C2 when PRESSED, to C1 when RELEASED)
 C2 IN35 (to S1 when PRESSED)
 S2 VDD5 (to C1 when PRESSED)

Pressed=8bit DMG/MGB/CGB cart, Released=32bit GBA cart (or no cart inserted)
GBA: switch integrated in cart socket, GBA-SP: separate switch next to socket.

Advance Gameboy Power Controller (M 121 514X) (U4)
 1-VIN 2-VOUT5 3-CSS5 4-VDRV5 5-GND 6-VDRV3 7-CSS3 8-VOUT3
 9-VCNT5 10-CSCP 11-REGEXT 12-VDD3 13-VDD2 14-/RESET 15-LOWBAT 16-VDD13

/RESET is passed to the CPU, and then forwarded to /RES pin on cart slot.

Advance Gameboy LCD Regulator (AGB-REG IR3E09N) (U3)
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 ? ? REVC U3-COM V0 V1 ? ? ? GND ? V2 ? V3 V4 VDD5 U3-VDD ?

GBA SP Power Controller 1 (S6403 AU227 9276) (U4)
 1-VCC 2-SCP1 3-SCP2 4-VDRV3 5-VOUT3/VDD3 6-VDD2 7-VOUT1/VDD1 8-VDRV1
 9-LOWBAT 10-VCNT5 11-LS5 12-? 13-GND 14-? 15-VOUT5/VDD5 16-VDRV5

GBA SP Power Controller 2 (2253B 2808) (U5)
 1-TIN 2-U5C3 3-ADJ 4-U5VDD 5-VIN 6-? 7-U57 8-?
 9-to-C29 10-to-C30 11-? 12-GND 13-VS 14-S- 15-S+ 16-U5OUT

NDS Powermanagment Device (Mitsumi 3152A) (U3)
 1 R50-EXTB+ 17 33 LEDC1 49 VCNT5
 2 R39-ORANGE 18 34 GND 50
 3 GND 19 VQ5 35 LEDC2 51 RST
 4 20 36 52
 5 Rxx-Q4 21 37 U10-LEDA2 53
 6 INS+ 22 GND 38 54
 7 INS- 23 VQ5 39 MIC.C53-AIN 55 VQ5
 8 24 40 MIC.TSC.AUX 56 R24-SR
 9 VDET 25 VDD3.3 41 GND 57
 10 PVDD 26 GND 42 R38-RED 58 R22-SL
 11 27 CL60-VDD3.3 43 R37-GREEN 59 GND
 12 PWSW 28 VSHD 44 VDD3.3 60 VR3.PIN2
 13 29 45 PWM.SPI.CLK 61
 14 GND 30 VDD5 46 PWM.SPI.D 62
 15 GND 31 U9-LEDA1 47 PWM.SPI.Q 63
 16 VQ5 32 48 PWM.SPI.SEL 64 GND

NDS-LITE Powermanagment Device (Mitsumi 3205B) (U3)
 1 SW 17 33 LEDC1 49 VCNT5
 2 R50-EXTB+ 18 34 GND 50
 3 R39-ORANGE 19 VQ5 35 LEDC2 51 RST
 4 GND 20 36 52
 5 21 37 U10-LEDA2 53
 6 R30-Q4 22 GND 38 54
 7 INS+ 23 VQ5 39 MIC.C53-AIN 55 CL63-VQ5
 8 INS- 24 40 MIC.TSC.AUX 56 R24-SR
 9 VDET 25 VDD3.3 41 GND 57 SPRO
 10 PVDD 26 GND 42 R38-RED 58 SPLO
 11 27 CL60-VDD3.3 43 R37-GREEN 59 R22-SL
 12 PWSW 28 VSHD 44 VDD3.3 60 GND
 13 GND 29 45 PWM.SPI.CLK 61 R79-VR3.PIN2
 14 GND 30 VDD5 46 PWM.SPI.D 62
 15 GND 31 U9-LEDA1 47 PWM.SPI.Q 63
 16 VQ5 32 48 PWM.SPI.SEL 64

NDS-LITE Power Switch
 1 PWSW (grounded when switch is pulled)
 2 GND
 3 GND
 4 NC? (grounded when switch is not pulled)

 Pinouts - Wifi

NDS RFU Daughter Board (Firmware FLASH, Wifi BB/RF Chips)
 1 N/A 6 FMW.CLK 11 ENABLE 16 RX.DTA? 21 BB./CS 26 22MHz 31 GND
 2 GND 7 FMW./SEL 12 GND 17 TX.MAIN 22 RF./CS 27 GND 32 GND
 3 high? 8 FMW.DTA.Q 13 GND 18 GND 23 BB.RF.CLK 28 VDD3.3 33 GND
 4 RXTX.ON 9 FMW.DTA.D 14 TX.ON 19 TX.CLK 24 BB.RF.RD 29 VDD1.8
 5 FMW./WP 10 FMW./RES 15 RX.ON 20 TX.DTA 25 BB.RF.WR 30 GND

NDS-Lite RFU Daughter Board (Firmware FLASH, Wifi BB/RF Chip)
 1 GND 6 GND 11 BB.RF.WR 16 VDD3.3 21 hi? 26 FMW.Q
 2 lo? 7 hi? 12 BB.RF.CLK 17 GND 22 FMW./RES 27 FMW./WP
 3 hi? 8 hi? 13 GND 18 RF./CS 23 GND 28 FMW./CS
 4 hi? 9 GND 14 hi? 19 hi? 24 FMW.CLK 29 hi?
 5 hi? 10 hi? 15 GND 20 BB./CS 25 FMW.D 30 GND

Wifi RF Chip: RF9008, 0441, E0121Q (32 pin)
 1 5 9 13 17 21 RF.CLK 25 29
 2 6 10 14 GND 18 22 26 30
 3 7 11 15 19 RF.RD 23 27 31
 4 8 12 16 20 RF./CS 24 28 32

Pin19 RF.RD (oops, should be WR, maybe I've exchanged RD-WR?)
Pin20 RF./CS (via 10ohm)
Pin21 RF.CLK (via 10ohm)

Wifi BB Chip: Mitsumi, Japan, 4418, MM3155 (48 pins)
 1 GND 7 13 GND 19 25 31 37 TX.MAIN 43
 2 8 14 20 26 32 BB./CS 38 RX.DTA? 44
 3 9 15 BB.CLK 21 27 33 TX.DTA 39 RX.ON 45 GND
 4 10 16 BB.WR 22 28 RST 34 RXTX.ON 40 TX.ON 46
 5 11 17 BB.RD 23 29 35 TX.CLK 41 47
 6 12 18 22MHz 24 30 36 42 48

Pin15 BB.CLK (via 10ohm to RFU.23)
Pin16 BB.WR (RFU.25)
Pin17 BB.RD (RFU.24)
Pin18 22MHz (via 50ohm)
Pin28 RST (same as FMW./RES)
Pin32 BB./CS (RFU.21)

NDS-LITE BB/RF-Chip Mitsumi MM3218 (56 pins)
 1- 8-GND 15- 22-GND 29- 36- 43- 50-
 2-GND 9- 16- 23- 30- 37- 44- 51-
 3- 10-GND 17- 24- 31- 38- 45- 52-
 4- 11-GND 18- 25- 32- 39-GND 46- 53-
 5- 12-GND 19- 26- 33- 40- 47- 54-
 6- 13- 20- 27- 34- 41- 48- 55-
 7- 14- 21- 28- 35- 42- 49-GND 56-

TX Signal/Timing Chart (Host Game)
 RX.DTA? __
 RXTX.ON __-----------------------_________________________________
 RX.ON __---_______-------------_________________________________
 TX.ON _____-------__
 TX.MAIN ________----__
 TX.CLK _____#__####__
 TX.DTA _____#__####__

This example shows a host sending beacons. The pre-beacon receive period is probably to sense conflicts with other transmitters. The post-beacon receive period is to get responses from other players. The two transmit parts are: The hardware header, followed by inactivity on the tx pins during the rest of the preamble period, then followed by the actual IEEE frame. The rest of the time is spend in idle mode to reduce power consumption.

RX Signal/Timing Chart (Join Game)
 RX.DTA? __
 RXTX.ON ---______-----
 RX.ON ---_________--
 TX.ON __
 TX.MAIN __
 TX.CLK __
 TX.DTA ___---________

This example shows a c lient trying to receive beacons, so most of the time is spent in receive mode (the short idle periods are probably occuring when it is switching to another channel). Once when it has associated with a host, the c lient may spend more time in idle mode, and needs to be in receive mode only when expecting to receive beacons or other data.

 Pinouts - Various

Advance Gameboy 256Kbytes RAM 128Kx16bit (NEC D442012LGY-B85x-MJH) (wide)
GBA SP 256Kbytes RAM 128Kx16bit (F 82D12160-10FN) (square)
 1 A15 7 A9 13 IC 19 A6 25 A0 31 D2 37 VCC 43 D15
 2 A14 8 A8 14 /UB 20 A5 26 /CE1 32 D10 38 D5 44 D8
 3 A13 9 NC 15 /LB 21 A4 27 GND 33 D3 39 D13 45 D16
 4 A12 10 NC 16 NC 22 A3 28 /OE 34 D11 40 D6 46 GND
 5 A11 11 /WE 17 NC 23 A2 29 D1 35 D4 41 D14 47 NC
 6 A10 12 CE2 18 A7 24 A1 30 D9 36 D12 42 D7 48 A16

Connection in GBA and GBA SP: IC-GND, /CE1-GND, CE2-VDD2, VCC-VDD2, Pin16-VDD2, the other NC pins seem to be actually not connected, all other pins connect to the corresponding Wxx CPU pins. Note: Both GBA and GBA SP have soldering points for wide (12x18mm) and square (12x14mm) RAMs, so either could be used.
The GBA additionally contains 32K built-in WRAM, and built-in VRAM, so the above 256K RAM chip is probably not used in 8bit c lassic/color gameboy mode.

Advance Gameboy Schematic Fragments
P2-VSS = VDD-15
VIN = VCC3 via R33
REGEXT (on my modified board, REGEXT underneath of my diodes)
/RES (OUT) (via R40)
/CS (via R39)
/WR (via R38)
SC (via Rxx)
SD (via Rxx)
S I (via Rxx)
SO (via Rxx)
DCK (via R36)
A-GND via CP4 (100uF) to GND (used speaker, and on headphone socket)

GBA SP Schematic Fragments
P2VDD = VDD13
P2VSS = VDD15
/RES via R46
/CS via R45
/WR via R44
DCK via R20
VS=BT+
In my repaired GBA-SP: CK1 test-point is disconnected (instead GND'ed).
In my repaired GBA-SP: broken oscillator replaced
In my repaired GBA-SP: broken r1 1mOhm replaced (near oscillator)
In my repaired GBA-SP: broken EXT2 socket metal-spring/snapper removed
CL1 FIQ (near SW4)
CL2 ?
CL3 ?
CL4 VOUT1/VDD1 (near U4)
CL5 VOUT3/VDD3 (near U4)
CL6 VOUT5/VDD5 (near U4)
DL1-red (power low) ---R32--Q4--R6--
DL2-green (power good) ---Q6--LOWBAT/R34-VDD3
DL3-orange (charge) --R24--Q2--VIN/U57
P2VDD--VDD13
P2VSS--VDD15
S+ and S - are (almost) shortcut by R23 (1.0 ohm)
S+ via Q1 to VIN
VS via D1 to S -
A-GND via CP1 (100uF) to GND
U4 pin 12 to r6 (towards red led)
U4 pin 14 to D6---to U7
SC (CPU pin48) with R7 100K ohm pullup to VDD35
P35 via Q11 to SW (speaker disable)

GBA SP Backlight-Button Schematic (U6,U8,Q12)
 ______ _____
 GND--|1 U8 6|-- U85 | |--VDD5
 U82--|2 5|-- U85 U61-| Q12 | U83 ------> to display
 U83--|3____4|-- U82 |_____|--Q12B Q12B <------ from button
 U61--|1 U6 8|--VDD5 (X)---R51--VDD5 (X)---C70--GND
 U62--|2 7|--VDD5 U62---R49--VDD5 U61---R40--GND
 U62--|3 6|--(X) Q12B--R39--VDD5 U82---R38--GND
 GND--|4____5|--NC? Q12B--C69--VDD5 U85---R50--U62

 AUX Xboo PC-to-GBA Multiboot Cable

Below describes how to connect a PC parallel port to the GBA link port, allowing to upload small programs (max 256 KBytes) from no$gba's Utility menu into real GBAs.

This is possible because the GBA BIOS includes a built-in function for downloading & executing program code even when no cartridge is inserted. The program is loaded to 2000000h and up in GBA memory, and must contain cartridge header information just as for normal ROM cartridges (nintendo logo, checksum, etc., plus some additional multiboot info).

Basic Cable Connection
The general connection is very simple (only needs four wires), the only problem is that you need a special GBA plug or otherwise need to solder wires directly to the GBA mainboard (see Examples below).
 GBA Name Color SUBD CNTR Name
 2 SO Red ------------- 10 10 /ACK
 3 SI Orange ------------- 14 14 /AUTOLF
 5 SC Green ------------- 1 1 /STROBE
 6 GND Blue ------------- 19 19 GND

Optionally, also connect the following signals (see notes below):
 4 SD Brown ------------- 17 36 /SELECT (double speed burst)
 3 SI Orange ----[===]---- 2..9 2..9 D0..7 (pull-up, 560 Ohm)
 5 SC Green ----[===]---- 2..9 2..9 D0..7 (pull-up, 560 Ohm)
 4 SD Brown ----[===]---- 2..9 2..9 D0..7 (pull-up, 560 Ohm)
 START (mainboard) -----|>|----- 16 31 /INIT (auto-reset, 1N4148)
 SELECT (mainboard) -----|>|----- 16 31 /INIT (auto-reset, 1N4148)
 RESET (mainboard) -----||------ 16 31 /INIT (auto-reset, 300nF)

Notes: The GBA Pins are arranged from left to right as 2,4,6 in upper row, and 1,3,5 in lower row; outside view of GBA socket; flat side of socket upside. The above "Colors" are as used in most or all standard Nintendo link cables, note that Red/Orange wi ll be exchanged at one end in cables with crossed SO/S I lines. At the PC side, use the SUBD pin numbers when connecting to a 25-pin SUBD plug, or CNTR pin numbers for 36-pin Centronics plug.

Optional SD Connection (Double Speed Burst)
The SD line is used for Double Speed Burst transfers only, in case that you are using a gameboy link plug for the connection, and if that plug does not have a SD-pin (suc h like from older 8bit gameboy cables), then you may leave out this connection. Burst Boot will then only work half as fast though.

Optional Pull-Ups (Improves Low-to-High Transition Speed)
If your parallel port works only with medium or slow delay settings, try to connect 560 Ohm resistors to S I/SC/SD inputs each, and the other resistor pin to any or all of the parallel port data lines (no$gba outputs high to pins 2..9).

Optional Reset Connection (CAUTION: Connection changed September 2004)
The Reset connection allows to automatically reset & upload data even if a program in the GBA has locked up (or if you've loaded a program that does not support nocash burst boot), without having to reset the GBA manually by switching it off and on (and without having to press S tart+Select if a cartridge is inserted).
The two diodes should be 1N4148 or similar, the capacitor should be 300nF (eg. three 100nF capacitors in parallel). The signals are labeled on the mainboard, and can be found at following names / CPU pin numbers: RESET/CPU.125, SELECT/TP2/CPU.126, START/TP3/CPU.127.

Optional Power Supply Connection
Also, you may want to connect the power supply to parallel port data lines, see chapter Power Supply for details.

Transmission Speed
The first transfer will be very slow, and the GBA BIOS will display the boot logo for at least 4 seconds, even if the transfer has completed in less time. Once when you have uploaded a program with burst boot backdoor, further transfers will be ways faster. The table below shows transfer times for 0KByte - 256KByte files:
 Boot Mode_____Delay 0_______Delay 1_______Delay 2_____
 Double Burst 0.1s - 1.8s 0.1s - 3.7s 0.1s - 5.3s
 Single Burst 0.1s - 3.6s 0.1s - 7.1s 0.1s - 10.6s
 Normal Bios 4.0s - 9.0s 4.0s - 12.7s 4.0s - 16.3s

All timings measured on a 66MHz computer, best possible transmission speed should be 150KBytes/second. Timings might slightly vary depending on the CPU speed and/or operating system. Synchronization is done by I/O waitstates, that should work even on faster computers. Non-zero delays are eventually required for cables without pull-ups.

Requirements
Beside for the cable and plugs, no special requirements.
The cable should work with all parallel ports, including old-fashioned one-directional printer ports, as well as modern bi-directional EPP ports. Transfer timings should work stable regardless of the PCs CPU speed (see above though), and regardless of multitasking interruptions.
Both no$gba and the actual transmission procedure are using some 32bit code, so that either one currently requires 80386SX CPUs or above.

Connection Examples
As far as I can imagine, there are four possible methods how to connect the cable to the GBA. The first two methods don't require to open the GBA, and the other methods also allow to connect optional power supply and reset signal.
 1) Connect it to the GBA link port. Advantage: No need to
 open/modify the GBA. Disadvantage: You need a special plug,
 (typically gained by removing it from a gameboy link cable).
 2) Solder the cable directly to the GBA link port pins. Advantages:
 No plug required & no need to open the GBA. Disadvantages:
 You can't remove the cable, and the link port becomes unusable.
 3) Solder the cable directly to the GBA mainboard. Advantage: No
 plug required at the GBA side. Disadvantage: You'll always
 have a cable leaping out of the GBA even when not using it,
 unless you put a small standard plug between GBA and cable.
 4) Install a Centronics socket in the GBA (between power switch
 and headphone socket). Advantage: You can use a standard
 printer cable. Disadvantages: You need to cut a big hole into
 the GBAs battery box (which cannot be used anymore), the big
 cable might be a bit uncomfortable when holding the GBA.

Personally, I've decided to use the lastmost method as I don't like ending up with hundreds of special cables for different purposes, and asides, it's been fun to damage the GAB as much as possible.

Note
The above used PC parallel port signals are typically using 5V=HIGH while GBA link ports deal with 3V=HIGH. From my experiences, the different voltages do not cause communication problems (and do not damage the GBA and/or PC hardware), and after all real men don't care about a handful of volts, however, use at own risk.

 AUX Xboo Flashcard Upload

Flashcard Upload
Allows to write data to flashcards which are plugged into GBA cartridge slot, cartridge is automatically started after writing. On initial power-up, hold down START+SELECT to prevent the GBA from booting the old program in the flashcard.
The Upload function in Utility menu uses flashcard mode for files bigger than 256KB (otherwise uses multiboot mode automatically). Also, there's a separate Upload to Flashcard function in Remote Access submenu, allowing to write files of 256KB or less to flashcard if that should be desired.

Supported Flashcards
Function currently tested with Visoly Flash Advance (FA) 256Mbit (32MB) Turbo cartridge. Should also work with older FA versions. Please let me know if you are using other flashcards which aren't yet supported.

Flashcard Performance
Writing to flashcards may become potentially slow because of chip erase/write times, cable transmission time, and the sheer size of larger ROM-images. However, developers whom are testing different builts of their project usually won't need to rewrite the complete flashcard, Xboo uses a highspeed checksum mechanism (16MB/sec) to determine which flashcard sector(s) have changed, and does then re-write only these sector(s).
To eliminate transmission time, data transfer takes place in the erase phases. Erase/write time depends on the flashcard type, should be c irca 1-2 seconds per 256KB sector. Because the cartridge is programmed directly in the GBA there's no need to remove it from the GBA when writing to it.

Developers Advice
Locate your program fragments at fixed addresses, for example, code and data blocks each aligned to 64K memory boundaries, so that data remains at the same location even when the size of code changes. Fill any blank spaces by value FFh for faster write time. Reduce the size of your ROM-image by effic ient memory use (except for above alignment trick). Include the burst boot backdoor in your program, allowing to re-write the flashcard directly without resetting the GBA.

Lamers Advice
Xboo Flashcard support does not mean to get lame & to drop normal multiboot support, if your program fits into 256KB then make it <both> flashcard <and> multiboot compatible - multiboot reduces upload time, increases your flashcard lifetime, and will also work for people whom don't own flashcards.

 AUX Xboo Burst Boot Backdoor

When writing Xboo compatible programs, always include a burst boot "backdoor", this will allow yourself (and other people) to upload programs much faster as when using the normal GBA BIOS multiboot function. Aside from the improved transmission speed, there's no need to reset the GBA each time (eventually manually if you do not have reset connect), without having to press S tart+Select (if cartridge inserted), and, most important, the time-consuming nintendo-logo intro is bypassed.

The Burst Boot Protocol
In your programs IRQ handler, add some code that watches out for burst boot IRQ requests. When sensing a burst boot request, download the actual boot procedure, and pass control to that procedure.
 Send (PC) Reply (GBA)
 "BRST" "BOOT" ;request burst, and reply <prepared> for boot
 <wait 1/16s> <process IRQ> ;long delay, allow slave to enter IRQ handler
 llllllll "OKAY" ;send length in bytes, reply <ready> to boot
 dddddddd -------- ;send data in 32bit units, reply don't care
 cccccccc cccccccc ;exchange crc (all data units added together)

Use normal mode, 32bit, external c lock for all transfers. The received highspeed loader (currently approx. 180h bytes) is to be loaded to and started at 3000000h, which will then handle the actual download operation.

Below is an example program which works with multiboot, burstboot, and as normal rom/flashcard. The source can be assembled with a22i (the no$gba built-in assembler, see no$gba utility menu). When using other/mainstream assemblers, you'll eventually have to change some directives, convert numbers from NNNh into 0xNNN format, and define the origin somewhere in linker/makefile instead of in source code.

 .arm ;select 32bit ARM instruction set
 .gba ;indicate that it's a gameboy advance program
 .fix ;automatically fix the cartridge header checksum
 org 2000000h ;origin in RAM for multiboot-cable/no$gba-cutdown programs
 ;------------------
 ;cartridge header/multiboot header
 b rom_start ;-rom entry point
 dcb ...insert logo here... ;-nintento logo (156 bytes)
 dcb 'XBOO SAMPLE ' ;-title (12 bytes)
 dcb 0,0,0,0, 0,0 ;-game code (4 bytes), maker code (2 bytes)
 dcb 96h,0,0 ;-fixed value 96h, main unit code, device type
 dcb 0,0,0,0,0,0,0 ;-reserved (7 bytes)
 dcb 0 ;-software version number
 dcb 0 ;-header checksum (set by .fix)
 dcb 0,0 ;-reserved (2 bytes)
 b ram_start ;-multiboot ram entry point
 dcb 0,0 ;-multiboot reserved bytes (destroyed by BIOS)
 dcb 0,0 ;-blank padded (32bit alignment)
 ;------------------
 irq_handler: ;interrupt handler (note: r0-r3 are pushed by BIOS)
 mov r1,4000000h ;\get I/O base address,
 ldr r0,[r1,200h] ;IE/IF ; read IE and IF,
 and r0,r0,r0,lsr 16 ; isolate occurred AND enabled irqs,
 add r3,r1,200h ;IF ; and acknowledge these in IF
 strh r0,[r3,2] ;/
 ldrh r3,[r1,-8] ;\mix up with BIOS irq flags at 3007FF8h,
 orr r3,r3,r0 ; aka mirrored at 3FFFFF8h, this is required
 strh r3,[r1,-8] ;/when using the (VBlank-)IntrWait functions
 and r3,r0,80h ;IE/IF.7 SIO ;\
 cmp r3,80h ; check if it's a burst boot interrupt
 ldreq r2,[r1,120h] ;SIODATA32 ; (if interrupt caused by serial transfer,
 ldreq r3,[msg_brst] ; and if received data is "BRST",
 cmpeq r2,r3 ; then jump to burst boot)
 beq burst_boot ;/
 ;... insert your own interrupt handler code here ...
 bx lr ;-return to the BIOS interrupt handler
 ;------------------
 burst_boot: ;requires incoming r1=4000000h
 ;... if your program uses DMA, disable any active DMA transfers here ...
 ldr r4,[msg_okay] ;\
 bl sio_transfer ; receive transfer length/bytes & reply "OKAY"
 mov r2,r0 ;len ;/
 mov r3,3000000h ;dst ;\
 mov r4,0 ;crc ;
 @@lop: ;
 bl sio_transfer ; download burst loader to 3000000h and up
 stmia [r3]!,r0 ;dst ;
 add r4,r4,r0 ;crc ;
 subs r2,r2,4 ;len ;
 bhi @@lop ;/
 bl sio_transfer ;-send crc value to master
 b 3000000h ;ARM state! ;-launch actual transfer / start the loader
 ;------------------
 sio_transfer: ;serial transfer subroutine, 32bit normal mode, external clock
 str r4,[r1,120h] ;siodata32 ;-set reply/send data
 ldr r0,[r1,128h] ;siocnt ;\
 orr r0,r0,80h ; activate slave transfer
 str r0,[r1,128h] ;siocnt ;/
 @@wait: ;\
 ldr r0,[r1,128h] ;siocnt ; wait until transfer completed
 tst r0,80h ;

否☀U倦T 瀀楲瑮朮慬敤瀀... 琀牡敧彴敬杮桴 〠 唦☀呐☀D牰湩 汧摡e牰湩...

倦T 瀀楲瑮朮慬敤瀀楲瑮摟... 琀牡敧彴敬杮桴 〠 瀀楲瑮朮慬敤瀀楲瑮摟慩...

 bne @@wait ;/
 ldr r0,[r1,120h] ;siodata32 ;-get received data
 bx lr
 ;---
 msg_boot dcb 'BOOT' ;\
 msg_okay dcb "OKAY" ; ID codes for the burstboot protocol
 msg_brst dcb "BRST" ;/
 ;------------------
 download_rom_to_ram:
 mov r0,8000000h ;src/rom ;\
 mov r1,2000000h ;dst/ram ;
 mov r2,40000h/16 ;length ; transfer the ROM content
 @@lop: ; into RAM (done in units of 4 words/16 bytes)
 ldmia [r0]!,r4,r5,r6,r7 ; currently fills whole 256K of RAM,
 stmia [r1]!,r4,r5,r6,r7 ; even though the proggy is smaller
 subs r2,r2,1 ;
 bne @@lop ;/
 sub r15,lr,8000000h-2000000h ;-return (retadr rom/8000XXXh -> ram/2000XXXh)
 ;------------------
 init_interrupts:
 mov r4,4000000h ;-base address for below I/O registers
 ldr r0,=irq_handler ;\install IRQ handler address
 str r0,[r4,-4] ;IRQ HANDLER ;/at 3FFFFFC aka 3007FFC
 mov r0,0008h ;\enable generating vblank irqs
 strh r0,[r4,4h] ;DISPSTAT ;/
 mrs r0,cpsr ;\
 bic r0,r0,80h ; cpu interrupt enable (clear i-flag)
 msr cpsr,r0 ;/
 mov r0,0 ;\
 str r0,[r4,134h] ;RCNT ; init SIO normal mode, external clock,
 ldr r0,=5080h ; 32bit, IRQ enable, transfer started
 str r0,[r4,128h] ;SIOCNT ; output "BOOT" (indicate burst boot prepared)
 ldr r0,[msg_boot] ;
 str r0,[r4,120h] ;SIODATA32 ;/
 mov r0,1 ;\interrupt master enable
 str r0,[r4,208h] ;IME=1 ;/
 mov r0,81h ;\enable execution of vblank IRQs,
 str r0,[r4,200h] ;IE=81h ;/and of SIO IRQs (burst boot)
 bx lr
 ;------------------
 rom_start: ;entry point when booted from flashcart/rom
 bl download_rom_to_ram ;-download ROM to RAM (returns to ram_start)
 ram_start: ;entry point for multiboot/burstboot
 mov r0,0feh ;\reset all registers, and clear all memory
 swi 10000h ;RegisterRamReset ;/(except program code in wram at 2000000h)
 bl init_interrupts ;-install burst boot irq handler
 mov r4,4000000h ;\enable video,
 strh r4,[r4,000h] ;DISPCNT ;/by clearing the forced blank bit
 @@mainloop:
 swi 50000h ;VBlankIntrWait ;-wait one frame (cpu in low power mode)
 mov r5,5000000h ;\increment the backdrop palette color
 str r8,[r5] ; (ie. display a blinking screen)
 add r8,r8,1 ;/
 b @@mainloop
 ;------------------
 .pool
 end

 CPU Reference

General ARM7TDMI Information
CPU Overview
CPU Register Set
CPU Flags
CPU Exceptions
CPU Memory Alignments

The ARM7TDMI Instruction Sets
THUMB Instruction Set
ARM Instruction Set
Pseudo Instructions and Directives

Further Information
ARM CP15 System Control Coprocessor
CPU Instruction Cycle Times
CPU Versions
CPU Data Sheet

 CPU Overview

The ARM7TDMI is a 32bit RISC (Reduced Instruction Set Computer) CPU, designed by ARM (Advanced RISC Machines), and designed for both high performance and low power consumption.

Fast Execution
Depending on the CPU state, all opcodes are sized 32bit or 16bit (that's counting both the opcode bits and its parameters bits) providing fast decoding and execution. Additionally, pipelining allows - (a) one instruction to be executed while (b) the next instruction is decoded and (c) the next instruction is fetched from memory - all at the same time.

Data Formats
The CPU manages to deal with 8bit, 16bit, and 32bit data, that are called:
 8bit - Byte
 16bit - Halfword
 32bit - Word

The two CPU states
As mentioned above, two CPU states exist:
- ARM state: Uses the full 32bit instruction set (32bit opcodes)
- THUMB state: Uses a cutdown 16bit instruction set (16bit opcodes)
Regardless of the opcode-width, both states are using 32bit registers, allowing 32bit memory addressing as well as 32bit arithmetic/logical operations.

When to use ARM state
Basically, there are two advantages in ARM state:
 - Each single opcode provides more functionality, resulting
 in faster execution when using a 32bit bus memory system
 (such like opcodes stored in GBA Work RAM).
 - All registers R0-R15 can be accessed directly.

The downsides are:
 - Not so fast when using 16bit memory system
 (but it still works though).
 - Program code occupies more memory space.

When to use THUMB state
There are two major advantages in THUMB state:
 - Faster execution up to approx 160% when using a 16bit bus
 memory system (such like opcodes stored in GBA GamePak ROM).
 - Reduces code size, decreases memory overload down to approx 65%.

The disadvantages are:
 - Not as multi-functional opcodes as in ARM state, so it will
 be sometimes required use more than one opcode to gain a
 similar result as for a single opcode in ARM state.
 - Most opcodes allow only registers R0-R7 to be used directly.

Combining ARM and THUMB state
Switching between ARM and THUMB state is done by a normal branch (BX) instruction which takes only a handful of cycles to execute (allowing to change states as often as desired - with almost no overload).

Also, as both ARM and THUMB are using the same register set, it is possible to pass data between ARM and THUMB mode very easily.

The best memory & execution performance can be gained by combining both states: THUMB for normal program code, and ARM code for timing critical subroutines (such like interrupt handlers, or complicated algorithms).

Note: ARM and THUMB code cannot be executed simultaneously.

Automatic state changes
Beside for the above manual state switching by using BX instructions, the following situations involve automatic state changes:
- CPU switches to ARM state when executing an exception
- User switches back to old state when leaving an exception

 CPU Register Set

Overview
The following table shows the ARM7TDMI register set which is available in each mode. There's a total of 37 registers (32bit each), 31 general registers (Rxx) and 6 status registers (xPSR).
Note that only some registers are 'banked', for example, each mode has it's own R14 register: called R14, R14_fiq, R14_svc, etc. for each mode respectively.
However, other registers are not banked, for example, each mode is using the same R0 register, so writing to R0 will always affect the content of R0 in other modes also.

 System/User FIQ Supervisor Abort IRQ Undefined
 --
 R0 R0 R0 R0 R0 R0
 R1 R1 R1 R1 R1 R1
 R2 R2 R2 R2 R2 R2
 R3 R3 R3 R3 R3 R3
 R4 R4 R4 R4 R4 R4
 R5 R5 R5 R5 R5 R5
 R6 R6 R6 R6 R6 R6
 R7 R7 R7 R7 R7 R7
 --
 R8 R8_fiq R8 R8 R8 R8
 R9 R9_fiq R9 R9 R9 R9
 R10 R10_fiq R10 R10 R10 R10
 R11 R11_fiq R11 R11 R11 R11
 R12 R12_fiq R12 R12 R12 R12
 R13 (SP) R13_fiq R13_svc R13_abt R13_irq R13_und
 R14 (LR) R14_fiq R14_svc R14_abt R14_irq R14_und
 R15 (PC) R15 R15 R15 R15 R15
 --
 CPSR CPSR CPSR CPSR CPSR CPSR
 -- SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und
 --

R0-R12 Registers (General Purpose Registers)
These thirteen registers may be used for whatever general purposes. Basically, each is having same functionality and performance, ie. there is no 'fast accumulator' for arithmetic operations, and no 'special pointer register' for memory addressing.
However, in THUMB mode only R0-R7 (Lo registers) may be accessed freely, while R8-R12 and up (Hi registers) can be accessed only by some instructions.

R13 Register (SP)
This register is used as S tack Pointer (SP) in THUMB state. While in ARM state the user may decided to use R13 and/or other register(s) as stack pointer(s), or as general purpose register.
As shown in the table above, there's a separate R13 register in each mode, and (when used as SP) each exception handler may (and MUST!) use its own stack.

R14 Register (LR)
This register is used as Link Register (LR). That is, when calling to a sub-routine by a Branch with Link (BL) instruction, then the return address (ie. old value of PC) is saved in this register.
S toring the return address in the LR register is obviously faster than pushing it into memory, however, as there's only one LR register for each mode, the user must manually push its content before issuing 'nested' subroutines.
Same happens when an exception is called, PC is saved in LR of new mode.
Note: In ARM mode, R14 may be used as general purpose register also, provided that above usage as LR register isn't required.

R15 Register (PC)
R15 is always used as program counter (PC). Note that when reading R15, this will usually return a value of PC+nn because of read-ahead (pipelining), whereas 'nn' depends on the instruction and on the CPU state (ARM or THUMB).

CPSR and SPSR (Program Status Registers) (ARMv3 and up)
The current condition codes (flags) and CPU control bits are stored in the CPSR register. When an exception arises, the old CPSR is saved in the SPSR of the respective exception-mode (much like PC is saved in LR).
For details refer to chapter about CPU Flags.

 CPU Flags

Current Program Status Register (CPSR)
 Bit Expl.
 31 N - Sign Flag (0=Not Signed, 1=Signed)
 30 Z - Zero Flag (0=Not Zero, 1=Zero)
 29 C - Carry Flag (0=No Carry, 1=Carry)
 28 V - Overflow Flag (0=No Overflow, 1=Overflow)
 27 Q - Sticky Overflow (1=Sticky Overflow, ARMv5TE and up only)
 26-8 Reserved (For future use) - Do not change manually!
 7 I - IRQ disable (0=Enable, 1=Disable)
 6 F - FIQ disable (0=Enable, 1=Disable)
 5 T - State Bit (0=ARM, 1=THUMB) - Do not change manually!
 4-0 M4-M0 - Mode Bits (See below)

Bit 31-28: Condition Code Flags (N,Z,C,V)
These bits reflect results of logical or arithmetic instructions. In ARM mode, it is often optionally whether an instruction should modify flags or not, for example, it is possible to execute a SUB instruction that does NOT modify the condition flags.
In ARM state, all instructions can be executed conditionally depending on the settings of the flags, such like MOVEQ (Move if Z=1). While In THUMB state, only Branch instructions (jumps) can be made conditionally.

Bit 27: Sticky Overflow Flag (Q) - ARMv5TE and ARMv5TExP and up only
Used by QADD, QSUB, QDADD, QDSUB, SMLAxy, and SMLAWy only. These opcodes set the Q-flag in case of overflows, but leave it unchanged otherwise. The Q-flag can be tested/reset by MSR/MRS opcodes only.

Bit 27-8: Reserved Bits (except Bit 27 on ARMv5TE and up, see above)
These bits are reserved for possible future implementations. For best forwards compatibility, the user should never change the state of these bits, and should not expect these bits to be set to a specific value.

Bit 7-0: Control Bits (I,F,T,M4-M0)
These bits may change when an exception occurs. In privileged modes (non-user modes) they may be also changed manually.
The interrupt bits I and F are used to disable IRQ and FIQ interrupts respectively (a setting of "1" means disabled).
The T Bit signalizes the current state of the CPU (0=ARM, 1=THUMB), this bit should never be changed manually - instead, changing between ARM and THUMB state must be done by BX instructions.
The Mode Bits M4-M0 contain the current operating mode.
 Binary Hex Dec Expl.
 10000b 10h 16 - User (non-privileged)
 10001b 11h 17 - FIQ
 10010b 12h 18 - IRQ
 10011b 13h 19 - Supervisor (SWI)
 10111b 17h 23 - Abort
 11011b 1Bh 27 - Undefined
 11111b 1Fh 31 - System (privileged 'User' mode) (ARMv4 and up)

Writing any other values into the Mode bits is not allowed.

Saved Program Status Registers (SPSR_<mode>)
Additionally to above CPSR, five Saved Program Status Registers exist:
SPSR_fiq, SPSR_svc, SPSR_abt, SPSR_irq, SPSR_und
Whenever the CPU enters an exception, the current status register (CPSR) is copied to the respective SPSR_<mode> register. Note that there is only one SPSR for each mode, so nested exceptions inside of the same mode are allowed only if the exception handler saves the content of SPSR in memory.
For example, for an IRQ exception: IRQ-mode is entered, and CPSR is copied to SPSR_irq. If the interrupt handler wants to enable nested IRQs, then it must first push SPSR_irq before doing so.

 CPU Exceptions

Exceptions are caused by interrupts or errors. In the ARM7TDMI the following exceptions may arise, sorted by priority, starting with highest priority:
- Reset
- Data Abort
- FIQ
- IRQ
- Prefetch Abort
- Software Interrupt
- Undefined Instruction

Exception Vectors
The following are the exception vectors in memory. That is, when an exception arises, CPU is switched into ARM state, and the program counter (PC) is loaded by the respec tive address.
 Address Exception Mode on Entry Interrupt Flags
 BASE+00h Reset Supervisor (_svc) I=1, F=1
 BASE+04h Undefined Instruction Undefined (_und) I=1, F=unchanged
 BASE+08h Software Interrupt (SWI) Supervisor (_svc) I=1, F=unchanged
 BASE+0Ch Prefetch Abort Abort (_abt) I=1, F=unchanged
 BASE+10h Data Abort Abort (_abt) I=1, F=unchanged
 BASE+14h (Reserved) - - -
 BASE+18h Normal Interrupt (IRQ) IRQ (_irq) I=1, F=unchanged
 BASE+1Ch Fast Interrupt (FIQ) FIQ (_fiq) I=1, F=1

BASE is normally 00000000h, but may be optionally FFFF0000h in some ARM CPUs.
As there's only space for one ARM opcode at each of the above addresses, it'd be usually recommended to deposit a Branch opcode into each vector, which'd then redirect to the actual exception handlers address.

Actions performed by CPU when entering an exception
 - R14=PC+nn ;save old PC, ie. return address
 - SPSR_<new mode>=CPSR ;save old flags
 - CPSR new T,M bits ;set to T=0 (ARM state), and M4-0=new mode
 - CPSR new I bit ;IRQs disabled (I=1), done by ALL exceptions
 - CPSR new F bit ;FIQs disabled (F=1), done by Reset and FIQ only
 - PC=exception_vector ;see table above

Above "PC+nn" depends on the type of exception. Basically, in ARM state that nn-offset is caused by pipelining, and in THUMB state an identical ARM-style 'offset' is generated (even though the 'base address' may be only halfword-aligned).

Required user-handler actions when returning from an exception
Restore any general registers (R0-R14) which might have been modified by the exception handler. Use return-instruction as listed in the respective descriptions below, this will both restore PC and CPSR - that automatically involves that the old CPU state (THUMB or ARM) as well as old state of FIQ and IRQ disable flags are restored.
As mentioned above (see action on entering...), the return address is always saved in ARM-style format, so that exception handler may use the same return-instruction, regardless of whether the exception has been generated from inside of ARM or THUMB state.

FIQ (Fast Interrupt Request)
This interrupt is generated by a LOW level on the nFIQ input. It is supposed to process timing critical interrupts at a high priority, as fast as possible.
Additionally to the common banked registers (R13_fiq,R14_fiq), five extra banked registers (R8_fiq-R12_fiq) are available in FIQ mode. The exception handler may freely ac cess these registers without modifying the main programs R8-R12 registers (and without having to save that registers on stack).
In privileged (non-user) modes, FIQs may be also manually disabled by setting the F B it in CPSR.

IRQ (Normal Interrupt Request)
This interrupt is generated by a LOW level on the nIRQ input. Unlike FIQ, the IRQ mode is not having its own banked R8-R12 registers.
IRQ is having lower priority than FIQ, and IRQs are automatically disabled when a FIQ exception becomes executed. In privileged (non-user) modes, IRQs may be also manually disabled by setting the I Bit in CPSR.
To return from IRQ Mode (continuing at following opcode):
 SUBS PC,R14,4 ;both PC=R14_irq-4, and CPSR=SPSR_irq

Software Interrupt
Generated by a software interrupt instruction (SWI). Recommended to request a supervisor (operating system) function. The SWI instruction may also contain a parameter in the 'comment field' of the opcode:
In case that your main program issues SWIs from both inside of THUMB and ARM states, then your exception handler must separate between 24bit comment fields in ARM opcodes, and 8bit comment fields in THUMB opcodes (if necessary determine old state by examining T Bit in SPSR_svc); However, in Little Endian mode, you could use only the most significant 8bits of the 24bit ARM comment field (as done in the GBA, for example) - the exception handler could then process the BYTE at [R14-2], regardless of whether it's been called from ARM or THUMB state.
To return from Supervisor Mode (continuing at following opcode):
 MOVS PC,R14 ;both PC=R14_svc, and CPSR=SPSR_svc

Note: Like all other exceptions, SWIs are always executed in ARM state, no matter whether it's been caused by an ARM or THUMB state SWI instruction.

Undefined Instruction Exception (supported by ARMv3 and up)
This exception is generated when the CPU comes across an instruction which it cannot handle. Most likely signaliz ing that the program has locked up, and that an errormessage should be displayed.
However, it might be also used to emulate custom functions, ie. as an additional 'SWI' instruction (which'd use R14_und and SPSR_und though, and it'd thus allow to execute the Undefined Instruction handler from inside of Supervisor mode without having to save R14_svc and SPSR_svc).
To return from Undefined Mode (continuing at following opcode):
 MOVS PC,R14 ;both PC=R14_und, and CPSR=SPSR_und

Note that not all unused opcodes are necessarily producing an exception, for example, an ARM state Multiply instruction with Bit 6 set to "1" would be blindly accepted as 'legal' opcode.

Abort (supported by ARMv3 and up)
Aborts (page faults) are mostly supposed for virtual memory systems (ie. not used in GBA, as far as I know), otherwise they might be used just to display an error message. Two types of aborts exists:
- Prefetch Abort (occurs during an instruction prefetch)
- Prefetch Abort (also occurs on BKPT opcodes, ARMv5 and up)
- Data Abort (occurs during a data access)
A virtual memory systems abort handler would then most likely determine the fault address: For prefetch abort that's just "R14_abt-4". For Data abort, the THUMB or ARM instruction at "R14_abt-8" needs to be 'disassembled' in order to determine the addressed data in memory.
The handler would then fix the error by loading the respective memory page into physical memory, and then retry to execute the SAME instruction again, by returning as fol lows:
 prefetch abort: SUBS PC,R14,#4 ;PC=R14_abt-4, and CPSR=SPSR_abt
 data abort: SUBS PC,R14,#8 ;PC=R14_abt-8, and CPSR=SPSR_abt

Separate exception vectors for prefetch/data abort exists, each should use the respec tive return instruction as shown above.

Reset
Forces PC=VVVV0000h, and forces control bits of CPSR to T=0 (ARM state), F=1 and I=1 (disable FIQ and IRQ), and M4-0=10011b (Supervisor mode).

 CPU Memory Alignments

The CPU does NOT support accessing mis-aligned addresses (which would be rather slow because it'd have to merge/split that data into two accesses).
When reading/writing code/data to/from memory, Words and Halfwords must be located at well-aligned memory address, ie. 32bit words aligned by 4, and 16bit halfwords aligned by 2.

Mis-aligned STR,STRH,STM,LDM,LDRD,STRD,PUSH,POP (forced align)
The mis-aligned low bit(s) are ignored, the memory access goes to a forc ibly aligned (rounded-down) memory address.
For LDRD/STRD, it isn't c learly defined if the address must be aligned by 8 (on the NDS, align-4 seems to be okay) (align-8 may be required on other CPUs with 64bit databus).

Mis-aligned LDR,SWP (rotated read)
Reads from forcibly aligned address "addr AND (NOT 3)", and does then rotate the data as "ROR (addr AND 3)*8". That effect is internally used by LDRB and LDRH opcodes (which do then mask-out the unused bits).
The SWP opcode works like a combination of LDR and STR, that means, it does read-rotated, but does write-unrotated.

Mis-aligned LDRH,LDRSH (does or does not do strange things)
On ARM9 aka ARMv5 aka NDS9:
 LDRH Rd,[odd] --> LDRH Rd,[odd-1] ;forced align
 LDRSH Rd,[odd] --> LDRSH Rd,[odd-1] ;forced align

On ARM7 aka ARMv5 aka NDS7/GBA:
 LDRH Rd,[odd] --> LDRH Rd,[odd-1] ROR 8 ;read to bit0-7 and bit24-31
 LDRSH Rd,[odd] --> LDRSB Rd,[odd] ;sign-expand BYTE value

Mis-aligned PC/R15 (branch opcodes, or MOV/ALU/LDR with Rd=R15)
For ARM code, the low bits of the target address should be usually zero, otherwise, R15 is forc ibly aligned by c learing the lower two bits.
For THUMB code, the low bit of the target address may/should/must be set, the bit is (or is not) interpreted as thumb-bit (depending on the opcode), and R15 is then forcibly aligned by c learing the lower bit.
In short, R15 will be always forcibly aligned, so mis-aligned branches won't have effect on subsequent opcodes that use R15, or [R15+disp] as operand.

 THUMB Instruction Set

When operating in THUMB state, cut-down 16bit opcodes are used.
THUMB supported on T-variants of ARMv4 and up, ie. ARMv4T, ARMv5T, etc.

Summary
THUMB Instruction Summary

Register Operations
THUMB.1: move shifted register
THUMB.2: add/subtract
THUMB.3: move/compare/add/subtract immediate
THUMB.4: ALU operations
THUMB.5: Hi register operations/branch exchange

Memory Addressing Operations
THUMB.6: load PC-relative
THUMB.7: load/store with register offset
THUMB.8: load/store sign-extended byte/halfword
THUMB.9: load/store with immediate offset
THUMB.10: load/store halfword
THUMB.11: load/store SP-relative
THUMB.12: get relative address
THUMB.13: add offset to stack pointer
THUMB.14: push/pop registers
THUMB.15: multiple load/store

Jumps and Calls
THUMB.16: conditional branch
THUMB.17: software interrupt and breakpoint
THUMB.18: unconditional branch
THUMB.19: long branch with link
(See also THUMB.5: BX Rs, and ADD/MOV PC,Rs.)

Note:
Switching between ARM and THUMB state can be done by using the Branch and Exchange (BX) instruction.

 THUMB Instruction Summary

The table below lists all THUMB mode instructions with c lock cycles, affected CPSR flags, Format/chapter number, and description.
Only register R0..R7 can be used in thumb mode (unless R8-15,SP,PC are explic itly mentioned).

Logical Operations
 Instruction Cycles Flags Format Expl.
 MOV Rd,Imm8bit 1S NZ-- 3 Rd=nn
 MOV Rd,Rs 1S NZ00 2 Rd=Rs+0
 MOV R0..14,R8..15 1S ---- 5 Rd=Rs
 MOV R8..14,R0..15 1S ---- 5 Rd=Rs
 MOV R15,R0..15 2S+1N ---- 5 PC=Rs
 MVN Rd,Rs 1S NZ-- 4 Rd=NOT Rs
 AND Rd,Rs 1S NZ-- 4 Rd=Rd AND Rs
 TST Rd,Rs 1S NZ-- 4 Void=Rd AND Rs
 BIC Rd,Rs 1S NZ-- 4 Rd=Rd AND NOT Rs
 ORR Rd,Rs 1S NZ-- 4 Rd=Rd OR Rs
 EOR Rd,Rs 1S NZ-- 4 Rd=Rd XOR Rs
 LSL Rd,Rs,Imm5bit 1S NZc- 1 Rd=Rs SHL nn
 LSL Rd,Rs 1S+1I NZc- 4 Rd=Rd SHL (Rs AND 0FFh)
 LSR Rd,Rs,Imm5bit 1S NZc- 1 Rd=Rs SHR nn
 LSR Rd,Rs 1S+1I NZc- 4 Rd=Rd SHR (Rs AND 0FFh)
 ASR Rd,Rs,Imm5bit 1S NZc- 1 Rd=Rs SAR nn
 ASR Rd,Rs 1S+1I NZc- 4 Rd=Rd SAR (Rs AND 0FFh)
 ROR Rd,Rs 1S+1I NZc- 4 Rd=Rd ROR (Rs AND 0FFh)
 NOP 1S ---- 5 R8=R8

Carry flag affected only if shift amount is non-zero.

Arithmetic Operations and Multiply
 Instruction Cycles Flags Format Expl.
 ADD Rd,Rs,Imm3bit 1S NZCV 2 Rd=Rs+nn
 ADD Rd,Imm8bit 1S NZCV 3 Rd=Rd+nn
 ADD Rd,Rs,Rn 1S NZCV 2 Rd=Rs+Rn
 ADD R0..14,R8..15 1S ---- 5 Rd=Rd+Rs
 ADD R8..14,R0..15 1S ---- 5 Rd=Rd+Rs
 ADD R15,R0..15 2S+1N ---- 5 PC=Rd+Rs
 ADD Rd,PC,Imm8bit*4 1S ---- 12 Rd=(($+4) AND NOT 2)+nn
 ADD Rd,SP,Imm8bit*4 1S ---- 12 Rd=SP+nn
 ADD SP,Imm7bit*4 1S ---- 13 SP=SP+nn
 ADD SP,-Imm7bit*4 1S ---- 13 SP=SP-nn
 ADC Rd,Rs 1S NZCV 4 Rd=Rd+Rs+Cy
 SUB Rd,Rs,Imm3Bit 1S NZCV 2 Rd=Rs-nn
 SUB Rd,Imm8bit 1S NZCV 3 Rd=Rd-nn
 SUB Rd,Rs,Rn 1S NZCV 2 Rd=Rs-Rn
 SBC Rd,Rs 1S NZCV 4 Rd=Rd-Rs-NOT Cy
 NEG Rd,Rs 1S NZCV 4 Rd=0-Rs
 CMP Rd,Imm8bit 1S NZCV 3 Void=Rd-nn
 CMP Rd,Rs 1S NZCV 4 Void=Rd-Rs
 CMP R0-15,R8-15 1S NZCV 5 Void=Rd-Rs
 CMP R8-15,R0-15 1S NZCV 5 Void=Rd-Rs
 CMN Rd,Rs 1S NZCV 4 Void=Rd+Rs
 MUL Rd,Rs 1S+mI NZx- 4 Rd=Rd*Rs

Jumps and Calls
 Instruction Cycles Flags Format Expl.
 B disp 2S+1N ---- 18 PC=$+/-2048
 BL disp 3S+1N ---- 19 PC=$+/-4M, LR=$+5
 B{cond=true} disp 2S+1N ---- 16 PC=$+/-0..256
 B{cond=false} disp 1S ---- 16 N/A
 BX R0..15 2S+1N ---- 5 PC=Rs, ARM/THUMB (Rs bit0)
 SWI Imm8bit 2S+1N ---- 17 PC=8, ARM SVC mode, LR=$+2
 BKPT Imm8bit ??? ---- 17 ??? ARM9 Prefetch Abort
 BLX disp ??? ---- ??? ??? ARM9
 BLX R0..R14 ??? ---- ??? ??? ARM9
 POP {Rlist,}PC (n+1)S+2N+1I ---- 14
 MOV R15,R0..15 2S+1N ---- 5 PC=Rs
 ADD R15,R0..15 2S+1N ---- 5 PC=Rd+Rs

The thumb BL instruction occupies two 16bit opcodes, 32bit in total.

Memory Load/Store
 Instruction Cycles Flags Format Expl.
 LDR Rd,[Rb,5bit*4] 1S+1N+1I ---- 9 Rd = WORD[Rb+nn]
 LDR Rd,[PC,8bit*4] 1S+1N+1I ---- 6 Rd = WORD[PC+nn]
 LDR Rd,[SP,8bit*4] 1S+1N+1I ---- 11 Rd = WORD[SP+nn]
 LDR Rd,[Rb,Ro] 1S+1N+1I ---- 7 Rd = WORD[Rb+Ro]
 LDRB Rd,[Rb,5bit*1] 1S+1N+1I ---- 9 Rd = BYTE[Rb+nn]
 LDRB Rd,[Rb,Ro] 1S+1N+1I ---- 7 Rd = BYTE[Rb+Ro]
 LDRH Rd,[Rb,5bit*2] 1S+1N+1I ---- 10 Rd = HALFWORD[Rb+nn]
 LDRH Rd,[Rb,Ro] 1S+1N+1I ---- 8 Rd = HALFWORD[Rb+Ro]
 LDSB Rd,[Rb,Ro] 1S+1N+1I ---- 8 Rd = SIGNED_BYTE[Rb+Ro]
 LDSH Rd,[Rb,Ro] 1S+1N+1I ---- 8 Rd = SIGNED_HALFWORD[Rb+Ro]
 STR Rd,[Rb,5bit*4] 2N ---- 9 WORD[Rb+nn] = Rd
 STR Rd,[SP,8bit*4] 2N ---- 11 WORD[SP+nn] = Rd
 STR Rd,[Rb,Ro] 2N ---- 7 WORD[Rb+Ro] = Rd
 STRB Rd,[Rb,5bit*1] 2N ---- 9 BYTE[Rb+nn] = Rd
 STRB Rd,[Rb,Ro] 2N ---- 7 BYTE[Rb+Ro] = Rd
 STRH Rd,[Rb,5bit*2] 2N ---- 10 HALFWORD[Rb+nn] = Rd
 STRH Rd,[Rb,Ro] 2N ---- 8 HALFWORD[Rb+Ro]=Rd
 PUSH {Rlist}{LR} (n-1)S+2N ---- 14
 POP {Rlist}{PC} ---- 14 (ARM9: with mode switch)
 STMIA Rb!,{Rlist} (n-1)S+2N ---- 15
 LDMIA Rb!,{Rlist} nS+1N+1I ---- 15

THUMB Binary Opcode Format
This table summarizes the position of opcode/parameter bits for THUMB mode instructions, Format 1-19.

 Form|_15|_14|_13|_12|_11|_10|_9_|_8_|_7_|_6_|_5_|_4_|_3_|_2_|_1_|_0_|
 __1_|_0___0___0_|__Op___|_______Offset______|____Rs_____|____Rd_____|Shifted
 __2_|_0___0___0___1___1_|_I,_Op_|___Rn/nn___|____Rs_____|____Rd_____|ADD/SUB
 __3_|_0___0___1_|__Op___|____Rd_____|_____________Offset____________|Immedi.
 __4_|_0___1___0___0___0___0_|______Op_______|____Rs_____|____Rd_____|AluOp
 __5_|_0___1___0___0___0___1_|__Op___|Hd_|Hs_|____Rs_____|____Rd_____|HiReg/BX
 __6_|_0___1___0___0___1_|____Rd_____|_____________Word______________|LDR PC
 __7_|_0___1___0___1_|__Op___|_0_|___Ro______|____Rb_____|____Rd_____|LDR/STR
 __8_|_0___1___0___1_|__Op___|_1_|___Ro______|____Rb_____|____Rd_____|""H/SB/SH
 __9_|_0___1___1_|__Op___|_______Offset______|____Rb_____|____Rd_____|""{B}
 10|_1___0___0___0_|Op_|_______Offset______|____Rb_____|____Rd_____|""H
 11|_1___0___0___1_|Op_|____Rd_____|_____________Word______________|"" SP
 12|_1___0___1___0_|Op_|____Rd_____|_____________Word______________|ADD PC/SP
 13|_1___0___1___1___0___0___0___0_|_S_|___________Word____________|ADD SP,nn
 14|_1___0___1___1_|Op_|_1___0_|_R_|____________Rlist______________|PUSH/POP
 17|_1___0___1___1___1___1___1___0_|___________User_Data___________|BKPT ARM9
 15|_1___1___0___0_|Op_|____Rb_____|____________Rlist______________|STM/LDM
 16|_1___1___0___1_|_____Cond______|_________Signed_Offset_________|B{cond}
 _U__|_1___1___0___1___1___1___1___0_|_____________var_______________|UNDEF ARM9
 17|_1___1___0___1___1___1___1___1_|___________User_Data___________|SWI
 18|_1___1___1___0___0_|________________Offset_____________________|B
 19|_1___1___1___0___1_|_________________________var___________|_0_|BLXsuf ARM9
 _U__|_1___1___1___0___1_|_________________________var___________|_1_|UNDEF ARM9
 19|_1___1___1___1_|_H_|______________Offset_Low/High______________|BL (BLX ARM9)

Further UNDEFS ??? ARM9?
 1011 0001 xxxxxxxx (reserved)
 1011 0x1x xxxxxxxx (reserved)
 1011 10xx xxxxxxxx (reserved)
 1011 1111 xxxxxxxx (reserved)
 1101 1110 xxxxxxxx (free for user)

 THUMB.1: move shifted register

Opcode Format
 Bit Expl.
 15-13 Must be 000b for 'move shifted register' instructions
 12-11 Opcode
 00b: LSL Rd,Rs,#Offset (logical/arithmetic shift left)
 01b: LSR Rd,Rs,#Offset (logical shift right)
 10b: ASR Rd,Rs,#Offset (arithmetic shift right)
 11b: Reserved (used for add/subtract instructions)
 10-6 Offset (0-31)
 5-3 Rs - Source register (R0..R7)
 2-0 Rd - Destination register (R0..R7)

Example: LSL Rd,Rs,#nn ; Rd = Rs << nn ; ARM equivalent: MOVS Rd,Rs,LSL #nn
Zero shift amount is having special meaning (same as for ARM shifts), LSL#0 performs no shift (the the carry flag remains unchanged), LSR/ASR#0 are interpreted as LSR/ASR#32. Attempts to specify LSR/ASR#0 in source code are automatically redirected as LSL#0, and source LSR/ASR#32 is redirected as opcode LSR/ASR#0.
Execution Time: 1S
Flags: Z=zeroflag, N=sign, C=carry (except LSL#0: C=unchanged), V=unchanged.

 THUMB.2: add/subtract

Opcode Format
 Bit Expl.
 15-11 Must be 00011b for 'add/subtract' instructions
 10-9 Opcode (0-3)
 0: ADD Rd,Rs,Rn ;add register Rd=Rs+Rn
 1: SUB Rd,Rs,Rn ;subtract register Rd=Rs-Rn
 2: ADD Rd,Rs,#nn ;add immediate Rd=Rs+nn
 3: SUB Rd,Rs,#nn ;subtract immediate Rd=Rs-nn
 Pseudo/alias opcode with Imm=0:
 2: MOV Rd,Rs ;move (affects cpsr) Rd=Rs+0
 8-6 For Register Operand:
 Rn - Register Operand (R0..R7)
 For Immediate Operand:
 nn - Immediate Value (0-7)
 5-3 Rs - Source register (R0..R7)
 2-0 Rd - Destination register (R0..R7)

Return: Rd contains result, N,Z,C,V affected (including MOV).
Execution Time: 1S

 THUMB.3: move/compare/add/subtract immediate

Opcode Format
 Bit Expl.
 15-13 Must be 001b for this type of instructions
 12-11 Opcode
 00b: MOV Rd,#nn ;move Rd = #nn
 01b: CMP Rd,#nn ;compare Void = Rd - #nn
 10b: ADD Rd,#nn ;add Rd = Rd + #nn
 11b: SUB Rd,#nn ;subtract Rd = Rd - #nn
 10-8 Rd - Destination Register (R0..R7)
 7-0 nn - Unsigned Immediate (0-255)

ARM equivalents for MOV/CMP/ADD/SUB are MOVS/CMP/ADDS/SUBS same format.
Execution Time: 1S
Return: Rd contains result (except CMP), N,Z,C,V affected (for MOV only N,Z).

 THUMB.4: ALU operations

Opcode Format
 Bit Expl.
 15-10 Must be 010000b for this type of instructions
 9-6 Opcode (0-Fh)
 0: AND Rd,Rs ;AND logical Rd = Rd AND Rs
 1: EOR Rd,Rs ;XOR logical Rd = Rd XOR Rs
 2: LSL Rd,Rs ;log. shift left Rd = Rd << (Rs AND 0FFh)
 3: LSR Rd,Rs ;log. shift right Rd = Rd >> (Rs AND 0FFh)
 4: ASR Rd,Rs ;arit shift right Rd = Rd SAR (Rs AND 0FFh)
 5: ADC Rd,Rs ;add with carry Rd = Rd + Rs + Cy
 6: SBC Rd,Rs ;sub with carry Rd = Rd - Rs - NOT Cy
 7: ROR Rd,Rs ;rotate right Rd = Rd ROR (Rs AND 0FFh)
 8: TST Rd,Rs ;test Void = Rd AND Rs
 9: NEG Rd,Rs ;negate Rd = 0 - Rs
 A: CMP Rd,Rs ;compare Void = Rd - Rs
 B: CMN Rd,Rs ;neg.compare Void = Rd + Rs
 C: ORR Rd,Rs ;OR logical Rd = Rd OR Rs
 D: MUL Rd,Rs ;multiply Rd = Rd * Rs
 E: BIC Rd,Rs ;bit clear Rd = Rd AND NOT Rs
 F: MVN Rd,Rs ;not Rd = NOT Rs
 5-3 Rs - Source Register (R0..R7)
 2-0 Rd - Destination Register (R0..R7)

ARM equivalent for NEG would be RSBS.
Return: Rd contains result (except TST,CMP,CMN),
Affected Flags:
 N,Z,C,V for ADC,SBC,NEG,CMP,CMN
 N,Z,C for LSL,LSR,ASR,ROR (carry flag unchanged if zero shift amount)
 N,Z,C for MUL on ARMv4 and below: carry flag destroyed
 N,Z for MUL on ARMv5 and above: carry flag unchanged
 N,Z for AND,EOR,TST,ORR,BIC,MVN

Execution Time:
 1S for AND,EOR,ADC,SBC,TST,NEG,CMP,CMN,ORR,BIC,MVN
 1S+1I for LSL,LSR,ASR,ROR
 1S+mI for MUL on ARMv4 (m=1..4; depending on MSBs of incoming Rd value)
 1S+mI for MUL on ARMv5 (m=3; fucking slow, no matter of MSBs of Rd value)

 THUMB.5: Hi register operations/branch exchange

Opcode Format
 Bit Expl.
 15-10 Must be 010001b for this type of instructions
 9-8 Opcode (0-3)
 0: ADD Rd,Rs ;add Rd = Rd+Rs
 1: CMP Rd,Rs ;compare Void = Rd-Rs ;CPSR affected
 2: MOV Rd,Rs ;move Rd = Rs
 2: NOP ;nop R8 = R8
 3: BX Rs ;jump PC = Rs ;may switch THUMB/ARM
 3: BLX Rs ;call PC = Rs ;may switch THUMB/ARM (ARM9)
 7 MSBd - Destination Register most significant bit (or BL/BLX flag)
 6 MSBs - Source Register most significant bit
 5-3 Rs - Source Register (together with MSBs: R0..R15)
 2-0 Rd - Destination Register (together with MSBd: R0..R15)

Restrictions: For ADD/CMP/MOV, MSBs and/or MSBd must be set, ie. it is not allowed that both are c leared.
When using R15 (PC) as operand, the value will be the address of the instruction plus 4 (ie. $+4). Except for BX R15: CPU switches to ARM state, and PC is auto-aligned as (($+4) AND NOT 2).
For BX, MSBs may be 0 or 1, MSBd must be zero, Rd is not used/zero.
For BLX, MSBs may be 0 or 1, MSBd must be set, Rd is not used/zero.
For BX/BLX, when Bit 0 of the value in Rs is zero:
 Processor will be switched into ARM mode!
 If so, Bit 1 of Rs must be cleared (32bit word aligned).
 Thus, BX PC (switch to ARM) may be issued from word-aligned address
 only, the destination is PC+4 (ie. the following halfword is skipped).

BLX may not use R15. BLX saves the return address as LR=PC+3 (with thumb bit).
Assemblers/Disassemblers should use MOV R8,R8 as NOP (in THUMB mode).
Return: Only CMP affects CPSR condition flags!
Execution Time:
 1S for ADD/MOV/CMP
 2S+1N for ADD/MOV with Rd=R15, and for BX

 THUMB.6: load PC-relative

Opcode Format
 Bit Expl.
 15-11 Must be 01001b for this type of instructions
 N/A Opcode (fixed)
 LDR Rd,[PC,#nn] ;load 32bit Rd = WORD[PC+nn]
 10-8 Rd - Destination Register (R0..R7)
 7-0 nn - Unsigned offset (0-1020 in steps of 4)

The value of PC will be interpreted as (($+4) AND NOT 2).
Return: No flags affected, data loaded into Rd.
Execution Time: 1S+1N+1I

 THUMB.7: load/store with register offset

Opcode Format
 Bit Expl.
 15-12 Must be 0101b for this type of instructions
 11-10 Opcode (0-3)
 0: STR Rd,[Rb,Ro] ;store 32bit data WORD[Rb+Ro] = Rd
 1: STRB Rd,[Rb,Ro] ;store 8bit data BYTE[Rb+Ro] = Rd
 2: LDR Rd,[Rb,Ro] ;load 32bit data Rd = WORD[Rb+Ro]
 3: LDRB Rd,[Rb,Ro] ;load 8bit data Rd = BYTE[Rb+Ro]
 9 Must be zero (0) for this type of instructions
 8-6 Ro - Offset Register (R0..R7)
 5-3 Rb - Base Register (R0..R7)
 2-0 Rd - Source/Destination Register (R0..R7)

Return: No flags affected, data loaded either into Rd or into memory.
Execution Time: 1S+1N+1I for LDR, or 2N for STR

 THUMB.8: load/store sign-extended byte/halfword

Opcode Format
 Bit Expl.
 15-12 Must be 0101b for this type of instructions
 11-10 Opcode (0-3)
 0: STRH Rd,[Rb,Ro] ;store 16bit data HALFWORD[Rb+Ro] = Rd
 1: LDSB Rd,[Rb,Ro] ;load sign-extended 8bit Rd = BYTE[Rb+Ro]
 2: LDRH Rd,[Rb,Ro] ;load zero-extended 16bit Rd = HALFWORD[Rb+Ro]
 3: LDSH Rd,[Rb,Ro] ;load sign-extended 16bit Rd = HALFWORD[Rb+Ro]
 9 Must be set (1) for this type of instructions
 8-6 Ro - Offset Register (R0..R7)
 5-3 Rb - Base Register (R0..R7)
 2-0 Rd - Source/Destination Register (R0..R7)

Return: No flags affected, data loaded either into Rd or into memory.
Execution Time: 1S+1N+1I for LDR, or 2N for STR

 THUMB.9: load/store with immediate offset

Opcode Format
 Bit Expl.
 15-13 Must be 011b for this type of instructions
 12-11 Opcode (0-3)
 0: STR Rd,[Rb,#nn] ;store 32bit data WORD[Rb+nn] = Rd
 1: LDR Rd,[Rb,#nn] ;load 32bit data Rd = WORD[Rb+nn]
 2: STRB Rd,[Rb,#nn] ;store 8bit data BYTE[Rb+nn] = Rd
 3: LDRB Rd,[Rb,#nn] ;load 8bit data Rd = BYTE[Rb+nn]
 10-6 nn - Unsigned Offset (0-31 for BYTE, 0-124 for WORD)
 5-3 Rb - Base Register (R0..R7)
 2-0 Rd - Source/Destination Register (R0..R7)

Return: No flags affected, data loaded either into Rd or into memory.
Execution Time: 1S+1N+1I for LDR, or 2N for STR

 THUMB.10: load/store halfword

Opcode Format
 Bit Expl.
 15-12 Must be 1000b for this type of instructions
 11 Opcode (0-1)
 0: STRH Rd,[Rb,#nn] ;store 16bit data HALFWORD[Rb+nn] = Rd
 1: LDRH Rd,[Rb,#nn] ;load 16bit data Rd = HALFWORD[Rb+nn]
 10-6 nn - Unsigned Offset (0-62, step 2)
 5-3 Rb - Base Register (R0..R7)
 2-0 Rd - Source/Destination Register (R0..R7)

Return: No flags affected, data loaded either into Rd or into memory.
Execution Time: 1S+1N+1I for LDR, or 2N for STR

 THUMB.11: load/store SP-relative

Opcode Format
 Bit Expl.
 15-12 Must be 1001b for this type of instructions
 11 Opcode (0-1)
 0: STR Rd,[SP,#nn] ;store 32bit data WORD[SP+nn] = Rd
 1: LDR Rd,[SP,#nn] ;load 32bit data Rd = WORD[SP+nn]
 10-8 Rd - Source/Destination Register (R0..R7)
 7-0 nn - Unsigned Offset (0-1020, step 4)

Return: No flags affected, data loaded either into Rd or into memory.
Execution Time: 1S+1N+1I for LDR, or 2N for STR

 THUMB.12: get relative address

Opcode Format
 Bit Expl.
 15-12 Must be 1010b for this type of instructions
 11 Opcode/Source Register (0-1)
 0: ADD Rd,PC,#nn ;Rd = (($+4) AND NOT 2) + nn
 1: ADD Rd,SP,#nn ;Rd = SP + nn
 10-8 Rd - Destination Register (R0..R7)
 7-0 nn - Unsigned Offset (0-1020, step 4)

Return: No flags affected, result in Rd.
Execution Time: 1S

 THUMB.13: add offset to stack pointer

Opcode Format
 Bit Expl.
 15-8 Must be 10110000b for this type of instructions
 7 Opcode/Sign
 0: ADD SP,#nn ;SP = SP + nn
 1: ADD SP,#-nn ;SP = SP - nn
 6-0 nn - Unsigned Offset (0-508, step 4)

Return: No flags affected, SP adjusted.
Execution Time: 1S

 THUMB.14: push/pop registers

Opcode Format
 Bit Expl.
 15-12 Must be 1011b for this type of instructions
 11 Opcode (0-1)
 0: PUSH {Rlist}{LR} ;store in memory, decrements SP (R13)
 1: POP {Rlist}{PC} ;load from memory, increments SP (R13)
 10-9 Must be 10b for this type of instructions
 8 PC/LR Bit (0-1)
 0: No
 1: PUSH LR (R14), or POP PC (R15)
 7-0 Rlist - List of Registers (R7..R0)

In THUMB mode stack is always meant to be 'full descending', ie. PUSH is equivalent to 'STMFD/STMDB' and POP to 'LDMFD/LDMIA' in ARM mode.

Examples:
 PUSH {R0-R3} ;push R0,R1,R2,R3
 PUSH {R0,R2,LR} ;push R0,R2,LR
 POP {R4,R7} ;pop R4,R7
 POP {R2-R4,PC} ;pop R2,R3,R4,PC

Note: When calling to a sub-routine, the return address is stored in LR register, when calling further sub-routines, PUSH {LR} must be used to save higher return address on stack. If so, POP {PC} can be later used to return from the sub-routine.
POP {PC} ignores the least significant bit of the return address (processor remains in thumb state even if bit0 was c leared), when intending to return with optional mode switch, use a POP/BX combination (eg. POP {R3} / BX R3).
ARM9: POP {PC} copies the LSB to thumb bit (switches to ARM if bit0=0).
Return: No flags affected, SP adjusted, registers loaded/stored.
Execution Time: nS+1N+1I (POP), (n+1)S+2N+1I (POP PC), or (n-1)S+2N (PUSH).

 THUMB.15: multiple load/store

Opcode Format
 Bit Expl.
 15-12 Must be 1100b for this type of instructions
 11 Opcode (0-1)
 0: STMIA Rb!,{Rlist} ;store in memory, increments Rb
 1: LDMIA Rb!,{Rlist} ;load from memory, increments Rb
 10-8 Rb - Base register (modified) (R0-R7)
 7-0 Rlist - List of Registers (R7..R0)

Both STM and LDM are incrementing the Base Register.
The lowest register in the list (ie. R0, if it's in the list) is stored/loaded at the lowest memory address.
Examples:
 STMIA R7!,{R0-R2} ;store R0,R1,R2
 LDMIA R0!,{R1,R5} ;store R1,R5

Return: No flags affected, Rb adjusted, registers loaded/stored.
Execution Time: nS+1N+1I for LDM, or (n-1)S+2N for STM.

Strange Effects on Invalid Rlist's
Empty Rlist: R15 loaded/stored (ARMv4 only), and Rb=Rb+40h (ARMv4-v5).
Writeback with Rb included in Rlist: S tore OLD base if Rb is FIRST entry in Rlist, otherwise store NEW base (STM/ARMv4), always store OLD base (STM/ARMv5), no writeback (LDM/ARMv4/ARMv5; at this point, THUMB opcodes work different than ARM opcodes).

 THUMB.16: conditional branch

Opcode Format
 Bit Expl.
 15-12 Must be 1101b for this type of instructions
 11-8 Opcode/Condition (0-Fh)
 0: BEQ label ;Z=1 ;equal (zero)
 1: BNE label ;Z=0 ;not equal (nonzero)
 2: BCS label ;C=1 ;unsigned higher or same (carry set)
 3: BCC label ;C=0 ;unsigned lower (carry cleared)
 4: BMI label ;N=1 ;negative (minus)
 5: BPL label ;N=0 ;positive or zero (plus)
 6: BVS label ;V=1 ;overflow (V set)
 7: BVC label ;V=0 ;no overflow (V cleared)
 8: BHI label ;C=1 and Z=0 ;unsigned higher
 9: BLS label ;C=0 or Z=1 ;unsigned lower or same
 A: BGE label ;N=V ;greater or equal
 B: BLT label ;N<>V ;less than
 C: BGT label ;Z=0 and N=V ;greater than
 D: BLE label ;Z=1 or N<>V ;less or equal
 E: Undefined, should not be used
 F: Reserved for SWI instruction (see SWI opcode)
 7-0 Signed Offset, step 2 ($+4-256..$+4+254)

Destination address must by halfword aligned (ie. bit 0 c leared)
Return: No flags affected, PC adjusted if condition true
Execution Time:
 2S+1N if condition true (jump executed)
 1S if condition false

 THUMB.17: software interrupt and breakpoint

Opcode Format
 Bit Expl.
 15-8 Opcode
 11011111b: SWI nn ;software interrupt
 10111110b: BKPT nn ;software breakpoint (ARMv5 and up)
 7-0 nn - Comment Immediate (0-255)

SWI supposed for calls to the operating system - Enter Supervisor mode (SVC) in ARM state. BKPT intended for debugging - enters Abort mode in ARM state via Prefetch Abort vector.

Execution SWI/BKPT:
 R14_svc=PC+2 R14_abt=PC+4 ;save return address
 SPSR_svc=CPSR SPSR_abt=CPSR ;save CPSR flags
 CPSR=<changed> CPSR=<changed> ;Enter svc/abt, ARM state, IRQs disabled
 PC=VVVV0008h PC=VVVV000Ch ;jump to SWI/PrefetchAbort vector address

Execution Time: 2S+1N

Interpreting the Comment Field:
The immediate parameter is ignored by the processor, the user interrupt handler may read-out this number by examining the lower 8bit of the 16bit opcode opcode at [R14_svc-2]. In case that your program executes SWI's from inside of ARM mode also: Your SWI handler must then examine the T Bit SPSR_svc in order to determine whether it's been a ARM SWI - if so, examining the lower 24bit of the 32bit opcode opcode at [R14_svc-4].

For Returning from SWI use this instruction:
 MOVS PC,R14

That instructions does both restoring PC and CPSR, ie. PC=R14_svc, and CPSR=SPRS_svc. In this case (as called from THUMB mode), this does also include restoring THUMB mode.

Nesting SWIs:
SPSR_svc and R14_svc should be saved on stack before either invoking nested SWIs, or (if the IRQ handler uses SWIs) before enabling IRQs.

 THUMB.18: unconditional branch

Opcode Format
 Bit Expl.
 15-11 Must be 11100b for this type of instructions
 N/A Opcode (fixed)
 B label ;branch (jump)
 10-0 Signed Offset, step 2 ($+4-2048..$+4+2046)

Return: No flags affected, PC adjusted.
Execution Time: 2S+1N

 THUMB.19: long branch with link

Opcode Format
This may be used to call (or jump) to a subroutine, return address is saved in LR (R14).
Unlike all other THUMB mode instructions, this instruction occupies 32bit of memory which are split into two 16bit THUMB opcodes.

First Instruction - LR = PC+4+(nn SHL 12)
 Bit Expl.
 15-11 Must be 11110b for BL/BLX type of instructions
 10-0 nn - Upper 11 bits of Target Address

Second Instruction - PC = LR + (nn SHL 1), and LR = PC+2 OR 1 (and BLX: T=0)
 Bit Expl.
 15-11 Opcode
 11111b: BL label ;branch long with link
 11101b: BLX label ;branch long with link switch to ARM mode (ARM9)
 10-0 nn - Lower 11 bits of Target Address (BLX: Bit0 Must be zero)

The destination address range is (PC+4)-400000h..+3FFFFEh, ie. PC+/-4M.
Target must be halfword-aligned. As Bit 0 in LR is set, it may be used to return by a BX LR instruction (keeping CPU in THUMB mode).
Return: No flags affected, PC adjusted, return address in LR.
Execution Time: 3S+1N (first opcode 1S , second opcode 2S+1N).

Note
Exceptions may or may not occur between first and second opcode, this is "implementation defined" ???

 ARM Instruction Set

When operating in ARM state, full 32bit opcodes are used.

Summaries
ARM Instruction Summary
ARM Condition Field

Jumps and Calls
ARM.3: Branch and Exchange (BX, BLX)
ARM.4: Branch and Branch with Link (B, BL, BLX)
(Also, most various ALU, LDR, LDM opcodes can change PC.)

Register Operations
ARM.5: Data Processing
ARM.6: PSR Transfer (MRS, MSR)
ARM.7: Multiply and Multiply-Accumulate (MUL,MLA)

Memory Addressing Operations
ARM.9: S ingle Data Transfer (LDR, STR, PLD)
ARM.10: Halfword, Doubleword, and S igned Data Transfer
ARM.11: Block Data Transfer (LDM,STM)
ARM.12: S ingle Data Swap (SWP)

Exception Calls and Coprocessor
ARM.13: Software Interrupt (SWI,BKPT)
ARM.14: Coprocessor Data Operations (CDP)
ARM.15: Coprocessor Data Transfers (LDC,STC)
ARM.16: Coprocessor Register Transfers (MRC, MCR)
ARM.X: Coprocessor Double-Register Transfer (MCRR,MRRC)
ARM.17: Undefined Instruction

ARM.X: Count Leading Zeros
ARM.X: QADD/QSUB

ARM 26bit Memory Interface

Note:
Switching between ARM and THUMB state can be done by using the Branch and Exchange (BX) instruction.

 ARM Instruction Summary

Modification of CPSR flags is optional for all {S} instructions.

Logical Operations
 Instruction Cycles Flags Format Expl.
 MOV{cond}{S} Rd,Op2 1S+x+y NZc- 5 Rd = Op2
 MVN{cond}{S} Rd,Op2 1S+x+y NZc- 5 Rd = NOT Op2
 AND{cond}{S} Rd,Rn,Op2 1S+x+y NZc- 5 Rd = Rn AND Op2
 TST{cond}{P} Rn,Op2 1S+x NZc- 5 Void = Rn AND Op2
 EOR{cond}{S} Rd,Rn,Op2 1S+x+y NZc- 5 Rd = Rn XOR Op2
 TEQ{cond}{P} Rn,Op2 1S+x NZc- 5 Void = Rn XOR Op2
 ORR{cond}{S} Rd,Rn,Op2 1S+x+y NZc- 5 Rd = Rn OR Op2
 BIC{cond}{S} Rd,Rn,Op2 1S+x+y NZc- 5 Rd = Rn AND NOT Op2

Add x=1I cycles if Op2 shifted-by-register. Add y=1S+1N cycles if Rd=R15.
Carry flag affected only if Op2 contains a non-zero shift amount.

Arithmetic Operations
 Instruction Cycles Flags Format Expl.
 ADD{cond}{S} Rd,Rn,Op2 1S+x+y NZCV 5 Rd = Rn+Op2
 ADC{cond}{S} Rd,Rn,Op2 1S+x+y NZCV 5 Rd = Rn+Op2+Cy
 SUB{cond}{S} Rd,Rn,Op2 1S+x+y NZCV 5 Rd = Rn-Op2
 SBC{cond}{S} Rd,Rn,Op2 1S+x+y NZCV 5 Rd = Rn-Op2+Cy-1
 RSB{cond}{S} Rd,Rn,Op2 1S+x+y NZCV 5 Rd = Op2-Rn
 RSC{cond}{S} Rd,Rn,Op2 1S+x+y NZCV 5 Rd = Op2-Rn+Cy-1
 CMP{cond}{P} Rn,Op2 1S+x NZCV 5 Void = Rn-Op2
 CMN{cond}{P} Rn,Op2 1S+x NZCV 5 Void = Rn+Op2

Add x=1I cycles if Op2 shifted-by-register. Add y=1S+1N cycles if Rd=R15.

Multiply
 Instruction Cycles Flags Format Expl.
 MUL{cond}{S} Rd,Rm,Rs 1S+mI NZx- 7 Rd = Rm*Rs
 MLA{cond}{S} Rd,Rm,Rs,Rn 1S+mI+1I NZx- 7 Rd = Rm*Rs+Rn
 UMULL{cond}{S} RdLo,RdHi,Rm,Rs 1S+mI+1I NZx- 7 RdHiLo = Rm*Rs
 UMLAL{cond}{S} RdLo,RdHi,Rm,Rs 1S+mI+2I NZx- 7 RdHiLo = Rm*Rs+RdHiLo
 SMULL{cond}{S} RdLo,RdHi,Rm,Rs 1S+mI+1I NZx- 7 RdHiLo = Rm*Rs
 SMLAL{cond}{S} RdLo,RdHi,Rm,Rs 1S+mI+2I NZx- 7 RdHiLo = Rm*Rs+RdHiLo
 SMLAxy{cond} Rd,Rm,Rs,Rn ---q 7 Rd=HalfRm*HalfRs+Rn ARMv5TE(xP)
 SMLAWy{cond} Rd,Rm,Rs,Rn ---q 7 Rd=(Rm*HalfRs)/10000h+Rn ARMv5TE(xP)
 SMULWy{cond} Rd,Rm,Rs ---- 7 Rd=(Rm*HalfRs)/10000h ARMv5TE(xP)
 SMLALxy{cond} RdLo,RdHi,Rm,Rs ---- 7 RdHiLo=RdHiLo+HalfRm*HalfRs ARMv5TE(xP)
 SMULxy{cond} Rd,Rm,Rs ---- 7 Rd=HalfRm*HalfRs ARMv5TE(xP)

Memory Load/Store
 Instruction Cycles Flags Format Expl.
 LDR{cond}{B}{T} Rd,<Address> 1S+1N+1I +y ---- 9 Rd=[Rn+/-<offset>]
 LDR{cond}H Rd,<Address> 1S+1N+1I +y ---- 10 Load Unsigned halfword
 LDR{cond}D Rd,<Address> ---- 10 Load Dword ARMv5TE
 LDR{cond}SB Rd,<Address> 1S+1N+1I +y ---- 10 Load Signed byte
 LDR{cond}SH Rd,<Address> 1S+1N+1I +y ---- 10 Load Signed halfword
 LDM{cond}{amod} Rn{!},<Rlist>{^} nS+1N+1I +y ---- 11 Load Multiple
 STR{cond}{B}{T} Rd,<Address> 2N ---- 9 [Rn+/-<offset>]=Rd
 STR{cond}H Rd,<Address> 2N ---- 10 Store halfword
 STR{cond}D Rd,<Address> ---- 10 Store Dword ARMv5TE
 STM{cond}{amod} Rn{!},<Rlist>{^} (n-1)S+2N ---- 11 Store Multiple
 SWP{cond}{B} Rd,Rm,[Rn] 1S+2N+1I ---- 12 Rd=[Rn], [Rn]=Rm
 PLD <Address> 1S ---- 9 Prepare Cache ARMv5TE

For LDR/LDM, add y=1S+1N if Rd=R15, or if R15 in Rlist.

Jumps, Calls, CPSR Mode, and others
 Instruction Cycles Flags Format Expl.
 B{cond} label 2S+1N ---- 4 PC=$+8+/-32M
 BL{cond} label 2S+1N ---- 4 PC=$+8+/-32M, LR=$+4
 BX{cond} Rn 2S+1N ---- 3 PC=Rn, T=Rn.0 (THUMB/ARM)
 BLX{cond} Rn 2S+1N ---- 3 PC=Rn, T=Rn.0, LR=PC+4, ARM9
 BLX label 2S+1N ---- 3 PC=PC+$+/-32M, LR=$+4, T=1, ARM9
 MRS{cond} Rd,Psr 1S ---- 6 Rd=Psr
 MSR{cond} Psr{_field},Op 1S (psr) 6 Psr[field]=Op
 SWI{cond} Imm24bit 2S+1N ---- 13 PC=8, ARM Svc mode, LR=$+4
 BKPT Imm16bit ??? ---- ??? PC=C, ARM Abt mode, LR=$+4 ARM9
 The Undefined Instruction 2S+1I+1N ---- 17 PC=4, ARM Und mode, LR=$+4
 cond=false 1S ---- .. Any opcode with condition=false
 NOP 1S ---- 5 R0=R0

 CLZ{cond} Rd,Rm ??? ---- ??? Count Leading Zeros ARMv5
 QADD{cond} Rd,Rm,Rn ---q Rd=Rm+Rn ARMv5TE(xP)
 QSUB{cond} Rd,Rm,Rn ---q Rd=Rm-Rn ARMv5TE(xP)
 QDADD{cond} Rd,Rm,Rn ---q Rd=Rm+Rn*2 ARMv5TE(xP)
 QDSUB{cond} Rd,Rm,Rn ---q Rd=Rm-Rn*2 ARMv5TE(xP)

Coprocessor Functions (if any)
 Instruction Cycles Flags Format Expl.
 CDP{cond} Pn,<cpopc>,Cd,Cn,Cm{,<cp>} 1S+bI ---- 14 Coprocessor specific
 STC{cond}{L} Pn,Cd,<Address> (n-1)S+2N+bI 15 [address] = CRd
 LDC{cond}{L} Pn,Cd,<Address> (n-1)S+2N+bI 15 CRd = [address]
 MCR{cond} Pn,<cpopc>,Rd,Cn,Cm{,<cp>} 1S+bI+1C 16 CRn = Rn {<op> CRm}
 MRC{cond} Pn,<cpopc>,Rd,Cn,Cm{,<cp>} 1S+(b+1)I+1C 16 Rn = CRn {<op> CRm}
 CDP2,STC2,LDC2,MCR2,MRC2 - ARMv5 Extensions similar above, without {cond}
 MCRR{cond} Pn,<cpopc>,Rd,Rn,Cm ;write Rd,Rn to coproc ARMv5TE
 MRRC{cond} Pn,<cpopc>,Rd,Rn,Cm ;read Rd,Rn from coproc ARMv5TE

Note that no sections 1-2 exist, that is because the sections numbers comply with chapter numbers of the offic ial ARM docs, which described ARM opcodes in chapter 3-17.

ARM Binary Opcode Format

 |..3210|
 |1_0_9_8_7_6_5_4_3_2_1_0_9_8_7_6_5_4_3_2_1_0_9_8_7_6_5_4_3_2_1_0|
 |_Cond__|0_0_0|___Op__|S|__Rn___|__Rd___|__Shift__|Typ|0|__Rm___| DataProc
 |_Cond__|0_0_0|___Op__|S|__Rn___|__Rd___|__Rs___|0|Typ|1|__Rm___| DataProc
 |_Cond__|0_0_1|___Op__|S|__Rn___|__Rd___|_Shift_|___Immediate___| DataProc
 |_Cond__|0_0_1_1_0|P|1|0|_Field_|__Rd___|_Shift_|___Immediate___| PSR Imm
 |_Cond__|0_0_0_1_0|P|L|0|_Field_|__Rd___|0_0_0_0|0_0_0_0|__Rm___| PSR Reg
 |_Cond__|0_0_0_1_0_0_1_0_1_1_1_1_1_1_1_1_1_1_1_1|0_0|L|1|__Rn___| BX,BLX
 |1_1_1_0|0_0_0_1_0_0_1_0|_____immediate_________|0_1_1_1|_immed_| BKPT ARM9
 |_Cond__|0_0_0_1_0_1_1_0_1_1_1_1|__Rd___|1_1_1_1|0_0_0_1|__Rm___| CLZ ARM9
 |_Cond__|0_0_0_1_0|Op_|0|__Rn___|__Rd___|0_0_0_0|0_1_0_1|__Rm___| QALU ARM9
 |_Cond__|0_0_0_0_0_0|A|S|__Rd___|__Rn___|__Rs___|1_0_0_1|__Rm___| Multiply
 |_Cond__|0_0_0_0_1|U|A|S|_RdHi__|_RdLo__|__Rs___|1_0_0_1|__Rm___| MulLong
 |_Cond__|0_0_0_1_0|Op_|0|Rd/RdHi|Rn/RdLo|__Rs___|1|y|x|0|__Rm___| MulHalf
 |_Cond__|0_0_0_1_0|B|0_0|__Rn___|__Rd___|0_0_0_0|1_0_0_1|__Rm___| TransSwp12
 |_Cond__|0_0_0|P|U|0|W|L|__Rn___|__Rd___|0_0_0_0|1|S|H|1|__Rm___| TransReg10
 |_Cond__|0_0_0|P|U|1|W|L|__Rn___|__Rd___|OffsetH|1|S|H|1|OffsetL| TransImm10
 |_Cond__|0_1_0|P|U|B|W|L|__Rn___|__Rd___|_________Offset________| TransImm9
 |_Cond__|0_1_1|P|U|B|W|L|__Rn___|__Rd___|__Shift__|Typ|0|__Rm___| TransReg9
 |_Cond__|0_1_1|________________xxx____________________|1|__xxx__| Undefined
 |_Cond__|1_0_0|P|U|S|W|L|__Rn___|__________Register_List________| BlockTrans
 |_Cond__|1_0_1|L|___________________Offset______________________| B,BL,BLX
 |_Cond__|1_1_0|P|U|N|W|L|__Rn___|__CRd__|__CP#__|____Offset_____| CoDataTrans
 |_Cond__|1_1_0_0_0_1_0|L|__Rn___|__Rd___|__CP#__|_CPopc_|__CRm__| CoRR ARM9
 |_Cond__|1_1_1_0|_CPopc_|__CRn__|__CRd__|__CP#__|_CP__|0|__CRm__| CoDataOp
 |_Cond__|1_1_1_0|CPopc|L|__CRn__|__Rd___|__CP#__|_CP__|1|__CRm__| CoRegTrans
 |_Cond__|1_1_1_1|_____________Ignored_by_Processor______________| SWI

 ARM Condition Field

In ARM mode, all instructions can be conditionally executed depending on the state of the CPSR flags (C,N,Z,V). The respective suffixes {cond} must be appended to the mnemonics. For example: BEQ = Branch if Equal, MOVMI = Move if S igned.

 Code Suffix Flags Meaning
 0: EQ Z=1 equal (zero)
 1: NE Z=0 not equal (nonzero)
 2: CS C=1 unsigned higher or same (carry set)
 3: CC C=0 unsigned lower (carry cleared)
 4: MI N=1 negative (minus)
 5: PL N=0 positive or zero (plus)
 6: VS V=1 overflow (V set)
 7: VC V=0 no overflow (V cleared)
 8: HI C=1 and Z=0 unsigned higher
 9: LS C=0 or Z=1 unsigned lower or same
 A: GE N=V greater or equal
 B: LT N<>V less than
 C: GT Z=0 and N=V greater than
 D: LE Z=1 or N<>V less or equal
 E: AL - always
 F: NV - never (ARMv1,v2 only) (Reserved ARMv3 and up)

To define a non-conditional instruction which is always to be executed (regardless of any flags), the AL suffix may be used - that is the same as if no suffix is specified. For example, MOVAL would be usually abbreviated to MOV.

ARMv5 and up includes a few additional opcodes without condition field and which cannot be made conditional, these opcodes are: BKPT, PLD, CDP2, LDC2, MCR2, MRC2, STC2, and BLX_imm (however BLX_reg can be conditional).

Execution Time: If condition=false: 1S cycle.
Otherwise as specified for the respective opcode.

 ARM.3: Branch and Exchange (BX, BLX)

Opcode Format
 Bit Expl.
 31-28 Condition
 27-8 Must be "0001.0010.1111.1111.1111" for this instruction
 7-4 Opcode
 0001b: BX{cond} Rn ;PC=Rn, T=Rn.0 (ARMv4T and ARMv5 and up)
 0011b: BLX{cond} Rn ;PC=Rn, T=Rn.0, LR=PC+4 (ARMv5 and up)
 3-0 Rn - Operand Register (R0-R14)

Switching to THUMB Mode: Set Bit 0 of the value in Rn to 1, program continues then at Rn-1 in THUMB mode.
Results in undefined behaviour if using R15 (PC+8 itself) as operand.
Execution Time: 2S + 1N
Return: No flags affected.

 ARM.4: Branch and Branch with Link (B, BL, BLX)

Opcode Format
Branch (B) is supposed to jump to a subroutine. Branch with Link is meant to be used to call to a subroutine, return address is then saved in R14.
 Bit Expl.
 31-28 Condition (must be 1111b for BLX)
 27-25 Must be "101" for this instruction
 24 Opcode (0-1) (or Halfword Offset for BLX)
 0: B{cond} label ;branch PC=PC+8+nn*4
 1: BL{cond} label ;branch/link PC=PC+8+nn*4, LR=PC+4
 H: BLX label ;ARM9 ;branch/link/thumb PC=PC+8+nn*4+H*2, LR=PC+4, T=1
 23-0 nn - Signed Offset, step 4 (-32M..+32M in steps of 4)

Branch with Link can be used to 'call' to a sub-routine, which may then 'return' by MOV PC,R14 for example.
Execution Time: 2S + 1N
Return: No flags affected.

 ARM.5: Data Processing

Opcode Format
 Bit Expl.
 31-28 Condition
 27-26 Must be 00b for this instruction
 25 I - Immediate 2nd Operand Flag (0=Register, 1=Immediate)
 24-21 Opcode (0-Fh) ;*=Arithmetic, otherwise Logical
 0: AND{cond}{S} Rd,Rn,Op2 ;AND logical Rd = Rn AND Op2
 1: EOR{cond}{S} Rd,Rn,Op2 ;XOR logical Rd = Rn XOR Op2
 2: SUB{cond}{S} Rd,Rn,Op2 ;* ;subtract Rd = Rn-Op2
 3: RSB{cond}{S} Rd,Rn,Op2 ;* ;subtract reversed Rd = Op2-Rn
 4: ADD{cond}{S} Rd,Rn,Op2 ;* ;add Rd = Rn+Op2
 5: ADC{cond}{S} Rd,Rn,Op2 ;* ;add with carry Rd = Rn+Op2+Cy
 6: SBC{cond}{S} Rd,Rn,Op2 ;* ;sub with carry Rd = Rn-Op2+Cy-1
 7: RSC{cond}{S} Rd,Rn,Op2 ;* ;sub cy. reversed Rd = Op2-Rn+Cy-1
 8: TST{cond}{P} Rn,Op2 ;test Void = Rn AND Op2
 9: TEQ{cond}{P} Rn,Op2 ;test exclusive Void = Rn XOR Op2
 A: CMP{cond}{P} Rn,Op2 ;* ;compare Void = Rn-Op2
 B: CMN{cond}{P} Rn,Op2 ;* ;compare neg. Void = Rn+Op2
 C: ORR{cond}{S} Rd,Rn,Op2 ;OR logical Rd = Rn OR Op2
 D: MOV{cond}{S} Rd,Op2 ;move Rd = Op2
 E: BIC{cond}{S} Rd,Rn,Op2 ;bit clear Rd = Rn AND NOT Op2
 F: MVN{cond}{S} Rd,Op2 ;not Rd = NOT Op2
 20 S - Set Condition Codes (0=No, 1=Yes) (Must be 1 for opcode 8-B)
 19-16 Rn - 1st Operand Register (R0..R15) (including PC=R15)
 Must be 0000b for MOV/MVN.
 15-12 Rd - Destination Register (R0..R15) (including PC=R15)
 Must be 0000b {or 1111b) for CMP/CMN/TST/TEQ{P}.
 When above Bit 25 I=0 (Register as 2nd Operand)
 When below Bit 4 R=0 - Shift by Immediate
 11-7 Is - Shift amount (1-31, 0=Special/See below)
 When below Bit 4 R=1 - Shift by Register
 11-8 Rs - Shift register (R0-R14) - only lower 8bit 0-255 used
 7 Reserved, must be zero (otherwise multiply or undefined opcode)
 6-5 Shift Type (0=LSL, 1=LSR, 2=ASR, 3=ROR)
 4 R - Shift by Register Flag (0=Immediate, 1=Register)
 3-0 Rm - 2nd Operand Register (R0..R15) (including PC=R15)
 When above Bit 25 I=1 (Immediate as 2nd Operand)
 11-8 Is - ROR-Shift applied to nn (0-30, in steps of 2)
 7-0 nn - 2nd Operand Unsigned 8bit Immediate

Second Operand (Op2)
This may be a shifted register, or a shifted immediate. See Bit 25 and 11-0.
Unshifted Register: Specify Op2 as "Rm", assembler converts to "Rm,LSL#0".
Shifted Register: Specify as "Rm,SSS#Is" or "Rm,SSS Rs" (SSS=LSL/LSR/ASR/ROR).
Immediate: Specify as 32bit value, for example: "#000NN000h", assembler should automatically convert into "#0NNh,ROR#0ssh" as far as possible (ie. as far as a section of not more than 8bits of the immediate is non-zero).

Zero Shift Amount (Shift Register by Immediate, with Immediate=0)
LSL#0: No shift performed, ie. directly Op2=Rm, the C flag is NOT affected.
LSR#0: Interpreted as LSR#32, ie. Op2 becomes zero, C becomes Bit 31 of Rm.
ASR#0: Interpreted as ASR#32, ie. Op2 and C are filled by Bit 31 of Rm.
ROR#0: Interpreted as RRX#1 (RCR), like ROR#1, but Op2 Bit 31 set to old C.
In source code, LSR#32, ASR#32, and RRX#1 should be specified as such - attempts to specify LSR#0, ASR#0, or ROR#0 will be internally converted to LSL#0 by the assembler.

Using R15 (PC)
When using R15 as Destination (Rd), note below CPSR description and Execution time description.
When using R15 as operand (Rm or Rn), the returned value depends on the instruction: PC+12 if I=0,R=1 (shift by register), otherwise PC+8 (shift by immediate).

Returned CPSR Flags
If S=1, Rd<>R15, logical operations (AND,EOR,TST,TEQ,ORR,MOV,BIC,MVN):
 V=not affected
 C=carryflag of shift operation (not affected if LSL#0 or Rs=00h)
 Z=zeroflag of result
 N=signflag of result (result bit 31)

If S=1, Rd<>R15, arithmetic operations (SUB,RSB,ADD,ADC,SBC,RSC,CMP,CMN):
 V=overflowflag of result
 C=carryflag of result
 Z=zeroflag of result
 N=signflag of result (result bit 31)

IF S=1, with unused Rd bits=1111b, {P} opcodes (CMPP/CMNP/TSTP/TEQP):
 R15=result ;modify PSR bits in R15, ARMv2 and below only.
 In user mode only N,Z,C,V bits of R15 can be changed.
 In other modes additionally I,F,M1,M0 can be changed.
 The PC bits in R15 are left unchanged in all modes.

If S=1, Rd=R15; should not be used in user mode:
 CPSR = SPSR_<current mode>
 PC = result
 For example: MOVS PC,R14 ;return from SWI (PC=R14_svc, CPSR=SPSR_svc).

If S=0: Flags are not affected (not allowed for CMP,CMN,TEQ,TST).

The instruction "MOV R0,R0" is used as "NOP" opcode in 32bit ARM state.
Execution Time: (1+p)S+rI+pN. Whereas r=1 if I=0 and R=1 (ie. shift by register); otherwise r=0. And p=1 if Rd=R15; otherwise p=0.

 ARM.6: PSR Transfer (MRS, MSR)

Opcode Format
These instructions occupy an unused area (TEQ,TST,CMP,CMN with S=0) of Data Processing opcodes (ARM.5).
 Bit Expl.
 31-28 Condition
 27-26 Must be 00b for this instruction
 25 I - Immediate Operand Flag (0=Register, 1=Immediate) (Zero for MRS)
 24-23 Must be 10b for this instruction
 22 Psr - Source/Destination PSR (0=CPSR, 1=SPSR_<current mode>)
 21 Opcode
 0: MRS{cond} Rd,Psr ;Rd = Psr
 1: MSR{cond} Psr{_field},Op ;Psr[field] = Op
 20 Must be 0b for this instruction (otherwise TST,TEQ,CMP,CMN)
 For MRS:
 19-16 Must be 1111b for this instruction (otherwise SWP)
 15-12 Rd - Destination Register (R0-R14)
 11-0 Not used, must be zero.
 For MSR:
 19 f write to flags field Bit 31-24 (aka _flg)
 18 s write to status field Bit 23-16 (reserved, don't change)
 17 x write to extension field Bit 15-8 (reserved, don't change)
 16 c write to control field Bit 7-0 (aka _ctl)
 15-12 Not used, must be 1111b.
 For MSR Psr,Rm (I=0)
 11-4 Not used, must be zero. (otherwise BX)
 3-0 Rm - Source Register <op> (R0-R14)
 For MSR Psr,Imm (I=1)
 11-8 Shift applied to Imm (ROR in steps of two 0-30)
 7-0 Imm - Unsigned 8bit Immediate
 In source code, a 32bit immediate should be specified as operand.
 The assembler should then convert that into a shifted 8bit value.

MSR/MRS and CPSR/SPSR supported by ARMv3 and up.
ARMv2 and below contained PSR flags in R15, accessed by CMP/CMN/TST/TEQ{P}.
The field mask bits specify which bits of the destination Psr are write-able (or write-protected), one or more of these bits should be set, for example, CPSR_fsxc (aka CPSR aka CPSR_all) unlocks all bits (see below user mode restriction though).
Restrictions:
In non-privileged mode (user mode): only condition code bits of CPSR can be changed, control bits can't.
Only the SPSR of the current mode can be accessed; In User and System modes no SPSR exists.
The T-bit may not be changed; for THUMB/ARM switching use BX instruction.
Unused Bits in CPSR are reserved for future use and should never be changed (except for unused bits in the flags field).
Execution Time: 1S .

Note: The A22i assembler recognizes MOV as alias for both MSR and MRS because it is practically not possible to remember whether MSR or MRS was the load or store opcode, and/or whether it does load to or from the Psr register.

 ARM.7: Multiply and Multiply-Accumulate (MUL,MLA)

Opcode Format
 Bit Expl.
 31-28 Condition
 27-25 Must be 000b for this instruction
 24-21 Opcode
 0000b: MUL{cond}{S} Rd,Rm,Rs ;multiply Rd = Rm*Rs
 0001b: MLA{cond}{S} Rd,Rm,Rs,Rn ;mul.& accumulate Rd = Rm*Rs+Rn
 0100b: UMULL{cond}{S} RdLo,RdHi,Rm,Rs ;multiply RdHiLo=Rm*Rs
 0101b: UMLAL{cond}{S} RdLo,RdHi,Rm,Rs ;mul.& acc. RdHiLo=Rm*Rs+RdHiLo
 0110b: SMULL{cond}{S} RdLo,RdHi,Rm,Rs ;sign.mul. RdHiLo=Rm*Rs
 0111b: SMLAL{cond}{S} RdLo,RdHi,Rm,Rs ;sign.m&a. RdHiLo=Rm*Rs+RdHiLo
 1000b: SMLAxy{cond} Rd,Rm,Rs,Rn ;Rd=HalfRm*HalfRs+Rn
 1001b: SMLAWy{cond} Rd,Rm,Rs,Rn ;Rd=(Rm*HalfRs)/10000h+Rn
 1001b: SMULWy{cond} Rd,Rm,Rs ;Rd=(Rm*HalfRs)/10000h
 1010b: SMLALxy{cond} RdLo,RdHi,Rm,Rs ;RdHiLo=RdHiLo+HalfRm*HalfRs
 1011b: SMULxy{cond} Rd,Rm,Rs ;Rd=HalfRm*HalfRs
 20 S - Set Condition Codes (0=No, 1=Yes) (Must be 0 for Halfword mul)
 19-16 Rd (or RdHi) - Destination Register (R0-R14)
 15-12 Rn (or RdLo) - Accumulate Register (R0-R14) (Set to 0000b if unused)
 11-8 Rs - Operand Register (R0-R14)
 For Non-Halfword Multiplies
 7-4 Must be 1001b for these instructions
 For Halfword Multiplies
 7 Must be 1 for these instructions
 6 y - Rs Top/Bottom flag (0=B=Lower 16bit, 1=T=Upper 16bit)
 5 x - Rm Top/Bottom flag (as above), or 0 for SMLAW, or 1 for SMULW
 4 Must be 0 for these instructions
 3-0 Rm - Operand Register (R0-R14)

Multiply and Multiply-Accumulate (MUL,MLA)
Restrictions: Rd may not be same as Rm. Rd,Rn,Rs,Rm may not be R15.
Note: Only the lower 32bit of the internal 64bit result are stored in Rd, thus no sign/zero extension is required and MUL and MLA can be used for both signed and unsigned calculations!
Execution Time: 1S+mI for MUL, and 1S+(m+1)I for MLA. Whereas 'm' depends on whether/how many most significant bits of Rs are all zero or all one. That is m=1 for Bit 31-8, m=2 for Bit 31-16, m=3 for Bit 31-24, and m=4 otherwise.
Flags (if S=1): Z=zeroflag, N=signflag, C=destroyed (ARMv4 and below) or C=not affected (ARMv5 and up), V=not affected. MUL/MLA supported by ARMv2 and up.

Multiply Long and Multiply-Accumulate Long (MULL, MLAL)
Optionally supported, INCLUDED in ARMv3M, EXCLUDED in ARMv4xM/ARMv5xM.
Restrictions: RdHi,RdLo,Rm must be different registers. R15 may not be used.
Execution Time: 1S+(m+1)I for MULL, and 1S+(m+2)I for MLAL. Whereas 'm' depends on whether/how many most significant bits of Rs are "all zero" (UMULL/UMLAL) or "all zero or all one" (SMULL,SMLAL). That is m=1 for Bit 31-8, m=2 for Bit 31-16, m=3 for Bit 31-24, and m=4 otherwise.
Flags (if S=1): Z=zeroflag, N=signflag, C=destroyed (ARMv4 and below) or C=not affected (ARMv5 and up), V=destroyed??? (ARMv4 and below???) or V=not affected (ARMv5 and up).

Signed Halfword Multiply (SMLAxy,SMLAWy,SMLALxy,SMULxy,SMULWy)
Supported by E variants of ARMv5 and up, ie. ARMv5TE(xP).
Q-flag gets set on 32bit SMLAxy/SMLAWy addition overflows, however, the result is NOT truncated (as it'd be done with QADD opcodes).
Q-flag is NOT affected on (rare) 64bit SMLALxy addition overflows.
SMULxy/SMULWy cannot overflow, and thus leave Q-flag unchanged as well.
NZCV-flags are not affected by Halfword multiplies.
Execution Time: 1S+Interlock (SMULxy,SMLAxy,SMULWx,SMLAWx)
Execution Time: 1S+1I+Interlock (SMLALxy)

 ARM.9: Single Data Transfer (LDR, STR, PLD)

Opcode Format
 Bit Expl.
 31-28 Condition (Must be 1111b for PLD)
 27-26 Must be 01b for this instruction
 25 I - Immediate Offset Flag (0=Immediate, 1=Shifted Register)
 24 P - Pre/Post (0=post; add offset after transfer, 1=pre; before trans.)
 23 U - Up/Down Bit (0=down; subtract offset from base, 1=up; add to base)
 22 B - Byte/Word bit (0=transfer word quantity, 1=transfer byte quantity)
 When above Bit 24 P=0 (Post-indexing, write-back is ALWAYS enabled):
 21 T - Memory Management (0=Normal, 1=Force non-privileged access)
 When above Bit 24 P=1 (Pre-indexing, write-back is optional):
 21 W - Write-back bit (0=no write-back, 1=write address into base)
 20 L - Load/Store bit (0=Store to memory, 1=Load from memory)
 0: STR{cond}{B}{T} Rd,<Address> ;[Rn+/-<offset>]=Rd
 1: LDR{cond}{B}{T} Rd,<Address> ;Rd=[Rn+/-<offset>]
 (1: PLD <Address> ;Prepare Cache for Load, see notes below)
 Whereas, B=Byte, T=Force User Mode (only for POST-Indexing)
 19-16 Rn - Base register (R0..R15) (including R15=PC+8)
 15-12 Rd - Source/Destination Register (R0..R15) (including R15=PC+12)
 When above I=0 (Immediate as Offset)
 11-0 Unsigned 12bit Immediate Offset (0-4095, steps of 1)
 When above I=1 (Register shifted by Immediate as Offset)
 11-7 Is - Shift amount (1-31, 0=Special/See below)
 6-5 Shift Type (0=LSL, 1=LSR, 2=ASR, 3=ROR)
 4 Must be 0 (Reserved, see ARM.17, The Undefined Instruction)
 3-0 Rm - Offset Register (R0..R14) (not including PC=R15)

Instruction Formats for <Address>
An expression which generates an address:
 <expression> ;an immediate used as address
 ;*** restriction: must be located in range PC+/-4095+8, if so,
 ;*** assembler will calculate offset and use PC (R15) as base.

Pre-indexed addressing specification:
 [Rn] ;offset = zero
 [Rn, <#{+/-}expression>]{!} ;offset = immediate
 [Rn, {+/-}Rm{,<shift>}]{!} ;offset = register shifted by immediate

Post-indexed addressing specification:
 [Rn], <#{+/-}expression> ;offset = immediate
 [Rn], {+/-}Rm{,<shift>} ;offset = register shifted by immediate

Whereas...
 <shift> immediate shift such like LSL#4, ROR#2, etc. (see ARM.5).
 {!} exclamation mark ("!") indicates write-back (Rn will be updated).

Notes
Shift amount 0 has special meaning, as described in ARM.5 Data Processing.
When writing a word (32bit) to memory, the address should be word-aligned.
When reading a byte from memory, upper 24 bits of Rd are zero-extended.
LDR PC,<op> on ARMv4 leaves CPSR.T unchanged.
LDR PC,<op> on ARMv5 sets CPSR.T to <op> Bit0, (1=Switch to Thumb).

When reading a word from a halfword-aligned address (which is located in the middle between two word-aligned addresses), the lower 16bit of Rd will contain [address] ie. the addressed halfword, and the upper 16bit of Rd will contain [Rd-2] ie. more or less unwanted garbage. However, by isolating lower bits this may be used to read a halfword from memory. (Above applies to little endian mode, as used in GBA.)

In a virtual memory based environment (ie. not in the GBA), aborts (ie. page faults) may take place during execution, if so, Rm and Rn should not specify the same register when post-indexing is used, as the abort-handler might have problems to reconstruct the original value of the register.

Return: CPSR flags are not affected.
Execution Time: For normal LDR: 1S+1N+1I. For LDR PC: 2S+2N+1I. For STR: 2N.

PLD <Address> ;Prepare Cache for Load
PLD must use following settings cond=1111b, P=1, B=1, W=0, L=1, Rd=1111b, the address may not use post-indexing, and may not use writeback, the opcode is encoded identical as LDRNVB R15,<Address>.
PLD signalizes to the memory system that a specific memory address will be soon accessed, the memory system may use this hint to prepare caching/pipelining, aside from that, PLD does not have any affect to the program logic, and behaves identical as NOP.
PLD supported by ARMv5TE only, not ARMv5, not ARMv5TExP.

 ARM.10: Halfword, Doubleword, and Signed Data Transfer

Opcode Format
 Bit Expl.
 31-28 Condition
 27-25 Must be 000b for this instruction
 24 P - Pre/Post (0=post; add offset after transfer, 1=pre; before trans.)
 23 U - Up/Down Bit (0=down; subtract offset from base, 1=up; add to base)
 22 I - Immediate Offset Flag (0=Register Offset, 1=Immediate Offset)
 When above Bit 24 P=0 (Post-indexing, write-back is ALWAYS enabled):
 21 Not used, must be zero (0)
 When above Bit 24 P=1 (Pre-indexing, write-back is optional):
 21 W - Write-back bit (0=no write-back, 1=write address into base)
 20 L - Load/Store bit (0=Store to memory, 1=Load from memory)
 19-16 Rn - Base register (R0-R15) (Including R15=PC+8)
 15-12 Rd - Source/Destination Register (R0-R15) (Including R15=PC+12)
 11-8 When above Bit 22 I=0 (Register as Offset):
 Not used. Must be 0000b
 When above Bit 22 I=1 (immediate as Offset):
 Immediate Offset (upper 4bits)
 7 Reserved, must be set (1)
 6-5 Opcode (0-3)
 When Bit 20 L=0 (Store) (and Doubleword Load/Store):
 0: Reserved for SWP instruction (see ARM.12 Single Data Swap)
 1: STR{cond}H Rd,<Address> ;Store halfword [a]=Rd
 2: LDR{cond}D Rd,<Address> ;Load Doubleword R(d)=[a], R(d+1)=[a+4]
 3: STR{cond}D Rd,<Address> ;Store Doubleword [a]=R(d), [a+4]=R(d+1)
 When Bit 20 L=1 (Load):
 0: Reserved.
 1: LDR{cond}H Rd,<Address> ;Load Unsigned halfword (zero-extended)
 2: LDR{cond}SB Rd,<Address> ;Load Signed byte (sign extended)
 3: LDR{cond}SH Rd,<Address> ;Load Signed halfword (sign extended)
 4 Reserved, must be set (1)
 3-0 When above Bit 22 I=0:
 Rm - Offset Register (R0-R14) (not including R15)
 When above Bit 22 I=1:
 Immediate Offset (lower 4bits) (0-255, together with upper bits)

STRH,LDRH,LDRSB,LDRSH supported on ARMv4 and up.
STRD/LDRD supported on ARMv5TE only, not ARMv5, not ARMv5TExP.
STRD/LDRD: base writeback: Rn should not be same as R(d) or R(d+1).
STRD: index register: Rm should not be same as R(d) or R(d+1).
STRD/LDRD: Rd must be an even numbered register (R0,R2,R4,R6,R8,R10,R12).
STRD/LDRD: Address must be double-word aligned (multiple of eight).

Instruction Formats for <Address>
An expression which generates an address:
 <expression> ;an immediate used as address
 ;*** restriction: must be located in range PC+/-255+8, if so,
 ;*** assembler will calculate offset and use PC (R15) as base.

Pre-indexed addressing specification:
 [Rn] ;offset = zero
 [Rn, <#{+/-}expression>]{!} ;offset = immediate
 [Rn, {+/-}Rm]{!} ;offset = register

Post-indexed addressing specification:
 [Rn], <#{+/-}expression> ;offset = immediate
 [Rn], {+/-}Rm ;offset = register

Whereas...
 {!} exclamation mark ("!") indicates write-back (Rn will be updated).

Return: No Flags affected.
Execution Time: For Normal LDR, 1S+1N+1I. For LDR PC, 2S+2N+1I. For STRH 2N.

 ARM.11: Block Data Transfer (LDM,STM)

Opcode Format
 Bit Expl.
 31-28 Condition
 27-25 Must be 100b for this instruction
 24 P - Pre/Post (0=post; add offset after transfer, 1=pre; before trans.)
 23 U - Up/Down Bit (0=down; subtract offset from base, 1=up; add to base)
 22 S - PSR & force user bit (0=No, 1=load PSR or force user mode)
 21 W - Write-back bit (0=no write-back, 1=write address into base)
 20 L - Load/Store bit (0=Store to memory, 1=Load from memory)
 0: STM{cond}{amod} Rn{!},<Rlist>{^} ;Store (Push)
 1: LDM{cond}{amod} Rn{!},<Rlist>{^} ;Load (Pop)
 Whereas, {!}=Write-Back (W), and {^}=PSR/User Mode (S)
 19-16 Rn - Base register (R0-R14) (not including R15)
 15-0 Rlist - Register List
 (Above 'offset' is meant to be the number of words specified in Rlist.)

Addressing Modes {amod}
The IB,IA,DB,DA suffixes directly specify the desired U and P bits:
 IB increment before ;P=1, U=1
 IA increment after ;P=0, U=1
 DB decrement before ;P=1, U=0
 DA decrement after ;P=0, U=0

Alternately, FD,ED,FA,EA could be used, mostly to simplify mnemonics for stack transfers.
 ED empty stack, descending ;LDM: P=1, U=1 ;STM: P=0, U=0
 FD full stack, descending ; P=0, U=1 ; P=1, U=0
 EA empty stack, ascending ; P=1, U=0 ; P=0, U=1
 FA full stack, ascending ; P=0, U=0 ; P=1, U=1

Ie. the following expressions are aliases for each other:
 STMFD=STMDB=PUSH STMED=STMDA STMFA=STMIB STMEA=STMIA
 LDMFD=LDMIA=POP LDMED=LDMIB LDMFA=LDMDA LDMEA=LDMDB

Note: The equivalent THUMB functions use fixed organization:
 PUSH/POP: full descending ;base register SP (R13)
 LDM/STM: increment after ;base register R0..R7

Descending is common stack organization as used in 80x86 and Z80 CPUs, SP is decremented when pushing/storing data, and incremented when popping/loading data.

When S Bit is set (S=1)
If instruction is LDM and R15 is in the list: (Mode Changes)
 While R15 loaded, additionally: CPSR=SPSR_<current mode>

Otherwise: (User bank transfer)
 Rlist is referring to User Bank Registers, R0-R15 (rather than
 register related to the current mode, such like R14_svc etc.)
 Base write-back should not be used for User bank transfer.
 ! When instruction is LDM: !
 ! If the following instruction reads from a banked register, !
 ! like R14_svc, then CPU might still read R14 instead. If !
 ! necessary insert a dummy instruction such like MOV R0,R0. !

Notes
The lowest Register in Rlist (R0 if its in the list) will be loaded/stored to/from the lowest memory address.
The base address should be usually word-aligned.
LDM Rn,...,PC on ARMv4 leaves CPSR.T unchanged.
LDR Rn,...,PC on ARMv5 sets CPSR.T to <op> Bit0, (1=Switch to Thumb).

Return: No Flags affected.
Execution Time: For normal LDM, nS+1N+1I. For LDM PC, (n+1)S+2N+1I. For STM (n-1)S+2N. Where n is the number of words transferred.

Strange Effects on Invalid Rlist's
Empty Rlist: R15 loaded/stored (ARMv4 only), and Rb=Rb+/-40h (ARMv4-v5).
Writeback with Rb included in Rlist: S tore OLD base if Rb is FIRST entry in Rlist, otherwise store NEW base (STM/ARMv4), always store OLD base (STM/ARMv5), no writeback (LDM/ARMv4), writeback if Rb is "the ONLY register, or NOT the LAST register" in Rlist (LDM/ARMv5).

 ARM.12: Single Data Swap (SWP)

Opcode Format
 Bit Expl.
 31-28 Condition
 27-23 Must be 00010b for this instruction
 Opcode (fixed)
 SWP{cond}{B} Rd,Rm,[Rn] ;Rd=[Rn], [Rn]=Rm
 22 B - Byte/Word bit (0=swap word quantity, 1=swap byte quantity)
 21-20 Must be 00b for this instruction
 19-16 Rn - Base register (R0-R14)
 15-12 Rd - Destination Register (R0-R14)
 11-4 Must be 00001001b for this instruction
 3-0 Rm - Source Register (R0-R14)

SWP/SWPB supported by ARMv2a and up.
Swap works properly including if Rm and Rn specify the same register.
R15 may not be used for either Rn,Rd,Rm. (Rn=R15 would be MRS opcode).
Upper bits of Rd are zero-expanded when using Byte quantity. For info about byte and word data memory addressing, read LDR and STR opcode description.
Execution Time: 1S+2N+1I. That is, 2N data cycles, 1S code cycle, plus 1I.

 ARM.13: Software Interrupt (SWI,BKPT)

Opcode Format
 Bit Expl.
 31-28 Condition (must be 1110b for BKPT, ie. Condition=always)
 27-24 Opcode
 1111b: SWI{cond} nn ;software interrupt
 0001b: BKPT nn ;breakpoint (ARMv5 and up)
 For SWI:
 23-0 nn - Comment Field, ignored by processor (24bit value)
 For BKPT:
 23-20 Must be 0010b for BKPT
 19-8 nn - upper 12bits of comment field, ignored by processor
 7-4 Must be 0111b for BKPT
 3-0 nn - lower 4bits of comment field, ignored by processor

SWI supposed for calls to the operating system - Enter Supervisor mode (SVC) in ARM state. BKPT intended for debugging - enters Abort mode in ARM state via Prefetch Abort vector.

Execution SWI/BKPT:
 R14_svc=PC+4 R14_abt=PC+4 ;save return address
 SPSR_svc=CPSR SPSR_abt=CPSR ;save CPSR flags
 CPSR=<changed> CPSR=<changed> ;Enter svc/abt, ARM state, IRQs disabled
 PC=VVVV0008h PC=VVVV000Ch ;jump to SWI/PrefetchAbort vector address

Execution Time: 2S+1N

Interpreting the Comment Field:
The immediate parameter is ignored by the processor, the user interrupt handler may read-out this number by examining the lower 24bit of the 32bit opcode opcode at [R14_svc-4]. In case that your program executes SWI's from inside of THUMB mode also: Your SWI handler must then examine the T Bit SPSR_svc in order to determine whether it's been a THUMB SWI - if so, examining the lower 8bit of the 16bit opcode opcode at [R14_svc-2].

For Returning from SWI use this instruction:
 MOVS PC,R14

That instructions does both restoring PC and CPSR, ie. PC=R14_svc, and CPSR=SPRS_svc.

Nesting SWIs:
SPSR_svc and R14_svc should be saved on stack before either invoking nested SWIs, or (if the IRQ handler uses SWIs) before enabling IRQs.

 ARM.14: Coprocessor Data Operations (CDP)

Opcode Format
 Bit Expl.
 31-28 Condition (or 1111b for CDP2 opcode on ARMv5 and up)
 27-24 Must be 1110b for this instruction
 ARM-Opcode (fixed)
 CDP{cond} Pn,<cpopc>,Cd,Cn,Cm{,<cp>}
 CDP2 Pn,<cpopc>,Cd,Cn,Cm{,<cp>}
 23-20 CP Opc - Coprocessor operation code (0-15)
 19-16 Cn - Coprocessor operand Register (C0-C15)
 15-12 Cd - Coprocessor destination Register (C0-C15)
 11-8 Pn - Coprocessor number (P0-P15)
 7-5 CP - Coprocessor information (0-7)
 4 Reserved, must be zero (otherwise MCR/MRC opcode)
 3-0 Cm - Coprocessor operand Register (C0-C15)

CDP supported by ARMv2 and up, CDP2 by ARMv5 and up.
Execution time: 1S+bI, b=number of cycles in coprocessor busy-wait loop.
Return: No flags affected, no ARM-registers used/modified.
For details refer to original ARM docs, irrelevant in GBA because no coprocessor exists.

 ARM.15: Coprocessor Data Transfers (LDC,STC)

Opcode Format
 Bit Expl.
 31-28 Condition (or 1111b for LDC2/STC2 opcodes on ARMv5 and up)
 27-25 Must be 110b for this instruction
 24 P - Pre/Post (0=post; add offset after transfer, 1=pre; before trans.)
 23 U - Up/Down Bit (0=down; subtract offset from base, 1=up; add to base)
 22 N - Transfer length (0-1, interpretation depends on co-processor)
 21 W - Write-back bit (0=no write-back, 1=write address into base)
 20 Opcode (0-1)
 0: STC{cond}{L} Pn,Cd,<Address> ;Store to memory (from coprocessor)
 0: STC2{L} Pn,Cd,<Address> ;Store to memory (from coprocessor)
 1: LDC{cond}{L} Pn,Cd,<Address> ;Read from memory (to coprocessor)
 1: LDC2{L} Pn,Cd,<Address> ;Read from memory (to coprocessor)
 whereas {L} indicates long transfer (Bit 22: N=1)
 19-16 Rn - ARM Base Register (R0-R15) (R15=PC+8)
 15-12 Cd - Coprocessor src/dest Register (C0-C15)
 11-8 Pn - Coprocessor number (P0-P15)
 7-0 Offset - Unsigned Immediate, step 4 (0-1020, in steps of 4)

LDC/STC supported by ARMv2 and up, LDC2/STC2 by ARMv5 and up.
Execution time: (n-1)S+2N+bI, n=number of words transferred.
For details refer to original ARM docs, irrelevant in GBA because no coprocessor exists.

 ARM.16: Coprocessor Register Transfers (MRC, MCR)

Opcode Format
 Bit Expl.
 31-28 Condition (or 1111b for MRC2/MCR2 opcodes on ARMv5 and up)
 27-24 Must be 1110b for this instruction
 23-21 CP Opc - Coprocessor operation code (0-7)
 20 ARM-Opcode (0-1)
 0: MCR{cond} Pn,<cpopc>,Rd,Cn,Cm{,<cp>} ;move from ARM to CoPro
 0: MCR2 Pn,<cpopc>,Rd,Cn,Cm{,<cp>} ;move from ARM to CoPro
 1: MRC{cond} Pn,<cpopc>,Rd,Cn,Cm{,<cp>} ;move from CoPro to ARM
 1: MRC2 Pn,<cpopc>,Rd,Cn,Cm{,<cp>} ;move from CoPro to ARM
 19-16 Cn - Coprocessor source/dest. Register (C0-C15)
 15-12 Rd - ARM source/destination Register (R0-R15)
 11-8 Pn - Coprocessor number (P0-P15)
 7-5 CP - Coprocessor information (0-7)
 4 Reserved, must be one (1) (otherwise CDP opcode)
 3-0 Cm - Coprocessor operand Register (C0-C15)

MCR/MRC supported by ARMv2 and up, MCR2/MRC2 by ARMv5 and up.
A22i syntax allows to use MOV with Rd specified as first (dest), or last (source) operand. Native MCR/MRC syntax uses Rd as middle operand, <cp> can be ommited if <cp> is zero.
When using MCR with R15: Coprocessor will receive a data value of PC+12.
When using MRC with R15: Bit 31-28 of data are copied to Bit 31-28 of CPSR (ie. N,Z,C,V flags), other data bits are ignored, CPSR Bit 27-0 are not affected, R15 (PC) is not affected.
Execution time: 1S+bI+1C for MCR, 1S+(b+1)I+1C for MRC.
Return: For MRC only: Either R0-R14 modified, or flags affected (see above).
For details refer to original ARM docs. The opcodes irrelevant for GBA/NDS7 because no coprocessor exists (except for a dummy CP14 unit). However, NDS9 includes a working CP15 unit.
ARM CP14 ICEbreaker Debug Communications Channel
ARM CP15 System Control Coprocessor

 ARM.X: Coprocessor Double-Register Transfer (MCRR,MRRC)

Opcode Format
 Bit Expl.
 31-28 Condition
 27-21 Must be 1100010b for this instruction
 20 L - Opcode (Load/Store)
 0: MCRR{cond} Pn,opcode,Rd,Rn,Cm ;write Rd,Rn to coproc
 1: MRRC{cond} Pn,opcode,Rd,Rn,Cm ;read Rd,Rn from coproc
 19-16 Rn - Second source/dest register (R0-R14)
 15-12 Rd - First source/dest register (R0-R14)
 11-8 Pn - Coprocessor number (P0-P15)
 7-4 CP Opc - Coprocessor operation code (0-15)
 3-0 Cm - Coprocessor operand Register (C0-C15)

Supported by ARMv5TE only, not ARMv5, not ARMv5TExP.

 ARM.17: Undefined Instruction

Opcode Format
 Bit Expl.
 31-28 Condition
 27-25 Must be 011b for this instruction
 24-5 Reserved for future use
 4 Must be 1b for this instruction
 3-0 Reserved for future use

No assembler mnemonic exists, following bitstreams are (not) reserved.
 cond011xxxxxxxxxxxxxxxxxxxx1xxxx - reserved for future use (except below).
 cond01111111xxxxxxxxxxxx1111xxxx - free for user.

Execution time: 2S+1I+1N.

 ARM.X: Count Leading Zeros

Opcode Format
 Bit Expl.
 31-28 Condition
 27-16 Must be 0001.0110.1111b for this instruction
 Opcode (fixed)
 CLZ{cond} Rd,Rm ;Rd=Number of leading zeros in Rm
 15-12 Rd - Destination Register (R0-R14)
 11-4 Must be 1111.0001b for this instruction
 3-0 Rm - Source Register (R0-R14)

CLZ supported by ARMv5 and up. Execution time: 1S .
Return: No Flags affected. Rd=0..32.

 ARM.X: QADD/QSUB

Opcode Format
 Bit Expl.
 31-28 Condition
 27-24 Must be 0001b for this instruction
 23-20 Opcode
 0000b: QADD{cond} Rd,Rm,Rn ;Rd=Rm+Rn
 0010b: QSUB{cond} Rd,Rm,Rn ;Rd=Rm-Rn
 0100b: QDADD{cond} Rd,Rm,Rn ;Rd=Rm+Rn*2 (doubled)
 0110b: QDSUB{cond} Rd,Rm,Rn ;Rd=Rm-Rn*2 (doubled)
 19-16 Rn - Second Source Register (R0-R14)
 15-12 Rd - Destination Register (R0-R14)
 11-4 Must be 00000101b for this instruction
 3-0 Rm - First Source Register (R0-R14)

Supported by E variants of ARMv5 and up, ie. ARMv5TE(xP).
Execution time: 1S+Interlock.
Results truncated to signed 32bit range in case of overflows, with the Q-flag being set (and being left unchanged otherwise). NZCV flags are not affected.
Note: Rn*2 is internally processed first, and may get truncated - even if the final result would fit into range.

 ARM 26bit Memory Interface

The 26bit Memory Interface was used by ARMv1 and ARMv2. The 32bit interface is used by ARMv3 and newer, however, 26bit backward compatibility was included in all ARMv3 (except ARMv3G), and optionally in some non-T variants of ARMv4.

Format of R15 in 26bit Mode (Program Counter Register)
 Bit Name Expl.
 31-28 N,Z,C,V Flags (Sign, Zero, Carry, Overflow)
 27-26 I,F Interrupt Disable bits (IRQ, FIQ) (1=Disable)
 25-2 PC Program Counter, 24bit, Step 4 (64M range)
 1-0 M1,M0 Mode (0=User, 1=FIQ, 2=IRQ, 3=Supervisor)

Branches with +/-32M range wrap the PC register, and can reach all 64M memory.

Reading from R15
If R15 is specified in bit16-19 of an opcode, then NZCVIF and M0,1 are masked (zero), otherwise the full 32bits are used.

Writing to R15
Data Processing opcodes with S=1, and LDM opcodes with PSR=1 can write to all 32bits in R15 (in 26bit mode, that is allowed even in user mode, though it does then affect only NZCF, not the write protected IFMM bits ???), other opcodes which write to R15 will modify only the program counter bits. Also, special CMP/CMN/TST/TEQ{P} opcodes can be used to write to the PSR bits in R15 without modifying the PC bits.

Exceptions
SWIs, Reset, Data/Prefetch Aborts and Undefined instructions enter Supervisor mode. Interrupts enter IRQ and FIQ mode. Additionally, a special 26bit Address Exception exists, which enters Supervisor mode on accesses to memory addresses>=64M as follows:
 R14_svc = PC ($+8, including old PSR bits)
 M1,M0 = 11b = supervisor mode, F=same, I=1, PC=14h

to continue at the fault location, return by SUBS PC,LR,8.

26bit Backwards Compatibility on 32bit ARMv3 and up
CPSR M4=0 = 26bit mode (with USR,FIQ,IRQ,SVC modes in M1,M0)
32bit CPUs with 26bit compatibility mode can be configured to switch into 32bit mode when encountering exceptions.

 Pseudo Instructions and Directives

ARM Pseudo Instructions
 nop mov r0,r0
 ldr Rd,=Imm ldr Rd,[r15,disp] ;use .pool as parameter field)
 add Rd,=addr add/sub Rd,r15,disp
 adr Rd,addr add/sub Rd,r15,disp
 adrl Rd,addr two add/sub opcodes with disp=xx00h+00yyh
 mov Rd,Imm mvn Rd,NOT Imm ;or vice-versa
 and Rd,Rn,Imm bic Rd,Rn,NOT Imm ;or vice-versa
 cmp Rd,Rn,Imm cmn Rd,Rn,-Imm ;or vice-versa
 add Rd,Rn,Imm sub Rd,Rn,-Imm ;or vice-versa

All above opcodes may be made conditional by specifying a {cond} field.

THUMB Pseudo Instructions
 nop mov r8,r8
 ldr Rd,=Imm ldr Rd,[r15,disp] ;use .pool as parameter field
 add Rd,=addr add Rd,r15,disp
 adr Rd,addr add Rd,r15,disp
 mov Rd,Rs add Rd,Rs,0 ;with Rd,Rs in range r0-r7 each

A22i Directives
 org adr assume following code from this address on
 .gba indicate GBA program
 .nds indicate NDS program
 .fix fix GBA/NDS header checksum
 .ereader_create_bmp create GBA e-Reader dotcode .BMP file(s) (bitmaps)
 .ereader_create_raw create GBA e-Reader dotcode .RAW file (useless)
 .ereader_create_bin create GBA e-Reader dotcode .BIN file (smallest)
 .ereader_japan_plus japanese/plus (default is non-japanese)
 .ereader_japan_original japanese/original (with Z80-stub for GBA-code)
 .title 'Txt' defines a title (used for e-Reader dotcodes)
 .norewrite do not delete existing output file (keep following data in file)
 .data? following defines RAM data structure (assembled to nowhere)
 .code following is normal ROM code/data (assembled to ROM image)
 .include includes specified source code file (no nesting/error handling)
 .import imports specified binary file (optional parameters: ,begin,len)
 .radix nn changes default numeric format (nn=2,8,10,16 = bin/oct/dec/hex)
 .errif expr generates an error message if expression is nonzero
 .if expr assembles following code only if expression is nonzero
 .else invert previous .if condition
 .endif terminate .if/.ifdef/.ifndef
 .ifdef sym assemble following only if symbol is defined
 .ifndef sym assemble following only if symbol is not defined
 .align nn aligns to an address divisible-by-nn, inserts 00's
 .msg defines a no$gba debugmessage string, such like .msg 'Init Okay'
 .brk defines a no$gba source code break opcode
 l equ n l=n
 l: [cmd] l=$ (global label)
 @@l: [cmd] @@l=$ (local label, all locals are reset at next global label)
 end end of source code
 db ... define 8bit data (bytes)
 dw ... define 16bit data (halfwords)
 dd ... define 32bit data (words)
 defs nn define nn bytes space (zero-filled)
 ;... defines a comment (ignored by the assembler)
 // alias for CRLF, eg. allows <db 'Text',0 // dw addr> in one line

A22i Alias Directives (for compatibility with other assemblers)
 align .align 4 code16 .thumb
 align nn .align nn .code 16 .thumb
 % nn defs nn code32 .arm
 .space nn defs nn .code 32 .arm
 ..ds nn defs nn ltorg .pool
 x=n x equ n .ltorg .pool
 .equ x,n x equ n ..ltorg .pool
 .define x n x equ n dcb db (8bit data)
 incbin .import defb db (8bit data)
 @@@... ;comment .byte db (8bit data)
 @ ... ;comment .ascii db (8bit string)
 @*... ;comment dcw dw (16bit data)
 @... ;comment defw dw (16bit data)
 .text .code .hword dw (16bit data)
 .bss .data? dcd dd (32bit data)
 .global (ignored) defd dd (32bit data)
 .extern (ignored) .long dd (32bit data)
 .thumb_func (ignored) .word dw/dd, don't use
 #directive .directive .end end
 .fill nn,1,0 defs nn

Alias Conditions, Opcodes, Operands
 hs cs ;condition higher or same = carry set
 asl lsl ;arithmetic shift left = logical shift left

A22i Numeric Formats & Dialects
 Type Normal Alias
 Decimal 85 #85 &d85
 Hexadecimal 55h #55h 0x55 #0x55 $55 &h55
 Octal 125o 0o125 &o125
 Ascii 'U' "U"
 Binary 01010101b %01010101 0b01010101 &b01010101
 Roman &rLXXXV (very useful for arrays of kings and chapters)

Note: The default numeric format can be changed by the .radix directive (usually 10=decimal). For example, with radix 16, values like "85" and "0101b" are treated as hexadecimal numbers (in that case, decimal and binary numbers can be still defined with prefixes &d and &b).

A22i Numeric Operators Priority
 Prio Operator Aliases
 8 (,) brackets
 7 +,- sign
 6 *,/,MOD,SHL,SHR MUL,DIV,<<,>>
 5 +,- operation
 4 EQ,GE,GT,LE,LT,NE =,>=,>,<=,<,<>,==,!=
 3 NOT
 2 AND
 1 OR,XOR EOR

Operators of same priority are processed from left to right.
Boolean operators (priority 4) return 1=TRUE, 0=FALSE.

A22i Nocash Syntax
Even though A22i does recognize the offic ial ARM syntax, it's also allowing to use friendly code:
 mov r0,0ffh ;no C64-style "#", and no C-style "0x" required
 stmia [r7]!,r0,r4-r5 ;square [base] brackets, no fancy {rlist} brackets
 mov r0,cpsr ;no confusing MSR and MRS (whatever which is which)
 mov r0,p0,0,c0,c0,0 ;no confusing MCR and MRC (whatever which is which)
 ldr r0,[score] ;allows to use clean brackets for relative addresses
 push rlist ;alias for stmfd [r13]!,rlist (and same for pop/ldmfd)
 label: ;label definitions recommended to use ":" colons

[A22i is the no$gba debug version's built-in source code assembler.]

 ARM CP14 ICEbreaker Debug Communications Channel

The ICEbreaker aka EmbeddedICE module may be found in ARM7TDMI and possibly also in other ARM processors. The main functionality of the module relies on external inputs (BREAKPT signal, etc.) being controlled by external debugging hardware. At software side, ICEbreaker contains a Debug Communications Channel (again to access external hardware), which can be accessed as coprocessor 14 via following opcodes:
 MRC{cond} P14,0,Rd,C0,C0,0 ;Read Debug Comms Control Register
 MRC{cond} P14,0,Rd,C1,C0,0 ;Read Debug Comms Data Register
 MRC{cond} P14,0,Rd,C2,C0,0 ;Read Debug Comms Status Register
 MCR{cond} P14,0,Rd,C1,C0,0 ;Write Debug Comms Data Register
 MCR{cond} P14,0,Rd,C2,C0,0 ;Write Debug Comms Status Register

The Control register consists of Bit31-28=ICEbreaker version (0001b for ARM7TDMI), Bit27-2=Not specified, Bit0/Bit1=Data Read/Write S tatus Flags.

The NDS7 and GBA allow to access CP14 (unlike as for CP0..CP13 & CP15, access to CP14 doesn't generate any exceptions), however, the ICEbreaker module appears to be disabled (or completely unimplemented), any reads from P14,0,Rd,C0,C0,0 through P14,7,Rd,C15,C15,7 are simply returning the prefetched opcode value from [$+8]. ICEbreaker might be eventually used and enabled in Nintendo's hardware debuggers, although external breakpoints are reportedly implemented via /FIQ input rather than via ICEbreaker hardware.
The NDS9 doesn't include a CP14 unit (or it is fully disabled), any attempts to access it are causing invalid instruction exceptions.

 ARM CP15 System Control Coprocessor

ARM CP15 Overview
ARM CP15 ID Codes
ARM CP15 Control Register
ARM CP15 Memory Managment Unit (MMU)
ARM CP15 Protection Unit (PU)
ARM CP15 Cache Control
ARM CP15 Tightly Coupled Memory (TCM)
ARM CP15 Misc

 ARM CP15 Overview

CP15
In many ARM CPUs, particulary such with memory control facilities, coprocessor number 15 (CP15) is used as built-in System Control Coprocessor.
CPUs without memory control functions typically do include a CP15 at all, in that case even an attempt to read the Main ID register will cause an Undefined Instruction exception.

CP15 Opcodes
CP15 can be accessed via MCR and MRC opcodes, with Pn=P15, and <cpopc>=0.
 MCR{cond} P15,0,Rd,Cn,Cm,<cp> ;move from ARM to CP15
 MRC{cond} P15,0,Rd,Cn,Cm,<cp> ;move from CP15 to ARM

Rd can be any ARM register in range R0-R14, R15 should not be used with P15.
Cn,Cm,<cp> are used to select a CP15 register, eg. C0,C0,0 = Main ID Register.
Other coprocessor opcodes (CDP, LDC, STC) cannot be used with P15.

CP15 Register List
 Register Expl.
 C0,C0,0 Main ID Register (R)
 C0,C0,1 Cache Type and Size (R)
 C0,C0,2 TCM Physical Size (R)
 C1,C0,0 Control Register (R/W, or R=Fixed)
 C2,C0,0 PU Cachability Bits for Data/Unified Protection Region
 C2,C0,1 PU Cachability Bits for Instruction Protection Region
 C3,C0,0 PU Write-Bufferability Bits for Data Protection Regions
 C5,C0,0 PU Access Permission Data/Unified Protection Region
 C5,C0,1 PU Access Permission Instruction Protection Region
 C5,C0,2 PU Extended Access Permission Data/Unified Protection Region
 C5,C0,3 PU Extended Access Permission Instruction Protection Region
 C6,C0..C7,0 PU Protection Unit Data/Unified Region 0..7
 C6,C0..C7,1 PU Protection Unit Instruction Region 0..7
 C7,Cm,Op2 Cache Commands and Halt Function (W)
 C9,C0,0 Cache Data Lockdown
 C9,C0,1 Cache Instruction Lockdown
 C9,C1,0 TCM Data TCM Base and Virtual Size
 C9,C1,1 TCM Instruction TCM Base and Virtual Size
 C13,Cm,Op2 Misc Process ID registers
 C15,Cm,Op2 Misc Implementation Defined and Test/Debug registers

Data/Unified Registers
Some Cache/PU/TCM registers are declared as "Data/Unified".
That registers are used for Data accesses in case that the CPU contains separate Data and Instruction registers, otherwise the registers are used for both (unified) Data and Instruction accesses.

 ARM CP15 ID Codes

C0,C0,0 - Main ID Register (R)
 12-15 ARM Era (0=Pre-ARM7, 7=ARM7, other=Post-ARM7)

Post-ARM7 Processors
 0-3 Revision Number
 4-15 Primary Part Number (Bit12-15 must be other than 0 or 7)
 (eg. 946h for ARM946)
 16-19 Architecture (1=v4, 2=v4T, 3=v5, 4=v5T, 5=v5TE)
 20-23 Variant Number
 24-31 Implementor (41h=ARM, 44h=Digital Equipment Corp, 69h=Intel)

ARM7 Processors
 0-3 Revision Number
 4-15 Primary Part Number (Bit12-15 must be 7)
 16-22 Variant Number
 23 Architecture (0=v3, 1=v4T)
 24-31 Implementor (41h=ARM, 44h=Digital Equipment Corp, 69h=Intel)

Pre-ARM7 Processors
 0-3 Revision Number
 4-11 Processor ID LSBs (30h=ARM3/v2, 60h,61h,62=ARM600,610,620/v3)
 12-31 Processor ID MSBs (fixed, 41560h)

Note: On the NDS9, this register is 41059461h. NDS7 and GBA don't have CP15s.

C0,C0,1 - Cache Type Register (R)
 0-11 Instruction Cache (bits 0-1=len, 2=m, 3-5=assoc, 6-8=size, 9-11=zero)
 12-23 Data Cache (bits 0-1=len, 2=m, 3-5=assoc, 6-8=size, 9-11=zero)
 24 Separate Cache Flag (0=Unified, 1=Separate Data/Instruction Caches)
 25-28 Cache Type (0,1,2,6,7=see below, other=reserved)
 Type Method Cache cleaning Cache lock-down
 0 Write-through Not needed Not supported
 1 Write-back Read data block Not supported
 2 Write-back Register 7 operations Not supported
 6 Write-back Register 7 operations Format A
 7 Write-back Register 7 operations Format B
 29-31 Reserved (zero)

The 12bit Instruction/Data values are decoded as shown below,
 Cache Absent = (ASSOC=0 and M=1) ;in that case overriding below
 Cache Size = 200h+(100h*M) shl SIZE ;min 0.5Kbytes, max 96Kbytes
 Associativity = (1+(0.5*M)) shl ASSOC ;min 1-way, max 192-way
 Line Length = 8 shl LEN ;min 8 bytes, max 64 bytes

For Unified cache (Bit 24=0), Instruction and Data values are identical.

C0,C0,2 - Tightly Coupled Memory (TCM) Size Register (R)
 0-1 Reserved (0)
 2 ITCM Absent (0=Present, 1=Absent)
 3-5 Reserved (0)
 6-9 ITCM Size (Size = 512 SHL N) (or 0=None)
 10-13 Reserved (0)
 14 DTCM Absent (0=Present, 1=Absent)
 15-17 Reserved (0)
 18-21 DTCM Size (Size = 512 SHL N) (or 0=None)
 22-31 Reserved (0)

C0,C0,3..7 - Reserved (R)
Unused/Reserved registers, containing the same value as C0,C0,0.

 ARM CP15 Control Register

C1,C0,0 - Control Register (R/W, or R=Fixed)
 0 MMU/PU Enable (0=Disable, 1=Enable) (Fixed 0 if none)
 1 Alignment Fault Check (0=Disable, 1=Enable) (Fixed 0/1 if none/always on)
 2 Data/Unified Cache (0=Disable, 1=Enable) (Fixed 0/1 if none/always on)
 3 Write Buffer (0=Disable, 1=Enable) (Fixed 0/1 if none/always on)
 4 Exception Handling (0=26bit, 1=32bit) (Fixed 1 if always 32bit)
 5 26bit-address faults (0=Enable, 1=Disable) (Fixed 1 if always 32bit)
 6 Abort Model (pre v4) (0=Early, 1=Late Abort) (Fixed 1 if ARMv4 and up)
 7 Endian (0=Little, 1=Big) (Fixed 0/1 if fixed)
 8 System Protection bit (MMU-only)
 9 ROM Protection bit (MMU-only)
 10 Implementation defined
 11 Branch Prediction (0=Disable, 1=Enable)
 12 Instruction Cache (0=Disable, 1=Enable) (ignored if Unified cache)
 13 Exception Vectors (0=00000000h, 1=FFFF0000h)
 14 Cache Replacement (0=Normal/PseudoRandom, 1=Predictable/RoundRobin)
 15 Pre-ARMv5 Mode (0=Normal, 1=Pre ARMv5; LDM/LDR/POP_PC.Bit0/Thumb)
 16 DTCM Enable (0=Disable, 1=Enable)
 17 DTCM Load Mode (0=R/W, 1=DTCM Write-only)
 18 ITCM Enable (0=Disable, 1=Enable)
 19 ITCM Load Mode (0=R/W, 1=ITCM Write-only)
 20-31 Reserved (keep these bits unchanged) (usually zero)

Various bits in this register may be read-only (fixed 0 if unsupported, or fixed 1 if always activated).
On the NDS bit0,2,7,12..19 are R/W, Bit3..6 are always set, all other bits are always zero.

 ARM CP15 Memory Managment Unit (MMU)

Function of some registers depends on whether the CPU contains a MMU or PU.
MMU handles virtual addressing tables.
 C2,Cm,Op2 MMU Translation Table Base
 C3,Cm,Op2 MMU Domain Access Control
 C5,Cm,Op2 MMU Fault Status
 C6,Cm,Op2 MMU Fault Address
 C8,Cm,Op2 MMU TLB Control
 C10,Cm,Op2 MMU TLB Lockdown

The GBA, and Nintendo DS do not have a MMU.

 ARM CP15 Protection Unit (PU)

Protection Unit can be enabled in Bit0 of C1,C0,0 (Control Register).

C2,C0,0 - Cachability Bits for Data/Unified Protection Region (R/W)
C2,C0,1 - Cachability Bits for Instruction Protection Region (if any) (R/W)
 0-7 Cachable (C) bits for region 0-7
 8-31 Reserved/zero

C3,C0,0 - Write-Bufferability Bits for Data Protection Regions (R/W)
 0-7 Bufferable (B) bits for region 0-7
 8-31 Reserved/zero

Instruction fetches are, obviously, always read-operations. So, there are no write-bufferability bits for Instruction Protection Regions.

C5,C0,0 - Access Permission Data/Unified Protection Region (R/W)
C5,C0,1 - Access Permission Instruction Protection Region (if any) (R/W)
C5,C0,2 - Extended Access Permission Data/Unified Protection Region (R/W)
C5,C0,3 - Extended Access Permission Instruction Protection Region (if any) (R/W/W)
For C5,C0,0 and C5,C0,1:
 0-15 Access Permission (AP) bits for region 0-7 (Bits 0-1=AP0, 2-3=AP1, etc)
 16-31 Reserved/zero

For C5,C0,2 and C5,C0,3 (Extended):
 0-31 Access Permission (AP) bits for region 0-7 (Bits 0-3=AP0, 4-7=AP1, etc)

The possible AP settings (0-3 for C5,C0,0..1, or 0-15 for C5,C0,2..3) are:
 AP Privileged User
 0 - -
 1 R/W -
 2 R/W R
 3 R/W R/W
 5 R -
 6 R R

Settings 5,6 only for Extended Registers, settings 4,7..15 are Reserved.

C6,C0..C7,0 - Protection Unit Data/Unified Region 0..7 (R/W)
C6,C0..C7,1 - Protection Unit Instruction Region 0..7 (R/W) if any
 0 Protection Region Enable (0=Disable, 1=Enable)
 1-5 Protection Region Size (2 SHL X) ;min=(X=11)=4KB, max=(X=31)=4GB
 6-11 Reserved/zero
 12-31 Protection Region Base address (Addr = Y*4K; must be SIZE-aligned)

Overlapping Regions are allowed, Region 7 is having highest priority, region 0 lowest priority.

Background Region
Additionally, any memory areas outside of the eight Protection Regions are handled as Background Region, this region has neither Read nor Write access.

Unified Region Note
On the NDS, the Region registers are unified (C6,C0..C7,1 are read/write-able mirrors of C6,C0..C7,0). Netherless, the Cachabilty and Permission registers are NOT unified (separate registers exists for code and data settings).

 ARM CP15 Cache Control

Cache enabled/controlled by Bit 2,3,12,14 in Control Register.
Cache type detected in Cache Type Register.

C7,C0..C15,0..7 - Cache Commands (W)
Write-only Cache Command Register. Cm,Op2 operands used to select a specific command, with parameter value in Rd.
 Cn,Cm,Op2 Rd ARM9 Command
 C7,C0,4 0 Yes Wait For Interrupt (Halt)
 C7,C5,0 0 Yes Invalidate Entire Instruction Cache
 C7,C5,1 VA Yes Invalidate Instruction Cache Line
 C7,C5,2 S/I - Invalidate Instruction Cache Line
 C7,C5,4 0 - Flush Prefetch Buffer
 C7,C5,6 0 - Flush Entire Branch Target Cache
 C7,C5,7 IMP? - Flush Branch Target Cache Entry
 C7,C6,0 0 Yes Invalidate Entire Data Cache
 C7,C6,1 VA Yes Invalidate Data Cache Line
 C7,C6,2 S/I - Invalidate Data Cache Line
 C7,C7,0 0 - Invalidate Entire Unified Cache
 C7,C7,1 VA - Invalidate Unified Cache Line
 C7,C7,2 S/I - Invalidate Unified Cache Line
 C7,C8,2 0 Yes Wait For Interrupt (Halt), alternately to C7,C0,4
 C7,C10,1 VA Yes Clean Data Cache Line
 C7,C10,2 S/I Yes Clean Data Cache Line
 C7,C10,4 0 - Drain Write Buffer
 C7,C11,1 VA - Clean Unified Cache Line
 C7,C11,2 S/I - Clean Unified Cache Line
 C7,C13,1 VA Yes Prefetch Instruction Cache Line
 C7,C14,1 VA Yes Clean and Invalidate Data Cache Line
 C7,C14,2 S/I Yes Clean and Invalidate Data Cache Line
 C7,C15,1 VA - Clean and Invalidate Unified Cache Line
 C7,C15,2 S/I - Clean and Invalidate Unified Cache Line

Parameter values (Rd) formats:
 0 Not used, should be zero
 VA Virtual Address
 S/I Set/index; Bit 31..(32-A) = Index, Bit (L+S-1)..L = Set ?

C9,C0,0 - Data Cache Lockdown
C9,C0,1 - Instruction Cache Lockdown
(Width (W) of index field depends on cache ASSOCIATIVETY.)
Format A:
 0..(31-W) Reserved/zero
 (32-W)..31 Lockdown Block Index

Format B:
 0..(W-1) Lockdown Block Index
 W..30 Reserved/zero
 31 L

Cache/Write-buffer should not be enabled for the whole 4GB memory area, high-speed TCM memory doesn't require caching, and caching would have fatal results on I/O ports. So, cache can be used only in combination with the Protection Unit, which allows to enable/disable caching in specified regions.

Note
ARMv5 instruction set supports a Cache Prepare for Load opcode (PLD), see
ARM.9: S ingle Data Transfer (LDR, STR, PLD)

 ARM CP15 Tightly Coupled Memory (TCM)

TCM is high-speed memory, directly contained in the ARM CPU core.

TCM and DMA
TCM doesn't use the ARM bus. A minor disadvantage is that TCM cannot be accessed by DMA. However, the main advantage is that, when using TCM, the CPU can be kept running without any waitstates even while the bus is used for DMA transfers. Operation during DMA works only if all code/data is located in TCM, waitstates are generated if any c ode/data outside TCM is accessed; in worst case (if there are no gaps in the DMA) then the CPU is halted until the DMA finishes.

TCM and DMA and IRQ
No idea if/how IRQs are handled during DMA? Eventually (unlikely) code in TCM is kept executed until DMA finishes (ie. until the IRQ vector can be accessed. Eventually the IRQ vector is instantly accessed (causing to halt the CPU until DMA finishes). In both cases: Assuming that IRQs are enabled, and that the IRQ vector and/or IRQ handler are located outside TCM.

Separate Instruction (ITCM) and Data (DTCM) Memory
DTCM can be used only for Data accesses, typically used for stacks and other frequently accessed data.
ITCM is primarily intended for instruction accesses, but it can be also used for Data accesses (among others allowing to copy code to ITCM), however, performance isn't optimal when simultaneously accessing ITCM for code and data (such like opcodes in ITCM that use literal pool values in ITCM).

TCM Enable, TCM Load Mode
CP15 Control Register allows to enable ITCM and DTCM, and to switch ITCM/DTCM into Load Mode. In Load Mode (when TCM is enabled), TCM becomes write-only; this allows to read data from source addresses in main memory, and to write data to destination addresses in TCM by using the same addresses; useful for initializ ing TCM with overlapping source/dest addresses; Load mode works with all Load/S tore opcodes, it does NOT work with SWP/SWPB opcodes.

TCM Physical S ize can be detected in 3rd ID Code Register. (C0,C0,2)

C9,C1,0 - Data TCM Size/Base (R/W)
C9,C1,1 - Instruction TCM Size/Base (R/W)
 0 Reserved (0)
 1-5 Virtual Size (Size = 512 SHL N) ;min=(N=3)=4KB, max=(N=23)=4GB
 6-11 Reserved (0)
 12-31 Region Base (Base = X SHL 12) ;Base must be Size-aligned

The Virtual size settings should be normally same as the Physical sizes (see C0,C0,2). However, smaller sizes are allowed (using only the 1st some KB), as well as bigger sizes (TCM area is then filled with mirrors of physical TCM).
The ITCM region base may be fixed (read-only), for example, on the NDS, ITCM base is always 00000000h, nethertheless the virtual size may be changed (allowing to mirror ITCM to higher addresses).
If DTCM and ITCM do overlap, then ITCM appears to have priority.

TCM and PU
TCM can be used without Protection Unit.
When the protection unit is enabled, TCM is controlled by the PU just like normal memory, the PU should provide R/W Access Permission for TCM regions; cache and write-buffer are not required for high-speed TCM (so both should be disabled for TCM regions).

 ARM CP15 Misc

C13,C0,0 - Process ID for Fast Context Switch Extension (FCSE) (R/W)
 0-24 Reserved/zero
 25-31 Process ID (PID) (0-127) (0=Disable)

The FCSE allows different processes (each assembled with ORG 0) to be located at virtual addresses in the 1st 32MB area. The FCSE splits the total 4GB address space into blocks of 32MB, accesses to Block(0) are redirected to Block(PID):
 IF addr<32M then addr=addr+PID*32M
 Respectively, with PID=0, the address remains unchanged (FCSE disabled).

The CPU-to-Memory address handling is shown below:
 1. CPU outputs a virtual address (VA)
 2. FCSE adjusts the VA to a modified virtual address (MVA)
 3. Cache hits determined by examining the MVA, continue below if no hit
 4. MMU translates MVA to physical address (PA) (if no MMU present: PA=MVA)
 5. Memory access occurs at PA

The FCSE allows limited virtual addressing even if no MMU is present.
If the MMU is present, then either the FCSE and/or the MMU can be used for virtual addressing; the advantage of using the FCSE (a single write to C13,C0,0) is less overload; using the MMU for the same purpose would require to change virtual address translation table in memory, and to flush the cache.
The NDS doesn't have a FCSE (the FCSE register is read-only, always zero).

C13,C0,1 - Trace Process ID (R/W)
C13,C1,1 - Trace Process ID (Mirror) (R/W)
This value is output to ETMPROCID pins (if any), allowing to notify external hardware about the currently executed process within multi-tasking programs.
 0-31 Process ID

C13,C1,1 is a mirror of C13,C0,1 (for compatibility with other ARM processors).
Both registers are read/write-able on NDS9, but there are no external pin-outs.

<cpopc>
Unlike for all other CP15 registers, the <cpopc> operand of the MRC/MCR opcodes isn't always zero for below registers, so below registers are using "cpopc,Cn,Cm,op2" notation (instead of the normal "Cn,Cm,op2" notation).

Built-In-Self-Test (BIST)
Allows to test internal memory (ie. TCM, Cache Memory, and Cache TAGs). The tests are filling (and verifying) the selected memory region thrice (once with the fillvalue, then with the inverted fillvalue, and then again with the fillvalue). The BIST functions are intended for diagnostics purposes only, not for use in normal program code (ARM doesn't guarantee future processors to have backwards compatible BIST functions).

0,C15,C0,1 - BIST TAG Control Register (R/W)
1,C15,C0,1 - BIST TCM Control Register (R/W)
2,C15,C0,1 - BIST Cache Control Register (R/W)
 0-15 Data Control (see below)
 16-31 Instruction Control (see below)

The above 16bit control values are:
 0 Start bit (Write: 1=Start) (Read: 1=Busy)
 1 Pause bit (1=Pause)
 2 Enable bit (1=Enable)
 3 Fail Flag (1=Error) (Read Only)
 4 Complete Flag (1=Ready) (Read Only)
 5-15 Size (2^(N+2) bytes) (min=N=1=8bytes, max=N=24=64MB)

S ize and Pause are not supported in all implementations.
Caution: While and as long as the Enable bit is set, the corresponding memory region(s) will be disabled. Eg. when testing <either> DTCM <and/or> ITCM, <both> DTCM <and> ITCM are forcefully disabled in C1,C0,0 (Control Register), after the test the software must first c lear the BIST enable bit, and then restore DTCM/ITCM bits in C1,C0,0. And of course, the content of the tested memory region must be restored when needed.

0,C15,C0,2 - BIST Instruction TAG Address (R/W)
1,C15,C0,2 - BIST Instruction TCM Address (R/W)
2,C15,C0,2 - BIST Instruction Cache Address (R/W)
0,C15,C0,6 - BIST Data TAG Address (R/W)
1,C15,C0,6 - BIST Data TCM Address (R/W)
2,C15,C0,6 - BIST Data Cache Address (R/W)
 0-31 Word-aligned Destination Address within Memory Block (eg. within ITCM)

On the NDS9, bit0-1, and bit21-31 are always zero.

0,C15,C0,3 - BIST Instruction TAG Fillvalue (R/W)
1,C15,C0,3 - BIST Instruction TCM Fillvalue (R/W)
2,C15,C0,3 - BIST Instruction Cache Fillvalue (R/W)
0,C15,C0,7 - BIST Data TAG Fillvalue (R/W)
1,C15,C0,7 - BIST Data TCM Fillvalue (R/W)
2,C15,C0,7 - BIST Data Cache Fillvalue (R/W)
 0-31 Fillvalue for BIST

After BIST, the selected memory region is filled by that value. That is, on the NDS9 at least, all words will be filled with the SAME value (ie. NOT with increasing or randomly generated numbers).

0,C15,C0,0 - Cache Debug Test State Register (R/W)
 0-8 Reserved (zero)
 9 Disable Instruction Cache Linefill
 10 Disable Data Cache Linefill
 11 Disable Instruction Cache Streaming
 12 Disable Data Cache Streaming
 13-31 Reserved (zero/unpredictable)

3,C15,C0,0 - Cache Debug Index Register (R/W)
 0..1 Reserved (zero)
 2..4 Word Address
 5..N Index
 N+1..29 Reserved (zero)
 30..31 Segment

3,C15,C0,1 - Cache Debug Instruction TAG (R/W)
3,C15,C0,2 - Cache Debug Data TAG (R/W)
3,C15,C0,3 - Cache Debug Instruction Cache (R/W)
3,C15,C0,4 - Cache Debug Data Cache (R/W)
 0..1 Set
 2..3 Dirty Bits
 4 Valid
 5..N Index
 N+1..31 TAG Address

 CPU Instruction Cycle Times

Instruction Cycle Summary

 Instruction Cycles Additional

 Data Processing 1S +1S+1N if R15 loaded, +1I if SHIFT(Rs)
 MSR,MRS 1S
 LDR 1S+1N+1I +1S+1N if R15 loaded
 STR 2N
 LDM nS+1N+1I +1S+1N if R15 loaded
 STM (n-1)S+2N
 SWP 1S+2N+1I
 BL (THUMB) 3S+1N
 B,BL 2S+1N
 SWI,trap 2S+1N
 MUL 1S+ml
 MLA 1S+(m+1)I
 MULL 1S+(m+1)I
 MLAL 1S+(m+2)I
 CDP 1S+bI
 LDC,STC (n-1)S+2N+bI
 MCR 1N+bI+1C
 MRC 1S+(b+1)I+1C
 {cond} false 1S

ARM9:
 Q{D}ADD/SUB 1S+Interlock.
 CLZ 1S.
 LDR 1S+1N+1L
 LDRB,LDRH,LDRmis 1S+1N+2L
 LDR PC ...
 STR 1S+1N (not 2N, and both in parallel)

Execution Time: 1S+Interlock (SMULxy,SMLAxy,SMULWx,SMLAWx)
Execution Time: 1S+1I+Interlock (SMLALxy)

Whereas,
 n = number of words transferred
 b = number of cycles spent in coprocessor busy-wait loop
 m = depends on most significant byte(s) of multiplier operand

Above 'trap' is meant to be the execution time for exceptions. And '{cond} false' is meant to be the execution time for conditional instructions which haven't been actual ly executed because the condition has been false.

The separate meaning of the N,S ,I,C cycles is:

N - Non-sequential cycle
Requests a transfer to/from an address which is NOT related to the address used in the previous cycle. (Called 1st Access in GBA language).
The execution time for 1N is 1 c lock cycle (plus non-sequential access waitstates).

S - Sequential cycle
Requests a transfer to/from an address which is located directly after the address used in the previous cycle. Ie. for 16bit or 32bit accesses at incrementing addresses, the first access is Non-sequential, the following accesses are sequential. (Called 2nd Access in GBA language).
The execution time for 1S is 1 c lock cycle (plus sequential access waitstates).

I - Internal Cycle
CPU is just too busy, not even requesting a memory transfer for now.
The execution time for 1I is 1 c lock cycle (without any waitstates).

C - Coprocessor Cycle
The CPU uses the data bus to communicate with the coprocessor (if any), but no memory transfers are requested.

Memory Waitstates
Ideally, memory may be accessed free of waitstates (1N and 1S are then equal to 1 c lock cycle each). However, a memory system may generate waitstates for several reasons: The memory may be just too slow. Memory is currently accessed by DMA, eg. sound, video, memory transfers, etc. Or when data is squeezed through a 16bit data bus (in that special case, 32bit access may have more waitstates than 8bit and 16bit accesses). Also, the memory system may separate between S and N cycles (if so, S cycles would be typically faster than N cycles).

Memory Waitstates for Different Memory Areas
Different memory areas (eg. ROM and RAM) may have different waitstates. When executing code in one area which accesses data in another area, then the S+N cycles must be split into code and data accesses: 1N is used for data access, plus (n-1)S for LDM/STM, the remaining S+N are code access. If an instruction jumps to a different memory area, then all code cycles for that opcode are having waitstate characteristics of the NEW memory area (except Thumb BL which still executes 1S in OLD area).

 CPU Versions

Version Numbers
ARM CPUs are distributed by name ARM#, and are described as ARMv# in specifications, whereas "#" is NOT the same than "v#", for example, ARM7TDMI is ARMv4TM. That is so c onfusing, that ARM didn't even attempt to c larify the relationship between the various "#" and "v#" values.

Version Variants
Suffixes like "M" (long multiply), "T" (Thumb support), "E" (Enhanced DSP) indicate presence of special features, additionally to the standard instruction set of a given version, or, when preceded by an "x", indicate the absence of that features.

ARMv1 aka ARM1
Some sort of a beta version, according to ARM never been used in any commercial products.

ARMv2 and up
MUL,MLA
CDP,LDC,MCR,MRC,STC
SWP/SWPB (ARMv2a and up only)
Two new FIQ registers

ARMv3 and up
MRS,MSR opcodes (instead CMP/CMN/TST/TEQ{P} opcodes)
CPSR,SPSR registers (instead PSR bits in R15)
Removed never condition, cond=NV no longer valid
32bit addressing (instead 26bit addressing in older versions)
26bit addressing backwards comptibility mode (except v3G)
Abt and Und modes (instead handling aborts/undefined in Svc mode)
SMLAL,SMULL,UMLAL,UMULL (optionally, INCLUDED in v3M, EXCLUDED in v4xM/v5xM)

ARMv4 aka ARM7 and up
LDRH,LDRSB,LDRSH,STRH
Sys mode (privileged user mode)
BX (only ARMv4T, and any ARMv5 or ARMv5T and up)
THUMB code (only T variants, ie. ARMv4T, ARMv5T)

ARMv5 aka ARM9 and up
BKPT,BLX,CLZ (BKPT,BLX also in THUMB mode)
LDM/LDR/POP PC with mode switch (POP PC also in THUMB mode)
CDP2,LDC2,MCR2,MRC2,STC2 (new coprocessor opcodes)
C-flag unchanged by MUL (instead undefined flag value)
changed instruction cycle timings / interlock ??? or not ???
QADD,QDADD,QDSUB,QSUB opcodes, CPSR.Q flag (v5TE and V5TExP only)
SMLAxy,SMLALxy,SMLAWy,SMULxy,SMULWy (v5TE and V5TExP only)
LDRD,STRD,PLD,MCRR,MRRC (v5TE only, not v5, not v5TExP)

ARMv6
No public specifications available.

A Milestone in Computer History
Original ARMv2 has been used in the relative rare and expensive Archimedes deluxe home computers in the late eighties, the Archimedes has caught a lot of attention, particularly for being the first home computer that used a BIOS being programmed in BAS IC language - which has been a absolutely revolutionary decadency at that time.
Inspired, programmers all over the world have successfully developed even slower and much more ineffic ient programming languages, which are nowadays consequently used by nearly all ARM programmers, and by most non-ARM programmers as well.

 CPU Data Sheet

This present document is an attempt to supply a brief ARM7TDMI reference, hopefully including all information which is relevant for programmers.

Some details that I have treated as meaningless for GBA programming aren't included - such like Big Endian format, and Virtual Memory data aborts, and most of the chapters listed below.

Have a look at the complete data sheet (URL see below) for more detailed verbose information about ARM7TDMI instructions. That document also includes:

- S ignal Description
 Pins of the original CPU, probably other for GBA.

- Memory Interface
 Optional virtual memory circuits, etc. not for GBA.

- Coprocessor Interface
 As far as I know, none such in GBA.

- Debug Interface
 For external hardware-based debugging.

- ICEBreaker Module
 For external hardware-based debugging also.

- Instruction Cycle Operations
 Detailed: What happens during each cycle of each instruction.

- DC Parameters (Power supply)
- AC Parameters (S ignal timings)

The offic ial ARM7TDMI data sheet can be downloaded from ARMs webpage,
 http://www.arm.com/Documentation/UserMans/PDF/ARM7TDMI.html

Be prepared for bloated PDF Format, approx 1.3 MB, about 200 pages.

 NDS Reference

DS Technical Data
DS I/O Maps
DS Memory Maps
DS Memory Control
DS Video
DS 3D Video
DS Sound
DS System and Built-in Peripherals
DS Cartridges, Encryption, Firmware
DS Xboo
DS Wireless Communications
DS Backwards-compatible GBA-Mode
BIOS Functions
CPU Reference
External Connectors

 DS Technical Data

Processors
 1x ARM946E-S 32bit RISC CPU, 66MHz (NDS9 video) (not used in GBA mode)
 1x ARM7TDMI 32bit RISC CPU, 33MHz (NDS7 sound) (16MHz in GBA mode)

Internal Memory
 4096KB Main RAM (8192KB in debug version)
 96KB WRAM (64K mapped to NDS7, plus 32K mappable to NDS7 or NDS9)
 60KB TCM/Cache (TCM: 16K Data, 32K Code) (Cache: 4K Data, 8K Code)
 656KB VRAM (allocateable as BG/OBJ/2D/3D/Palette/Texture/WRAM memory)
 4KB OAM/PAL (2K OBJ Attribute Memory, 2K Standard Palette RAM)
 248KB Internal 3D Memory (104K Polygon RAM, 144K Vertex RAM)
 ?KB Matrix Stack, 48 scanline cache
 8KB Wifi RAM
 256KB Firmware FLASH (512KB in iQue variant, with chinese charset)
 36KB BIOS ROM (4K NDS9, 16K NDS7, 16K GBA)

Video
 2x LCD screens (each 256x192 pixel, 3 inch, 18bit color depth, backlight)
 2x 2D video engines (extended variants of the GBA's video controller)
 1x 3D video engine (can be assigned to upper or lower screen)
 1x video capture (for effects, or for forwarding 3D to the 2nd 2D engine)

Sound
 16 sound channels (16x PCM8/PCM16/IMA-ADPCM, 6x PSG-Wave, 2x PSG-Noise)
 2 sound capture units (for echo effects, etc.)
 Output: Two built-in stereo speakers, and headphones socket
 Input: One built-in microphone, and microphone socket

Controls
 Gamepad 4 Direction Keys, 8 Buttons
 Touchscreen (on lower LCD screen)

Communication Ports
 Wifi IEEE802.11b

Specials
 Built-in Real Time Clock
 Power Managment Device
 Hardware divide and square root functions
 CP15 System Control Coprocessor (cache, tcm, pu, bist, etc.)

External Memory
 NDS Slot (for NDS games) (encrypted 8bit data bus, and serial 1bit bus)
 GBA Slot (for NDS expansions, or for GBA games) (but not for DMG/CGB games)

Manufactured Cartridges
 ROM: 16MB, 32MB, or 64MB
 EEPROM/FLASH/FRAM: 0.5KB, 8KB, 64KB, 256KB, or 512KB

Can be booted from
 NDS Cartridge (NDS mode)
 Firmware FLASH (NDS mode) (eg. by patching firmware via ds-xboo cable)
 Wifi (NDS mode)
 GBA Cartridge (GBA mode) (without DMG/CGB support) (without SIO support)

Power Supply
 Built-in rechargeable Lithium ion battery, 3.7V 1000mAh (DS-Lite)
 External Supply: 5.2V DC

NDS-Lite
S lightly smaller than the original NDS, coming in a more decently elegant case. The LCDs are much more colorful (and thus not backwards compatible with any older NDS or GBA games), and the LCDs support wider viewing angles. S lightly different power managment device (with selectable backlight brightness, new external power source flag, lost audio amplifier mute flag). S lightly different Wifi controller (different chip ID, different dirt effects when accessing invalid wifi ports and unused wifi memory regions, different behaviour on GAPDISP registers, RF/BB chips replaced by a single chip). S lightly different touch screen controller (with new unused input, and slightly different powerdown bits).

Notice
NDS9 means the ARM9 processor and its memory and I/O ports in NDS mode
NDS7 means the ARM7 processor and its memory and I/O ports in NDS mode
GBA means the ARM7 processor and its memory and I/O ports in GBA mode

The two Processors
Most game code is usually executed on the ARM9 processor (in fact, Nintendo reportedly doesn't allow developers use the ARM7 processor, except by predefined API functions, anyways, even with the most likely ineffic ient API code, most of the ARM7's 33MHz horsepower is left unused).
The ARM9's 66MHz "horsepower" is a different tale - it seems Nintendo thought that a 33MHz processor would be too "slow" for 3D games, and so they (tried to) badge an additional CPU to the original GBA hardware.
However, the real 66MHz can be used only with cache and tcm, all other memory and I/O accesses are delayed to the 33MHz bus c lock, that'd be still quite fast, but, there seems to be a hardware glitch that adds 3 waitcycles to all nonsequential accesses at the NDS9 side, which effectively drops its bus c lock to about 8MHz , making it ways slower than the 33MHz NDS7 processor, it's even slower than the original 16MHz GBA processor.
Altogether, with the bugged 66MHz, and the unused 33MHz, Nintendo could have reached almost the same power when staying with the GBA's 16MHz processor :-)
Although, when properly using cache/tcm, then the 66MHz processor <can> be very fast, still, the NDS should have worked as well with a single processor, though using only an ARM9 might cause a lot of compatibilty problems with GBA games, so there's at least one reason for keeping the ARM7 included.

 DS I/O Maps

ARM9 I/O Map
Display Engine A
 4000000h 4 2D Engine A - DISPCNT - LCD Control (Read/Write)
 4000004h 2 2D Engine A+B - DISPSTAT - General LCD Status (Read/Write)
 4000006h 2 2D Engine A+B - VCOUNT - Vertical Counter (Read only)
 4000008h 50h 2D Engine A (same registers as GBA, some changed bits)
 4000060h 2 DISP3DCNT - 3D Display Control Register (R/W)
 4000064h 4 DISPCAPCNT - Display Capture Control Register (R/W)
 4000068h 4 DISP_MMEM_FIFO - Main Memory Display FIFO (R?/W)
 400006Ch 2 2D Engine A - MASTER_BRIGHT - Master Brightness Up/Down

DMA, Timers, and Keypad
 40000B0h 30h DMA Channel 0..3
 40000E0h 10h DMA FILL Registers for Channel 0..3
 4000100h 10h Timers 0..3
 4000130h 2 KEYINPUT
 4000132h 2 KEYCNT

IPC/ROM
 4000180h 2 IPCSYNC - IPC Synchronize Register (R/W)
 4000184h 2 IPCFIFOCNT - IPC Fifo Control Register (R/W)
 4000188h 4 IPCFIFOSEND - IPC Send Fifo (W)
 40001A0h 2 AUXSPICNT - Gamecard ROM and SPI Control
 40001A2h 2 AUXSPIDATA - Gamecard SPI Bus Data/Strobe
 40001A4h 4 Gamecard bus timing/control
 40001A8h 8 Gamecard bus 8-byte command out
 40001B0h 4 Gamecard Encryption Seed 0 Lower 32bit
 40001B4h 4 Gamecard Encryption Seed 1 Lower 32bit
 40001B8h 2 Gamecard Encryption Seed 0 Upper 7bit (bit8-15 unused)
 40001BAh 2 Gamecard Encryption Seed 1 Upper 7bit (bit8-15 unused)

Memory and IRQ Control
 4000204h 2 EXMEMCNT - External Memory Control (R/W)
 4000208h 2 IME - Interrupt Master Enable (R/W)
 4000210h 4 IE - Interrupt Enable (R/W)
 4000214h 4 IF - Interrupt Request Flags (R/W)
 4000240h 1 VRAMCNT_A - VRAM-A (128K) Bank Control (W)
 4000241h 1 VRAMCNT_B - VRAM-B (128K) Bank Control (W)
 4000242h 1 VRAMCNT_C - VRAM-C (128K) Bank Control (W)
 4000243h 1 VRAMCNT_D - VRAM-D (128K) Bank Control (W)
 4000244h 1 VRAMCNT_E - VRAM-E (64K) Bank Control (W)
 4000245h 1 VRAMCNT_F - VRAM-F (16K) Bank Control (W)
 4000246h 1 VRAMCNT_G - VRAM-G (16K) Bank Control (W)
 4000247h 1 WRAMCNT - WRAM Bank Control (W)
 4000248h 1 VRAMCNT_H - VRAM-H (32K) Bank Control (W)
 4000249h 1 VRAMCNT_I - VRAM-I (16K) Bank Control (W)

Maths
 4000280h 2 DIVCNT - Division Control (R/W)
 4000290h 8 DIV_NUMER - Division Numerator (R/W)
 4000298h 8 DIV_DENOM - Division Denominator (R/W)
 40002A0h 8 DIV_RESULT - Division Quotient (=Numer/Denom) (R/W?)
 40002A8h 8 DIVREM_RESULT - Division Remainder (=Numer MOD Denom) (R/W?)
 40002B0h 2 SQRTCNT - Square Root Control (R/W)
 40002B4h 4 SQRT_RESULT - Square Root Result (R/W?)
 40002B8h 8 SQRT_PARAM - Square Root Parameter Input (R/W)
 4000300h 4 POSTFLG - Undoc
 4000304h 2 POWCNT1 - Graphics Power Control Register (R/W)

3D Display Engine
 4000320h..6A3h

Display Engine B
 4001000h 4 2D Engine B - DISPCNT - LCD Control (Read/Write)
 4001008h 50h 2D Engine B (same registers as GBA, some changed bits)
 400106Ch 2 2D Engine B - MASTER_BRIGHT - 16bit - Brightness Up/Down

IPC/ROM
 4100000h 4 IPCFIFORECV - IPC Receive Fifo (R)
 4100010h 4 Gamecard bus 4-byte data in, for manual or dma read

Hardcoded RAM Addresses for Exception Handling
 27FFD9Ch .. NDS9 Debug Stacktop / Debug Vector (0=None)
 DTCM+3FF8h 4 NDS9 IRQ Check Bits (hardcoded RAM address)
 DTCM+3FFCh 4 NDS9 IRQ Handler (hardcoded RAM address)

Main Memory Control
 27FFFFEh 2 Main Memory Control

Further Memory Control Registers
ARM CP15 System Control Coprocessor

ARM7 I/O Map
 4000004h 2 DISPSTAT
 4000006h 2 VCOUNT
 40000B0h 30h DMA Channels 0..3
 4000100h 10h Timers 0..3
 4000120h 4 Debug SIODATA32
 4000128h 4 Debug SIOCNT
 4000130h 2 keyinput
 4000132h 2 keycnt
 4000134h 2 Debug RCNT
 4000136h 2 EXTKEYIN
 4000138h 1 RTC Realtime Clock Bus
 4000180h 2 IPCSYNC - IPC Synchronize Register (R/W)
 4000184h 2 IPCFIFOCNT - IPC Fifo Control Register (R/W)
 4000188h 4 IPCFIFOSEND - IPC Send Fifo (W)
 40001A0h 2 AUXSPICNT - Gamecard ROM and SPI Control
 40001A2h 2 AUXSPIDATA - Gamecard SPI Bus Data/Strobe
 40001A4h 4 Gamecard bus timing/control
 40001A8h 8 Gamecard bus 8-byte command out
 40001B0h 4 Gamecard Encryption Seed 0 Lower 32bit
 40001B4h 4 Gamecard Encryption Seed 1 Lower 32bit
 40001B8h 2 Gamecard Encryption Seed 0 Upper 7bit (bit8-15 unused)
 40001BAh 2 Gamecard Encryption Seed 1 Upper 7bit (bit8-15 unused)
 40001C0h 2 SPI bus Control (Firmware, Touchscreen, Powerman)
 40001C2h 2 SPI bus Data

Memory and IRQ Control
 4000204h 2 EXMEMSTAT - External Memory Status
 4000206h 2 WIFIWAITCNT
 4000208h 4 IME
 4000210h 4 IE
 4000214h 4 IF
 4000240h 1 VRAMSTAT - VRAM-C,D Bank Status (R)
 4000241h 1 WRAMSTAT - WRAM Bank Status (R)
 4000300h 1 POSTFLG
 4000301h 1 HALTCNT (different bits than on GBA) (plus NOP delay)
 4000304h 2 POWCNT2 Sound/Wifi Power Control Register (R/W)
 4000308h 4 BIOSPROT - Bios-data-read-protection address

Sound Registers
 4000400h 100h Sound Channel 0..15 (10h bytes each)
 40004x0h 4 SOUNDxCNT - Sound Channel X Control Register (R/W)
 40004x4h 4 SOUNDxSAD - Sound Channel X Data Source Register (W)
 40004x8h 2 SOUNDxTMR - Sound Channel X Timer Register (W)
 40004xAh 2 SOUNDxPNT - Sound Channel X Loopstart Register (W)
 40004xCh 4 SOUNDxLEN - Sound Channel X Length Register (W)
 4000500h 2 SOUNDCNT - Sound Control Register (R/W)
 4000504h 2 SOUNDBIAS - Sound Bias Register (R/W)
 4000508h 1 SNDCAP0CNT - Sound Capture 0 Control Register (R/W)
 4000509h 1 SNDCAP1CNT - Sound Capture 1 Control Register (R/W)
 4000510h 4 SNDCAP0DAD - Sound Capture 0 Destination Address (R/W)
 4000514h 2 SNDCAP0LEN - Sound Capture 0 Length (W)
 4000518h 4 SNDCAP1DAD - Sound Capture 1 Destination Address (R/W)
 400051Ch 2 SNDCAP1LEN - Sound Capture 1 Length (W)

IPC/ROM
 4100000h 4 IPCFIFORECV - IPC Receive Fifo (R)
 4100010h 4 Gamecard bus 4-byte data in, for manual or dma read

WLAN Registers
 4800000h .. Wifi WS0 Region (32K) (Wifi Ports, and 8K Wifi RAM)
 4808000h .. Wifi WS1 Region (32K) (mirror of above, other waitstates)

Hardcoded RAM Addresses for Exception Handling
 380FFDCh .. NDS7 Debug Stacktop / Debug Vector (0=None)
 380FFF8h 4 NDS7 IRQ Check Bits (hardcoded RAM address)
 380FFFCh 4 NDS7 IRQ Handler (hardcoded RAM address)

 DS Memory Maps

NDS9 Memory Map
 00000000h Instruction TCM (32KB) (not moveable) (mirror-able to 1000000h)
 0xxxx000h Data TCM (16KB) (moveable)
 02000000h Main Memory (4MB)
 03000000h Shared WRAM (0KB, 16KB, or 32KB can be allocated to ARM9)
 04000000h ARM9-I/O Ports
 05000000h Standard Palettes (2KB) (Engine A BG/OBJ, Engine B BG/OBJ)
 06000000h VRAM - Engine A, BG VRAM (max 512KB)
 06200000h VRAM - Engine B, BG VRAM (max 128KB)
 06400000h VRAM - Engine A, OBJ VRAM (max 256KB)
 06600000h VRAM - Engine B, OBJ VRAM (max 128KB)
 06800000h VRAM - "LCDC"-allocated (max 656KB)
 07000000h OAM (2KB) (Engine A, Engine B)
 08000000h GBA Slot ROM (max. 32MB)
 0A000000h GBA Slot RAM (max. 64KB)
 FFFF0000h ARM9-BIOS (32KB) (only 3K used)

The ARM9 Exception Vectors are located at FFFF0000h. The IRQ handler redirects to [DTCM+3FFCh].

NDS7 Memory Map
 00000000h ARM7-BIOS (16KB)
 02000000h Main Memory (4MB)
 03000000h Shared WRAM (0KB, 16KB, or 32KB can be allocated to ARM7)
 03800000h ARM7-WRAM (64KB)
 04000000h ARM7-I/O Ports
 04800000h Wireless Communications Wait State 0 (8KB RAM at 4804000h)
 04808000h Wireless Communications Wait State 1 (I/O Ports at 4808000h)
 06000000h VRAM allocated as Work RAM to ARM7 (max. 256K)
 08000000h GBA Slot ROM (max. 32MB)
 0A000000h GBA Slot RAM (max. 64KB)

The ARM7 Exception Vectors are located at 00000000h. The IRQ handler redirects to [3FFFFFCh aka 380FFFCh].

Further Memory (not mapped to ARM9/ARM7 bus)
 3D Engine Polygon RAM (52KBx2)
 3D Engine Vertex RAM (72KBx2)
 Firmware (256KB) (built-in serial flash memory)
 GBA-BIOS (16KB) (not used in NDS mode)
 NDS Slot ROM (serial 8bit-bus, max. 4GB with default protocol)
 NDS Slot FLASH/EEPROM/FRAM (serial 1bit-bus)

Shared-RAM
Even though Shared WRAM begins at 3000000h, programs are commonly using mirrors at 37F8000h (both ARM9 and ARM7). At the ARM7-side, this allows to use 32K Shared WRAM and 64K ARM7-WRAM as a continous 96K RAM block.

Undefined I/O Ports
On the NDS (at the ARM9-side at least) undefined I/O ports are always zero.

Undefined Memory Regions
16MB blocks that do not contain any defined memory regions (or that contain only mapped TCM regions) are typically completely undefined.
16MB blocks that do contain valid memory regions are typically containing mirrors of that memory in the unused upper part of the 16MB area (only exceptions are TCM and BIOS which are not mirrored).

 DS Memory Control

Memory Control
DS Memory Control - Cache and TCM
DS Memory Control - Cartridges and Main RAM
DS Memory Control - WRAM
DS Memory Control - VRAM
DS Memory Control - BIOS

Memory Access Time
DS Memory Timings

 DS Memory Control - Cache and TCM

TCM and Cache are controlled by the System Control Coprocessor,
ARM CP15 System Control Coprocessor

The specifications for the NDS9 are:

Tightly Coupled Memory (TCM)
 ITCM 32K, base=00000000h (fixed, not move-able)
 DTCM 16K, base=moveable (default base=27C0000h)

Note: Although ITCM is NOT moveable, the NDS Firmware configures the ITCM size to 32MB, and so, produces ITCM mirrors at 0..1FFFFFFh. Furthermore, the PU can be used to lock/unlock memory in that region. That trick allows to move ITCM anywhere within the lower 32MB of memory.

Cache
 Data Cache 4KB, Instruction Cache 8KB
 4-way set associative method
 Cache line 8 words (32 bytes)
 Read-allocate method (ie. writes are not allocating cache lines)
 Round-robin and Pseudo-random replacement algorithms selectable
 Cache Lockdown, Instruction Prefetch, Data Preload
 Data write-through and write-back modes selectable

Protection Unit (PU)
Recommended/default settings are:
 Region Name Address Size Cache WBuf Code Data
 - Background 00000000h 4GB - - - -
 0 I/O and VRAM 04000000h 64MB - - R/W R/W
 1 Main Memory 02000000h 4MB On On R/W R/W
 2 ARM7-dedicated 027C0000h 256KB - - - -
 3 GBA Slot 08000000h 128MB - - - R/W
 4 DTCM 027C0000h 16KB - - - R/W
 5 ITCM 01000000h 32KB - - R/W R/W
 6 BIOS FFFF0000h 32KB On - R R
 7 Shared Work 027FF000h 4KB - - - R/W

Notes: In Nintendo's hardware-debugger, Main Memory is expanded to 8MB (for that reason, some addresses are at 27NN000h instead 23NN000h) (some of the extra memory is reserved for the debugger, some can be used for game development). Region 2 and 7 are not understood? GBA S lot should be max 32MB+64KB, rounded up to 64MB, no idea why it is 128MB? DTCM and ITCM do not use Cache and Write-Buffer because TCM is fast. Above settings do not allow to access Shared Memory at 37F8000h? Do not use cache/wbuf for I/O, doing so might suppress writes, and/or might read outdated values.
The main purpose of the Protection Unit is debugging, a major problem with GBA programs have been faulty accesses to memory address 00000000h and up (due to [base+offset] addressing with uninitialized (zero) base values). This problem has been fixed in the NDS, for the ARM9 processor at least, still there are various leaks: For example, the 64MB I/O and VRAM area contains only ca. 660KB valid addresses, and the ARM7 probably doesn't have a Protection Unit at all. Alltogether, the protection is better than in GBA, but it's still pretty crude compared with software debugging tools.
Region address/size are unified (same for code and data), however, cachabilty and acc ess rights are non-unified (and may be separately defined for code and data).

Note: The NDS7 doesn't have any TCM, Cache, or CP15.

 DS Memory Control - Cartridges and Main RAM

4000204h - NDS9 - EXMEMCNT - 16bit - External Memory Control (R/W)
4000204h - NDS7 - EXMEMSTAT - 16bit - External Memory Status (R/W..R)
 0-1 32-pin GBA Slot SRAM Access Time (0-3 = 10, 8, 6, 18 cycles)
 2-3 32-pin GBA Slot ROM 1st Access Time (0-3 = 10, 8, 6, 18 cycles)
 4 32-pin GBA Slot ROM 2nd Access Time (0-1 = 6, 4 cycles)
 5-6 32-pin GBA Slot PHI-pin out (0-3 = Low, 4.19MHz, 8.38MHz, 16.76MHz)
 7 32-pin GBA Slot Access Rights (0=ARM9, 1=ARM7)
 8-10 Not used (always zero)
 11 17-pin NDS Slot Access Rights (0=ARM9, 1=ARM7)
 12 Not used (always zero)
 13 Not used (always set ?)
 14 Main Memory Interface Mode Switch (0=Async/GBA/Reserved, 1=Synchronous)
 15 Main Memory Access Priority (0=ARM9 Priority, 1=ARM7 Priority)

Bit0-6 can be changed by both NDS9 and NDS7, changing these bits affects the local EXMEM register only, not that of the other CPU.
Bit7-15 can be changed by NDS9 only, changing these bits affects both EXMEM registers, ie. both NDS9 and NDS7 can read the current NDS9 setting.
Bit14=0 is intended for GBA mode, however, writes to this bit appear to be ignored?
DS Main Memory Control

 DS Memory Control - WRAM

4000247h - NDS9 - WRAMCNT - 8bit - WRAM Bank Control (R/W)
4000241h - NDS7 - WRAMSTAT - 8bit - WRAM Bank Status (R)
Should not be changed when using Nintendo's API.
 0-1 ARM9/ARM7 (0-3 = 32K/0K, 2nd 16K/1st 16K, 1st 16K/2nd 16K, 0K/32K)
 2-7 Not used

The ARM9 WRAM area is 3000000h-3FFFFFFh (16MB range).
The ARM7 WRAM area is 3000000h-37FFFFFh (8MB range).
The allocated 16K or 32K are mirrored everywhere in the above areas.
De-allocation (0K) is a special case: At the ARM9-side, the WRAM area is then empty (containing undefined data). At the ARM7-side, the WRAM area is then containing mirrors of the 64KB ARM7-WRAM (the memory at 3800000h and up).

 DS Memory Control - VRAM

4000240h - NDS7 - VRAMSTAT - 8bit - VRAM Bank Status (R)
 0 VRAM C enabled and allocated to NDS7 (0=No, 1=Yes)
 1 VRAM D enabled and allocated to NDS7 (0=No, 1=Yes)
 2-7 Not used (always zero)

The register indicates if VRAM C/D are allocated to NDS7 (as Work RAM), ie. if VRAMCNT_C/D are enabled (Bit7=1), with MST=2 (Bit0-2). However, it does not reflect the OFS value.

4000240h - NDS9 - VRAMCNT_A - 8bit - VRAM-A (128K) Bank Control (W)
4000241h - NDS9 - VRAMCNT_B - 8bit - VRAM-B (128K) Bank Control (W)
4000242h - NDS9 - VRAMCNT_C - 8bit - VRAM-C (128K) Bank Control (W)
4000243h - NDS9 - VRAMCNT_D - 8bit - VRAM-D (128K) Bank Control (W)
4000244h - NDS9 - VRAMCNT_E - 8bit - VRAM-E (64K) Bank Control (W)
4000245h - NDS9 - VRAMCNT_F - 8bit - VRAM-F (16K) Bank Control (W)
4000246h - NDS9 - VRAMCNT_G - 8bit - VRAM-G (16K) Bank Control (W)
4000248h - NDS9 - VRAMCNT_H - 8bit - VRAM-H (32K) Bank Control (W)
4000249h - NDS9 - VRAMCNT_I - 8bit - VRAM-I (16K) Bank Control (W)
 0-2 VRAM MST ;Bit2 not used by VRAM-A,B,H,I
 3-4 VRAM Offset (0-3) ;Offset not used by VRAM-E,H,I
 5-6 Not used
 7 VRAM Enable (0=Disable, 1=Enable)

There is a total of 656KB of VRAM in Blocks A-I.
Table below shows the possible configurations.
 VRAM SIZE MST OFS ARM9, Plain ARM9-CPU Access (so-called LCDC mode)
 A 128K 0 - 6800000h-681FFFFh
 B 128K 0 - 6820000h-683FFFFh
 C 128K 0 - 6840000h-685FFFFh
 D 128K 0 - 6860000h-687FFFFh
 E 64K 0 - 6880000h-688FFFFh
 F 16K 0 - 6890000h-6893FFFh
 G 16K 0 - 6894000h-6897FFFh
 H 32K 0 - 6898000h-689FFFFh
 I 16K 0 - 68A0000h-68A3FFFh
 VRAM SIZE MST OFS ARM9, 2D Graphics Engine A, BG-VRAM (max 512K)
 A,B,C,D 128K 1 0..3 6000000h+(20000h*OFS)
 E 64K 1 - 6000000h
 F,G 16K 1 0..3 6000000h+(4000h*OFS.0)+(10000h*OFS.1)
 VRAM SIZE MST OFS ARM9, 2D Graphics Engine A, OBJ-VRAM (max 256K)
 A,B 128K 2 0..1 6400000h+(20000h*OFS.0) ;(OFS.1 must be zero)
 E 64K 2 - 6400000h
 F,G 16K 2 0..3 6400000h+(4000h*OFS.0)+(10000h*OFS.1)
 VRAM SIZE MST OFS 2D Graphics Engine A, BG Extended Palette
 E 64K 4 - Slot 0-3 ;only lower 32K used
 F,G 16K 4 0..1 Slot 0-1 (OFS=0), Slot 2-3 (OFS=1)
 VRAM SIZE MST OFS 2D Graphics Engine A, OBJ Extended Palette
 F,G 16K 5 - Slot 0 ;16K each (only lower 8K used)
 VRAM SIZE MST OFS Texture/Rear-plane Image
 A,B,C,D 128K 3 0..3 Slot OFS(0-3) ;(Slot2-3: Texture, or Rear-plane)
 VRAM SIZE MST OFS Texture Palette
 E 64K 3 - Slots 0-3 ;OFS=don't care
 F,G 16K 3 0..3 Slot (OFS.0*1)+(OFS.1*4) ;ie. Slot 0, 1, 4, or 5
 VRAM SIZE MST OFS ARM9, 2D Graphics Engine B, BG-VRAM (max 128K)
 C 128K 4 - 6200000h
 H 32K 1 - 6200000h
 I 16K 1 - 6208000h
 VRAM SIZE MST OFS ARM9, 2D Graphics Engine B, OBJ-VRAM (max 128K)
 D 128K 4 - 6600000h
 I 16K 2 - 6600000h
 VRAM SIZE MST OFS 2D Graphics Engine B, BG Extended Palette
 H 32K 2 - Slot 0-3
 VRAM SIZE MST OFS 2D Graphics Engine B, OBJ Extended Palette
 I 16K 3 - Slot 0 ;(only lower 8K used)
 VRAM SIZE MST OFS <ARM7>, Plain <ARM7>-CPU Access
 C,D 128K 2 0..1 6000000h+(20000h*OFS.0) ;OFS.1 must be zero

Notes
In Plain-CPU modes, VRAM can be accessed only by the CPU (and by the Capture Unit, and by VRAM Display mode). In "Plain <ARM7>-CPU Access" mode, the VRAM blocks are alloc ated as Work RAM to the NDS7 CPU.
In BG/OBJ VRAM modes, VRAM can be accessed by the CPU at specified addresses, and by the display controller.
In Extended Palette and Texture Image/Palette modes, VRAM is not mapped to CPU address space, and can be accessed only by the display controller (so, to initialize or change the memory, it should be temporarily switched to Plain-CPU mode).
All VRAM (and Palette, and OAM) can be written to only in 16bit and 32bit units (STRH, STR opcodes), 8bit writes are ignored (by STRB opcode). The only exception is "Plain <ARM7>-CPU Access" mode: The ARM7 CPU can use STRB to write to VRAM (the reason for this special feature is that, in GBA mode, two 128K VRAM blocks are used to emulate the GBA's 256K Work RAM).

Other Video RAM
Aside from the map-able VRAM blocks, there are also some video-related memory regions at fixed addresses:
 5000000h Engine A Standard BG Palette (512 bytes)
 5000200h Engine A Standard OBJ Palette (512 bytes)
 5000400h Engine B Standard BG Palette (512 bytes)
 5000600h Engine B Standard OBJ Palette (512 bytes)
 7000000h Engine A OAM (1024 bytes)
 7000400h Engine B OAM (1024 bytes)

 DS Memory Control - BIOS

4000308h - NDS7 - BIOSPROT - Bios-data-read-protection address
Used to double-protect the first some KBytes of the NDS7 BIOS . The BIOS is split into two protection regions, one always active, one controlled by the BIOSPROT register. The overall idea is that only the BIOS can read from itself, any other attempts to read from that regions return FFh-bytes.
 Opcodes at... Can read from Expl.
 0..[BIOSPROT]-1 0..3FFFh Double-protected (when BIOSPROT is set)
 [BIOSPROT]..3FFFh [BIOSPROT]..3FFFh Normal-protected (always active)

The initial BIOSPROT setting on power-up is zero (disabled). Before starting the cartridge, the BIOS boot code sets the register to 1204h (actually 1205h, but the mis-aligned low-bit is ignored). Once when initialized, further writes to the register are ignored.

The double-protected region contains the exception vectors, some bytes of code, and the cartridge KEY1 encryption seed (about 4KBytes). As far as I know, it is impossible to unlock the memory once when it is locked, however, with some trickery, it is possible execute code before it gets locked. Also, the two THUMB opcodes at 05ECh can be used to read all memory at 0..3FFFh,
 05ECh ldrb r3,[r3,12h] ;requires incoming r3=src-12h
 05EEh pop r2,r4,r6,r7,r15 ;requires dummy values & THUMB retadr on stack

Additionally most BIOS functions (eg. CpuSet), include a software-based protection which rejects source addresses in the BIOS area (the only exception is GetCRC16, though it still cannot bypass the BIOSPROT setting).

Note
The NDS9 BIOS doesn't include any software or hardware based read protection.

 DS Memory Timings

System Clock
 Bus clock = 33MHz (33.513982 MHz) (1FF61FEh Hertz)
 NDS7 clock = 33MHz (same as bus clock)
 NDS9 clock = 66MHz (internally twice bus clock; for cache/tcm)

Most timings in this document are specified for 33MHz clock (not for the 66MHz clock). Respectively, NDS9 timings are counted in "half" cycles.

Memory Access Times
Tables below show the different access times for code/data fetches on arm7/arm9 cpus, measured for sequential/nonsequential 32bit/16bit accesses.
 NDS7/CODE NDS9/CODE
 N32 S32 N16 S16 Bus N32 S32 N16 S16 Bus
 9 2 8 1 16 9 9 4.5 4.5 16 Main RAM (read) (cache off)
 1 1 1 1 32 4 4 2 2 32 WRAM,BIOS,I/O,OAM
 2 2 1 1 16 5 5 2.5 2.5 16 VRAM,Palette RAM
 16 12 10 6 16 19 19 9.5 9.5 16 GBA ROM (example 10,6 access)
 - - - - - 0.5 0.5 0.5 0.5 32 TCM, Cache_Hit
 - - - - - (--Load 8 words--) Cache_Miss

 NDS7/DATA NDS9/DATA
 N32 S32 N16 S16 Bus N32 S32 N16 S16 Bus
 10 2 9 1 16 10 2 9 1 16 Main RAM (read) (cache off)
 1 1 1 1 32 4 1 4 1 32 WRAM,BIOS,I/O,OAM
 1? 2 1 1 16 5 2 4 1 16 VRAM,Palette RAM
 15 12 9 6 16 19 12 13 6 16 GBA ROM (example 10,6 access)
 9 10 9 10 8 13 10 13 10 8 GBA RAM (example 10 access)
 - - - - - 0.5 0.5 0.5 - 32 TCM, Cache_Hit
 - - - - - (--Load 8 words--) Cache_Miss
 - - - - - 11 11 11 - 32 Cache_Miss (BIOS)
 - - - - - 23 23 23 - 16 Cache_Miss (Main RAM)

All timings are counted in 33MHz units (so "half" cycles can occur on NDS9).
Note: 8bit data accesses have same timings than 16bit data.

*** DS Memory Timing Notes ***

The NDS timings are altogether pretty messed up, with different timings for CODE and DATA fetches, and different timings for NDS7 and NDS9...

NDS7/CODE
Timings for this region can be considered as "should be" timings.

NDS7/DATA
Quite the same as NDS7/CODE. Except that, nonsequently Main RAM accesses are 1 cycle slower, and more strange, nonsequential GBA S lot accesses are 1 cycle faster.

NDS9/CODE
This is the most messiest timing. An infamous PENALTY of 3 cycles is added to all nonsequential accesses (except cache, tcm, and main ram). And, all opcode fetches are forcefully made nonsequential 32bit (the NDS9 simply doesn't support fast sequential opcode fetches). That applies also for THUMB code (two 16bit opcodes are fetched by a single nonsequential 32bit access) (so the time per 16bit opcode is one half of the 32bit fetch) (unless a branch causes only one of the two 16bit opocdes to be executed, then that opcode will have the full 32bit access time).

NDS9/DATA
Allows both sequential and nonsequential access, and both 16bit and 32bit access, so it's faster than NDS9/CODE. Nethertheless, it's still having the 3 cycle PENALTY on nonsequential accesses. And, similar as NDS7/DATA, it's also adding 1 cycle to nonsequential Main RAM accesses.

*** More Timing Notes / Lots of unsorted Info ***

Actual CPU Performance
The 33MHz NDS7 is running more or less nicely at 33MHz . However, the so-called "66MHz " NDS9 is having <much> higher waitstates, and it's effective bus speed is barely about 8..16MHz , the only exception is code/data in cache/tcm, which is eventually reaching real 66MHz (that, assuming cache HITS , otherwise, in case of cache MISSES , the cac hed memory timing might even drop to 1.4MHz or so?).

ARM9 opcode fetches are always N32 + 3 waits.
 S16 and N16 do not exist (because thumb-double-fetching) (see there).
 S32 becomes N32 (ie. the ARM9 does NOT support fast sequential timing).

That N32 is having same timing as normal N32 access on NDS7, plus 3 waits.
 Eg. an ARM9 N32 or S32 to 16bit bus will take: N16 + S16 + 3 waits.
 Eg. an ARM9 N32 or S32 to 32bit bus will take: N32 + 3 waits.

Main Memory is ALWAYS having the nonsequential 3 wait PENALTY (even on ARM7).

ARM9 Data fetches however are allowed to use sequential timing, as well as raw 16bit accesses (which aren't forcefully expanded to slow 32bit accesses).
Nethertheless, the 3 wait PENALTY is added to any NONSEQUENTIAL accesses.
Only exceptions are cache and tcm which do not have that penalty.
 Eg. LDRH on 16bit-data-bus is N16+3waits.
 Eg. LDR on 16bit-data-bus is N16+S16+3waits.
 Eg. LDM on 16bit-data-bus is N16+(n*2-1)*S16+3waits.

Eventually, data fetches can take place parallel with opcode fetches.
 That is NOT true for LDM (works only for LDR/LDRB/LDRH).
 That is NOT true for DATA in SAME memory region than CODE.
 That is NOT true for DATA in ITCM (no matter if CODE is in ITCM).

NDS9 Busses
Unlike ARM7, the ARM9 has separate code and data busses, allowing it to perform code and data fetches simultaneously (provided that both are in different memory regions).
Normally, opcode execution times are calculated as "(codetime+datatime)", with the two busses, it can (ideally) be "MAX(codetime,datatime)", so the data access time may virtually take "NULL" c lock cycles.
In practice, DTCM and Data Cache access can take NULL cycles (however, data access to ITCM can't).
When executing code in cache/itcm, data access to non-cache/tcm won't be any faster than with only one bus (as it's best, it could subtract 0.5 cycles from datatime, but, the access must be "aligned" to the bus-c lock, so the "datatime-0.5" will be rounded back to the original "datatime").
When executing code in uncached main ram, and accessing data (elsewhere than in main memory, cache/tcm), then execution time is typically "codetime+datatime-2".

NDS9 Internal Cycles
Additionally to codetime+datatime, some opcodes include one or more internal cycles. Compared with ARM7, the behaviour of that internal cycles is slightly different on ARM9. First of, on the NDS9, the internal cycles are of course "half" cycles (ie. counted in 66MHz units, not in 33MHz units) (although they may get rounded to "full" cycles upon next memory access outside tcm/cache). And, the ARM9 is in some cases "skipping" the internal cycles, that often depending on whether or not the next opcode is using the result of the current opcode.
Another big difference is that the ARM9 has lost the fast-multiply feature for small numbers; in some cases that may result in faster execution, but may also result in slower execution (one workaround would be to manually replace MUL opcodes by the new ARM9 halfword multiply opcodes); the slowest case are MUL opcodes that do update flags (eg. MULS , MLAS , SMULLS , etc. in ARM mode, and all ALL multiply opcodes in THUMB mode).

NDS9 Thumb Code
In thumb mode, the NDS9 is fetching two 16bit opcodes by a single 32bit read. In case of 32bit bus, this reduces the amount of memory traffic and may result in faster execution time, of course that works only if the two opcodes are within a word-aligned region (eg. loops at word-aligned addresses will be faster than non-aligned loops). However, the double-opcode-fetching is also done on 16bit bus memory, including for un-neccessary fetches, such like opcodes after branch commands, so the feature may cause heavy slowdowns.

Main Memory
Reportedly, the main memory access times would be 5 cycles (nonsequential read), 4 cycles (nonsequential write), and 1 cycle (sequential read or write). Plus whatever termination cycles. Plus 3 cycles on nonsequential access to the last 2-bytes of a 32-byte block.
That's of course all wrong. Reads are much slower than 5 cycles. Not yet tested if writes are faster. And, I haven't been able to reproduce the 3 cycles on last 2-bytes effect, actually, it looks more as if that 3 cycles are accidently added to ALL nonsequential accesses, at ALL main memory addresses, and even to most OTHER memory regions... which might be the source of the PENALTY which occurs on VRAM/WRAM/OAM/Palette and I/O accesses.

DMA
In some cases DMA main memory read cycles are reportedly performed simultaneously with DMA write cycles to other memory.

NDS9
On the NDS9, all external memory access (and I/O) is delayed to bus c lock (or actually MUCH slower due to the massive waitstates), so the full 66MHz can be used only internally in the NDS9 CPU core, ie. with cache and TCM.

Bus Clock
The exact bus c lock is specified as 33.513982 MHz (1FF61FEh Hertz). However, on my own NDS, measured in relation to the RTC seconds IRQ, it appears more like 1FF6231h, that inaccuary of 1 cycle per 657138 cycles (about one second per week) on either oscil lator, isn't too significant though.

GBA Slot
The access time for GBA slot can be configured via EXMEMCNT register.

VRAM Waitstates
Additionally, on NDS9, a one cycle wait can be added to VRAM accesses (when the video controller simultaneously accesses it) (that can be disabled by Forced Blank, see DISPCNT.Bit7). Moreover, additional VRAM waitstates occur when using the video capture function.
Note: VRAM being mapped to NDS7 is always free of additional waits.

 DS Video

The NDS has two 2D Video Engines, each basically the same as in GBA, see
GBA LCD Video Controller

NDS Specific 2D Video Features
DS Video S tuff
DS Video BG Modes / Control
DS Video OBJs
DS Video Extended Palettes
DS Video Capture and Main Memory Display Mode
DS Video Display System Block Diagram

For Display Power Control (and Display Swap), and VRAM Allocation, see
DS Power Management
DS Memory Control - VRAM

 DS Video Stuff

DS Display Dimensions / Timings
Dot c lock = 5.585664 MHz (=33.513982 MHz / 6)
H-Timing: 256 dots visible, 99 dots blanking, 355 dots total (15.7343KHz)
V-Timing: 192 lines visible, 71 lines blanking, 263 lines total (59.8261 Hz)
The V-Blank cycle for the 3D Engine consists of the 23 lines, 191..213.
Screen size 62.5mm x 47.0mm (each) (256x192 pixels)
Vertical space between screens 22mm (equivalent to 90 pixels)

400006Ch - NDS9 - MASTER_BRIGHT - 16bit - Master Brightness Up/Down
 0-4 Factor used for 6bit R,G,B Intensities (0-16, values >16 same as 16)
 Brightness up: New = Old + (63-Old) * Factor/16
 Brightness down: New = Old - Old * Factor/16
 5-13 Not used
 14-15 Mode (0=Disable, 1=Up, 2=Down, 3=Reserved)

DISPSTAT/VCOUNT
The LY and LYC values are in range 0..262, so LY/LYC values have been expanded to 9bit values: LY = VCOUNT Bit 0..8, and LYC=DISPSTAT Bit8..15,7.
VCOUNT register is write-able, allowing to synchronize linked DS consoles.
For proper synchronization:
 write new LY values only in range of 202..212
 write only while old LY values are in range of 202..212

DISPSTAT/VCOUNT supported by NDS9 (Engine A Ports, without separate Engine B Ports), and by NDS7 (allowing to synchronize NDS7 with display timings).
S imilar as on GBA, the VBlank flag isn't set in the last line (ie. only in lines 192..261, but not in line 262).
Although the drawing time is only 1536 cycles (256*6), the NDS9 H-Blank flag is "0" for a total of 1606 cycles (and, for whatever reason, a bit longer, 1613 cycles in total, on NDS7).

VRAM Waitstates
The display controller performs VRAM-reads once every 6 c lock cycles, a 1 cycle waitstate is generated if the CPU simultaneously accesses VRAM. With capture enabled, additionally VRAM-writes take place once every 6 cycles, so the total VRAM-read/write acc ess rate is then once every 3 cycles.

DS Window Glitches
The DS counts scanlines in range 0..262 (0..106h), of which only the lower 8bit are c ompared with the WIN0V/WIN1V register settings. Respectively, Y1 coordinates 00h..06h will be triggered in scanlines 100h-106h by mistake. That means, the window gets activated within VBlank period, and will be active in scanline 0 and up (that is no problem with Y1=0, but Y1=1..6 will appear as if if Y1 would be 0). Workaround would be to disable the Window during VBlank, or to change Y1 during VBlank (to a value that does not occur during VBlank period, ie. 7..191).
Also, there's a problem to fit the 256 pixel horizontal screen resolution into 8bit values: X1=00h is treated as 0 (left-most), X2=00h is treated as 100h (right-most). However, the window is not displayed if X1=X2=00h; the window width can be max 255 pixels.

2D Engines
Includes two 2D Engines, called A and B. Both engines are accessed by the ARM9 processor, each using different memory and register addresses:
 Region______Engine A______________Engine B___________
 I/O Ports 4000000h 4001000h
 Palette 5000000h (1K) 5000400h (1K)
 BG VRAM 6000000h (max 512K) 6200000h (max 128K)
 OBJ VRAM 6400000h (max 256K) 6600000h (max 128K)
 OAM 7000000h (1K) 7000400h (1K)

Engine A additionally supports 3D and large-screen 256-color Bitmaps, plus main-memory-display and vram-display modes, plus capture unit.

Viewing Angles
The LCD screens are best viewed at viewing angles of 90 degrees. Colors may appear distorted, and may even become invisible at other viewing angles.
When the console is handheld, both screens can be turned into preferred direction. When the console is settled on a table, only the upper screen can be turned, but the lower screen is stuck into horizontal position - which results rather bad visibility (unless the user moves his/her head directly above of it).

4000070h - NDS9 - TVOUTCNT - Unknown (W)
 Bit0-3 "COMMAND" (?)
 Bit4-7 "COMMAND2" (?)
 Bit8-11 "COMMAND3" (?)

This register has been mentioned in an early I/O map from Nintendo, as far as I know, the register isn't used by any games/firmware/bios, not sure if it does really exist on release-version, or if it's been prototype stuff...?

DS-Lite Screens
The screens in the DS-Lite seem to allow a wider range of vertical angles.
The bad news is that the colors of the DS-Lite are (no surprise) not backwards compatible with older NDS and GBA displays. The good news is that Nintendo has finally reac hed near-CRT-quality (without blurred colors), so one could hope that they won't show up with more displays with other colors in future.
Don't know if there's an offic ial/recommended way to detect DS-Lite displays (?) possible methods would be whatever values in Firmware header, or by functionality of Power Managment device, or (not too LCD-related) by Wifi Chip ID.

 DS Video BG Modes / Control

4000000h - NDS9 - DISPCNT
 Bit Engine Expl.
 0-2 A+B BG Mode
 3 A BG0 2D/3D Selection (instead CGB Mode) (0=2D, 1=3D)
 4 A+B Tile OBJ Mapping (0=2D; max 32KB, 1=1D; max 32KB..256KB)
 5 A+B Bitmap OBJ 2D-Dimension (0=128x512 dots, 1=256x256 dots)
 6 A+B Bitmap OBJ Mapping (0=2D; max 128KB, 1=1D; max 128KB..256KB)
 7-15 A+B Same as GBA
 16-17 A+B Display Mode (Engine A: 0..3, Engine B: 0..1, GBA: Green Swap)
 18-19 A VRAM block (0..3=VRAM A..D) (For Capture & above Display Mode=2)
 20-21 A+B Tile OBJ 1D-Boundary (see Bit4)
 22 A Bitmap OBJ 1D-Boundary (see Bit5-6)
 23 A+B OBJ Processing during H-Blank (was located in Bit5 on GBA)
 24-26 A Character Base (in 64K steps) (merged with 16K step in BGxCNT)
 27-29 A Screen Base (in 64K steps) (merged with 2K step in BGxCNT)
 30 A+B BG Extended Palettes (0=Disable, 1=Enable)
 31 A+B OBJ Extended Palettes (0=Disable, 1=Enable)

BG Mode
Engine A BG Mode (DISPCNT LSBs) (0-6, 7=Reserved)
 Mode BG0 BG1 BG2 BG3
 0 Text/3D Text Text Text
 1 Text/3D Text Text Affine
 2 Text/3D Text Affine Affine
 3 Text/3D Text Text Extended
 4 Text/3D Text Affine Extended
 5 Text/3D Text Extended Extended
 6 3D - Large -

Of which, the "Extended" modes are sub-selected by BGxCNT bits:
 BGxCNT.Bit7 BGxCNT.Bit2 Extended Affine Mode Selection
 0 CharBaseLsb rot/scal with 16bit bgmap entries (Text+Affine mixup)
 1 0 rot/scal 256 color bitmap
 1 1 rot/scal direct color bitmap

Engine B: Same as above, except that: Mode 6 is reserved (no Large screen bitmap), and BG0 is always Text (no 3D support).
Affine = formerly Rot/Scal mode (with 8bit BG Map entries)
Large Screen Bitmap = rot/scal 256 color bitmap (using all 512K of 2D VRAM)

Display Mode (DISPCNT.16-17):
 0 Display off (screen becomes white)
 1 Graphics Display (normal BG and OBJ layers)
 2 Engine A only: VRAM Display (Bitmap from block selected in DISPCNT.18-19)
 3 Engine A only: Main Memory Display (Bitmap DMA transfer from Main RAM)

Mode 2-3 display a raw direct color bitmap (15bit RGB values, the upper bit in each halfword is unused), without any further BG,OBJ,3D layers, these modes are completely bypassing the 2D/3D engines as well as any 2D effects, however the Master Brightness effect can be applied to these modes. Mode 2 is particulary useful to display captured 2D/3D images (in that case it can indirectly use the 2D/3D engine).

BGxCNT
character base extended from bit2-3 to bit2-5 (bit4-5 formerly unused)
 engine A screen base: BGxCNT.bits*2K + DISPCNT.bits*64K
 engine B screen base: BGxCNT.bits*2K + 0
 engine A char base: BGxCNT.bits*16K + DISPCNT.bits*64K
 engine B char base: BGxCNT.bits*16K + 0

char base is used only in tile/map modes (not bitmap modes)
screen base is used in tile/map modes,
screen base used in bitmap modes as BGxCNT.bits*16K, without DISPCNT.bits*64K
screen base however NOT used at all for Large screen bitmap mode
 bgcnt size text rotscal bitmap large bmp
 0 256x256 128x128 128x128 512x1024
 1 512x256 256x256 256x256 1024x512
 2 256x512 512x512 512x256 -
 3 512x512 1024x1024 512x512 -

bitmaps that require more than 128K VRAM are supported on engine A only.

For BGxCNT.Bit7 and BGxCNT.Bit2 in Extended Affine modes, see above BG Mode description (extended affine doesn't include 16-color modes, so color depth bit can be used for mode selection. Also, bitmap modes do not use charbase, so charbase.0 can be used for mode selection as well).

for BG0, BG1 only: bit13 selects extended palette slot
 (BG0: 0=Slot0, 1=Slot2, BG1: 0=Slot1, 1=Slot3)

Direct Color Bitmap BG, and Direct Color Bitmap OBJ
BG/OBJ Supports 32K colors (15bit RGB value) - so far same as GBAs BG.
However, the upper bit (Bit15) is used as Alpha flag. That is, Alpha=0=Transparent, Alpha=1=Normal (ie. on the NDS, Direct Color values 0..7FFFh are NOT displayed).

Unlike GBA bitmap modes, NDS bitmap modes are supporting the Area Overflow bit (BG2CNT and BG3CNT, Bit 13).

 DS Video OBJs

DS OBJ Priority
The GBA has been assigning OBJ priority in respect to the 7bit OAM entry number, regardless of the OBJs 2bit BG-priority attribute (which allowed to specify invalid priority orders). That problem has been fixed in DS mode by combining the above two values into a 9bit priority value.

OBJ Tile Mapping (DISPCNT.4,20-21):
 Bit4 Bit20-21 Dimension Boundary Total ;Notes
 0 x 2D 32 32K ;Same as GBA 2D Mapping
 1 0 1D 32 32K ;Same as GBA 1D Mapping
 1 1 1D 64 64K
 1 2 1D 128 128K
 1 3 1D 256 256K ;Engine B: 128K max

TileVramAddress = TileNumber * BoundaryValue
Even if the boundary gets changed, OBJs are kept composed of 8x8 tiles.

Bitmap OBJ Mapping (DISPCNT.6,5,22):
Bitmap OBJs are 15bit Direct Color data, plus 1bit Alpha flag (in bit15).
 Bit6 Bit5 Bit22 Dimension Boundary Total ;Notes
 0 0 x 2D/128 dots 8x8 dots 128K ;Source Bitmap width 128 dots
 0 1 x 2D/256 dots 8x8 dots 128K ;Source Bitmap width 256 dots
 1 0 0 1D 128 bytes 128K ;Source Width = Target Width
 1 0 1 1D 256 bytes 256K ;Engine A only
 1 1 x Reserved

In 1D mapping mode, the Tile Number is simply multiplied by the boundary value.
 1D_BitmapVramAddress = TileNumber(0..3FFh) * BoundaryValue(128..256)
 2D_BitmapVramAddress = (TileNo AND MaskX)*10h + (TileNo AND NOT MaskX)*80h

In 2D mode, the Tile Number is split into X and Y indices, the X index is located in the LSBs (ie. MaskX=0Fh, or MaskX=1Fh, depending on DISPCNT.5).

OBJ Attribute 0 and 2
Setting the OBJ Mode bits (Attr 0, Bit10-11) to a value of 3 has been prohibited in GBA, however, in NDS it selects the the new Bitmap OBJ mode; in that mode, the Color depth bit (Attr 0, Bit13) should be set to zero; also in that mode, the color bits (Attr 2, Bit 12-15) are used as Alpha-OAM value (instead of as palette setting).

OBJ Vertical Wrap
On the GBA, a large OBJ (with 64pix height, scaled into double-size region of 128pix height) located near the bottom of the screen has been wrapped to the top of the screen (and was NOT displayed at the bottom of the screen).
This problem has been "corrected" in the NDS (except in GBA mode), that is, on the NDS, the OBJ appears BOTH at the top and bottom of the screen. That isn't necessarily better - the advantage is that one can manually enable/disable the OBJ in the desired screen-half on IRQ level; that'd be required only if the wrapped portion is non-transparent.

 DS Video Extended Palettes

Extended Palettes
When allocating extended palettes, the allocated memory is not mapped to the CPU bus, so the CPU can access extended palette only when temporarily de-allocating it.

Color 0 of all standard/extended palettes is transparent, color 0 of BG standard palette 0 is used as backdrop. extended palette memory must be allocated to VRAM.

BG Extended Palette enabled in DISPCNT Bit 30, when enabled,
 standard palette --> 16-color tiles (with 16bit bgmap entries) (text)
 256-color tiles (with 8bit bgmap entries) (rot/scal)
 256-color bitmaps
 backdrop-color (color 0)
 extended palette --> 256-color tiles (with 16bit bgmap entries)(text,rot/scal)

Allocated VRAM is split into 4 slots of 8K each (32K used in total), normally BG0..3 are using S lot 0..3, however BG0 and BG1 can be optionally changed to BG0=Slot2, and BG1=Slot3 via BG0CNT and BG1CNT.

OBJ Extended Palette enabled in DISPCNT Bit 31, when enabled,
 16 colors x 16 palettes --> standard palette memory (=256 colors)
 256 colors x 16 palettes --> extended palette memory (=4096 colors)

Extended OBJ palette memory must be allocated to VRAM F, G, or I (which are 16K) of which only the first 8K are used for extended palettes (=1000h 16bit entries).

 DS Video Capture and Main Memory Display Mode

4000064h - NDS9 - DISPCAPCNT - 32bit - Display Capture Control Register (R/W)
Capture is supported for Display Engine A only.
 0-4 EVA (0..16 = Blending Factor for Source A)
 5-7 Not used
 8-12 EVB (0..16 = Blending Factor for Source B)
 13-15 Not used
 16-17 VRAM Write Block (0..3 = VRAM A..D) (VRAM must be allocated to LCDC)
 18-19 VRAM Write Offset (0=00000h, 0=08000h, 0=10000h, 0=18000h)
 20-21 Capture Size (0=128x128, 1=256x64, 2=256x128, 3=256x192 dots)
 22-23 Not used
 24 Source A (0=Graphics Screen BG+3D+OBJ, 1=3D Screen)
 25 Source B (0=VRAM, 1=Main Memory Display FIFO)
 26-27 VRAM Read Offset (0=00000h, 0=08000h, 0=10000h, 0=18000h)
 28 Not used
 29-30 Capture Source (0=Source A, 1=Source B, 2/3=Sources A+B blended)
 31 Capture Enable (0=Disable/Ready, 1=Enable/Busy)

Notes:
VRAM Read Block (VRAM A..D) is selected in DISPCNT Bits 18-19.
VRAM Read Block can be (or must be ?) allocated to LCDC (MST=0).
VRAM Read Offset is ignored (zero) in VRAM Display Mode (DISPCNT.16-17).
VRAM Read/Write Offsets wrap to 00000h when exceeding 1FFFFh (max 128K).
Capture S izes less than 256x192 capture the upper-left portion of the screen.
Blending factors EVA and EVB are used only if "Source A+B blended" selected.
After setting the Capture Enable bit, capture starts at next line 0, and the capture enable/busy bit is then automatically c leared (in line 192, regardless of the capture size).

Capture data is 15bit color depth (even when capturing 18bit 3D-images).
Capture A: Dest_Intensity = SrcA_Intensitity ; Dest_Alpha=SrcA_Alpha.
Capture B: Dest_Intensity = SrcB_Intensitity ; Dest_Alpha=SrcB_Alpha.
Capture A+B (blending):
 Dest_Intensity = ((SrcA_Intensitity * SrcA_Alpha * EVA)
 + (SrcB_Intensitity * SrcB_Alpha * EVB)) / 16
 Dest_Alpha = (SrcA_Alpha AND (EVA>0)) OR (SrcB_Alpha AND EVB>0))

Capture provides a couple of interesting effects.
For example, 3D Engine output can be captured via source A (to LCDC-allocated VRAM), in the next frame, either Graphics Engine A or B can display the captured 3D image in VRAM image as BG2, BG3, or OBJ (from BG/OBJ-allocated VRAM); this method requires to switch between LCDC- and BG/OBJ-allocation.
Another example would be to capture Engine A output, the captured image can be displayed (via VRAM Display mode) in the following frames, simultaneously the new Engine A output can be captured, blended with the old captured image; in that mode moved objec ts will leave traces on the screen; this method works with a single LCDC-allocated VRAM block.
DS Video Display System Block Diagram

4000068h - NDS9 - DISP_MMEM_FIFO - 32bit - Main Memory Display FIFO (R?/W)
Intended to send 256x192 pixel 32K color bitmaps by DMA directly
 - to Screen A (set DISPCNT to Main Memory Display mode), or
 - to Display Capture unit (set DISPCAPCNT to Main Memory Source).

The FIFO can receive 4 words (8 pixels) at a time, each pixel is a 15bit RGB value (the upper bit, bit15, is unused).
Set DMA to Main Memory mode, 32bit transfer width, word count set to 4, destination address to DISP_MMEM_FIFO, source address must be in Main Memory.
Transfer starts at next frame.
Main Memory Display/Capture is supported for Display Engine A only.

 DS Video Display System Block Diagram
 _____________ __________
 VRAM A -->| 2D Graphics |--------OBJ->| |
 VRAM B -->| Engine A |--------BG3->| Layering |
 VRAM C -->| |--------BG2->| and |
 VRAM D -->| |--------BG1->| Special |
 VRAM E -->| | ___ | Effects |
 VRAM F -->| |->|SEL| | | ______
 VRAM G -->| - - - - - - | |BG0|-BG0->| |----+--->| |
 | 3D Graphics |->|___| |__________| | |Select|
 | Engine | | |Video |
 |_____________|--------3D----------------+ | |Input |
 _______ _______ ___ | | | |
 | | | |<-----------|SEL|<-+ | |and |-->
 | | | | _____ |A | | | |
 VRAM A <--|Select | |Select | | |<-|___|<----+ |Master|
 VRAM B <--|Capture|<---|Capture|<--|Blend| ___ |Bright|
 VRAM C <--|Dest. | |Source | |_____|<-|SEL|<----+ |A |
 VRAM D <--| | | | |B | | | |
 |_______| |_______|<-----------|___|<-+ | | |
 _______ | | | |
 VRAM A -->|Select | | | | |
 VRAM B -->|Display|--------------------------------+------>| |
 VRAM C -->|VRAM | | | |
 VRAM D -->|_______| _____________ | | |
 |Main Memory | | | |
 Main ------DMA---->|Display FIFO |------------------+--->|______|
 Memory |_____________|
 _____________ __________ ______
 VRAM C -->| 2D Graphics |--------OBJ->| Layering | | |
 VRAM D -->| Engine B |--------BG3->| and | |Master|
 VRAM H -->| |--------BG2->| Special |-------->|Bright|-->
 VRAM I -->| |--------BG1->| Effects | |B |
 |_____________|--------BG0->|__________| |______|

 DS 3D Video

DS 3D Overview
DS 3D I/O Map
DS 3D Display Control
DS 3D Geometry Commands
DS 3D Matrix Load/Multiply
DS 3D Matrix Types
DS 3D Matrix S tack
DS 3D Matrix Examples (Projection)
DS 3D Matrix Examples (Rotate/Scale/Translate)
DS 3D Matrix Examples (Maths Basics)
DS 3D Polygon Attributes
DS 3D Polygon Definitions by Vertices
DS 3D Polygon Light Parameters
DS 3D Shadow Polygons
DS 3D Texture Attributes
DS 3D Texture Formats
DS 3D Texture Coordinates
DS 3D Texture Blending
DS 3D Toon, Edge, Fog
DS 3D Status
DS 3D Tests
DS 3D Rear-Plane
DS 3D Final 2D Output

3D is more or less (about 90%) understood and described.

 DS 3D Overview

The NDS 3D hardware consists of a Geometry Engine, and a Rendering Engine.

Geometry Engine (Precalculate coordinates & assign polygon attributes)
Geometry commands can be sent via Ports 4000440h and up (or alternately, written directly to Port 4000400h).
The commands include matrix and vector multiplications, the purpose is to rotate/scale/translate coordinates (vertices), the resulting coordinates are stored in Vertex RAM.
Moreover, it allows to assign attributes to the polygons and vertices, that includes vertex colors (or automatically calculated light colors), texture attributes, number of vertices per polygon (three or four), and a number of flags, these attributes are stored in Polygon RAM. Polygon RAM also contains pointers to the corresponding vertic es in Vertex RAM.

Swap Buffers (Pass data from the Geometry Engine to the Rendering Engine)
The hardware includes two sets of Vertex/Polygon RAM, one used by the Geometry Engine, one by the Rendering Engine. The Swap Buffers command simply exchanges these buffers (so the new Geometry Data is passed to the Rendering Engine) (and the old buffer is emptied, so the Geometry engine can write new data to it).
Aside from that buffers, it does probably also have TWO sets of per-frame control registers? Namely those at Port 4000060h..40003BFh. If there are TWO sets, then these registers probably also swapped (or more probably: copied) upon Swap Buffers command?
Except, one thing: Swap Buffers obviously can't swap Texture memory (so software must take care that Texture memory is kept mapped throughout rendering).

Rendering Engine (Display Output)
The Rendering Engine draws the various Polygons, and outputs them as BG0 layer to the 2D Video controller (which may then output them to the screen, or to the video capture unit). The Rendering part is done automatically by hardware, so the software has l ittle influence on it.
Rendering is done scanline-by-scanline, so there's only a limited number of c lock cyc les per scanline, which is limiting the maximum number of polygons per scanline. However, due to the 48-line cache (see below), some scanlines are allowed to exceed that maximum.
Rendering starts 48 lines in advance (while still in the Vblank period) (and does then continue throughout the whole display period), the rendered data is written to a small cache that can hold up to 48 scanlines.

Scanline Cache vs Framebuffer
Note: There's only the 48-line cache (not a full 192-line framebuffer to store the whole rendered image). That is perfectly reasonable since animated data is normally drawn only once (so there would be no need to store it). That, assuming that the Geometry Engine presents new data every frame (otherwise, if the Geometry software is too slow, or if the image isn't animated, then the hardware is automatically rendering the same image again, and again).

 DS 3D I/O Map

3D I/O Map
 Address Siz Name Expl.
 4000060h 2 DISP3DCNT 3D Display Control Register (R/W)
 4000320h 1 RDLINES_COUNT Rendered Line Count Register (R)
 4000330h 10h EDGE_COLOR Edge Colors 0..7 (W)
 4000340h 1 ALPHA_TEST_REF Alpha-Test Comparision Value (W)
 4000350h 4 CLEAR_COLOR Clear Color Attribute Register (W)
 4000354h 2 CLEAR_DEPTH Clear Depth Register (W)
 4000356h 2 CLRIMAGE_OFFSET Rear-plane Bitmap Scroll Offsets (W)
 4000358h 4 FOG_COLOR Fog Color (W)
 400035Ch 2 FOG_OFFSET Fog Offset (W)
 4000360h 20h FOG_TABLE Fog Density Table, 32 entries (W)
 4000380h 40h TOON_TABLE Toon Table, 32 colors (W)
 4000400h 40h GXFIFO Geometry Command FIFO (W)
 4000440h Geometry Command Ports (see below)
 4000600h 4 GXSTAT Geometry Engine Status Register (R and R/W)
 4000604h 4 RAM_COUNT Polygon List & Vertex RAM Count Register (R)
 4000610h 2 DISP_1DOT_DEPTH 1-Dot Polygon Display Boundary Depth (W)
 4000620h 10h POS_RESULT Position Test Results (R)
 4000630h 6 VEC_RESULT Vector Test Results (R)
 4000640h 40h CLIPMTX_RESULT Read Current Clip Coordinates Matrix (R)
 4000680h 24h VECMTX_RESULT Read Current Directional Vector Matrix (R)

Geometry Commands (can be invoked by Port Address, or by Command ID)
Table shows Port Address, Command ID, Number of Parameters, and Clock Cycles.
 Address Cmd Pa.Cy.
 N/A 00h - - NOP - No Operation (for padding packed GXFIFO commands)
 4000440h 10h 1 1 MTX_MODE - Set Matrix Mode (W)
 4000444h 11h - 17 MTX_PUSH - Push Current Matrix on Stack (W)
 4000448h 12h 1 36 MTX_POP - Pop Current Matrix from Stack (W)
 400044Ch 13h 1 17 MTX_STORE - Store Current Matrix on Stack (W)
 4000450h 14h 1 36 MTX_RESTORE - Restore Current Matrix from Stack (W)
 4000454h 15h - 19 MTX_IDENTITY - Load Unit Matrix to Current Matrix (W)
 4000458h 16h 16 34 MTX_LOAD_4x4 - Load 4x4 Matrix to Current Matrix (W)
 400045Ch 17h 12 30 MTX_LOAD_4x3 - Load 4x3 Matrix to Current Matrix (W)
 4000460h 18h 16 35* MTX_MULT_4x4 - Multiply Current Matrix by 4x4 Matrix (W)
 4000464h 19h 12 31* MTX_MULT_4x3 - Multiply Current Matrix by 4x3 Matrix (W)
 4000468h 1Ah 9 28* MTX_MULT_3x3 - Multiply Current Matrix by 3x3 Matrix (W)
 400046Ch 1Bh 3 22 MTX_SCALE - Multiply Current Matrix by Scale Matrix (W)
 4000470h 1Ch 3 22* MTX_TRANS - Mult. Curr. Matrix by Translation Matrix (W)
 4000480h 20h 1 1 COLOR - Directly Set Vertex Color (W)
 4000484h 21h 1 9* NORMAL - Set Normal Vector (W)
 4000488h 22h 1 1 TEXCOORD - Set Texture Coordinates (W)
 400048Ch 23h 2 9 VTX_16 - Set Vertex XYZ Coordinates (W)
 4000490h 24h 1 8 VTX_10 - Set Vertex XYZ Coordinates (W)
 4000494h 25h 1 8 VTX_XY - Set Vertex XY Coordinates (W)
 4000498h 26h 1 8 VTX_XZ - Set Vertex XZ Coordinates (W)
 400049Ch 27h 1 8 VTX_YZ - Set Vertex YZ Coordinates (W)
 40004A0h 28h 1 8 VTX_DIFF - Set Relative Vertex Coordinates (W)
 40004A4h 29h 1 1 POLYGON_ATTR - Set Polygon Attributes (W)
 40004A8h 2Ah 1 1 TEXIMAGE_PARAM - Set Texture Parameters (W)
 40004ACh 2Bh 1 1 PLTT_BASE - Set Texture Palette Base Address (W)
 40004C0h 30h 1 4 DIF_AMB - MaterialColor0 - Diffuse/Ambient Reflect. (W)
 40004C4h 31h 1 4 SPE_EMI - MaterialColor1 - Specular Ref. & Emission (W)
 40004C8h 32h 1 6 LIGHT_VECTOR - Set Light's Directional Vector (W)
 40004CCh 33h 1 1 LIGHT_COLOR - Set Light Color (W)
 40004D0h 34h 32 32 SHININESS - Specular Reflection Shininess Table (W)
 4000500h 40h 1 1 BEGIN_VTXS - Start of Vertex List (W)
 4000504h 41h - 1 END_VTXS - End of Vertex List (W)
 4000540h 50h 1 392 SWAP_BUFFERS - Swap Rendering Engine Buffer (W)
 4000580h 60h 1 1 VIEWPORT - Set Viewport (W)
 40005C0h 70h 3 103 BOX_TEST - Test if Cuboid Sits inside View Volume (W)
 40005C4h 71h 2 9 POS_TEST - Set Position Coordinates for Test (W)
 40005C8h 72h 1 5 VEC_TEST - Set Directional Vector for Test (W)

All cycle timings are counted in 33.51MHz units. NORMAL commands takes 9..12 cycles, depending on the number of enabled lights in PolyAttr (Huh, 9..12 (four timings) cycles for 0..4 (five settings) lights?) Total execution time of SwapBuffers is Duration until VBlank, plus 392 cycles.
In MTX_MODE=2 (S imultanous Set), MTX_MULT/TRANS take additional 30 cycles.

 DS 3D Display Control

4000060h - DISP3DCNT - 3D Display Control Register (R/W)
 0 Texture Mapping (0=Disable, 1=Enable)
 1 PolygonAttr Shading (0=Toon Shading, 1=Highlight Shading)
 2 Alpha-Test (0=Disable, 1=Enable) (see ALPHA_TEST_REF)
 3 Alpha-Blending (0=Disable, 1=Enable) (see various Alpha values)
 4 Anti-aliasing (0=Disable, 1=Enable)
 5 Edge-marking (0=Disable, 1=Enable) (see EDGE_COLOR)
 6 Fog Mode (0=Alpha and Color, 1=Only Alpha) (see FOG_COLOR)
 7 Fog Master Enable (0=Disable, 1=Enable)
 8-11 Fog Shift (0..10; SHR-Divider) (see FOG_OFFSET)
 12 Color Buffer RDLINES Underflow (0=None, 1=Underflow/Acknowledge)
 13 Polygon/Vertex RAM Overflow (0=None, 1=Overflow/Acknowledge)
 14 Rear-Plane Mode (0=Blank, 1=Bitmap)
 15-31 Not used

4000540h - Cmd 50h - SWAP_BUFFERS - Swap Rendering Engine Buffer (W)
SwapBuffers exchanges the two sets of Polygon/Vertex RAM buffers, that is, the newly defined polygons/vertices are passed to the rendering engine (and will be displayed in following frame(s)). The other buffer is emptied, and passed to the Geometry Engine (to be filled with new polygons/vertices by Geometry Commands).
 0 Translucent polygon Y-sorting (0=Auto-sort, 1=Manual-sort)
 1 Depth Buffering (0=With Z-value, 1=With W-value)
 (mode 1 does not function properly with orthogonal projections)
 2-31 Not used

SwapBuffers isn't executed until next VBlank (Scanline 192) (the Geometry Engine is halted for that duration). SwapBuffers should not be issued within Begin/End.
SwapBuffers does lock-up the 3D hardware if an incomplete polygon list has been defined (eg. a triangle with only 2 vertices). On lock-up, only 2D video is kept working, any wait-loops for GXSTAT.27 will hang the program. Once lock-up has occured, there seems to be no way to recover by software, not by sending the missing veric(es), and not even by pulsing POWCNT1.Bit2-3.

4000580h - Cmd 60h - VIEWPORT - Set Viewport (W)
 0-7 Screen/BG0 Coordinate X1 (0..255) (For Fullscreen: 0=Left-most)
 8-15 Screen/BG0 Coordinate Y1 (0..191) (For Fullscreen: 0=Bottom-most)
 16-23 Screen/BG0 Coordinate X2 (0..255) (For Fullscreen: 255=Right-most)
 24-31 Screen/BG0 Coordinate Y2 (0..191) (For Fullscreen: 191=Top-most)

Coordinate 0,0 is the lower-left (unlike for 2D where it'd be upper-left).
The 3D view-volume (size as defined by the Projection Matrix) is automatically scaled to match into the Viewport area. Although polygon vertices are c lipped to the view-volume, some vertices may still exceed to X2,Y1 (lower-right) boundary by one pixel, due to some sort of rounding errors. The Viewport settings don't affect the size or position of the 3D Rear-Plane. Viewport should not be issued within Begin/End.

4000610h - DISP_1DOT_DEPTH - 1-Dot Polygon Display Boundary Depth (W)
1-Dot Polygons are very small, or very distant polygons, which would be rendered as a single pixel on screen. Polygons with a depth value greater (more distant) than DISP_1DOT_DEPTH can be automatically hidden; in order to reduce memory consumption, or to reduce dirt on the screen.
 0-14 W-Coordinate (Unsigned, 12bit integer, 3bit fractional part)
 15-31 Not used (0000h=Closest, 7FFFh=Most Distant)

The DISP_1DOT_DEPTH comparision can be enabled/disabled per polygon, in POLYGON_ATTR.Bit13, so "important" polygons can be displayed regardless of their size and distance.

4000340h - ALPHA_TEST_REF - Alpha-Test Comparision Value (W)
 0-4 Alpha-Test Comparision Value (0..31) (Hide pixels if Alpha<AlphaRef)
 5-31 Not used

Alpha Test can be enabled in DISP3DCNT.Bit2, when enabled, pixels with Alpha values less than ALPHA_TEST_REF are not rendered (ie. their alpha value is forced to zero). Alpha Test is performed on the final polygon pixels (ie. after texture blending).

 DS 3D Geometry Commands

4000400h - GXFIFO - Geometry Command FIFO (W) (mirrored up to 400043Fh?)
Used to send packed commands, unpacked commands,
 0-7 First Packed Command (or Unpacked Command)
 8-15 Second Packed Command (or 00h=None)
 16-23 Third Packed Command (or 00h=None)
 24-31 Fourth Packed Command (or 00h=None)

and parameters,
 0-31 Parameter data for the previously sent (packed) command(s)

to the Geometry engine.

FIFO / PIPE Number of Entries
The FIFO has 256 entries, additionally, there is a PIPE with four entries (giving a total of 260 entries). If the FIFO is empty, and if the PIPE isn't full, then data is moved directly into the PIPE, otherwise it is moved into the FIFO. If the PIPE runs half empty (less than 3 entries) then 2 entries are moved from the FIFO to the PIPE. The state of the FIFO can be obtained in GXSTAT.Bit16-26, observe that there may be still data in the PIPE, even if the FIFO is empty. Check the busy flag in GXSTAT.Bit27 to see if the PIPE or FIFO contains data (or if a command is still executing).
Each PIPE/FIFO entry consists of 40bits of data (8bit command code, plus 32bit parameter value). Commands without parameters occupy 1 entry, and Commands with N parameters occupy N entries.

Sending Commands by Ports 4000440h..40005FFh
Geometry commands can be indirectly sent to the FIFO via ports 4000440h and up.
For a command with N paramters: issue N writes to the port.
For a command without parameters: ussue one dummy-write to the port.
That mechanism puts the 8bit command + 32bit parameter into the FIFO/PIPE.
If the FIFO is full, then a wait is generated until data is removed from the FIFO, ie. the STR opcode gets freezed, during the wait, the bus cannot be used even by DMA, interrupts, or by the NDS7 CPU.

GXFIFO Access via DMA
Larger pre-calculated data blocks can be sent directly to the FIFO. This is usually done via DMA (use DMA in Geometry Command Mode, 32bit units, Dest=4000400h/fixed, Length=NumWords, Repeat=0). The timings are handled automatically, ie. the system (should) doesn't freeze when the FIFO is full (see below Overkill note though). DMA starts when the FIFO becomes less than half full, the DMA does then write 112 words to the GXFIFO register (or less, if the remaining DMA transfer length gets zero).

GXFIFO Access via STR,STRD,STM
If desired, STR,STRD,STM opcodes can be used to write to the FIFO.
Opcodes that write more than one 32bit value (ie. STRD and STM) can be used to send ONE UNPACKED command, plus any parameters which belong to that command. After that, there must be a 1 cycle delay before sending the next command (ie. one cannot sent more than one command at once with a single opcode, each command must be invoked by a new opcode). STRD and STM can be used because the GXFIFO register is mirrored to 4000400h..43Fh (16 words).
As with Ports 4000440h and up, the CPU gets stopped if (and as long as) the FIFO is full.

GXFIFO / Unpacked Commands
 - command1 (upper 24bit zero)
 - parameter(s) for command1 (if any)
 - command2 (upper 24bit zero)
 - parameter(s) for command2 (if any)
 - command3 (upper 24bit zero)
 - parameter(s) for command3 (if any)

GXFIFO / Packed Commands
 - command1,2,3,4 packed into one 32bit value (all bits used)
 - parameter(s) for command1 (if any)
 - parameter(s) for command2 (if any)
 - parameter(s) for command3 (if any)
 - parameter(s) for command4 (top-most packed command MUST have parameters)
 - command5,6 packed into one 32bit value (upper 16bit zero)
 - parameter(s) for command5 (if any)
 - parameter(s) for command6 (top-most packed command MUST have parameters)
 - command7,8,9 packed into one 32bit value (upper 8bit zero)
 - parameter(s) for command7 (if any)
 - parameter(s) for command8 (if any)
 - parameter(s) for command9 (top-most packed command MUST have parameters)

Packed commands are first decompressed and then stored in command the FIFO.

GXFIFO DMA Overkill on Packed Commands Without Parameters
Normally, the 112 word limit ensures that the FIFO (256 entries) doesn't get full, however, this limit is much too high for sending a lot of "Packed Commands Without Parameters" (ie. PUSH, IDENTITY, or END) - eg. sending 112 x Packed(00151515h) to GXFIFO would write 336 x Cmd(15h) to the FIFO, which is causing the FIFO to get full, and which is causing the DMA (and CPU) to be paused (for several seconds, in WORST case) until enough FIFO commands have been processed to allow the DMA to finish the 112 word transfer.
Not sure if there's much chance to get Overkills in practice. Normally most commands DO have parameters, and so, usually even LESS than 112 FIFO entries are occupied (since 8bit commands with 32bit parameters are merged into single 40bit FIFO entries).

 DS 3D Matrix Load/Multiply

4000440h - Cmd 10h - MTX_MODE - Set Matrix Mode (W)
 0-1 Matrix Mode (0..3)
 0 Projection Matrix
 1 Position Matrix (aka Modelview Matrix)
 2 Position & Vector Simultaneous Set mode (used for Light+VEC_TEST)
 3 Texture Matrix (see DS 3D Texture Coordinates chapter)
 2-31 Not used

Selects the current Matrix, all following MTX commands (load, multiply, push, pop, etc.) are applied to that matrix. In Mode 2, all MTX commands are applied to both the Position and Vector matrices (except for MTX_SCALE which doesn't change the Vector Matrix, even in Mode 2).

4000454h - Cmd 15h - MTX_IDENTITY - Load Unit Matrix to Current Matrix (W)
Sets C=I. Parameters: None
The Identity Matrix (I), aka Unit Matrix, consists of all zeroes, with a diagonal row of ones. A matrix multiplied by the Unit Matrix is left unchanged.

4000458h - Cmd 16h - MTX_LOAD_4x4 - Load 4x4 Matrix to Current Matrix (W)
Sets C=M. Parameters: 16, m[0..15]

400045Ch - Cmd 17h - MTX_LOAD_4x3 - Load 4x3 Matrix to Current Matrix (W)
Sets C=M. Parameters: 12, m[0..11]

4000460h - Cmd 18h - MTX_MULT_4x4 - Multiply Current Matrix by 4x4 Matrix (W)
Sets C=M*C. Parameters: 16, m[0..15]

4000464h - Cmd 19h - MTX_MULT_4x3 - Multiply Current Matrix by 4x3 Matrix (W)
Sets C=M*C. Parameters: 12, m[0..11]

4000468h - Cmd 1Ah - MTX_MULT_3x3 - Multiply Current Matrix by 3x3 Matrix (W)
Sets C=M*C. Parameters: 9, m[0..8]

400046Ch - Cmd 1Bh - MTX_SCALE - Multiply Current Matrix by Scale Matrix (W)
Sets C=M*C. Parameters: 3, m[0..2] (MTX_SCALE doesn't change Vector Matrix)

4000470h - Cmd 1Ch - MTX_TRANS - Mult. Curr. Matrix by Translation Matrix (W)
Sets C=M*C. Parameters: 3, m[0..2] (x,y,z position)

4000640h..67Fh - CLIPMTX_RESULT - Read Current Clip Coordinates Matrix (R)
This 64-byte region (16 words) contains the m[0..15] values of the Current Clip Coordinates Matrix, arranged in 4x4 Matrix format. Make sure that the Geometry Engine is stopped (GXSTAT.27) before reading from these registers.
The Clip Matrix is internally re-calculated anytime when changing the Position or Projection matrices: ClipMatrix=PositionMatrix*ProjectionMatrix, this matrix is internal ly used to convert vertices to screen coordinates.
To read only the Position Matrix, or only the Projection Matrix: Use Load Identity on the OTHER matrix, so the ClipMatrix becomes equal to the DES IRED matrix (multiplied by the Identity Matrix, which has no effect on the result).

4000680h..6A3h - VECMTX_RESULT - Read Current Directional Vector Matrix (R)
This 36-byte region (9 words) contains the m[0..8] values of the Current Directional Vector Matrix, arranged in 3x3 Matrix format (the fourth row/column may contain any values).
Make sure that the Geometry Engine is stopped (GXSTAT.27) before reading from these registers.

 DS 3D Matrix Types

Essentially, all matrices in the NDS are 4x4 Matrices, consisting of 16 values, m[0..15]. Each element is a signed fixed-point 32bit number, with a fractional part in the lower 12bits.
The other Matrix Types are used to reduce the number of parameters being transferred, for example, 3x3 Matrix requires only nine parameters, the other seven elements are automatically set to 0 or 1.0 (whereas "1.0" means "1 SHL 12" in 12bit fixed-point notation).

 _ 4x4 Matrix _ _ Identity Matrix _
m[0] m[1] m[2] m[3]		1.0 0 0 0
m[4] m[5] m[6] m[7]		0 1.0 0 0
m[8] m[9] m[10] m[11]		0 0 1.0 0
m[12] m[13] m[14] m[15]		_ 0 0 0 1.0 _

 _ 4x3 Matrix _ _ Translation Matrix _
m[0] m[1] m[2] 0		1.0 0 0 0
m[3] m[4] m[5] 0		0 1.0 0 0
m[6] m[7] m[8] 0		0 0 1.0 0
_m[9] m[10] m[11] 1.0 _		_m[0] m[1] m[2] 1.0 _

 _ 3x3 Matrix _ _ Scale Matrix _
m[0] m[1] m[2] 0		m[0] 0 0 0
m[3] m[4] m[5] 0		0 m[1] 0 0
m[6] m[7] m[8] 0		0 0 m[2] 0
_ 0 0 0 1.0 _		_ 0 0 0 1.0 _

 DS 3D Matrix Stack

Matrix Stack
The NDS has three Matrix S tacks, and two Matrix S tack Pointers (the Coordinate Matrix stack pointer is also shared for Directional Matrix S tack).
 Matrix Stack Valid Stack Area Stack Pointer
 Projection Stack 0..0 (1 entry) 0..1 (1bit) (GXSTAT: 1bit)
 Coordinate Stack 0..30 (31 entries) 0..63 (6bit) (GXSTAT: 5bit only)
 Directional Stack 0..30 (31 entries) (uses Coordinate Stack Pointer)
 Texture Stack One..None? 0..1 (1bit) (GXSTAT: N/A)

The initial value of the S tack Pointers is zero, the current value of the pointers can be read from GXSTAT (read-only), that register does also indicate stack overflows (errors flag gets set on read/write to invalid entries, ie. entries 1 or 1Fh..3Fh). For all stacks, the upper half (ie. 1 or 20h..3Fh) are mirrors of the lower half (ie. 0 or 0..1Fh).

4000444h - Cmd 11h - MTX_PUSH - Push Current Matrix on Stack (W)
Parameters: None. Sets [S]=C, and then S=S+1.

4000448h - Cmd 12h - MTX_POP - Pop Current Matrix from Stack (W)
Sets S=S-N, and then C=[S].
 Parameter Bit0-5: Stack Offset (signed value, -30..+31) (usually +1)
 Parameter Bit6-31: Not used

Offset N=(+1) pops the most recently pushed value, larger offsets of N>1 will "deallocate" N values (and load the Nth value into C). Zero or negative values can be used to pop previously "deallocated" values.
The stack has only one level (at address 0) in projection mode, in that mode, the parameter value is ignored, the offset is always +1 in that mode.

400044Ch - Cmd 13h - MTX_STORE - Store Current Matrix on Stack (W)
Sets [N]=C. The stack pointer S is not used, and is left unchanged.
 Parameter Bit0-4: Stack Address (0..30) (31 causes overflow in GXSTAT.15)
 Parameter Bit5-31: Not used

The stack has only one level (at address 0) in projection mode, in that mode, the parameter value is ignored.

4000450h - Cmd 14h - MTX_RESTORE - Restore Current Matrix from Stack (W)
Sets C=[N]. The stack pointer S is not used, and is left unchanged.
 Parameter Bit0-4: Stack Address (0..30) (31 causes overflow in GXSTAT.15)
 Parameter Bit5-31: Not used

The stack has only one level (at address 0) in projection mode, in that mode, the parameter value is ignored.

In Projection mode, the parameter for POP, STORE, and RESTORE is unused - not sure if the parameter (ie. a dummy value) is - or is not - to be written to the command FIFO?
There appear to be actually 32 entries in Coordinate & Directional S tacks, entry 31 appears to exist, and appears to be read/write-able (although the stack overflow flag gets set when accessing it).

 DS 3D Matrix Examples (Projection)

The most important matrix is the Projection Matrix (to be initialized with MTX_MODE=0 via MTX_LOAD_4x4 command). It does specify the dimensions of the view volume.

With Perspective Projections more distant objects will appear smaller, with Orthogonal Projects the size of the objects is always same regardless of their distance.

 Perspective Projection Orthogonal Projection
 ___ __________
 top ___---- | top | |
 | view | | view |
 Eye ----|--------->| Eye ----|--------->|
 |__volume | | volume |
 bottom ----___| bottom|__________|
 near far near far

Correctly initializ ing the projection matrix (as shown in the examples below) can be quite difficult (mind that fixed point multiply/divide requires to adjust the fixed-point width before/after calculation). For beginners, it may be recommended to start with a simple Identity Matrix (MTX_IDENTITY command) used as Projection Matrix (ie. Ortho with t,b,l,r set to +/-1).

Orthogonal Projections (Ortho)
 | (2.0)/(r-l) 0 0 0 |
 | 0 (2.0)/(t-b) 0 0 |
 | 0 0 (2.0)/(n-f) 0 |
 | (l+r)/(l-r) (b+t)/(b-t) (n+f)/(n-f) 1.0 |

n,f specify the distance from eye to near and far c lip planes. t,b,l,r are the coordinates of near c lip plane (top,bottom,left,right). For a symmetrical view (ie. the straight-ahead view line centered in the middle of viewport) t,b,l,r should be usually t=+ysiz /2, b=-ysiz /2, r=+xsiz /2, l=-xsiz /2; the (xsiz /ysiz) ratio should be usually equal to the viewport's (width/heigh) ratio. Examples for a asymmetrical view would be b=0 (frog's view), or t=0 (bird's view).

Left-Right Asymmetrical Perspective Projections (Frustum)
 | (2*n)/(r-l) 0 0 0 |
 | 0 (2*n)/(t-b) 0 0 |
 | (r+l)/(r-l) (t+b)/(t-b) (n+f)/(n-f) -1.0 |
 | 0 0 (2*n*f)/(n-f) 0 |

n,f,t,b,l,r have same meanings as above (Ortho), the difference is that more distant objects will appear smaller with Perspective Projection (unlike Orthogonal Projection where the size isn't affected by the distance).

Left-Right Symmetrical Perspective Projections (Perspective)
 | cos/(asp*sin) 0 0 0 |
 | 0 cos/sin 0 0 |
 | 0 0 (n+f)/(n-f) -1.0 |
 | 0 0 (2*n*f)/(n-f) 0 |

Quite the same as above (Frustum), but with symmetrical t,b values (which are in this case obtained from a vertical view range specified in degrees), and l,r are matched to the aspect ratio of the viewport (asp=height/width).

Moving the Camera
After initializ ing the Projection Matrix, you may multiply it with Rotate and/or Translation Matrices to change camera's position and view direction.

 DS 3D Matrix Examples (Rotate/Scale/Translate)

Identity Matrix
The MTX_IDENTITY command can be used to initialize the Position Matrix before doing any Translation/Scaling/Rotation, for example:
 Load(Identity) ;no rotation/scaling used
 Load(Identity), Mul(Rotate), Mul(Scale) ;rotation/scaling (not so efficient)
 Load(Rotate), Mul(Scale) ;rotation/scaling (more efficient)

Rotation Matrices
Rotation can be performed with MTX_MULT_3x3 command, simple examples are:
 Around X-Axis Around Y-Axis Around Z-Axis
1.0 0 0		cos 0 sin		cos sin 0
0 cos sin		0 1.0 0		-sin cos 0
0 -sin cos		-sin 0 cos		0 0 1.0

Scale Matrix
The MTX_SCALE command allows to adjust the size of the polygon. The x,y,z parameters should be normally all having the same value, x=y=z (unless if you want to change only the height of the object, for example). Identical results can be obtained with MTX_MULT commands, however, when using lighting (MTX_MODE=2), then scaling should be done ONLY with MTX_SCALE (which keeps the length of the light's directional vector intact).

Translation Matrix
The MTX_TRANS command allows to move polygons to the desired position. The polygon VTX commands are spanning only a small range of coordinates (near zero-coordinate), so translation is required to move the polygons to other locations in the world coordinates. Aside from that, translation is useful for moved objects (at variable coordinates), and for re-using an object at various locations (eg. you can create a forest by translating a tree to different coordinates).

Matrix Multiply Order
The Matrix must be set up BEFORE sending the Vertices (which are then automatically multiplied by the matrix). When using multiple matrices multiplied with each other: Mind that, for matrix maths A*B is NOT the same as B*A. For example, if you combine Rotate and Translate Matrices, the object will be either rotated around it's own zero-coordinate, or around world-space zero-coordinate, depending on the multiply order.

 DS 3D Matrix Examples (Maths Basics)

Below is a crash-course on matrix maths. Most of it is carried out automatically by the hardware. So this chapter is relevant only if you are interested in details about what happens inside of the 3D engine.

Matrix-by-Matrix Multiplication
Matrix multiplication, C = A * B, is possible only if the number of columns in A is equal to the number of rows in B, so it works fine with the 4x4 matrices which are used in the NDS. For the multiplication, assume matrix C to consist of elements cyx, and respecitively, matrix A and B to consist of elements ayx and byx. So that C = A * B looks like:
c11 c12 c13 c14		a11 a12 a13 a14		b11 b12 b13 b14
c21 c22 c23 c24	=	a21 a22 a23 a24	*	b21 b22 b23 b24
c31 c32 c33 c34		a31 a32 a33 a34		b31 b32 b33 b34
c41 c42 c43 c44		a41 a42 a43 a44		b41 b42 b43 b44

Each element in C is calculated by multiplying the elements from one row in A by the elements from the corresponding column in B, and then taking the sum of the products, ie.
 cyx = ay1*b1x + ay2*b2x + ay3*b3x + ay4*b4x

In total, that requires 64 multiplications (four multiplications for each of the 16 c yx elements), and 48 additions (three per cyx element), the hardware carries out that operation at a relative decent speed of 30..35 c lock cycles, possibly by performing several multiplications simultaneously with separate multiply units.
Observe that for matrix multiplication, A*B is NOT the same as B*A.

Matrix-by-Vector & Vector-by-Matrix Multiplication
Vectors are Matrices with only one row, or only one column. Multiplication works as for normal matrices; the number of rows/columns must match up, repectively, row-vectors can be multiplied by a matrices; and matrices can be multiplied by column-vectors (but not vice-versa). Eg. C = A * B:
 | b11 b12 b13 b14 |
 | c11 c12 c13 c14 | = | a11 a12 a13 a14 | * | b21 b22 b23 b24 |
 | b31 b32 b33 b34 |
 | b41 b42 b43 b44 |

The formula for calculating the separate elements is same as above,
 cyx = ay1*b1x + ay2*b2x + ay3*b3x + ay4*b4x

Of which, C and A have only one y-index, so one may replace "cyx and ayx" by "c1x and a1x", or completely leave out the y-index, ie. "cx and ax".

Matrix-by-Number Multiplication
S imply multiply all elements of the Matrix by the number, C = A * n:
 cyx = ayx*n

Of course, works also with vectors (matrices with only one row/column).

Matrix-to-Matrix Addition/Subtraction
Both matrices must have the same number of rows & columns, add/subtract all elements with corresponding elements in other matrix, C = A +/- B:
 cyx = ayx +/- byx

Of course, works also with vectors (two matrices with only one row/column).

Vectors
A vector, for example (x,y,z), consists of offsets along x-,y-, and z -axis. The line from origin to origin-plus-offset is having two characteristics: A direction, and a length.
The length (aka magnitude) can be calculated as L=sqrt(x^2+y^2+z^2).

Vector-by-Vector Multiplication
This can be processed as LineVector*RowVector, so the result is a number (aka scalar) (aka a matrix with only 1x1 elements). Multiplying two (normalized) vectors results in: "cos(angle)=vec1*vec2", ie. the consine of the angle between the two vectors (eg. used for light vectors). Multiplying a vector with itself, and taking the square root of the result obtains its length, ie. "length=sqrt(vec^2)".
That stuff should be done with 3-dimensional vectors (not 4-dimensionals).

Normalized Vectors
Normalized Vectors (aka Unit Vectors) are vectors with length=1.0. To normalize a vec tor, divide its coordinates by its length, ie. x=x/L, y=y/L, z=z /L, the direction remains the same, but the length is now 1.0.
On the NDS, normalized vectors should have a length of something less than 1.0 (eg. something like 0.99) because several NDS registers are limited to 1bit sign, 0bit interger, Nbit fraction part (so vectors that are parallel with the x,y,z axes, or that become parallel to them after rotation, cannot have a length of 1.0).

Fixed-Point Numbers
The NDS uses fixed-point numbers (rather than floating point numbers). Addition and S ubtraction works as with normal integers, provided that the fractional part is the same for both numbers. If it is not the same: Shift-left the value with the smaller fractional part.
For multiplication, the fractional part of result is the sum of the fractional parts (eg. 12bit fraction * 12bit fraction = 24bit fraction; shift-right the result by 12 to convert it 12bit fraction). The NDS matrix multiply unit is maintaining the full 24bit fraction when processing the
 cyx = ay1*b1x + ay2*b2x + ay3*b3x + ay4*b4x

formula, ie. the three additions are using full 24bit fractions (with carry-outs to upper bits), the final result of the additions is then shifted-right by 12.
For division, it's vice versa, the fractions of the operands are substracted, 24bit fraction / 12bit fraction = 12bit fraction. When dividing two 12bit numbers, shift-left the first number by 12 before division to get a result with 12bit fractional part.

Four-Dimensional Matrices
The NDS uses four-dimensional matrices and vectors, ie. matrices with 4x4 elements, and vectors with 4 elements. The first three elements are associated with the X,Y,Z-axes of the three-dimensional space. The fourth element is somewhat a "W-axis".
With 4-dimensional matrices, the Translate matrix can be used to move an object to another position. Ie. once when you've setup a matrix (which may consists of pre-multiplied scaling, rotation, translation matrices), then that matrix can be used on vertic es to perform the rotation, scaling, translation all-at-once; by a single Vector*Matrix operation.
With 3-dimensional matrices, translation would require a separate addition, additionally to the multiply operation.

 DS 3D Polygon Attributes

40004A4h - Cmd 29h - POLYGON_ATTR - Set Polygon Attributes (W)
 0-3 Light 0..3 Enable Flags (each bit: 0=Disable, 1=Enable)
 4-5 Polygon Mode (0=Modulation,1=Decal,2=Toon/Highlight Shading,3=Shadow)
 6 Polygon Back Surface (0=Hide, 1=Render) ;Line-segments are always
 7 Polygon Front Surface (0=Hide, 1=Render) ;rendered (no front/back)
 8-10 Not used
 11 Depth-value for Translucent Polygons (0=Keep Old, 1=Set New Depth)
 12 Far-plane intersecting polygons (0=Hide, 1=Render/clipped)
 13 1-Dot polygons behind DISP_1DOT_DEPTH (0=Hide, 1=Render)
 14 Depth Test, Draw Pixels with Depth (0=Less, 1=Equal) (usually 0)
 15 Fog Enable (0=Disable, 1=Enable)
 16-20 Alpha (0=Wire-Frame, 1..30=Translucent, 31=Solid)
 21-23 Not used
 24-29 Polygon ID (00h..3Fh, used for translucent, shadow, and edge-marking)
 30-31 Not used

Writes to POLYGON_ATTR have no effect until next BEGIN_VTXS command.
Changes to the Light bits have no effect until lighting is re-calculated by Normal command. The interior of Wire-frame polygons is transparent (Alpha=0), and only the lines at the polygon edges are rendered, using a fixed Alpha value of 31.

4000480h - Cmd 20h - COLOR - Directly Set Vertex Color (W)
 Parameter 1, Bit 0-4 Red
 Parameter 1, Bit 5-9 Green
 Parameter 1, Bit 10-14 Blue
 Parameter 1, Bit 15-31 Not used

The 5bit RGB values are internally expanded to 6bit RGB as follows: X=X*2+(X+31)/32, ie. zero remains zero, all other values are X=X*2+1.
Aside from by using the Color command, the color can be also changed by MaterialColor0 command (if MaterialColor0.Bit15 is set, it acts identical as the Color Command), and by the Normal command (which calculates the color based on light/material parameters).

Depth Test (aka DepthFunc in OpenGL)
The Depth Test compares the depth of the pixels of the polygon with the depth of previously rendered polygons (or of the rear plane if there have been none rendered yet). The new pixels are drawn if the new depth is Less (c loser to the camera), or if it is Equal, as selected by POLYGON_ATTR.Bit14. The latter comparision mode draws pixels only on exact matches, so the results may be unpredictable due to rounding errors; one situation that does work stable is if both polygons use the same vertices, eg. it c an be used to put a grafitti texture (consisting of solid and transparent pixels) onto a wall.

 DS 3D Polygon Definitions by Vertices

The DS supports polygons with 3 or 4 edges, triangles and quadliterals.
The position of the edges is defined by vertices, each consisting of (x,y,z) values.

For Line Segments, use Triangles with twice the same vertex, Line Segments are rendered always because they do not have any front and back sides.
The Prohibited Quad shapes may produce unintended results, namely, that are Quads with crossed sides, and quads with angles greater than 180 degrees.

 Separate Tri. Triangle Strips Line Segment
 v0 v2___v4____v6
 |\ v3 /|\ |\ /\ v0 v1
 | \ /\ v0(| \ | \ / \ ------
 |__\ /__\ \|__\|__\/____\ v2
 v1 v2 v4 v5 v1 v3 v5 v7

 Separate Quads Quadliteral Strips Prohibited Quads
 v0__v3 v0__v2____v4 v10__ v0__v3 v4
 / \ v4____v7 / \ |\ _____ / /v11 \/ |\
 / \ | \ / \ | |v6 v8| / /\ v5| \
 /______\ |_____\ /_________|_|_____|/ /__\ /___\
 v1 v2 v5 v6 v1 v3 v5 v7 v9 v2 v1 v6 v7

The vertices are normally arranged anti-c lockwise, except that: in triangle-strips each second polygon uses c lockwise arranged vertices, and quad-stripes are sorts of "up-down" arranged (whereas "up" and "down" may be anywhere due to rotation). Other arrangements may result in quads with crossed lines, or may swap the front and back sides of the polygon (above examples are showing the front sides).

4000500h - Cmd 40h - BEGIN_VTXS - Start of Vertex List (W)
 Parameter 1, Bit 0-1 Primitive Type (0..3, see below)
 Parameter 1, Bit 2-31 Not used

Indicates the S tart of a Vertex List, and its Primitive Type:
 0 Separate Triangle(s) ;3*N vertices per N triangles
 1 Separate Quadliteral(s) ;4*N vertices per N quads
 2 Triangle Strips ;3+(N-1) vertices per N triangles
 3 Quadliteral Strips ;4+(N-1)*2 vertices per N quads

The BEGIN_VTX command should be followed by VTX_-commands to define the Vertices of the list, and should be then terminated by END_VTX command.
BEGIN_VTX additionally applies changes to POLYGON_ATTR.

4000504h - Cmd 41h - END_VTXS - End of Vertex List (W)
Parameters: None. This is a Dummy command for OpenGL compatibility. It should be used to terminate a BEGIN_VTX, VTX_<values> sequence. END_VTXS is possibly required for Nintendo's software emulator? On real NDS consoles (and in no$gba) it does have no effect, it can be left out, or can be issued multiple times inside of a vertex list, without disturbing the display.

400048Ch - Cmd 23h - VTX_16 - Set Vertex XYZ Coordinates (W)
 Parameter 1, Bit 0-15 X-Coordinate (signed, with 12bit fractional part)
 Parameter 1, Bit 16-31 Y-Coordinate (signed, with 12bit fractional part)
 Parameter 2, Bit 0-15 Z-Coordinate (signed, with 12bit fractional part)
 Parameter 2, Bit 16-31 Not used

4000490h - Cmd 24h - VTX_10 - Set Vertex XYZ Coordinates (W)
 Parameter 1, Bit 0-9 X-Coordinate (signed, with 6bit fractional part)
 Parameter 1, Bit 10-19 Y-Coordinate (signed, with 6bit fractional part)
 Parameter 1, Bit 20-29 Z-Coordinate (signed, with 6bit fractional part)
 Parameter 1, Bit 30-31 Not used

Same as VTX_16, with only one parameter, with smaller fractional part.

4000494h - Cmd 25h - VTX_XY - Set Vertex XY Coordinates (W)
 Parameter 1, Bit 0-15 X-Coordinate (signed, with 12bit fractional part)
 Parameter 1, Bit 16-31 Y-Coordinate (signed, with 12bit fractional part)

The Z-Coordinate is kept unchanged, and re-uses the value from previous VTX.

4000498h - Cmd 26h - VTX_XZ - Set Vertex XZ Coordinates (W)
 Parameter 1, Bit 0-15 X-Coordinate (signed, with 12bit fractional part)
 Parameter 1, Bit 16-31 Z-Coordinate (signed, with 12bit fractional part)

The Y-Coordinate is kept unchanged, and re-uses the value from previous VTX.

400049Ch - Cmd 27h - VTX_YZ - Set Vertex YZ Coordinates (W)
 Parameter 1, Bit 0-15 Y-Coordinate (signed, with 12bit fractional part)
 Parameter 1, Bit 16-31 Z-Coordinate (signed, with 12bit fractional part)

The X-Coordinate is kept unchanged, and re-uses the value from previous VTX.

40004A0h - Cmd 28h - VTX_DIFF - Set Relative Vertex Coordinates (W)
 Parameter 1, Bit 0-9 X-Difference (signed, with 9bit fractional part)
 Parameter 1, Bit 10-19 Y-Difference (signed, with 9bit fractional part)
 Parameter 1, Bit 20-29 Z-Difference (signed, with 9bit fractional part)
 Parameter 1, Bit 30-31 Not used

Sets XYZ-Coordinate relative to the XYZ-Coordinates from previous VTX, that is, the Difference values are divided by 8, and are then added to the old coordinates (due to the division, the 9bit fractional part goes to the LSBs of the 12bit fractional part of the coordinates).
The result of the addition should not overflow 16bit vertex coordinate range (1bit sign, 3bit integer, 12bit fraction).

Notes on VTX commands
On each VTX command, the viewport coordinates of the vertex are calculated and stored in Vertex RAM,
 (xx, yy, zz, ww) = (x, y, z, 1.0) * ClipMatrix

The actual screen position (in pixels) is then,
 screen_x = (xx+ww)*viewport_width / (2*ww) + viewport_x1
 screen_y = (yy+ww)*viewport_height / (2*ww) + viewport_y1

Each VTX command that completes the definition of a polygon (ie. each 3rd for Separate Trangles) does additionally store data in Polygon List RAM.
VTX commands may be issued only between Begin and End commands.

Clipping
Polygons are c lipped to the 6 sides of the view volume (ie. to the left, right, top, bottom, near, and far edges). If one or more vertic(es) exceed one of these sides, then these vertic(es) are replaced by two newly created vertices (which are located on the intersections of the polygon edges and the view volume edge).
Depending on the number of c lipped vertic(es), this may increase or decrease the number of entries in Vertex RAM (ie. minus N c lipped vertices, plus 2 new vertices). Also, c lipped polygons which are part of polygon strips are converted to separate polygons (which does increase number of entries in Vertex RAM). Polygons that are fully outside of the View Volume aren't stored in Vertex RAM, nor in Polygon RAM (the only exception are polygons that are located exactly one pixel below of, or right of lower/right edges, which appear to be accidently stored in memory).

 DS 3D Polygon Light Parameters

The lighting operation is performed by executing the Normal command (which sets the VertexColor based on the Light/Material parameters) (to the rest of the hardware it doesn't matter if the VertexColor was set by Color command or by Normal command). Light is calculated only for the Front side of the polygon (assuming that the Normal is matched to that side), so the Back side will be (incorrectly) using the same color.

40004C8h - Cmd 32h - LIGHT_VECTOR - Set Light's Directional Vector (W)
Sets direction of the specified light (ie. the light selected in Bit30-31).
 0-9 Directional Vector's X component (1bit sign + 9bit fractional part)
 10-19 Directional Vector's Y component (1bit sign + 9bit fractional part)
 20-29 Directional Vector's Z component (1bit sign + 9bit fractional part)
 30-31 Light Number (0..3)

Upon executing this command, the incoming vector is multiplied by the current Directional Matrix, the result is then applied as LightVector. This allows to rotate the light direction. However, normally, to keep the light unrotated, be sure to use LoadIdentity (in MtxMode=2) before setting the LightVector.

40004CCh - Cmd 33h - LIGHT_COLOR - Set Light Color (W)
Sets the color of the specified light (ie. the light selected in Bit30-31).
 0-4 Red (0..1Fh) ;\light color this will be combined with
 5-9 Green (0..1Fh) ; diffuse, specular, and ambient colors
 10-14 Blue (0..1Fh) ;/upon execution of the normal command
 15-29 Not used
 30-31 Light Number (0..3)

40004C0h - Cmd 30h - DIF_AMB - MaterialColor0 - Diffuse/Ambient Reflect. (W)
 0-4 Diffuse Reflection Red ;\light(s) that directly hits the polygon,
 5-9 Diffuse Reflection Green ; ie. max when NormalVector has opposite
 10-14 Diffuse Reflection Blue ;/direction of LightVector
 15 Set Vertex Color (0=No, 1=Set Diffuse Reflection Color as Vertex Color)
 16-20 Ambient Reflection Red ;\light(s) that indirectly hits the polygon,
 21-25 Ambient Reflection Green ; ie. assuming that light is reflected by
 26-30 Ambient Reflection Blue ;/walls/floor, regardless of LightVector
 31 Not used

With Bit15 set, the lower 15bits are applied as VertexColor (exactly as when when executing the Color command), the purpose is to use it as default color (eg. when outcommenting the Normal command), normally, when using lighting, the color setting gets overwritten (as soon as executing the Normal command).

40004C4h - Cmd 31h - SPE_EMI - MaterialColor1 - Specular Ref. & Emission (W)
 0-4 Specular Reflection Red ;\light(s) reflected towards the camera,
 5-9 Specular Reflection Green ; ie. max when NormalVector is in middle of
 10-14 Specular Reflection Blue ;/LightVector and ViewDirection
 15 Specular Reflection Shininess Table (0=Disable, 1=Enable)
 16-20 Emission Red ;\light emitted by the polygon itself,
 21-25 Emission Green ; ie. regardless of light colors/vectors,
 26-30 Emission Blue ;/and no matter if any lights are enabled
 31 Not used

Caution: Specular Reflection WON'T WORK when the ProjectionMatrix is rotated.

40004D0h - Cmd 34h - SHININESS - Specular Reflection Shininess Table (W)
Write 32 parameter words (each 32bit word containing four 8bit entries), entries 0..3 in the first word, through entries 124..127 in the last word:
 0-7 Shininess 0 (unsigned fixed-point, 0bit integer, 8bit fractional part)
 8-15 Shininess 1 ("")
 16-23 Shininess 2 ("")
 24-31 Shininess 3 ("")

If the table is disabled (by MaterialColor1.Bit15), then reflection will act as if the table would be filled with linear increasing numbers.

4000484h - Cmd 21h - NORMAL - Set Normal Vector (W)
In short, this command does calculate the VertexColor, based on the various light-parameters.
In detail, upon executing this command, the incoming vector is multiplied by the current Directional Matrix, the result is then applied as NormalVector (giving it the same rotation as used for the following polygon vertices).
 0-9 X-Component of Normal Vector (1bit sign + 9bit fractional part)
 10-19 Y-Component of Normal Vector (1bit sign + 9bit fractional part)
 20-29 Z-Component of Normal Vector (1bit sign + 9bit fractional part)
 30-31 Not used

Defines the Polygon's Normal. And, does then update the Vertex Color; by recursing the View Direction, the NormalVector, the LightVector(s), and Light/Material Colors. The execution time of the Normal command varies depending on the number of enabled light(s).

Additional Light Registers
Additionally to above registers, light(s) must be enabled in PolygonAttr (mind that c hanges to PolygonAttr aren't applied until next Begin command). And, the Directional Matrix must be set up correctly (in MtxMode=2) for the LightVector and NormalVector c ommands, the NormalVector command additionally relies on the Projection Matrix (MtxMode=0).

Normal Vector
The Normal vector must point "away from the polygon surface" (eg. for the floor, the Normal should point upwards). That direction is implied by the polygon vertices, however, the hardware cannot automatically calculate it, so it must be set manually with the Normal command (prior to the VTX-commands).
When using lighting, the Normal command must be re-executed after switching Lighting on/off, or after changing light/material parameters. And, of course, also before defining polygons with different orientation. Polygons with same orientation (eg. horizontal polygon surfaces) and same material color can use the same Normal. Changing the Normal per polygon gives differently colored polygons with flat surfaces, changing the Normal per vertex gives the illusion of curved surfaces.

Light Vector
Each light consists of parallel beams; similar to sunlight, which appears to us (due to the great distance) to consist of parallel beams, all emmitted into the same direc tion; towards Earth.
In reality, light is emitted into ALL directions, originated from the light source (eg. a candle), the hardware doesn't support that type of non-parallel light. However, the light vectors can be changed per polygon, so a polygon that is located north of the light source may use different light direction than a polygon that is east of the light source.
And, of course, Light 0..3 may (and should) have different directions.

Normalized Vectors
The Normal Vector and the Light Vectors should be normalized (ie. their length should be 1.0) (in practice: something like 0.99, since the registers have only fractional parts) (a length of 1.0 can cause overflows).

Lighting Limitations
The functionality of the light feature is limited to reflecting light to the camera (light is not reflected to other polygons, nor does it cast shadows on other polygons). However, independently of the lighting feature, the DS hardware does allow to create shadows, see:
DS 3D Shadow Polygons

Internal Operation on Normal Command
 IF TexCoordTransformMode=2 THEN TexCoord=NormalVector*Matrix (see TexCoord)
 NormalVector=NormalVector*DirectionalMatrix
 VertexColor = EmissionColor
 FOR i=0 to 3
 IF PolygonAttrLight[i]=enabled THEN
 DiffuseLevel = max(0,-(LightVector[i]*NormalVector))
 ShininessLevel = max(0,(-HalfVector[i])*(NormalVector))^2
 IF TableEnabled THEN ShininessLevel = ShininessTable[ShininessLevel]
 ;note: below processed separately for the R,G,B color components...
 VertexColor = VertexColor + SpecularColor*LightColor[i]*ShininessLevel
 VertexColor = VertexColor + DiffuseColor*LightColor[i]*DiffuseLevel
 VertexColor = VertexColor + AmbientColor*LightColor[i]
 ENDIF
 NEXT i

Internal Operation on Light_Vector Command (for Light i)
 LightVector[i] = (LightVector*DirectionalMatrix)
 HalfVector[i] = (LightVector[i]+LineOfSightVector)/2

LineOfSightVector (how it SHOULD work)
Ideally, the LineOfS ightVector should point from the camera to the vertic(es), however, the vertic(es) are still unknown at time of normal command, so it is just pointing from the camera to the screen, ie.
 LineOfSightVector = (0,0,-1.0)

Moreover, the LineOfS ightVector should be multiplied by the Projection Matrix (so the vector would get rotated accordingly when the camera gets rotated), and, after multiplication by a scaled matrix, it'd be required to normalize the resulting vector.

LineOfSightVector (how it DOES actually work)
However, the NDS cannot normalize vectors by hardware, and therefore, it does completely leave out the LineOfS ightVector*ProjectionMatrix multiplication. So, the LineOfS ightVector is always (0,0,-1.0), no matter of any camera rotation. That means,
 Specular Reflection WON'T WORK when the ProjectionMatrix is rotated (!)

So, if you want to rotate the "camera" (in MTX_MODE=0), then you must instead rotate the "world" in the opposite direction (in MTX_MODE=2).
That problem applies only to Specular Reflection, ie. only if Lighting is used, and only if the Specular Material Color is nonzero.

Maths Notes
Note on Vector*Vector multiplication: Processed as LineVector*RowVector, so the result is a number (aka scalar) (aka a matrix with only 1x1 elements), multiplying two (normalized) vectors results in: "cos(angle)=vec1*vec2", ie. the consine of the angle between the two vectors.
The various Normal/Light/Half/S ight vectors are only 3-dimensional (x,y,z), ie. only the upper-left 3x3 matrix elements are used on multiplications with the 4x4 DirectionalMatrix.

 DS 3D Shadow Polygons

The DS hardware's Light-function allows to reflect light to the camera, it does not reflect light to other polygons, and it does not cast any shadows. For shadows at fixed locations it'd be best to pre-calculate their shape and position, and to change the vertex color of the shaded polygons.
Additionally, the Shadow Polygon feature can be used for to create animated shadows, ie. moved objects and variable light sources.

Shadow Polygons and Shadow Volume
The software must define a Shadow Volume (ie. the region which doesn't contain light), the hardware does then automatically draw the shadow on all pixels whose x/y/z -coordinates are inside of that region.
The Shadow Volume must be defined by several Shadow Polygons which are enclosing the shaded region. The 'top' of the shadow volume should be usually translated to the position of the object that casts the shadow, if the light direction changes then the shadow volume should be also rotated to match the light direction. The 'length' of the shadow volume should be (at least) long enough to reach from the object to the walls/floor where the shadow is to be drawn. The shadow volume must be passed TWICE to the hardware:

Step 1 - Shadow Volume for Mask
Set Polygon_Attr Mode=Shadow, PolygonID=00h, Back=Render, Front=Hide, Alpha=01h..1Eh, and pass the shadow volume (ie. the shadow polygons) to the geometry engine.
The Back=Render / Front=Hide setting causes the 'rear-side' of the shadow volume to be rendered, of course only as far as it is in front of other polygons. The Mode=Shadow / ID=00h setting causes the polygon NOT to be drawn to the Color Buffer - instead, flags are set in the S tencil Buffer (to be used in S tep 2).

Step 2 - Shadow Volume for Rendering
S imply repeat step 1, but with Polygon_Attr Mode=Shadow, PolygonID=01h..3Fh, Back=Render(what/why?), Front=Render, Alpha=01h..1Eh.
The Front=Render setting causes the 'front-side' of the shadow volume to be rendered, again, only as far as it is in front of other polygons. The Mode=Shadow / ID>00h setting causes the polygon to be drawn to the Color Buffer as usually, but only if the S tencil Buffer bits are zero (ie. the portion from Step 1 is excluded) (additionally, S tep 2 resets the stencil bits after checking them). Moreover, the shadow is rendered only if its Polygon ID differs from the ID in the Attribute Buffer.

Shadow Alpha and Shadow Color
The Alpha=Translucent setting in S tep 1 and 2 ensures that the Shadow is drawn AFTER the normal (opaque) polygons have been rendered. In S tep 2 it does additionally specify the 'intensity' of the shadow. For normal shadows, the Vertex Color should be usually black, however, the shadow volume may be also used as 'spotlight volume' when using other colors.

Rendering Order
The Mask Volume must be rendered prior to the Rendering Volume, ie. S tep 1 and 2 must be performed in that order, and, to keep that order intact, Auto-sorting must be disabled in the following Swap_Buffers command.
The shadow volume must be rendered after the 'target' polygons have been rendered, for opaque targets this is done automatically (due to the translucent alpha setting; translucent polygons are always rendered last, even with auto-sort disabled).

Translucent Targets
Casting shadows on Translucent Polygons. First draw the translucent target (with update depth buffer enabled, required for the shadow z -coordinates), then draw the Shadow Mask/Rendering volumes.
Due to the updated depth buffer the shadow will be cast only on the translucent target (not on any other polygons underneath of the translucent polygon). If you want the shadow to appear on both: Draw draw the Shadow Mask/Rendering volume TWICE (once before, and once after to drawing the translucent target).

Polygon ID and Fog Enable
The "Render only if Polygon ID differs" feature (see S tep 2) allows to prevent the shadow to be cast on the object that casts the shadow (ie. the object and shadow should have the same IDs). The feature also allows to select whether overlapping shadows (with same/different IDs) are shaded once or twice.
The old Fog Enable flag in the Attribute Buffer is ANDed with the Fog Enable flag of the Shadow Polygons, this allows to exclude Fog in shaded regions.

Shadow Volume Open/Closed Shapes
Normally, the shadow volume should have a c losed shape, ie. should have a rear-sides (step 1), and corresponding front-sides (step 2) for all possible viewing angles. That is required for the shadow to be drawn correctly, and also for the S tencil Buffer to be reset to zero (in step 2, so that the stencil bits won't disturb other shadow volumes).
Due to that, drawing errors may occur if the shadow volume's front or rear side gets c lipped by near/far c lip plane.
One exception is that the volume doesn't need a bottom-side (with a suitable volume length, the bottom may be left open, since it vanishes in the floor/walls anyways).

 DS 3D Texture Attributes

4000488h - Cmd 22h - TEXCOORD - Set Texture Coordinates (W)
 Parameter 1, Bit 0-15 S-Coordinate (X-Coordinate in Texture Source)
 Parameter 1, Bit 16-31 T-Coordinate (Y-Coordinate in Texture Source)
 Both values are 1bit sign + 11bit integer + 4bit fractional part.
 A value of 1.0 (=1 SHL 4) equals to one Texel.

With Position 0.0 , 0.0 drawing starts from upperleft of the Texture.
With positive offsets, drawing origin starts more "within" the texture.
With negative offsets, drawing starts "before" the texture, the preceeding region is left blank/transparent ? (unless texture repeat is enabled).
"When texture mapping, the Geometry Engine works faster if you issue commands in the order TexCoord -> Normal -> Vertex."

40004A8h - Cmd 2Ah - TEXIMAGE_PARAM - Set Texture Parameters (W)
 0-15 Texture VRAM Offset div 8 (0..FFFFh -> 512K RAM in Slot 0,1,2,3)
 (VRAM must be allocated as Texture data, see Memory Control chapter)
 16 Repeat in S Direction (0=Freeze last texel-column, 1=Repeat Texture)
 17 Repeat in T Direction (0=Freeze last texel-row, 1=Repeat Texture)
 18 Flip in S Direction (0=No, 1=Flip each 2nd Texture) (requires Repeat)
 19 Flip in T Direction (0=No, 1=Flip each 2nd Texture) (requires Repeat)
 20-22 Texture S-Size (for N=0..7: Size=(8 SHL N); ie. 8..1024 texels)
 23-25 Texture T-Size (for N=0..7: Size=(8 SHL N); ie. 8..1024 texels)
 26-28 Texture Format (0..7, see below)
 29 Color 0 of 4/16/256-Color Palettes (0=Displayed, 1=Made Transparent)
 30-31 Texture Coordinates Transformation Mode (0..3, see below)

Texture Formats:
 0 No Texture
 1 A3I5 Translucent Texture
 2 4-Color Palette Texture
 3 16-Color Palette Texture
 4 256-Color Palette Texture
 5 4x4-Texel Compressed Texture
 6 A5I3 Translucent Texture
 7 Direct Texture

Texture Coordinates Transformation Modes:
 0 Do not Transform texture coordinates
 1 TexCoord source
 2 Normal source
 3 Vertex source

The S -Direction equals to the horizontal direction of the source bitmap.
For a texture shape ">" S -repeat and S -flip look like so:
 No Repeat Repeat Repeat+Flip
 >------- >>>>>>>> ><><><><

The T-Direction, T-repeat, and T-flip are the same in vertical direction.

40004ACh - Cmd 2Bh - PLTT_BASE - Set Texture Palette Base Address (W)
 0-12 Palette Base Address (div8 or div10h, see below)
 (Not used for Texture Format 7: Direct Color Texture)
 (0..FFF8h/8 for Texture Format 2: ie. 4-color-palette Texture)
 (0..17FF0h/10h for all other Texture formats)
 13-31 Not used

The palette data occupies 16bit per color, Bit0-4: Red, Bit5-9: Green, Bit10-14: Blue, Bit15: Not used.
(VRAM must be allocated as Texture Palette, there can be up to 6 S lots allocated, ie. the addressable 18000h bytes, see Memory Control chapter)

TexImageParam and TexPlttBase
Can be issued per polygon (except within polygon strips).

 DS 3D Texture Formats

Format 2: 4-Color Palette Texture
Each Texel occupies 2bit, the first Texel is located in LSBs of 1st byte.
In this format, the Palette Base is specified in 8-byte steps; all other formats use 16-byte steps (see PLTT_BASE register).

Format 3: 16-Color Palette Texture
Each Texel occupies 4bit, the 1st Texel is located in LSBs of 1st byte.

Format 4: 256-Color Palette Texture
Each Texel occupies 8bit, the 1st Texel is located in 1st byte.

Format 7: Direct Color Texture
Each Texel occupies 16bit, the 1st Texel is located in 1st halfword.
Bit0-4: Red, Bit5-9: Green, Bit10-14: Blue, Bit15: Alpha

Format 1: A3I5 Translucent Texture (3bit Alpha, 5bit Color Index)
Each Texel occupies 8bit, the 1st Texel is located in 1st byte.
 Bit0-4: Color Index (0..31) of a 32-color Palette
 Bit5-7: Alpha (0..7; 0=Transparent, 7=Solid)

The 3bit Alpha value (0..7) is internally expanded into a 5bit Alpha value (0..31) as follows: Alpha=(Alpha*4)+(Alpha/2).

Format 6: A5I3 Translucent Texture (5bit Alpha, 3bit Color Index)
Each Texel occupies 8bit, the 1st Texel is located in 1st byte.
 Bit0-2: Color Index (0..7) of a 8-color Palette
 Bit3-7: Alpha (0..31; 0=Transparent, 31=Solid)

Format 5: 4x4-Texel Compressed Texture
Consists of 4x4 Texel blocks in S lot 0 or 2, 32bit per block, 2bit per Texel,
 Bit0-7 Upper 4-Texel row (LSB=first/left-most Texel)
 Bit8-15 Next 4-Texel row ("")
 Bit16-23 Next 4-Texel row ("")
 Bit24-31 Lower 4-Texel row ("")

Additional Palette Index Data for each 4x4 Texel Block is located in S lot 1,
 Bit0-13 Palette Offset in 4-byte steps; Addr=(PLTT_BASE*10h)+(Offset*4)
 Bit14-15 Transparent/Interpolation Mode (0..3, see below)

whereas, the S lot 1 offset is related to above S lot 0 or 2 offset,
 slot1_addr = slot0_addr / 2 ;lower 64K of Slot1 assoc to Slot0
 slot1_addr = slot2_addr / 2 + 10000h ;upper 64K of Slot1 assoc to Slot2

The 2bit Texel values (0..3) are intepreted depending on the Mode (0..3),
 Texel Mode 0 Mode 1 Mode 2 Mode 3
 0 Color 0 Color0 Color 0 Color 0
 1 Color 1 Color1 Color 1 Color 1
 2 Color 2 (Color0+Color1)/2 Color 2 (Color0*5+Color1*3)/8
 3 Transparent Transparent Color 3 (Color0*3+Color1*5)/8

Mode 1 and 3 are using only 2 Palette Colors (which requires only half as much Palette memory), the 3rd (and 4th) Texel Colors are automatically set to above values (eg. to gray-shades if color 0 and 1 are black and white).
Note: The maximum size for 4x4-Texel Compressed Textures is 1024x512 or 512x1024 (which are both occupying the whole 128K in slot 0 or 2, plus 64K in slot1), a larger siz e of 1024x1024 cannot be used because of the gap between slot 0 and 2.

 DS 3D Texture Coordinates

For textured polygons, a texture coordinate must be associated with each vertex of the polygon. The coordinates (S ,T) are defined by TEXCOORD command (typically issued prior to each VTX command), and can be optionally automatically transformed, by the Transformation Mode selected in TEXIMAGE_PARAM register.

Texture Matrix
Although the texture matrix is 4x4, with values m[0..15], only the left two columns of this matrix are actually used. In Mode 2 and 3, the bottom row of the matrix is replaced by S and T values from most recent TEXCOORD command.

Texture Coordinates Transformation Mode 0 - No Transform
The values are set upon executing the TEXCOORD command,
 (S' T') = (S T)

S imple coordinate association, without using the Texture Matrix at all.

Texture Coordinates Transformation Mode 1 - TexCoord source
The values are calculated upon executing the TEXCOORD command,
 | m[0] m[1] |
 (S' T') = (S T 1/16 1/16) * | m[4] m[5] |
 | m[8] m[9] |
 |_m[12] m[13]_|

Can be used to produce a simple texture scrolling, rotation, or scaling, by setting a translate, rotate, or scale matrix for the texture matrix.

Texture Coordinates Transformation Mode 2 - Normal source
The values are calculated upon executing the NORMAL command,
 | m[0] m[1] |
 (S' T') = (Nx Ny Nz 1.0) * | m[4] m[5] |
 | m[8] m[9] |
 |_S T _|

Can be used to produce spherical reflection mapping by setting in the texture matrix to the current directional vector matrix, multiplied by a scaling matrix that expands the directional vector space from -1.0..+1.0 to one half of the texture size. For that purpose, translate the origin of the texture coordinate to the center of the spherical texture by using TexCoord command.

Texture Coordinates Transformation Mode 3 - Vertex source
The values are calculated upon executing any VTX commands,
 | m[0] m[1] |
 (S' T') = (Vx Vy Vz 1.0) * | m[4] m[5] |
 | m[8] m[9] |
 |_S T _|

Can be used to produce texture scrolls dependent on the View coordinates by copying the current position coordinate matrix into the texture matrix.

 DS 3D Texture Blending

Polygon pixels consist of a Vertex Color, and of Texture Colors.
These colors can be blended as described below. Or, to use only either one:
To use only the Vertex Color: Select No Texture in TEXIMAGE_PARAM.
To use only the Texture Color: Select Modulation Mode and Alpha=31 in POLYGON_ATTR, and set COLOR to 7FFFh (white), or to gray values (to decrease brightness of the texture color).

Vertex Color (Rv,Gv,Bv,Av)
The Vertex Color (Rv,Gv,Bv) can be changed per Vertex (either by Color, Normal, or Material0 command), pixels between vertices are shaded to medium values of the surrounding vertices. The Vertex Alpha (Av), can be changed only per polygon (by PolygonAttr command).

Texture Colors (Rt,Gt,Bt,At)
The Texture Colors (Rt,Gt,Bt), and Alpha value (At), are defined by the Texture Bitmap. For formats without Alpha value, assume At=31 (solid), and for formats with 1bit Alpha assume At=A*31.

Shading Table Colors (Rs,Gs,Bs)
In Toon/Hightlight Shading Mode, the red component of the Vertex Color (Rv) is mis-used as an index in the Shading Table; to read Shading Colors (Rs,Gs,Bs) from the table; the green and blue components of the Vertex Color (Gv,Bv) are unused in this mode. The Vertex Alpha (Av) is kept used.
Shading is used in Polygon Mode 2, whether it is Toon or Hightlight Shading is selected in DISP3DCNT; this is a per-frame selection, so only either one can be used.

Texture Blending - Modulation Mode (Polygon Attr Mode 0)
 R = ((Rt+1)*(Rv+1)-1)/64
 G = ((Gt+1)*(Gv+1)-1)/64
 B = ((Bt+1)*(Bv+1)-1)/64
 A = ((At+1)*(Av+1)-1)/64

The multiplication result is decreased intensity (unless both factors are 63).

Texture Blending - Decal Mode (Polygon Attr Mode 1)
 R = (Rt*At + Rv*(63-At))/64 ;except, when At=0: R=Rv, when At=31: R=Rt
 G = (Gt*At + Gv*(63-At))/64 ;except, when At=0: G=Gv, when At=31: G=Gt
 B = (Bt*At + Bv*(63-At))/64 ;except, when At=0: B=Bv, when At=31: B=Bt
 A = Av

The At value is used (only) as ratio for Texture color vs Vertex Color.

Texture Blending - Toon Shading (Polygon Mode 2, DISP3DCNT=Toon)
The vertex color Red component (Rv) is used as an index in the toon table.
 R = ((Rt+1)*(Rs+1)-1)/64 ;Rs=ToonTableRed[Rv]
 G = ((Gt+1)*(Gs+1)-1)/64 ;Gs=ToonTableGreen[Rv]
 B = ((Bt+1)*(Bs+1)-1)/64 ;Bs=ToonTableBlue[Rv]
 A = ((At+1)*(Av+1)-1)/64

This is same as Modulation Mode, but using Rs,Gs,Bs instead Rv,Gv,Bv.

Texture Blending - Highlight Shading (Polygon Mode 2, DISP3DCNT=Highlight)
 R = ((Rt+1)*(Rs+1)-1)/64+Rs ;truncated to MAX=63
 G = ((Gt+1)*(Gs+1)-1)/64+Gs ;truncated to MAX=63
 B = ((Bt+1)*(Bs+1)-1)/64+Bs ;truncated to MAX=63
 A = ((At+1)*(Av+1)-1)/64

Same as Toon Shading, with additional addition offset, the addition may increase the intensity, however, it may also change the hue of the color.

Above formulas are for 6bit RGBA values, ie. 5bit values internally expanded to 6bit as such: IF X>0 THEN X=X*2+1.

Uni-Colored Textures
Although textures are normally containing "pictures", in some cases it makes sense to use "blank" textures that are filled with a single color:
Wire-frame polygons are always having Av=31, however, they can be made transparent by using Translucent Textures (ie. A5I3 or A3I5 formats) with At<31.
In Toon/Hightlight shading modes, the Vertex Color is mis-used as table index, however, Toon/Hightlight shading can be used on uni-colored textures, which is more or less the same as using Toon/Hightlight shading on uni-colored Vertex-colors.

 DS 3D Toon, Edge, Fog

4000380h..3BFh - TOON_TABLE - Toon Table (W)
This 64-byte region contains the 32 toon colors (16bit per color), used for both Toon and Highlight Shading. In both modes, the Red (R) component of the RGBA vertex color is mis-used as index to obtain the new RGB value from the toon table, vertex Alpha (A) is kept used as is.
 Bit0-4: Red, Bit5-9: Green, Bit10-14: Blue, Bit15: Not Used

Shading can be enabled (per polygon) in Polygon_Attr, whether it is Toon or Highlight Shading is set (per frame) in DISP3DCNT. For more info on shading, see:
DS 3D Texture Blending

4000330h..33Fh - EDGE_COLOR - Edge Colors 0..7 (W)
This 16-byte region contains the 8 edge colors (16bit per color), Edge Color 0 is used for Polygon ID 00h..07h, Color 1 for ID 08h..0Fh, and so on.
 Bit0-4: Red, Bit5-9: Green, Bit10-14: Blue, Bit15: Not Used

Edge Marking allows to mark the edges of an object (whose polygons all have the same ID) in a wire-frame style. Edge Marking can be enabled (per frame) in DISP3DCNT. When enabled, the polygon edges are drawn at the edge color, but only if the old ID value in the Attribute Buffer is different than the Polygon ID of the new polygon, so no edges are drawn between connected or overlapping polygons with same ID values. Edge Marking works only on opaque polygons?

4000358h - FOG_COLOR - Fog Color (W)
 0-4 Fog Color, Red
 5-9 Fog Color, Green
 10-14 Fog Color, Blue
 15 Not used
 16-20 Fog Alpha
 21-31 Not used

Fog can be used to let more distant polygons to disappear in foggy grayness (or in darkness, or other color). This is particulary useful to "hide" the far c lip plane. Fog can be enabled in DISP3DCNT.Bit6, moreover, when enabled, it can be activated or deactivated per polygon (POLYGON_ATTR.Bit15), and per Rear-plane (see there).

400035Ch - FOG_OFFSET - Fog Offset (W)
 0-14 Fog Offset (Unsigned) (0..7FFFh=Depth) (and FOG_SHIFT in DISP3DCNT)
 15-31 Not used

4000360h..37Fh - FOG_TABLE - Fog Density Table (W)
This 32-byte region contains the 32 Fog Densities (one byte per entry),
 0-6 Fog Density (00h..7Fh = None..Full) (usually increasing values)
 7 Not used

For n=0..1Fh, FOG_OFFSET=Port 400035Ch, FOG_SHIFT=DISP3DCNT.Bit8..11:
 Density[n] --> used at Depth = FOG_OFFSET+(400h SHR FOG_SHIFT)*(n+1)

Density[0,31] values are used for all pixels that are c loser or more distant than the Density[0,31] depth boundaries. Density is linear interpolated for pixels that are between two Density depth boundaries.

 DS 3D Status

4000600h - GXSTAT - Geometry Engine Status Register (R and R/W)
Bit 30-31 are R/W. Writing "1" to Bit15 does reset the Error Flag (Bit15), and additionally resets the Projection S tack Pointer (Bit13), and probably (?) also the Texture S tack Pointer. All other GXSTAT bits are read-only.
 0 BoxTest,PositionTest,VectorTest Busy (0=Ready, 1=Busy)
 1 BoxTest Result (0=All Outside View, 1=Parts or Fully Inside View)
 2-7 Not used
 8-12 Position & Vector Matrix Stack Level (0..31) (lower 5bit of 6bit value)
 13 Projection Matrix Stack Level (0..1)
 14 Matrix Stack Busy (0=No, 1=Yes; Currently executing a Push/Pop command)
 15 Matrix Stack Overflow/Underflow Error (0=No, 1=Error/Acknowledge/Reset)
 16-24 Number of 40bit-entries in Command FIFO (0..256)
 (24) Command FIFO Full (MSB of above) (0=No, 1=Yes; Full)
 25 Command FIFO Less Than Half Full (0=No, 1=Yes; Less than Half-full)
 26 Command FIFO Empty (0=No, 1=Yes; Empty)
 27 Geometry Engine Busy (0=No, 1=Yes; Busy; Commands are executing)
 28-29 Not used
 30-31 Command FIFO IRQ (0=Never, 1=Less than half full, 2=Empty, 3=Reserved)

When GXFIFO IRQ is enabled (setting 1 or 2), the IRQ flag (IF.Bit21) is set while and as long as the IRQ condition is true (and attempts to acknowledge the IRQ by writing to IF.Bit21 have no effect). So that, the IRQ handler must either fill the FIFO, or disable the IRQ (setting 0), BEFORE trying to acknowledge the IRQ.

4000604h - RAM_COUNT - Polygon List & Vertex RAM Count Register (R)
 0-11 Number of Polygons currently stored in Polygon List RAM (0..2048)
 12-15 Not used
 16-28 Number of Vertices currently stored in Vertex RAM (0..6144)
 13-15 Not used

If a SwapBuffer command has been sent, then the counters are reset 10 cycles (at 33.51MHz clock) after next VBlank.

4000320h - RDLINES_COUNT - Rendered Line Count Register (R)
Rendering starts in scanline 214, the rendered lines are stored in a buffer that can hold up to 48 scanlines. The actual screen output begins after scanline 262, the lines are then read from the buffer and sent to the display. S imultaneously, the rendering engine keeps writing new lines to the buffer (ideally at the same speed than display output, so the buffer would always contain 48 pre-calculated lines).
 0-5 Minimum Number (minus 2) of buffered lines in previous frame (0..46)
 6-31 Not used

If rendering becomes slower than the display output, then the number of buffered lines decreases. Smaller values in RDLINES indicate that additional load to the rendering engine may cause buffer underflows in further frames, if so, the program should reduce the number of polygons to avoid display glitches.
Even if RDLINES becomes zero, it doesn't indicate whether actual buffer underflows have occured or not (underflows are indicated in DISP3DCNT Bit12).

 DS 3D Tests

40005C0h - Cmd 70h - BOX_TEST - Test if Cuboid Sits inside View Volume (W)
The BoxTest result indicates if one or more of the 6 faces of the box are fully or parts of inside of the view volume. Can be used to reduce unneccessary overload, ie. if the result is false, then the program can skip drawing of objects which are inside of the box.
BoxTest verifies only if the faces of the box are inside view volume, and so, it will return false if the whole view volume is located inside of the box (still objects inside of the box may be inside of view).
 Parameter 1, Bit 0-15 X-Coordinate
 Parameter 1, Bit 16-31 Y-Coordinate
 Parameter 2, Bit 0-15 Z-Coordinate
 Parameter 2, Bit 16-31 Width (presumably: X-Offset?)
 Parameter 3, Bit 0-15 Height (presumably: Y-Offset?)
 Parameter 3, Bit 16-31 Depth (presumably: Z-Offset?)
 All values are 1bit sign, 3bit integer, 12bit fractional part

The result of the "coordinate+offset" additions should not overflow 16bit vertex coordinate range (1bit sign, 3bit integer, 12bit fraction).
Before using BoxTest, be sure that far-plane-intersecting & 1-dot polygons are enabled, if they aren't: Send the PolygonAttr command (with bit12,13 set to enable them), followed by dummy Begin and End commands (required to apply the new PolygonAttr settings). BoxTest should not be issued within Begin/End.
After sending the BoxTest command, wait until GXSTAT.Bit0 indicates Ready, then read the result from GXSTAT.Bit1.

40005C4h - Cmd 71h - POS_TEST - Set Position Coordinates for Test (W)
 Parameter 1, Bit 0-15 X-Coordinate
 Parameter 1, Bit 16-31 Y-Coordinate
 Parameter 2, Bit 0-15 Z-Coordinate
 Parameter 2, Bit 16-31 Not used
 All values are 1bit sign, 3bit integer, 12bit fractional part.

Multiplies the specified line-vector (x,y,z ,1) by the c lip coordinate matrix.
After sending the command, wait until GXSTAT.Bit0 indicates Ready, then read the result from POS_RESULT registers. POS_TEST can be issued anywhere, except within polygon strips.

4000620h..62Fh - POS_RESULT - Position Test Results (R)
This 16-byte region (4 words) contains the resulting c lip coordinates (x,y,z ,w) from the POS_TEST command. Each value is 1bit sign, 19bit integer, 12bit fractional part.

40005C8h - Cmd 72h - VEC_TEST - Set Directional Vector for Test (W)
 Parameter 1, Bit 0-9 X-Component
 Parameter 1, Bit 10-19 Y-Component
 Parameter 1, Bit 20-29 Z-Component
 Parameter 1, Bit 30-31 Not used
 All values are 1bit sign, 9bit fractional part.

Multiplies the specified line-vector (x,y,z ,0) by the directional vector matrix. S imilar as for the NORMAL command, it does require Matrix Mode 2 (ie. Position & Vector S imultaneous Set mode).
After sending the command, wait until GXSTAT.Bit0 indicates Ready, then read the result ("the directional vector in the View coordinate space") from VEC_RESULT registers.

4000630h..635h - VEC_RESULT - Vector Test Results (R)
This 6-byte region (3 halfwords) contains the resulting vector (x,y,z) from the VEC_TEST command. Each value is 4bit sign, 0bit integer, 12bit fractional part. The 4bit sign is either 0000b (positive) or 1111b (negative).
There is no integer part, so values >=1.0 or <-1.0 will cause overflows.
(Eg. +1.0 aka 1000h will be returned as -1.0 aka F000h due to overflow and sign-expansion).

 DS 3D Rear-Plane

Other docs seem to refer to this as Clear-plane, rather than Rear-plane, anyways, the plane can be an image, so it isn't always "c leared".
The view order is as such:
 --> 2D Layers --> 3D Polygons --> 3D Rear-plane --> 2D Layers --> 2D Backdrop

The rear-plane can be disabled (by making it transparent; alpha=0), so that the 2D layers become visible as background.
2D layers can be moved in front of, or behind the 3D layer-group (which is represented as BG0 to the 2D Engine), 2D layers behind BG0 can be used instead of, or additionally to the rear-plane.

The rear-plane can be initialized via below two registers (so all pixels in the plane have the same colors and attributes), this method is used when DISP3DCNT.14 is zero:

4000350h - CLEAR_COLOR - Clear Color Attribute Register (W)
 0-4 Clear Color, Red
 5-9 Clear Color, Green
 10-14 Clear Color, Blue
 15 Fog (enables Fog to the rear-plane) (doesn't affect Fog of polygons)
 16-20 Alpha
 21-23 Not used
 24-29 Clear Polygon ID (affects edge-marking, at the screen-edges?)
 30-31 Not used

4000354h - CLEAR_DEPTH - Clear Depth Register (W)
 0-14 Clear Depth (0..7FFFh) (usually 7FFFh = most distant)
 15 Not used
 16-31 See Port 4000356h, CLRIMAGE_OFFSET

The 15bit Depth is expanded to 24bit as "X=(X*200h)+((X+1)/8000h)*1FFh".

Rear Color/Depth Bitmaps
Alternately, the rear-plane can be initialized by bitmap data (allowing to assign different colors & attributes to each pixel), this method is used when DISP3DCNT.14 is set:
Consists of two bitmaps (one with color data, one with depth data), each containing 256x256 16bit entries, and so, each occupying a whole 128K slot,
 Rear Color Bitmap (presumably taken from Texture Slot 2, or 3?)
 0-4 Clear Color, Red
 5-9 Clear Color, Green
 10-14 Clear Color, Blue
 15 Alpha (0=Transparent, 1=Solid) (equivalent to 5bit-alpha 0 and 31)
 Rear Depth Bitmap (presumably taken from Texture Slot 3, or 2?)
 0-14 Clear Depth, expanded to 24bit as X=(X*200h)+((X+1)/8000h)*1FFh
 15 Clear Fog (Initial fog enable value)

This method requires VRAM to be allocated to Texture S lot 2 and 3 (see Memory Control chapter). Of course, in that case the VRAM is used as Rear-plane, and cannot be used for Textures.
The bitmap method is restricted to 1bit alpha values (the register-method allows to use a 5bit alpha value).
The Clear Polygon ID is kept defined in the CLEAR_COLOR register, even in bitmap mode.

4000356h - CLRIMAGE_OFFSET - Rear-plane Bitmap Scroll Offsets (W)
The visible portion of the bitmap is 256x192 pixels (regardless of the viewport setting, which is used only for polygon clipping). Internally, the bitmap is 256x256 pixels, so the bottom-most 64 rows are usually offscreen, unless scrolling is used to move them into view.
 Bit0-7 X-Offset (0..255; 0=upper row of bitmap)
 Bit8-14 Y-Offset (0..255; 0=left column of bitmap)

The bitmap wraps to the upper/left edges when exceeding the lower/right edges.

 DS 3D Final 2D Output

The final 3D image (consisting of polygons and rear-plane) is passed to 2D Engine A as BG0 layer (provided that DISPCNT is configured to use 3D as BG0).

Scrolling
The BG0HOFS register (4000010h) can be used the scroll the 3D layer horizontally, the scroll region is 512 pixels, consisting of 256 pixels for the 3D image, followed by 256 transparent pixels, and then wrapped to the 3D image again. Vertical scrolling (and rotation/scaling) cannot be used on the 3D layer.

BG Priority Order
The lower 2bit of the BG0CNT register (4000008h) control the priority relative to other BGs and OBJs, so the 3D layer can be in front of or behing 2D layers. All other bits in BG0CNT have no effect on 3D, namely, mosaic cannot be used on the 3D layer.

Special Effects
Special Effects Registers (4000050h..54h) can be used as such:
 Brightness up/down with BG0 as 1st Target via EVY (as for 2D)
 Blending with BG0 as 2nd Target via EVA/EVB (as for 2D)
 Blending with BG0 as 1st Target via 3D Alpha-values (unlike as for 2D)

The latter method probably (?) uses per-pixel 3D alpha values as such: EVA=A/2, and EVB=16-A/2, without using the EVA/EVB settings in 4000052h.

Window Feature
Window Feature (4000040h..4Bh) can be used as for 2D.
"If the 3D screen has highest priority, then alpha-blending is always enabled, regardless of the Window Control register's color effect enable flag [ie. regardless of Bit5 of WIN0IN, WIN1IN, WINOBJ, WINOUT registers]"... not sure if that is true, and if i t superseedes the effect selection in Port 4000050h...?

 DS Sound

The DS contains 16 hardware sound channels.
The console contains two speakers, arranged left and right of the upper screen, and so, provides stereo sound even without using the headphone socket.

DS Sound Channels 0..15
DS Sound Control Registers
DS Sound Capture
DS Sound Block Diagrams
DS Sound Notes

Power control
When restoring power supply to the sound circuit, do not output any sound during the first 15 milliseconds.

 DS Sound Channels 0..15

Each of the 16 sound channels occopies 16 bytes in the I/O region, starting with channel 0 at 4000400h..400040Fh, up to channel 15 at 40004F0h..40004FFh.

40004x0h - NDS7 - SOUNDxCNT - Sound Channel X Control Register (R/W)
 Bit0-6 Volume Mul (0..127=silent..loud)
 Bit7 Not used (always zero)
 Bit8-9 Volume Div (0=Normal, 1=Div2, 2=Div4, 3=Div16)
 Bit10-14 Not used (always zero)
 Bit15 Hold (0=Normal, 1=Hold last sample after one-shot sound)
 Bit16-22 Panning (0..127=left..right) (64=half volume on both speakers)
 Bit23 Not used (always zero)
 Bit24-26 Wave Duty (0..7) ;HIGH=(N+1)*12.5%, LOW=(7-N)*12.5% (PSG only)
 Bit27-28 Repeat Mode (0=Manual, 1=Loop Infinite, 2=One-Shot, 3=Prohibited)
 Bit29-30 Format (0=PCM8, 1=PCM16, 2=IMA-ADPCM, 3=PSG/Noise)
 Bit31 Start/Status (0=Stop, 1=Start/Busy)

All channels support ADPCM/PCM formats, PSG rectangular wave can be used only on channels 8..13, and white noise only on channels 14..15.

40004x4h - NDS7 - SOUNDxSAD - Sound Channel X Data Source Register (W)
 Bit0-26 Source Address (must be word aligned, bit0-1 are always zero)
 Bit27-31 Not used

40004x8h - NDS7 - SOUNDxTMR - Sound Channel X Timer Register (W)
 Bit0-15 Timer Value, Sample frequency, timerval=-(33513982/2)/freq

The PSG Duty Cycles are composed of eight "samples", and so, the frequency for Rectangular Wave is 1/8th of the selected sample frequency.
For PSG Noise, the noise frequency is equal to the sample frequency.

40004xAh - NDS7 - SOUNDxPNT - Sound Channel X Loopstart Register (W)
 Bit0-15 Loop Start, Sample loop start position
 (counted in words, ie. N*4 bytes)

40004xCh - NDS7 - SOUNDxLEN - Sound Channel X Length Register (W)
The number of samples for N words is 4*N PCM8 samples, 2*N PCM16 samples, or 8*(N-1) ADPCM samples (the first word containing the ADPCM header). The Sound Length is not used in PSG mode.
 Bit0-21 Sound length (counted in words, ie. N*4 bytes)
 Bit22-31 Not used

Minimum length (the sum of PNT+LEN) is 4 words (16 bytes), smaller values (0..3 words) are causing hang-ups (busy bit remains set infinite, but no sound output occurs).

In One-shot mode, the sound length is the sum of (PNT+LEN).
In Looped mode, the length is (1*PNT+Infinite*LEN), ie. the first part (PNT) is played once, the second part (LEN) is repeated infinitely.

 DS Sound Control Registers

4000500h - NDS7 - SOUNDCNT - Sound Control Register (R/W)
 Bit0-6 Master Volume (0..127=silent..loud)
 Bit7 Not used (always zero)
 Bit8-9 Left Output from (0=Left Mixer, 1=Ch1, 2=Ch3, 3=Ch1+Ch3)
 Bit10-11 Right Output from (0=Right Mixer, 1=Ch1, 2=Ch3, 3=Ch1+Ch3)
 Bit12 Output Ch1 to Mixer (0=Yes, 1=No) (both Left/Right)
 Bit13 Output Ch3 to Mixer (0=Yes, 1=No) (both Left/Right)
 Bit14 Not used (always zero)
 Bit15 Master Enable (0=Disable, 1=Enable)
 Bit16-31 Not used (always zero)

4000504h - NDS7 - SOUNDBIAS - Sound Bias Register (R/W)
 Bit0-9 Sound Bias (0..3FFh, usually 200h)
 Bit10-31 Not used (always zero)

After applying the master volume, the signed left/right audio signals are in range -200h..+1FFh (with medium level zero), the Bias value is then added to convert the signed numbers into unsigned values (with medium level 200h).
BIAS output is always enabled, even when Master Enable (SOUNDCNT.15) is off.

The sampling frequency of the mixer is 1.04876 MHz with an amplitude resolution of 24 bits, but the sampling frequency after mixing with PWM modulation is 32.768 kHz with an amplitude resolution of 10 bits.

 DS Sound Capture

The DS contains 2 built-in sound capture devices that can capture output waveform data to memory.
Sound capture 0 can capture output from left-mixer or output from channel 0.
Sound capture 1 can capture output from right-mixer or output from channel 2.

4000508h - NDS7 - SNDCAP0CNT - Sound Capture 0 Control Register (R/W)
4000509h - NDS7 - SNDCAP1CNT - Sound Capture 1 Control Register (R/W)
 Bit0 Control of Associated Sound Channels (ANDed with Bit7)
 SNDCAP0CNT: Output Sound Channel 1 (0=As such, 1=Add to Channel 0)
 SNDCAP1CNT: Output Sound Channel 3 (0=As such, 1=Add to Channel 2)
 Caution: Addition mode works only if BOTH Bit0 and Bit7 are set.
 Bit1 Capture Source Selection
 SNDCAP0CNT: Capture 0 Source (0=Left Mixer, 1=Channel 0/Bugged)
 SNDCAP1CNT: Capture 1 Source (0=Right Mixer, 1=Channel 2/Bugged)
 Bit2 Capture Repeat (0=Loop, 1=One-shot)
 Bit3 Capture Format (0=PCM16, 1=PCM8)
 Bit4-6 Not used (always zero)
 Bit7 Capture Start/Status (0=Stop, 1=Start/Busy)

4000510h - NDS7 - SNDCAP0DAD - Sound Capture 0 Destination Address (R/W)
4000518h - NDS7 - SNDCAP1DAD - Sound Capture 1 Destination Address (R/W)
 Bit0-26 Destination address (word aligned, bit0-1 are always zero)
 Bit27-31 Not used (always zero)

Capture start address (also used as re-start address for looped capture).

4000514h - NDS7 - SNDCAP0LEN - Sound Capture 0 Length (W)
400051Ch - NDS7 - SNDCAP1LEN - Sound Capture 1 Length (W)
 Bit0-15 Buffer length (1..FFFFh words) (ie. N*4 bytes)
 Bit16-31 Not used

Minimum length is 1 word (attempts to use 0 words are interpreted as 1 word).

SOUND1TMR - NDS7 - Sound Channel 1 Timer shared as Capture 0 Timer
SOUND3TMR - NDS7 - Sound Channel 3 Timer shared as Capture 1 Timer
There are no separate capture frequency registers, instead, the sample frequency of Channel 1/3 is shared for Capture 0/1. These channels are intended to output the captured data, so it makes sense that both capture and sound output use the same frequency.

For Capture 0, a=0, b=1, x=0.
For Capture 1, a=2, b=3, x=1.

Capture Bugs
The NDS contains two hardware bugs which do occur when capturing data from ch(a) (SNDCAPxCNT.Bit1=1), if so, either bug occurs depending on whether ch(a)+ch(b) addition is enabled or disabled (SNDCAPxCNT.Bit0).
 1) Both Negative Bug - SNDCAPxCNT Bit1=1, Bit0=0 (addition disabled)
 Capture data is accidently set to -8000h if ch(a) and ch(b) are both <0.
 Otherwise the correct capture result is returned, ie. plain ch(a) data,
 not being affected by ch(b) (since addition is disabled).
 Workaround: Ensure that ch(a) and/or ch(b) are >=0 (or disabled).
 2) Overflow Bug - SNDCAPxCNT Bit1=1, Bit0=1 (addition enabled)
 In this mode, Capture data isn't clipped to MinMax(-8000h,+7FFFh),
 instead, it is ANDed with FFFFh, so the sign bit is lost if the
 addition result ch(a)+ch(b) is less/greater than -8000h/+7FFFh.
 Workaround: Reduce ch(a)/ch(b) volume or data to avoid overflows.

These bugs occur only for capture (speaker output remains intact), and they occur only when capturing ch(a) (capturing mixer-output works flawless).

ch(a)+ch(b) Channel Addition
The ch(a)+ch(b) addition unit has 2 outputs, with slightly different results:
 1) Addition Result for Capture(x) when using capture source=ch(a):
 Addition is performed always, no matter of SOUNDCNT.Bit12/13.
 And, no matter of ch(a) enable, result is plain ch(b) if ch(a) is disabled.
 Result is 16bit (plus fraction) with overflow error (see Capture Bugs).
 2) Addition Result for Mixer (towards speakers, and capture source=mixer):
 Ch(b) is muted if ch(a) is disabled.
 Ch(b) is muted if ch(b) SOUNDCNT.Bit12/13 is set to "Ch(b) not to mixer".
 Result is 17bit (plus fraction) without overflow error.

Addition mode can be used only if the <corresponding> capture unit is enabled, ie. if SNDCAPxCNT (Bit0 AND Bit7)=1. If so, addition affects both mixers (and so, may also affect the <other> capture unit if it reads from mixer).

 DS Sound Block Diagrams

Left Mixer with Capture 0
(Right Mixer with Capture 1, respectively)

 Ch0.L ------------->| | +------------------------------> to Capture 0
 ___ | | | ___
 Ch1.L ---+->|Sel|-->| | | Ch0..Ch15 | |
 | |___| |Left |--+---------------->| |
 Ch2.L ---|--------->|Mixer| |Sel| ______ ____
 | ___ | | Ch1 | | |Master| |Add |
 Ch3.L -+-|->|Sel|-->| | +----------------->| |->|Volume|->|Bias|-> L
 | | |___| | | | | | |______| |____|
 Ch4.L -|-|--------->| | | Ch3 | |
 ... -|-|--------->| | | +--------------->| |
 Ch15.L-|-|--------->|_____| | | ___ | |
 | +------------------+-|->|Add| Ch1+Ch3 | |
 +----------------------+->|___|-------->|___|

Channel 0 and 1, Capture 0 with input from Left Mixer
(Channel 2 and 3, Capture 1 with input from Right Mixer, respectively)
 ____ _________ ___ ___ ___
 |FIFO|-->|Channel 0|-->|Vol|-->|Add|-+->|Pan|--> Ch0.L
 |____| |_________| |___| |___| | |___|--> Ch0.R
 ____ _________ ___ ^ |
 |FIFO|<--|Capture 0|<--|Sel|<----|---+
 |____| |_ _____ _| |___|<----|-------------- Left Mixer
 ____ _:Timer:_ ___ _|_ ___
 |FIFO|-->|Channel 1|-->|Vol|-->|Sel|--->|Pan|--> Ch1.L
 |____| |_________| |___| |___| |___|--> Ch1.R

Channel 4 (Channel 5..15, respectively)
 ____ _________ ___ ___
 |FIFO|-->|Channel 4|-->|Vol|----------->|Pan|--> Ch4.L
 |____| |_________| |___| |___|--> Ch4.R

The FIFO isn't used in PSG/Noise modes (supported on channel 8..15).

 DS Sound Notes

Sound delayed Start/Restart (timing glitch)
A sound will be started/restarted when changing its start bit from 0 to 1, however, the sound won't start immediately: PSG/Noise starts after 1 sample, PCM starts after 3 samples, and ADPCM starts after 11 samples (3 dummy samples as for PCM, plus 8 dummy samples for the ADPCM header).

Sound Stop (timing note)
In one-shot mode, the Busy bit gets c leared automatically at the BEGIN of the last sample period, nethertheless (despite of the c leared Busy bit) the last sample is kept output until the END of the last sample period (or, if the Hold flag is set, then the last sample is kept output infinitely, that is, until Hold gets c leared, or until the sound gets restarted).

Hold Flag (appears useless/bugged)
The Hold flag allows to keep the last sample being output infinitely after the end of one-shot sounds. This feature is probably intended to allow to play two continous one-shot sound blocks (without producing any scratch noise upon small delays between both blocks, which would occur if the output level would drop to zero).
However, the feature doesn't work as intended. As described above, PCM8/PCM16 sound starts are delayed by 3 samples. With Hold flag set, old output level is acually kept intact during the 1st sample, but the output level drops to zero during 2nd-3rd sample, before starting the new sound in 4th sample.

7bit Volume and Panning Values
 data.vol = data*N/128
 pan.left = data*(128-N)/128
 pan.right = data*N/128
 master.vol = data*N/128/64

Register settings of 0..126,127 are interpreted as N=0..126,128.

Max Output Levels
When configured to max volume (and left-most or right-most panning), each channel can span the full 10bit output range (-200h..1FFh) on one speaker, as well as the full 16bit input range (-8000h..7FFFh) on one capture unit.
(It needs 2 channels to span the whole range on BOTH speakers/capture units.)
Together, all sixteen channels could thus reach levels up to -1E00h..21F0h (with default BIAS=200h) on one speaker, and -80000h..+7FFF0h on one capture unit. However, to avoid overflows, speaker outputs are c lipped to MinMax(0,3FFh), and capture inputs to MinMax(-8000h..+7FFFh).

Channel/Mixer Bit-Widths
 Step Bits Min Max
 0 Incoming PCM16 Data 16.0 -8000h +7FFFh
 1 Volume Divider (div 1..16) 16.4 -8000h +7FFFh
 2 Volume Factor (mul N/128) 16.11 -8000h +7FFFh
 3 Panning (mul N/128) 16.18 -8000h +7FFFh
 4 Rounding Down (strip 10bit) 16.8 -8000h +7FFFh
 5 Mixer (add channel 0..15) 20.8 -80000h +7FFF0h
 6 Master Volume (mul N/128/64) 14.21 -2000h +1FF0h
 7 Strip fraction 14.0 -2000h +1FF0h
 8 Add Bias (0..3FFh, def=200h) 15.0 -2000h+0 +1FF0h+3FFh
 9 Clip (min/max 0h..3FFh) 10.0 0 +3FFh

Table shows integer.fractional bits, and min/max values (without fraction).

Capture Clipping/Rounding
Incoming ch(a) is NOT clipped, ch(a)+ch(b) may overflow (see Capture Bugs).
Incoming mixer data (20.8bits) is c lipped to 16.8bits (MinMax -8000h..7FFFh).
For PCM8 capture format, the 16.8 bits are divided by 100h (=8.16 bits).
If the MSB of the fractional part is set, then data is rounded towards zero.
(Positive values are rounded down, negative values are rounded up.)
The fractional part is then discarded, and plain integer data is captured.

PSG Sound
The output volume equals to PCM16 values +7FFFh (HIGH) and -7FFFh (LOW).
PSG sound is always Infinite (the SOUNDxLEN Register, and the SOUNDxCNT Repeat Mode bits have no effect). The PSG hardware doesn't support sound length, sweep, or volume envelopes, however, these effects can be produced by software with little overload (or, more typically, with enormous overload, depending on the programming language used).

PSG Wave Duty (channel 8..13 in PSG mode)
Each duty cycle consists of eight HIGH or LOW samples, so the sound frequency is 1/8th of the selected sample rate. The duty cycle always starts at the begin of the LOW period when the sound gets (re-)started.
 0 12.5% "_______-_______-_______-"
 1 25.0% "______--______--______--"
 2 37.5% "_____---_____---_____---"
 3 50.0% "____----____----____----"
 4 62.5% "___-----___-----___-----"
 5 75.0% "__------__------__------"
 6 87.5% "_-------_-------_-------"
 7 0.0% "________________________"

The Wave Duty bits exist and are read/write-able on all channels (although they are actually used only in PSG mode on channels 8-13).

PSG Noise (channel 14..15 in PSG mode)
Noise randomly switches between HIGH and LOW samples, the output levels are calculated, at the selected sample rate, as such:
 X=X SHR 1, IF carry THEN Out=LOW, X=X XOR 6000h ELSE Out=HIGH

The initial value when (re-)starting the sound is X=7FFFh. The formula is more or less same as "15bit polynomial counter" used on 8bit Gameboy and GBA.

PCM8 and PCM16
S igned samples in range -80h..+7Fh (PCM8), or -8000h..+7FFFh (PCM16).
The output volume of PCM8=NNh is equal to PCM16=NN00h.

IMA-ADPCM Format
IMA-ADPCM is a Adaptive Differential Pulse Code Modulation (ADPCM) variant, designed by International Multimedia Association (IMA), the format is used, among others, in IMA-ADPCM compressed Windows .WAV files.
The NDS data consist of a 32bit header, followed by 4bit values (so each byte contains two values, the first value in the lower 4bits, the second in upper 4 bits). The 32bit header contains initial values:
 Bit0-15 Initial PCM16 Value (Pcm16bit = -7FFFh..+7FFF) (not -8000h)
 Bit16-22 Initial Table Index Value (Index = 0..88)
 Bit23-31 Not used (zero)

In theory, the 4bit values are decoded into PCM16 values, as such:
 Diff = ((Data4bit AND 7)*2+1)*AdpcmTable[Index]/8 ;see rounding-error
 IF (Data4bit AND 8)=0 THEN Pcm16bit = Max(Pcm16bit+Diff,+7FFFh)
 IF (Data4bit AND 8)=8 THEN Pcm16bit = Min(Pcm16bit-Diff,-7FFFh)
 Index = MinMax (Index+IndexTable[Data4bit AND 7],0,88)

In practice, the first line works like so (with rounding-error):
 Diff = AdpcmTable[Index]/8
 IF (data4bit AND 1) THEN Diff = Diff + AdpcmTable[Index]/4
 IF (data4bit AND 2) THEN Diff = Diff + AdpcmTable[Index]/2
 IF (data4bit AND 4) THEN Diff = Diff + AdpcmTable[Index]/1

And, a note on the second/third lines (with c lipping-error):
 Max(+7FFFh) leaves -8000h unclipped (can happen if initial PCM16 was -8000h)
 Min(-7FFFh) clips -8000h to -7FFFh (possibly unlike windows .WAV files?)

Whereas, IndexTable[0..7] = -1,-1,-1,-1,2,4,6,8. And AdpcmTable [0..88] =
 0007h,0008h,0009h,000Ah,000Bh,000Ch,000Dh,000Eh,0010h,0011h,0013h,0015h
 0017h,0019h,001Ch,001Fh,0022h,0025h,0029h,002Dh,0032h,0037h,003Ch,0042h
 0049h,0050h,0058h,0061h,006Bh,0076h,0082h,008Fh,009Dh,00ADh,00BEh,00D1h
 00E6h,00FDh,0117h,0133h,0151h,0173h,0198h,01C1h,01EEh,0220h,0256h,0292h
 02D4h,031Ch,036Ch,03C3h,0424h,048Eh,0502h,0583h,0610h,06ABh,0756h,0812h
 08E0h,09C3h,0ABDh,0BD0h,0CFFh,0E4Ch,0FBAh,114Ch,1307h,14EEh,1706h,1954h
 1BDCh,1EA5h,21B6h,2515h,28CAh,2CDFh,315Bh,364Bh,3BB9h,41B2h,4844h,4F7Eh
 5771h,602Fh,69CEh,7462h,7FFFh

The closest way to reproduce the AdpcmTable with 32bit integer maths appears:
 X=000776d2h, FOR I=0 TO 88, Table[I]=X SHR 16, X=X+(X/10), NEXT I
 Table[3]=000Ah, Table[4]=000Bh, Table[88]=7FFFh, Table[89..127]=0000h

When using ADPCM and loops, set the loopstart position to the data part, rather than the header. At the loop end, the SAD value is reloaded to the loop start location, additionally index and pcm16 values are reloaded to the values that have originally appeared at that location. Do not change the ADPCM loop start position during playback.

Microphone Input
For Microphone (and Touchscreen) inputs, see
DS Touch Screen Controller (TSC)

 DS System and Built-in Peripherals

DS DMA Transfers
DS Timers
DS Interrupts
DS Maths
DS Inter Process Communication (IPC)
DS Keypad
DS Absent Link Port
DS Real-Time Clock (RTC)
DS Serial Peripheral Interface Bus (SPI)
DS Touch Screen Controller (TSC)
DS Power Management

 DS DMA Transfers

The DS includes four DMA channels for each CPU (ie. eight channels in total), which are working more or less the same as on GBA:
GBA DMA Transfers
All NDS9 and NDS7 DMA Registers are R/W. The gamepak bit (Bit 27) has been removed (on the NDS9 the bit is used to expand the mode setting to 3bits).

NDS9 DMA
Word count of all channels is expanded to 21bits (max 1..1FFFFFh units, or 0=200000h units), and SAD/DAD registers for all channels support ranges of 0..0FFFFFFEh. The transfer modes (DMACNT Bit27-29) are:
 0 Start Immediately
 1 Start at V-Blank
 2 Start at H-Blank (paused during V-Blank)
 3 Synchronize to start of display
 4 Main memory display
 5 DS Cartridge Slot
 6 GBA Cartridge Slot
 7 Geometry Command FIFO

NDS7 DMA
Word Count, SAD, and DAD are R/W, aside from that they do have the same restrictions as on GBA (max 4000h or 10000h units, some addresses limited to 0..07FFFFFEh). DMACNT Bit27 is unused on NDS7. The transfer modes (DMACNT Bit28-29) are:
 0 Start Immediately
 1 Start at V-Blank
 2 DS Cartridge Slot
 3 DMA0/DMA2: Wireless interrupt, DMA1/DMA3: GBA Cartridge Slot

40000E0h - NDS9 only - DMA0FILL - DMA 0 Filldata (R/W)
40000E4h - NDS9 only - DMA1FILL - DMA 1 Filldata (R/W)
40000E8h - NDS9 only - DMA2FILL - DMA 2 Filldata (R/W)
40000ECh - NDS9 only - DMA3FILL - DMA 3 Filldata (R/W)
 Bit0-31 Filldata

The DMA Filldata registers contain 16 bytes of general purpose WRAM, intended to be used as fixed source addresses for DMA memfill operations.
This is useful because DMA cannot read from TCM, and reading from Main RAM would require to recurse cache & write buffer.

NDS7 Sound DMA
The NDS additionally includes 16 Sound DMA channels, plus 2 Sound Capture DMA channels (see Sound chapter). The priority of these channels is unknown.

NDS9 Cache, Writebuffer, DTCM, and ITCM
Cache and tightly coupled memory are connected directly to the NDS9 CPU, without using the system bus. So that, DMA cannot access DTCM/ITCM, and access to cached memory regions must be handled with care: Drain the writebuffer before DMA-reads, and invalidate the cache after DMA-writes. See,
ARM CP15 System Control Coprocessor
The CPU can be kept running during DMA, provided that it is accessing only TCM (or cached memory), otherwise the CPU is halted until DMA finishes.
Respectively, interrupts executed during DMA will usually halt the CPU (unless the IRQ handler uses only TCM and cache; the IRQ vector at FFFF00xxh must be cached, or relocated to ITCM at 000000xxh, and the IRQ handler may not access IE, IF, or other I/O ports).

NDS Sequential Main Memory DMA
Main RAM has different access time for sequential and non-sequential access. Normally DMA uses sequential access (except for the first word), however, if the source and destination addresses are both in Main RAM, then all accesses become non-sequential. In that case it would be faster to use two DMA transfers, one from Main RAM to a scratch buffer in WRAM, and one from WRAM to Main RAM.

 DS Timers

Same as GBA, except F = 33.513982 MHz (for both NDS9 and NDS7).
GBA Timers
Both NDS9 and NDS7 have four Timers each, eight Timers in total.

 DS Interrupts

4000208h - NDS9/NDS7 - IME - 16bit - Interrupt Master Enable (R/W)
Same as GBA, see
GBA Interrupt Control

4000210h - NDS9/NDS7 - IE - 32bit - Interrupt Enable (R/W)
4000214h - NDS9/NDS7 - IF - 32bit - Interrupt Request Flags (R/W)
 Bit 0-6 Same as GBA
 Bit 7 NDS7 only: SIO/RCNT/RTC (Real Time Clock)
 Bit 8.. Same as GBA
 Bit 16 IPC Sync
 Bit 17 IPC Send FIFO Empty
 Bit 18 IPC Recv FIFO Not Empty
 Bit 19 Game Card Data Transfer Completion
 Bit 20 Game Card IREQ_MC
 Bit 21 NDS9 only: Geometry Command FIFO
 Bit 22 NDS7 only: Screens unfolding
 Bit 23 NDS7 only: SPI bus
 Bit 24 NDS7 only: Wifi
 Bit 25-31 Not used

Raw TCM-only IRQs can be processed even during DMA ?

DTCM+3FFCh - NDS9 - IRQ Handler (hardcoded DTCM address)
380FFFCh - NDS7 - IRQ Handler (hardcoded RAM address)
 Bit 0-31 Pointer to IRQ Handler

NDS7 Handler must use ARM code, NDS9 Handler can be ARM/THUMB (Bit0=Thumb).

DTCM+3FF8h - NDS9 - IRQ Check Bits (hardcoded DTCM address)
380FFF8h - NDS7 - IRQ Check Bits (hardcoded RAM address)
 Bit 0-31 IRQ Flags (same format as IE/IF registers)

When processing & acknowleding interrupts via IF register, the user interrupt handler should also set the corresponding bits of the IRQ Check value (required for BIOS IntrWait and VBlankIntrWait SWI functions).

--- Below for other (non-IRQ) exceptions ---

27FFD9Ch - RAM - NDS9 Debug Stacktop / Debug Vector (0=None)
380FFDCh - RAM - NDS7 Debug Stacktop / Debug Vector (0=None)
These addresses contain a 32bit pointer to the Debug Handler, and, memory below of the addresses is used as Debug S tack. The debug handler is called on undefined instruction exceptions, on data/prefetch aborts (caused by the protection unit), on FIQ (possibly caused by hardware debuggers). It is also called by accidental software-jumps to the reset vector, and by unused SWI numbers within range 0..1Fh.

 DS Maths

4000280h - NDS9 - DIVCNT - 16bit Division Control (R/W)
 0-1 Division Mode (0-2=See below) (3=Reserved; same as Mode 1)
 2-13 Not used
 14 Division by zero (0=Okay, 1=Division by zero error; 64bit Denom=0)
 15 Busy (0=Ready, 1=Busy) (Execution time see below)

Division Modes and Busy Execution Times
 Mode Numer / Denom = Result, Remainder ; Cycles
 0 32bit / 32bit = 32bit , 32bit ; 18 clks
 1 64bit / 32bit = 64bit , 32bit ; 34 clks
 2 64bit / 64bit = 64bit , 64bit ; 34 clks

Division is started when writing to... what... presumably... Denom... Msb/Lsb?

4000290h - NDS9 - DIV_NUMER - 64bit Division Numerator (R/W)
4000298h - NDS9 - DIV_DENOM - 64bit Division Denominator (R/W)
S igned 64bit values (or signed 32bit values in 32bit modes, the upper 32bits are then unused, with one exception: the DIV0 flag in DIVCNT is set only if the full 64bit DIV_DENOM value is zero, even in 32bit mode).

40002A0h - NDS9 - DIV_RESULT - 64bit Division Quotient (=Numer/Denom) (R/W?)
40002A8h - NDS9 - DIVREM_RESULT - 64bit Remainder (=Numer MOD Denom) (R/W?)
S igned 64bit values (in 32bit modes, the values are sign-expanded to 64bit).

Division Overflows
Overflows occur on "DIV0" and "-MAX/-1" (eg. -80000000h/-1 in 32bit mode):
 DIV0 --> REMAIN=NUMER, RESULT=+/-1 (with sign opposite of NUMER)
 -MAX/-1 --> RESULT=-MAX (instead +MAX)

On overflows in 32bit/32bit=32bit mode: the upper 32bit of the sign-expanded 32bit result are inverted. This feature produces a correct 64bit (+MAX) result in case of the incorrect 32bit (-MAX) result. The feature also applies on DIV0 errors (which makes the sign-expanded 64bit result even more messed-up than the normal 32bit result).
The DIV0 flag in DIVCNT.14 indicates DENOM=0 errors (it does not indicate "-MAX errors). The DENOM=0 check relies on the full 64bit value (so, in 32bit mode, the flag works only if the unused upper 32bit of DENOM are zero).

40002B0h - NDS9 - SQRTCNT - 16bit - Square Root Control (R/W)
 0 Mode (0=32bit input, 1=64bit input)
 1-14 Not used
 15 Busy (0=Ready, 1=Busy) (Execution time is 13 clks, in either Mode)

40002B4h - NDS9 - SQRT_RESULT - 32bit - Square Root Result (R/W?)
40002B8h - NDS9 - SQRT_PARAM - 64bit - Square Root Parameter Input (R/W)
Unsigned 64bit parameter, and unsigned 32bit result.

Notes
Push all DIV/SQRT values (parameters, control, and result registers) when using DIV/S QRT registers on interrupt level.
The NDS9 and NDS7 BIOSes additionally contain software based division and square root functions, which are NOT using above hardware registers (even the NDS9 functions are raw software).
The Div/Sqrt timings are probably counted in 33.51MHz units?

 DS Inter Process Communication (IPC)

Allows to exchange status information between ARM7 and ARM9 CPUs.
The register can be accessed simultaneously by both CPUs (without violating access permissions, and without generating waitstates at either side).

4000180h - NDS9/NDS7 - IPCSYNC - IPC Synchronize Register (R/W)
 Bit Dir Expl.
 0-3 R Data input from IPCSYNC Bit8-11 of remote CPU (00h..0Fh)
 4-7 - Not used
 8-11 R/W Data output to IPCSYNC Bit0-3 of remote CPU (00h..0Fh)
 12 - Not used
 13 W Send IRQ to remote CPU (0=None, 1=Send IRQ)
 14 R/W Enable IRQ from remote CPU (0=Disable, 1=Enable)
 15-31 - Not used

4000184h - NDS9/NDS7 - IPCFIFOCNT - IPC Fifo Control Register (R/W)
 Bit Dir Expl.
 0 R Send Fifo Empty Status (0=Not Empty, 1=Empty)
 1 R Send Fifo Full Status (0=Not Full, 1=Full)
 2 R/W Send Fifo Empty IRQ (0=Disable, 1=Enable)
 3 W Send Fifo Clear (0=Nothing, 1=Flush Send Fifo)
 4-7 - Not used
 8 R Receive Fifo Empty (0=Not Empty, 1=Empty)
 9 R Receive Fifo Full (0=Not Full, 1=Full)
 10 R/W Receive Fifo Not Empty IRQ (0=Disable, 1=Enable)
 11-13 - Not used
 14 R/W Error, Read Empty/Send Full (0=No Error, 1=Error/Acknowledge)
 15 R/W Enable Send/Receive Fifo (0=Disable, 1=Enable)
 16-31 - Not used

4000188h - NDS9/NDS7 - IPCFIFOSEND - IPC Send Fifo (W)
 Bit0-31 Send Fifo Data (max 16 words; 64bytes)

4100000h - NDS9/NDS7 - IPCFIFORECV - IPC Receive Fifo (R)
 Bit0-31 Receive Fifo Data (max 16 words; 64bytes)

 DS Keypad

For the GBA-buttons: Same as GBA, both ARM7 and ARM9 have keyboard input registers, and each its own keypad IRQ control register.
GBA Keypad Input

For Touchscreen (and Microphone) inputs, see
DS Touch Screen Controller (TSC)

4000136h - NDS7 - EXTKEYIN - Key X/Y Input (R)
 0 Button X (0=Pressed, 1=Released)
 1 Button Y (0=Pressed, 1=Released)
 3 DEBUG button (0=Pressed, 1=Released/None such)
 6 Pen down (0=Pressed, 1=Released/Disabled)
 7 Hinge/folded (0=Open, 1=Closed)
 2,4,5 Unknown / set
 8..15 Unknown / zero

The Hinge stuff is a magnetic sensor somewhere underneath of the S tart/Select buttons, it will be triggered by the magnet field from the right speaker when the console is c losed. The hinge generates an interrupt request (there seems to be no way to disable this, unlike as for all other IRQ sources), however, the interrupt execution can be disabled in IE register (as for other IRQ sources).
The Pen Down is the /PENIRQ signal from the Touch Screen Controller (TSC), if it is enabled in the TSC control register, then it will notify the program when the screen pressed, the program should then read data from the TSC (if there's no /PENIRQ then doing unneccassary TSC reads would just waste CPU power). However, the user may release the screen before the program performs the TSC read, so treat the screen as not pressed if you get invalid TSC values (even if /PENIRQ was LOW).
Not sure if the TSC /PENIRQ is actually triggering an IRQ in the NDS?
The Debug Button should be connected to R03 and GND (on original NDS, R03 is the large soldering point between the SL1 jumper and the VR1 potentiometer) (there is no R03 signal visible on the NDS-Lite board).
Interrupts are reportedly not supported for X,Y buttons.

 DS Absent Link Port

The DS doesn't have a Serial Link Port Socket, however, internally, the NDS7 contains the complete set of Serial I/O Ports, as contained in the GBA:
GBA Communication Ports

In GBA mode, the ports are working as on real GBA (as when no cable is connected). In NDS mode, the ports are even containing some additional bits:

NDS7 SIO Bits (according to an early I/O map from Nintendo)
 NDS7 4000128h SIOCNT Bit15 "CKUP" New Bit in NORMAL/MULTI/UART mode (R/W)
 NDS7 4000128h SIOCNT Bit14 "N/A" Removed IRQ Bit in UART mode (?)
 NDS7 400012Ah SIOCNT_H Bit14 "TFEMP" New Bit (R/W)
 NDS7 400012Ah SIOCNT_H Bit15 "RFFUL" New Bit (always zero?)
 NDS7 400012Ch SIOSEL Bit0 "SEL" New Bit (always zero?)
 NDS7 4000140h JOYCNT Bit7 "MOD" New Bit (R/W)

The "CKUP" bit duplicates the internal c lock transfer rate (selected in S IOCNT.1) (tested in normal mode) (probably works also in multi/uart mode?).

NDS9 SIO Bits (according to an early I/O map from Nintendo)
 NDS9 4000120h SIODATA32 Bit0-31 Data (always zero?)
 NDS9 4000128h SIOCNT Bit2 "TRECV" New Bit (always zero?)
 NDS9 4000128h SIOCNT Bit3 "TSEND" New Bit (always zero?)
 NDS9 400012Ch SIOSEL Bit0 "SEL" New Bit (always zero?)

Not sure if these ports really exist in the release-version, or if it's been prototype stuff?

RCNT
RCNT (4000134h) should be set to 80xxh (general purpose mode) before accessing EXTKEYIN (4000136h) or RTC (4000138h). No idea why (except when using RTC/S I-interrupt).

DS Serial Port
The S I line is labeled "INT" on the NDS mainboard, it is connected to Pin 1 of the RTC chip (ie. the /INT interrupt pin).
I have no idea where to find SO, SC, and SD. I've written a test proggy that pulsed all four RCNT bits - but all I could find was the S I signal. However, the BIOS contains some code that uses S IO normal mode transfers (for the debug version), so at least S I, SO, SC should exist...?

 DS Real-Time Clock (RTC)

Seiko Instruments Inc. S -35180 (compatible with S -35190A)
Miniature 8pin RTC with 3-wire serial bus

4000138h - NDS7 - Real Time Clock Register
 Bit Expl.
 0 Data I/O (0=Low, 1=High)
 1 Clock Out (0=Low, 1=High)
 2 Select Out (0=Low, 1=High/Select)
 4 Data Direction (0=Read, 1=Write)
 5 Clock Direction (should be 1=Write)
 6 Select Direction (should be 1=Write)
 3,8-11 Unused I/O Lines
 7,12-15 Direction for Bit3,8-11 (usually 0)

Serial Transfer Flowchart
Chipselect and Command/Parameter Sequence:
 Init CS=LOW and /SCK=HIGH, and wait at least 1us
 Switch CS=HIGH, and wait at least 1us
 Send the Command byte (see bit-transfer below)
 Send/receive Parameter byte(s) associated with the command (see below)
 Switch CS to LOW

Bit transfer (repeat 8 times per cmd/param byte) (bits transferred LSB first):
 Output /SCK=LOW and SIO=databit (when writing), then wait at least 5us
 Output /SCK=HIGH, wait at least 5us, then read SIO=databit (when reading)
 In either direction, data is output on (or immediately after) falling edge.

Ideally, <both> commands and parameters should be transmitted LSB-first (unlike the original Seiko document, which recommends LSB-first for data, and MSB-first for commands).

Command Register
 Command Register
 Fwd Rev
 0-3 7-4 Fixed Code (must be 06h = 0110b) (same for Fwd and Rev)
 4-6 3-1 Command
 Fwd Rev Parameter bytes (read/write access)
 0 0 1 byte, status register 1
 4 1 1 byte, status register 2
 2 2 7 bytes, date & time (year,month,day,day_of_week,hour,minute, second)
 6 3 3 bytes, time (hour,minute,second)
 1* 4* 1 byte, int1, frequency duty setting
 1* 4* 3 bytes, int1, alarm time 1 (day_of_week, hour, minute)
 5 5 3 bytes, int2, alarm time 2 (day_of_week, hour, minute)
 3 6 1 byte, clock adjustment register
 7 7 1 byte, free register
 7 0 Parameter Read/Write Access (0=Write, 1=Read)

* INT1: Type and number of parameters depend on INT1 setting in stat reg2.
The "Fwd" bit numbers and command values for LSB-first command transfers (ie. both commands and parameters use the same bit-order).
The "Rev" numbers/values are for MSB-first command transfers (ie. commands using opposite bit-order than parameters, as being suggested by Seiko).

Control and Status Registers
 Status Register 1
 0 W Reset (0=Normal, 1=Reset)
 1 R/W 12/24 hour mode (0=12 hour, 1=24 hour)
 2-3 R/W General purpose bits
 4 R Interrupt 1 Flag (1=Yes) ;auto-cleared on read
 5 R Interrupt 2 Flag (1=Yes) ;auto-cleared on read
 6 R Power Low Flag (0=Normal, 1=Power is/was low) ;auto-cleared on read
 7 R Power Off Flag (0=Normal, 1=Power was off) ;auto-cleared on read
 Power off indicates that the battery was removed or fully discharged,
 all registers are reset to 00h (or 01h), and must be re-initialized.
 Status Register 2
 0-3 R/W INT1 Mode/Enable
 0000b Disable
 0x01b Selected Frequency steady interrupt
 0x10b Per-minute edge interrupt
 0011b Per-minute steady interrupt 1 (duty 30.0 secomds)
 0100b Alarm 1 interrupt
 0111b Per-minute steady interrupt 2 (duty 0.0079 secomds)
 1xxxb 32kHz output
 4-5 R/W General purpose bits
 6 R/W INT2 Enable
 0b Disable
 1b Alarm 2 interrupt
 7 R/W Test Mode (0=Normal, 1=Test, don't use) (cleared on Reset)
 Clock Adjustment Register (to compensate oscillator inaccuracy)
 0-7 R/W Adjustment (00h=Normal, no adjustment)
 Free Register
 0-7 R/W General purpose bits

Date Registers
 Year Register
 0-7 R/W Year (BCD 00h..99h = 2000..2099)
 Month Register
 0-4 R/W Month (BCD 01h..12h = January..December)
 5-7 - Not used (always zero)
 Day Register
 0-5 R/W Day (BCD 01h..28h,29h,30h,31h, range depending on month/year)
 6-7 - Not used (always zero)
 Day of Week Register (septenary counter)
 0-2 R/W Day of Week (00h..06h, custom assignment, usually 0=Monday?)
 3-7 - Not used (always zero)

Time Registers
 Hour Register
 0-5 R/W Hour (BCD 00h..23h in 24h mode, or 00h..11h in 12h mode)
 6 * AM/PM (0=AM before noon, 1=PM after noon)
 * 24h mode: AM/PM flag is read only (PM=1 if hour = 12h..23h)
 * 12h mode: AM/PM flag is read/write-able
 * 12h mode: Observe that 12 o'clock is defined as 00h (not 12h)
 7 - Not used (always zero)
 Minute Register
 0-6 R/W Minute (BCD 00h..59h)
 7 - Not used (always zero)
 Second Register
 0-6 R/W Minute (BCD 00h..59h)
 7 - Not used (always zero)

Alarm 1 and Alarm 2 Registers
 Alarm1 and Alarm2 Day of Week Registers (INT1 and INT2 each)
 0-2 R/W Day of Week (00h..06h)
 3-6 - Not used (always zero)
 7 R/W Compare Enable (0=Alarm every day, 1=Alarm only at specified day)
 Alarm1 and Alarm2 Hour Registers (INT1 and INT2 each)
 0-5 R/W Hour (BCD 00h..23h in 24h mode, or 00h..11h in 12h mode)
 6 R/W AM/PM (0=AM, 1=PM) (must be correct even in 24h mode?)
 7 R/W Compare Enable (0=Alarm every hour, 1=Alarm only at specified hour)
 Alarm1 and Alarm2 Minute Registers (INT1 and INT2 each)
 0-6 R/W Minute (BCD 00h..59h)
 7 R/W Compare Enable (0=Alarm every min, 1=Alarm only at specified min)
 Selected Frequency Steady Interrupt Register (INT1 only) (when Stat2/Bit2=0)
 0 R/W Enable 1Hz Frequency (0=Disable, 1=Enable)
 1 R/W Enable 2Hz Frequency (0=Disable, 1=Enable)
 2 R/W Enable 4Hz Frequency (0=Disable, 1=Enable)
 3 R/W Enable 8Hz Frequency (0=Disable, 1=Enable)
 4 R/W Enable 16Hz Frequency (0=Disable, 1=Enable)
 The signals are ANDed when two or more frequencies are enabled,
 ie. the /INT signal gets LOW when either of the signals is LOW.
 5-7 R/W General purpose bits

Note: There is only one register shared as "Selected Frequency S teady Interrupt" (acc essed as single byte parameter when S tat2/Bit2=0) and as "Alarm1 Minute" (accessed as 3rd byte of 3-byte parameter when S tat2/Bit2=1), changing either value will also change the other value.

Interrupt
There's only one /INT signal, shared for both INT1 and INT2.
In the NDS, it is connected to the S I-input of the S IO unit (and so, also shared with S IO interrupts). To enable the interrupt, RCNT should be set to 8144h (Bit14-15=General Purpose mode, Bit8=S I Interrupt Enable, Bit6,2=S I Output/High).
Not sure why Output/High... maybe as pullup... however, it seems to be working also as Input... ie. RCNT=8100h.

Pin-Outs
 1 /INT 8 VDD
 2 XOUT 7 SIO
 3 XIN 6 /SCK
 4 GND 5 CS

 DS Serial Peripheral Interface Bus (SPI)

Serial Peripheral Interface Bus
SPI Bus is a 4-wire (Data In, Data Out, Clock, and Chipselect) serial bus.
The NDS supports the following SPI devices (each with its own chipselect).
DS Firmware Serial Flash Memory
DS Touch Screen Controller (TSC)
DS Power Management

40001C0h - NDS7 - SPICNT - SPI Bus Control/Status Register
 0-1 Baudrate (0=4MHz/Firmware, 1=2MHz/Touchscr, 2=1MHz/Powerman., 3=512KHz)
 2-6 Not used (Zero)
 7 Busy Flag (0=Ready, 1=Busy) (presumably Read-only)
 8-9 Device Select (0=Powerman., 1=Firmware, 2=Touchscr, 3=Reserved)
 10 Transfer Size (0=8bit/Normal, 1=16bit/Bugged)
 11 Chipselect Hold (0=Deselect after transfer, 1=Keep selected)
 12-13 Not used (Zero)
 14 Interrupt Request (0=Disable, 1=Enable)
 15 SPI Bus Enable (0=Disable, 1=Enable)

The "Hold" flag should be c leared BEFORE transferring the LAST data unit, the chipselect will be then automatically c leared after the transfer, the program should issue a WaitByLoop(3) manually AFTER the LAST transfer.

40001C2h - NDS7 - SPIDATA - SPI Bus Data/Strobe Register (R/W)
The SPI transfer is started on writing to this register, so one must <write> a dummy value (should be zero) even when intending to <read> from SPI bus.
 0-7 Data
 8-15 Not used (always zero, even in bugged-16bit mode)

During transfer, the Busy flag in SPICNT is set, and the written SPIDATA value is transferred to the device (via output line), simultaneously data is received (via input line). Upon transfer completion, the Busy flag goes off (with optional IRQ), and the received value can be then read from SPIDATA, if desired.

Notes/Glitches
SPICNT Bits 12,13 appear to be unused (always zero), although the BIOS (attempts to) set Bit13=1, and Bit12=Bit11 when accessing the firmware.
The SPIDATA register is restricted to 8bit, so that only each 2nd byte will appear in SPIDATA when attempting to use the bugged-16bit mode.

Cartridge Backup Auxiliar SPI Bus
The NDS Cartridge S lot uses a separate SPI bus (with other I/O Ports), see
DS Cartridge Backup

 DS Touch Screen Controller (TSC)

Texas Instruments TSC2046 (NDS)
Asahi Kasei Microsystems AK4148AVT (NDS-Lite)
The Touch Screen Controller (for lower LCD screen) is accessed via SPI bus,
DS Serial Peripheral Interface Bus (SPI)

Control Byte (transferred MSB first)
 0-1 Power Down Mode Select
 2 Reference Select (0=Differential, 1=Single-Ended)
 3 Conversion Mode (0=12bit, max CLK=2MHz, 1=8bit, max CLK=3MHz)
 4-6 Channel Select (0-7, see below)
 7 Start Bit (Must be set to access Control Byte)

Channel
 0 Temperature 0 (requires calibration, step 2.1mV per 1'C accuracy)
 1 Touchscreen Y-Position (somewhat 0B0h..F20h, or FFFh=released)
 2 Battery Voltage (not used, connected to GND in NDS, always 000h)
 3 Touchscreen Z1-Position (diagonal position for pressure measurement)
 4 Touchscreen Z2-Position (diagonal position for pressure measurement)
 5 Touchscreen X-Position (somewhat 100h..ED0h, or 000h=released)
 6 AUX Input (connected to Microphone in the NDS)
 7 Temperature 1 (difference to Temp 0, without calibration, 2'C accuracy)

All channels can be accessed in S ingle-Ended mode.
In differential mode, only channel 1,3,4,5 (X,Z1,Z2,Y) can be accessed.
On AK4148AVT, channel 6 (AUX) is split into two separate channels, IN1 and IN2, separated by Bit2 (Reference Select). IN1 is selected when Bit2=1, IN2 is selected when Bit2=0 (despite of the Bit2 settings, both IN1 and IN2 are using single ended more). On the NDS-Lite, IN1 connects to the mircrophone (as on original NDS), and the new IN2 input is simply wired to VDD3.3 (which is equal the the external VREF voltage, so IN2 is always FFFh).

Power Down Mode
 Mode /PENIRQ VREF ADC Recommended use
 0 Enabled Auto Auto Differential Mode (Touchscreen, Penirq)
 1 Disabled Off On Single-Ended Mode (Temperature, Microphone)
 2 Enabled On Off Don't use
 3 Disabled On On Don't use

Allows to enable/disable the /PENIRQ output, the internal reference voltage (VREF), and the Analogue-Digital Converter.
For AK4148AVT, Power Down modes are slightly different (among others, /PENIRQ is enabled in Mode 0..2).

Reference Voltage (VREF)
VREF is used as reference voltage in single ended mode, at 12bit resolution one ADC step equals to VREF/4096. The TSC generates an internal VREF of 2.5V (+/-0.05V), however, the NDS uses as external VREF of 3.33V (sinks to 3.31V at low battery charge), the external VREF is always enabled, no matter if internal VREF is on or off. Power Down Mode 1 disables the internal VREF, which may reduce power consumption in single ended mode. After conversion, Power Down Mode 0 should be restored to re-enable the Penirq signal.

Sending the first Command after Chip-Select
Switch chipselect low, then output the command byte (MSB first).

Reply Data
The following reply data is received (via Input line) after the Command byte has been transferred: One dummy bit (zero), followed by the 8bit or 12bit conversion result (MSB first), followed by endless padding (zero).
Note: The returned ADC value may become unreliable if there are longer delays between sending the command, and receiving the reply byte(s).

Sending further Commands during/after receiving Reply Data
In general, the Output line should be LOW during the reply period, however, once when Data bit6 has been received (or anytime later), a new Command can be invoked (started by sending the HIGH-startbit, ie. Command bit7), simultanously, the remaining reply-data bits (bit5..0) can be received.
In other words, the new command can be output after receiving 3 bits in 8bit mode (the dummy bit, and data bits 7..6), or after receiving 7 bits in 12bit mode (the dummy bit, and data bits 11..6).
In practice, the NDS SPI register always transfers 8 bits at once, so that one would usually receive 8 bits (rather than above 3 or 7 bits), before outputting a new command.

Touchscreen Position
Read the X and Y positions in 12bit differential mode, then convert the touchscreen values (adc) to screen/pixel positions (scr), as such:
 scr.x = (adc.x-adc.x1) * (scr.x2-scr.x1) / (adc.x2-adc.x1) + (scr.x1-1)
 scr.y = (adc.y-adc.y1) * (scr.y2-scr.y1) / (adc.y2-adc.y1) + (scr.y1-1)

The X1,Y1 and X2,Y2 calibration points are found in Firmware User Settings,
DS Firmware User Settings
scr.x1,y1,x2,y2 are originated at 1,1 (converted to 0,0 by above formula).

Touchscreen Pressure
To calculate the pressure resistance, in respect to X/Y/Z positions and X/Y plate resistances, either of below formulas can be used,
 Rtouch = (Rx_plate*Xpos*(Z2pos/Z1pos-1))/4096
 Rtouch = (Rx_plate*Xpos*(4096/Z1pos-1)-Ry_plate*(1-Ypos))/4096

The second formula requires less CPU load (as it doesn't require to measure Z2), the downside is that one must know both X and Y plate resistance (or at least their ratio). The first formula doesn't require that ratio, and so Rx_plate can be set to any value, setting it to 4096 results in
 touchval = Xpos*(Z2pos/Z1pos-1)

Of course, in that case, touchval is just a number, not a resistance in Ohms.

Touchscreen Notes
It may be impossible to press locations c lose to the screen borders.
When pressing two or more locations the TSC values will be somewhere in the middle of these locations.
The TSC values may be garbage if the screen becomes newly pressed or released, to avoid invalid inputs: read TSC values at least two times, and ignore BOTH positions if ONE position was invalid.

Microphone / AUX Channel
Observe that the microphone amplifier is switched off after power up, see:
DS Power Management

Temperature Calculation
TP0 decreases by c irca 2.1mV per degree Kelvin. The voltage difference between TP1 minus TP0 increases by c irca 0.39mV (1/2573 V) per degree Kelvin. At VREF=3.33V, one 12bit ADC step equals to c irca 0.8mV (VREF/4096).
Temperature can be calculated at best resolution when using the current TP0 value, and two calibration values (an ADC value, and the corresponding temperature in degrees kelvin):
 K = (CAL.TP0-ADC.TP0) * 0.4 + CAL.KELVIN

Alternately, temperature can be calculated at rather bad resolution, but without calibration, by using the difference between TP1 and TP0:
 K = (ADC.TP1-ADC.TP0) * 8568 / 4096

To convert Kelvin to other formats,
 Celsius: C = (K-273.15)
 Fahrenheit: F = (K-273.15)*9/5+32
 Reaumur: R = (K-273.15)*4/5
 Rankine: X = (K)*9/5

The Temperature Range for the TSC 2046 chip is -40'C..+85'C (for AK4181AVT only -20'C..+70'C). According to Nintendo, the DS should not be exposed to "extreme" heat or cold, the optimal battery charging temperature is specified as +10'C..+40'C.
The original firmware does not support temperature calibration, calibration is supported by nocash firmware (if present). See Extended Settings,
DS Firmware Extended Settings

Pin-Outs

 VCC 1|o |16 DCLK
 X+ 2| |15 /CS
 Y+ 3| TSC |14 DIN
 X- 4| 2046 |13 BUSY
 Y- 5| |12 DOUT
 GND 6| |11 /PENIRQ
 VBAT 7| |10 IOVDD
 AUX 8|________|9 VREF

For AK4181AVT, same pins as above, except that IOVDD replaced by the new IN2 input, the pin is wired to VDD3.3 (so IN2 is always equal to VREF, which is wired to VDD3.3, too) (and AUX is renamed to IN1, and is kept used for MIC input).

 DS Power Management

The DS contains several Power Managment functions, some accessed via I/O ports, some accessed via SPI bus (described later on below).

4000304h - NDS9 - POWCNT1 - Graphics Power Control Register (R/W)
 0 Enable Flag for both LCDs (0=Disable) (Prohibited, see notes)
 1 2D Graphics Engine A (0=Disable) (Ports 008h-05Fh, Pal 5000000h)
 2 3D Rendering Engine (0=Disable) (Ports 320h-3FFh)
 3 3D Geometry Engine (0=Disable) (Ports 400h-6FFh)
 4-8 Not used
 9 2D Graphics Engine B (0=Disable) (Ports 1008h-105Fh, Pal 5000400h)
 10-14 Not used
 15 Display Swap (0=Send Display A to Lower Screen, 1=To Upper Screen)

Use SwapBuffers command once after enabling Rendering/Geometry Engine.
Improper use of Bit0 may damage the hardware?
When disabled, corresponding Ports become Read-only, corresponding (palette-) memory becomes read-only-zero-filled.

4000304h - NDS7 - POWCNT2 - Sound/Wifi Power Control Register (R/W)
 Bit Expl.
 0 Sound Speakers (0=Disable, 1=Enable) (Initial setting = 1)
 1 Wifi (0=Disable, 1=Enable) (Initial setting = 0)
 2-31 Not used

Note: Bit0 disables the internal Speaker only, headphones are not disabled.
Bit1 disables Port 4000206h, and Ports 4800000h-480FFFFh.

4000206h - NDS7 - WIFIWAITCNT - Wifi Waitstate Control
 Bit Expl.
 0-2 Wifi WS0 Control (0-7) (Ports 4800000h-4807FFFh)
 3-5 Wifi WS1 Control (0-7) (Ports 4808000h-480FFFFh)
 4-15 Not used (zero)

This register is initialized by firmware on power-up, don't change.
Note: WIFIWAITCNT can be accessed only when enabled in POWCNT2.

4000301h - NDS7 - HALTCNT - Low Power Mode Control (R/W)
In Halt mode, the CPU is paused as long as (IE AND IF)=0.
In S leep mode, most of the hardware including sound and video are paused, this very-low-power mode could be used much like a screensaver.
 Bit Expl.
 0-5 Not used (zero)
 6-7 Power Down Mode (0=No function, 1=Enter GBA Mode, 2=Halt, 3=Sleep)

The HALTCNT register should not be accessed directly. Instead, the BIOS Halt, S leep, CustomHalt, IntrWait, or VBlankIntrWait SWI functions should be used.
BIOS Halt Functions
ARM CP15 System Control Coprocessor
The NDS9 does not have a HALTCNT register, instead, the Halt function uses the co-processor opcode "mcr p15,0,r0,c7,c0,4" - this opcode locks up if interrupts are disabled via IME=0 (unlike NDS7 HALTCNT method which doesn't check IME).

4000300h - NDS7/NDS9 - POSTFLG - BYTE - Post Boot Flag (R/W)
The NDS7 and NDS9 post boot flags are usually set upon BIOS/Firmware boot completion, once when set the reset vector is redirected to the debug handler of Nintendo's hardware debugger. That allows the NDS7 debugger to capture accidental jumps to address 0, that appears to be a common problem with HLL-programmers, asm-coders know that (and why) they should not jump to 0.
 Bit Expl.
 0 Post Boot Flag (0=Boot in progress, 1=Boot completed)
 1 NDS7: Not used (always zero), NDS9: Bit1 is read-writeable
 2-7 Not used (always zero)

There are some write-restrictions: The NDS7 register can be written to only from code executed in BIOS . Bit0 of both NDS7 and NDS9 registers cannot be c leared (except by Reset) once when it is set.

Power Management Device - Mitsumi 3152A (NDS) / Mitsumi 3205B (NDS-LITE)
The Power Management Device is accessed via SPI bus,
DS Serial Peripheral Interface Bus (SPI)
To access the device, write the Index Register, then read or write the data register, and release the chipselect line when finished.
 Index Register
 Bit0-2 Register Select (0..3) (0..4 for DS-Lite)
 Bit3-6 Not used
 Bit7 Register Direction (0=Write, 1=Read)
 Register 0 - Powermanagement Control (R/W)
 Bit0 Sound Amplifier Enable (0=Disable, 1=Enable)
 (Old-DS: Disabled: Sound is very silent, but still audible)
 (DS-Lite: Disabled: Sound is NOT audible)
 Bit1 Sound Amplifier Mute (0=Normal, 1=Mute) (Old-DS Only, not DS-Lite)
 (Old-DS: Muted: Sound is NOT audible, that works only if Bit0=1)
 (DS-Lite: Not used, Bit1 is always zero)
 Bit2 Lower Backlight (0=Disable, 1=Enable)
 Bit3 Upper Backlight (0=Disable, 1=Enable)
 Bit4 Power LED Blink Enable (0=Always ON, 1=Blinking OFF/ON)
 Bit5 Power LED Blink Speed (0=Slow, 1=Fast) (only if Blink enabled)
 Bit6 DS System Power (0=Normal, 1=Shut Down)
 Bit7 Not used (always 0)
 Register 1 - Battery Status (R)
 Bit0 Battery Power LED Status (0=Power Good/Green, 1=Power Low/Red)
 Bit1-7 Not used
 Register 2 - Microphone Amplifier Control (R/W)
 Bit0 Amplifier (0=Disable, 1=Enable)
 Bit1-7 Not used (always 0)
 Register 3 - Microphone Amplifier Gain Control (R/W)
 Bit0-1 Gain (0..3=Gain 20, 40, 80, 160)
 Bit2-7 Not used (always 0)
 Register 4 - DS-Lite Only - Backlight Levels/Power Source (R/W)
 Bit0-1 Backlight Brightness (0..3=Low,Med,High,Max) (R/W)
 (when bit2+3 are both set, then reading bit0-1 always returns 3)
 Bit2 Force Max Brightness when Bit3=1 (0=No, 1=Yes) (R/W)
 Bit3 External Power Present (0=No, 1=Yes) (Read-Only)
 Bit4-7 Unknown (Always 4) (Read-Only)

On Old-DS , registers 4..7Fh are mirrors of 0..3. On DS-Lite, registers 5,6,7 are mirrors of 4, register 8..7Fh are mirrors of 0-7.

Backlight Dimming / Backlight caused Shut-Down(s)
The above bits are essentially used to switch Backlights on or off. However, there a number of strange effects. Backlight dimming is possible by pulse width modulation, ie. by using a timer interrupt to issue pulse widths of N% ON, and 100-N% OFF. Too long pulses are certainly resulting in flickering. Too short pulses are ignored, the bac klights will remain OFF, even if the ON and OFF pulses are having the same length. Much too short pulses cause the power supply to shut-down; after changing the backlight state, further changes must not occur within the next (c irca) 2500 clock cycles. The mainboard can be operated without screens & backlights connected, however, if so, the power supply will shut-down as soon as backlights are enabled.
That method works also on the DS-Lite, allowing to use smoother fade in/out effects as when using the five "hardware" levels (Off,Low,Med,High,Max).

Memory Power Down Functions
DS Main Memory Control
DS Firmware Serial Flash Memory

 DS Main Memory Control

Main Memory
The DS Main Memory is 2Mx16bit (4MByte), 1.8V Pseudo SRAM (PSRAM); all Dynamic RAM refresh is handled internally, the chip doesn't require any external refresh signals, and alltogether behaves like S tatic RAM. Non-sequential access time is 70ns, sequential (burst) access time is 12ns.

Main Memory Control
The memory chips contain built-in Control functions, which can be accessed via Port 27FFFFEh and/or by EXMEMCNT Bit 14. Nintendo is using at least two different types of memory chips in DS consoles, Fujitsu 82DBS02163C-70L, and ST M69AB048BL70ZA8, both appear to have different control mechanisms, other chips (with 8MB size) are used in the semi-professional DS hardware debuggers, and further chips may be used in future, so using the memory control functions may lead into compatibitly problems.

Power Consumption / Power Control
Power Consumption during operation (read/write access) is somewhat 30mA, in standby mode (no read/write access) consumption is reduced to 100uA.
Furthermore, a number of power-down modes are supported: In "Deep" Power Down mode the refresh is fully disabled, consumption is 10uA (and all data will be lost), in "Partial" Power Down modes only fragment of memory is refreshed, for smallest fragments, consumption goes to down to c irca 50uA. The chip cannot be accessed while it is in Deep or Partial Power Down mode.

Fujitsu 82DBS02163C-70L
The Configuration Register (CR) can be written to by the following sequence:
 LDRH R0,[27FFFFEh] ;read one value
 STRH R0,[27FFFFEh] ;write should be same value as above
 STRH R0,[27FFFFEh] ;write should be same value as above
 STRH R0,[27FFFFEh] ;write any value
 STRH R0,[27FFFFEh] ;write any value
 LDRH R0,[2400000h+CR*2] ;read, address-bits are defining new CR value

Do not access any other Main Memory addresses during above sequence (ie. disable interrupts, and do not execute the sequence by code located in Main Memory). The CR value is write-only. The CR bits are:
 Bit Expl.
 0-6 Reserved (Must be 7Fh)
 7 Write Control
 0=WE Single Clock Pulse Control without Write Suspend Function
 1=WE Level Control with Write Suspend Function)
 Burst Read/Single Write is not supported at WE Single Clock Mode.
 8 Reserved (Must be 1)
 9 Valid Clock Edge (0=Falling Edge, 1=Rising Edge)
 10 Single Write (0=Burst Read/Burst Write, 1=Burst Read/Single Write)
 11 Burst Sequence (0=Reserved, 1=Sequential)
 12-14 Read Latency (1=3 clocks, 2=4 clocks, 3=5 clocks, other=Reserved)
 15 Mode
 0=Synchronous: Burst Read, Burst Write
 1=Asynchronous: Page Read, Normal Write
 In Mode 1 (Async), only the Partial Size bits are used,
 all other bits, CR bits 0..18, must be "1".
 16-18 Burst Length (2=8 Words, 3=16Words, 7=Continous, other=Reserved)
 19-20 Partial Size (0=1MB, 1=512KB, 2=Reserved, 3=Deep/0 bytes)

The Power Down mode is entered by setting CE2=LOW, this can be probably done by setting EXMEMCNT Bit14 to zero.

ST Microelectronics M69AB048BL70ZA8
The chip name decodes as PSRAM (M96), Asynchronous (A), 1.8V Burst (B), 2Mx16 (048), Two Chip Enables (B), Low Leakage (L), 70ns (70), Package (ZA), -30..+85'C (8).
There are three data sheets for different PSRAM chips available at www.st.com (unfortunately none for M69AB048BL70ZA8), each using different memory control mechanisms.

NDS9 BIOS
The NDS9 BIOS contains the following Main Memory initialization code, that method doesn't match up with any ST (nor Fujitsu) data sheets that I've seen. At its best, it looks like a strange (and presumably non-functional) mix-up of different ST control methods.
 STRH 2000h,[4000204h]
 LDRH R0,[27FFFFEh]
 STRH R0,[27FFFFEh]
 STRH R0,[27FFFFEh]
 STRH FFDFh,[27FFFFEh]
 STRH E732h,[27FFFFEh]
 LDRH R0,[27E57FEh]
 STRH 6000h,[4000204h]

In the above BIOS code, EXMEMCNT.14 appears to be used to unlock the control register. However, the NDS Firmware appears to use EXMEMCNT.14 to switch Main Memory into Power Down mode before entering GBA mode.

 DS Cartridges, Encryption, Firmware

Cartridges
DS Cartridge Header
DS Cartridge Secure Area
DS Cartridge Icon/Title
DS Cartridge Protocol
DS Cartridge Backup
DS Cartridge I/O Ports
DS Cartridge NitroROM File System
DS Cartridge PassMe/PassThrough
DS Cartridge GBA S lot

Add-Ons
DS Cart Rumble Pak
DS Cart Unknown Add-Ons

Special Cartridges
DS Cart Cheat Action Replay DS
DS Cart Cheat Codebreaker DS

Encryption
DS Encryption by Gamecode/Idcode (KEY1)
DS Encryption by Random Seed (KEY2)

Firmware
DS Firmware Serial Flash Memory
DS Firmware Header
DS Firmware User Settings
DS Firmware Extended Settings

 DS Cartridge Header

Header Overview (loaded from ROM Addr 0 to Main RAM 27FFE00h on Power-up)
 Address Bytes Expl.
 000h 12 Game Title (Uppercase ASCII, padded with 00h)
 00Ch 4 Gamecode (Uppercase ASCII, NTR-<code>) (0=homebrew)
 010h 2 Makercode (Uppercase ASCII, eg. "01"=Nintendo) (0=homebrew)
 012h 1 Unitcode (00h=Nintendo DS)
 013h 1 Encryption Seed Select (00..07h, usually 00h)
 014h 1 Devicecapacity (Chipsize = 128KB SHL nn) (eg. 7 = 16MB)
 015h 9 Reserved (zero filled)
 01Eh 1 ROM Version (usually 00h)
 01Fh 1 Autostart (Bit2: Skip "Press Button" after Health and Safety)
 (Also skips bootmenu, even in Manual mode & even Start pressed)
 020h 4 ARM9 rom_offset (4000h and up, align 1000h)
 024h 4 ARM9 entry_address (2000000h..23BFE00h)
 028h 4 ARM9 ram_address (2000000h..23BFE00h)
 02Ch 4 ARM9 size (max 3BFE00h) (3839.5KB)
 030h 4 ARM7 rom_offset (8000h and up)
 034h 4 ARM7 entry_address (2000000h..23BFE00h, or 37F8000h..3807E00h)
 038h 4 ARM7 ram_address (2000000h..23BFE00h, or 37F8000h..3807E00h)
 03Ch 4 ARM7 size (max 3BFE00h, or FE00h) (3839.5KB, 63.5KB)
 040h 4 File Name Table (FNT) offset
 044h 4 File Name Table (FNT) size
 048h 4 File Allocation Table (FAT) offset
 04Ch 4 File Allocation Table (FAT) size
 050h 4 File ARM9 overlay_offset
 054h 4 File ARM9 overlay_size
 058h 4 File ARM7 overlay_offset
 05Ch 4 File ARM7 overlay_size
 060h 4 Port 40001A4h setting for normal commands (usually 00586000h)
 064h 4 Port 40001A4h setting for KEY1 commands (usually 001808F8h)
 068h 4 Icon_title_offset (0=None) (8000h and up)
 06Ch 2 Secure Area Checksum, CRC-16 of [[20h]..7FFFh]
 06Eh 2 Secure Area Loading Timeout (usually 051Eh)
 070h 4 ARM9 Auto Load List RAM Address (?)
 074h 4 ARM7 Auto Load List RAM Address (?)
 078h 8 Secure Area Disable (by encrypted "NmMdOnly") (usually zero)
 080h 4 Total Used ROM size (remaining/unused bytes usually FFh-padded)
 084h 4 ROM Header Size (4000h)
 088h 38h Reserved (zero filled)
 0C0h 9Ch Nintendo Logo (compressed bitmap, same as in GBA Headers)
 15Ch 2 Nintendo Logo Checksum, CRC-16 of [0C0h-15Bh], fixed CF56h
 15Eh 2 Header Checksum, CRC-16 of [000h-15Dh]
 160h 4 Debug rom_offset (0=none) (8000h and up) ;only if debug
 164h 4 Debug size (0=none) (max 3BFE00h) ;version with
 168h 4 Debug ram_address (0=none) (2400000h..27BFE00h) ;SIO and 8MB
 16Ch 4 Reserved (zero filled) (transferred, and stored, but not used)
 170h 90h Reserved (zero filled) (transferred, but not stored in RAM)

For more info about CRC-16, see description of GetCRC16 BIOS function,
BIOS Misc Functions
For the Logo checksum, the BIOS verifies only [15Ch]=CF56h, it does NOT verify the ac tual data at [0C0h-15Bh] (nor it's checksum), however, the data is verified by the firmware.

Secure Area Loading Timeout (usually X=051Eh) used to initialize timer counter to (0-((X AND 3FFFh)+2)). (In case of Header checksum error it is ANDed with 1FFFh instead of 3FFFh, no idea why).

 DS Cartridge Secure Area

The Secure Area is located in ROM at 4000h..7FFFh, it can contain normal program code and data, however, it can be used only for ARM9 boot code, it cannot be used for ARM7 boot code, icon/title, filesystem, or other data.

Secure Area Size
The Secure Area exists if the ARM9 boot code ROM source address (src) is located within 4000h..7FFFh, if so, it will be loaded (by BIOS via KEY1 encrypted commands) in 4K portions, starting at src, aligned by 1000h, up to address 7FFFh. The secure area size if thus 8000h-src, regardless of the ARM9 boot code size entry in header.
Note: The BIOS silently skips any NDS9 bootcode at src<4000h.
Cartridges with src>=8000h do not have a secure area.

Secure Area ID
The first 8 bytes of the secure area are containing the Secure Area ID, the ID is required (verified by BIOS boot code), the ID value changes during boot process:
 Value Expl.
 "encryObj" raw ID before encryption (raw ROM-image)
 (encrypted) encrypted ID after encryption (encrypted ROM-image)
 "encryObj" raw ID after decryption (verified by BIOS boot code)
 E7FFDEFFh,E7FFDEFFh destroyed ID (overwritten by BIOS after verify)

If the decrypted ID does match, then the BIOS overwrites the first 8 bytes by E7FFDEFFh-values (ie. only the ID is destroyed). If the ID doesn't match, then the first 800h bytes (2K) are overwritten by E7FFDEFFh-values.

Secure Area First 2K Encryption/Content
The first 2K of the Secure Area (if it exists) are KEY1 encrypted. In offic ial games, this 2K region contains data like so (in decrypted form):
 000h..007h Secure Area ID (see above)
 008h..00Dh Fixed (FFh,DEh,FFh,E7h,FFh,DEh)
 00Eh..00Fh CRC16 across following 7E0h bytes, ie. [010h..7FFh]
 010h..7FDh Unknown/random values, mixed with some THUMB SWI calls
 7FEh..7FFh Fixed (00h,00h)

Of which, only the ID in the first 8 bytes is verified. Neither BIOS nor (current) firmare versions are verifying the data at 008h..7FFh, so the 7F8h bytes may be also used for normal program code/data.

Avoiding Secure Area Encryption
WLAN files are reportedly same format as cartridges, but without Secure Area, so games with Secure Area cannot be booted via WLAN. No$gba can encrypt and decrypt Secure Areas only if the NDS BIOS-images are present. And, Nintendo's devkit doesn't seem to support Secure Area encryption of unreleased games.
So, unencrypted cartridges are more flexible in use. Ways to avoid encryption (which still work on real hardware) are:
1) Set NDS9 ROM offset to 4000h, and leave the first 800h bytes of the Secure Area 00h-filled, which can be (and will be) safely destroyed during loading; due to the missing "encryObj" ID; that method is used by Nintendo's devkit.
2) Set NDS9 ROM offset to 8000h or higher (cartridge has no Secure Area at all).
3) Set NDS9 ROM offset, RAM address, and size to zero, set NDS7 ROM offset to 200h, and point both NDS9 and NDS7 entrypoints into the loaded NDS7 region. That method avoids waste of unused memory at 200h..3FFFh, and it should be compatible with the NDS console, however, it is not comaptible with commercial cartridges - which do silently redirect address below 4000h to 8000h+(addr AND 1FFh). S till, it should work with inoffic ial flashcards, which do not do that redirection. No$gba emulates the redirection for regular offic ial cartridges, but it disables redirection for homebrew carts if NDS7 rom offset<8000h, and NDS7 size>0.
[One possible problem: Newer "anti-passme" firmware versions reportedly check that the entrypoint isn't set to 80000C0h, that firmwares might also reject NDS9 entrypoints within the NDS7 bootcode region?]

 DS Cartridge Icon/Title

The ROM offset of the Icon/Title is defined in Cartridge Header [68h].
If it is present (nonzero), then Icon/Title are displayed in the bootmenu.
 Addr Siz Expl.
 000h 2 Version (0001h)
 002h 2 CRC16 across entries 020h..83Fh
 004h 1Ch Reserved (zero-filled)
 020h 200h Icon Bitmap (32x32 pix) (4x4 tiles, each 4x8 bytes, 4bit depth)
 220h 20h Icon Palette (16 colors, 16bit, range 0000h-7FFFh)
 (Color 0 is transparent, so the 1st palette entry is ignored)
 240h 100h Title 0 Japanese (128 characters, 16bit Unicode)
 340h 100h Title 1 English ("")
 440h 100h Title 2 French ("")
 540h 100h Title 3 German ("")
 640h 100h Title 4 Italian ("")
 740h 100h Title 5 Spanish ("")
 840h ? (Maybe newer/chinese firmware do also support chinese title?)
 840h - End of Icon/Title structure (next 1C0h bytes usually FFh-filled)

Usually, for non-multilanguage games, the same (english) title is stored in all title entries. The title may consist of ASCII characters 0020h-007Fh, character 000Ah (linefeed), and should be terminated/padded by 0000h. The whole text should not exceed the dimensions of the DS cart field in the bootmenu. The title is usually split into a primary title, optional sub-title, and manufacturer, each separated by 000Ah character(s). For example, "America",000Ah,"The Axis of War",000Ah,"Cynicware",0000h

 DS Cartridge Protocol

Communication with Cartridge ROM relies on sending 8 byte commands to the cartridge, after the sending the command, a data stream can be received from the cartridge (the length of the data stream isn't fixed, below descriptions show the default length in brackets, but one may receive more, or less bytes, if desired).

Cartridge Memory Map
 0000h-0FFFh Header (unencrypted)
 1000h-3FFFh Not read-able (zero filled in ROM-images)
 4000h-7FFFh Secure Area, 16KBytes (first 2Kbytes with extra encryption)
 8000h-... Main Data Area

Cartridge memory must be copied into Work RAM (the CPU cannot execute code in ROM).

Command Summary, Cmd/Reply-Encryption Type, Default Length
 Command/Params Expl. Cmd Reply Len
 -- Unencrypted Load --
 9F00000000000000h Dummy (read HIGH-Z bytes) RAW RAW 2000h
 0000000000000000h Get Cartridge Header RAW RAW 200h
 9000000000000000h 1st Get ROM Chip ID RAW RAW 4
 00aaaaaaaa000000h Unencrypted Data (debug ver only) RAW RAW 200h
 3Ciiijjjxkkkkkxxh Activate KEY1 Encryption Mode RAW RAW 0
 -- Secure Area Load --
 4llllmmmnnnkkkkkh Activate KEY2 Encryption Mode KEY1 FIX 910h+0
 1lllliiijjjkkkkkh 2nd Get ROM Chip ID KEY1 KEY2 910h+4
 xxxxxxxxxxxxxxxxh Invalid - Get KEY2 Stream XOR 00h KEY1 KEY2 910h+...
 2bbbbiiijjjkkkkkh Get Secure Area Block (4Kbytes) KEY1 KEY2 910h+11A8h
 6lllliiijjjkkkkkh Optional KEY2 Disable KEY1 KEY2 910h+?
 Alllliiijjjkkkkkh Enter Main Data Mode KEY1 KEY2 910h+0
 -- Main Data Load --
 B7aaaaaaaa000000h Encrypted Data Read KEY2 KEY2 200h
 B800000000000000h 3rd Get ROM Chip ID KEY2 KEY2 4
 xxxxxxxxxxxxxxxxh Invalid - Get KEY2 Stream XOR 00h KEY2 KEY2 ...

The parameter digits contained in above commands are:
 aaaaaaaa 32bit ROM address (command B7 can access only 8000h and up)
 bbbb Secure Area Block number (0004h..0007h for addr 4000h..7000h)
 x,xx Random, not used in further commands
 iii,jjj,llll Random, must be SAME value in further commands
 kkkkk Random, must be INCREMENTED after FURTHER commands
 mmm,nnn Random, used as KEY2-encryption seed

++++ Unencrypted Commands (First Part of Boot Procedure) ++++

Cartridge Reset
The /RES Pin switches the cartridge into unencrypted mode. After reset, the first two commands (9Fh and 00h) are transferred at 4MB/s CLK rate.

9F00000000000000h (2000h) - Dummy
Dummy command send after reset, returns endless stream of HIGH-Z bytes (ie. usually receiving FFh, immediately after sending the command, the first 1-2 received bytes may be equal to the last command byte).

0000000000000000h (200h) - Get Header
Returns RAW unencrypted cartridge header, repeated every 1000h bytes. The interesting area are the 1st 200h bytes, the rest is typically zero filled.
The Gamecode header entry is used later on to initialize the encryption. Also, the ROM Control entries define the length of the KEY1 dummy periods (typically 910h clocks), and the CLK transfer rate for further commands (typically faster than the initial 4MB/s after power up).

9000000000000000h (4) - 1st Get ROM Chip ID
Returns RAW unencrypted Chip ID (eg. C2h,0Fh,00h,00h), repeated every 4 bytes.
 1st byte - Manufacturer (C2h = Macronix)
 2nd byte - Chip size in megabytes minus 1 (eg. 0Fh = 16MB)
 3rd byte - Reserved/zero (probably upper bits of chip size)
 4th byte - Bit7: Secure Area Block transfer mode (8x200h or 1000h)

Existing/known NDS chip sizes are 16MB (eg. Metroid Demo), 32MB (eg. Over the Hedge), and 64MB (eg. Ultimate Spiderman).

3Ciiijjjxkkkkkxxh (0) - Activate KEY1 Encryption Mode
The 3Ch command returns endless stream of HIGH-Z bytes, all following commands, and their return values, are encrypted. The random parameters iii,jjj,kkkkk must be re-used in further commands; the 20bit kkkkk value is to be incremented by one after each <further> command (it is <not> incremented after the 3Ch command).

++++ KEY1 Encrypted Commands (2nd Part of Boot procedure) ++++

4llllmmmnnnkkkkkh (910h) - Activate KEY2 Encryption Mode
KEY1 encrypted command, parameter mmmnnn is used to initialize the KEY2 encryption stream. Returns 910h dummy bytes (which are still subject to old KEY2 settings; at pre-initialization time, this is fixed: HIGH-Z, C5h, 3Ah, 81h, etc.). The new KEY2 seeds are then applied, and the first KEY2 byte is then precomputed. The 910h dummy stream is followed by that precomputed byte value endless repeated (this is the same value as that "underneath" of the first HIGH-Z dummy-byte of the next command).

1lllliiijjjkkkkkh (914h) - 2nd Get ROM Chip ID / Get KEY2 Stream
KEY1 encrypted command. Returns 910h dummy bytes, followed by KEY2 encrypted Chip ID repeated every 4 bytes, which must be identical as for the 1st Get ID command. The BIOS randomly executes this command once or twice. Changing the first command byte to any other value returns an endless KEY2 encrypted stream of 00h bytes, that is the easiest way to retrieve encryption values and to bypass the copyprotection.

2bbbbiiijjjkkkkkh (19B8h) - Get Secure Area Block
KEY1 encrypted command. Used to read a secure area block (bbbb in range 0004h..0007h for addr 4000h..7000h), each block is 4K, so it requires four Get Secure Area commands to receive the whole Secure Area (ROM locations 4000h-7FFFh), the BIOS is reading these blocks in random order.
Normally (if the upper bit of the Chip ID is set): Returns 910h dummy bytes, followed by 200h KEY2 encrypted Secure Area bytes, followed by 18h KEY2 encrypted 00h bytes, then the next 200h KEY2 encrypted Secure Area bytes, again followed by 18h KEY2 encrypted 00h bytes, and so on. That stream is repeated every 10C0h bytes (8x200h data bytes, plus 8x18h zero bytes).
Alternately (if the upper bit of the Chip ID is zero): Returns 910h dummy bytes, followed by 1000h KEY2 encrypted Secure Area bytes, presumably followed by 18h bytes, too.
Aside from above KEY2 encryption (which is done by hardware), the first 2K of the Sec ure Area is additionally KEY1 encrypted (which must be resolved after transfer by software).

6lllliiijjjkkkkkh (0) - Optional KEY2 Disable
KEY1 encrypted command. Returns 910h dummy bytes (which are still KEY2 affected), fol lowed by endless stream of RAW 00h bytes. KEY2 encryption is disabled for all following commands.
This command is send only if firmware[18h] matches encrypted string "enPngOFF", and ONLY if firmware get_crypt_keys had completed BEFORE completion of secure area loading, this timing issue may cause unstable results.

Alllliiijjjkkkkkh (910h) - Enter Main Data Mode
KEY1 encrypted command. Returns 910h dummy bytes, followed by endless KEY2 encrypted stream of 00h bytes. All following commands are KEY2 encrypted.

++++ KEY2 Encrypted Commands (Main Data Transfer) ++++

B7aaaaaaaa000000h (200h) - Get Data
KEY2 encrypted command. The desired ROM address is specifed, MSB first, in parameter bytes (a). Can be used only for addresses 8000h and up, smaller addresses will be silently redirected to address "8000h+(addr AND 1FFh)". There is no alignment restriction for the address. However, the datastream wraps to the begin of the current 4K block when address+length crosses a 4K boundary (1000h bytes). Returned data is KEY2 encrypted.

B800000000000000h (4) - 3rd Get ROM Chip ID
KEY2 encrypted command. Returns KEY2 encrypted Chip ID repeated every 4 bytes.

xxxxxxxxxxxxxxxxh - Invalid Command
Any other command (anything else than above B7h and B8h) in KEY2 command mode causes communcation failures. The invalid command returns an endless KEY2 encrypted stream of 00h bytes. After the invalid command, the KEY2 stream is NOT advanced for further c ommand bytes, further commands seems to return KEY2 encrypted 00h bytes, of which, the first returned byte appears to be HIGH-Z.
Ie. the cartridge seems to have switched back to a state similar to the KEY1-phase, although it doesn't seem to be possible to send KEY1 commands.

++++ Notes ++++

KEY1 Command Encryption / 910h Dummy Bytes
All KEY1 encrypted commands are followed by 910h dummy byte transfers, these 910h clock cycles are probably used to decrypt the command at the cartridge side; communication will fail when transferring less than 910h bytes.
The return values for the dummy transfer are: A single HIGH-Z byte, followed by 90Fh KEY2-encrypted 00h bytes. The KEY2 encryption stream is advanced for all 910h bytes, including for the HIGH-Z byte.
Note: Current cartridges are using 910h bytes, however, other carts might use other amounts of dummy bytes, the 910h value can be calculated based on ROM Control entries in cartridge header. For the KEY1 formulas, see:
DS Encryption by Gamecode/Idcode (KEY1)

KEY2 Command/Data Encryption
DS Encryption by Random Seed (KEY2)

 DS Cartridge Backup

SPI Bus Backup Memory
 Type Total Size Page Size Chip/Example Game/Example
 EEPROM 0.5K bytes 16 bytes ST M95040-W (eg. Metroid Demo)
 EEPROM 8K bytes 32 bytes ST M95640-W (eg. Super Mario DS)
 EEPROM 64K bytes 128 bytes ST M95512-W (eg. Downhill Jam)
 FLASH 256K bytes 256 bytes ST M45PE20 (eg. Skateland)
 FLASH 512K bytes 256 bytes ST M25PE40? (eg. which/any games?)
 FRAM 8K bytes No limit ? (eg. which/any games?)
 FRAM 32K bytes No limit Ramtron FM25L256? (eg. which/any games?)

Lifetime Stats
 Type Max Writes per Page Data Retention
 EEPROM 100,000 40 years
 FLASH 100,000 20 years
 FRAM No limit 10 years

SPI Bus Backup Memory is accessed via Ports 40001A0h and 40001A2h, see
DS Cartridge I/O Ports

Commands
For all EEPROM and FRAM types:
 06h WREN Write Enable Cmd, no parameters
 04h WRDI Write Disable Cmd, no parameters
 05h RDSR Read Status Register Cmd, read repeated status value(s)
 01h WRSR Write Status Register Cmd, write one-byte value
 9Fh RDID Read JEDEC ID (not supported on EEPROM/FLASH, returns FFh-bytes)

For 0.5K EEPROM (8+1bit Address):
 03h RDLO Read from Memory 000h-0FFh Cmd, addr lsb, read byte(s)
 0Bh RDHI Read from Memory 100h-1FFh Cmd, addr lsb, read byte(s)
 02h WRLO Write to Memory 000h-0FFh Cmd, addr lsb, write 1..MAX byte(s)
 0Ah WRHI Write to Memory 100h-1FFh Cmd, addr lsb, write 1..MAX byte(s)

For 8K..64K EEPROM and for FRAM (16bit Address):
 03h RD Read from Memory Cmd, addr msb,lsb, read byte(s)

否☀U倦T 瀀楲瑮朮慬敤瀀... 琀牡敧彴敬杮桴 〠 唦☀呐☀D牰湩 汧摡e牰湩...

倦T 瀀楲瑮朮慬敤瀀楲瑮摟... 琀牡敧彴敬杮桴 〠 瀀楲瑮朮慬敤瀀楲瑮摟慩...

 02h WR Write to Memory Cmd, addr msb,lsb, write 1..MAX byte(s)

Note: MAX = Page S ize (see above chip list) (no limit for FRAM).

For FLASH backup, commands should be same as for Firmware FLASH memory:
DS Firmware Serial Flash Memory

Status Register
 0 WIP Write in Progress (1=Busy) (Read only) (always 0 for FRAM chips)
 1 WEL Write Enable Latch (1=Enable) (Read only, except by WREN,WRDI)
 2-3 WP Write Protect (0=None, 1=Upper quarter, 2=Upper Half, 3=All memory)

For 0.5K EEPROM:
 4-7 ONEs Not used (all four bits are always set to "1" each)

For 8K..64K EEPROM and for FRAM:
 4-6 ZERO Not used (all three bits are always set to "0" each)
 7 SRWD Status Register Write Disable (0=Normal, 1=Lock) (Only if /W=LOW)

WEL gets reset on Power-up, WRDI, WRSR, WRITE/LO/HI, and on /W=LOW.
The WRSR command allows to change ONLY the two WP bits, and the SRWD bit (if any), these bits are non-volatile (remain intact during power-down), respectively, the WIP bit must be checked to sense WRSR completion.

Detection (by examining hardware responses)
The overall memory type and bus-width can be detected by RDSR/RDID commands:
 RDSR RDID Type (bus-width)
 FFh, FFh,FFh,FFh None (none)
 F0h, FFh,FFh,FFh EEPROM (with 8+1bit address bus)
 00h, FFh,FFh,FFh EEPROM/FRAM (with 16bit address bus)
 00h, xxh,xxh,xxh FLASH (usually with 24bit address bus)

And, the RD commands can be used to detect the memory size/mirrors (though that won't work if the memory is empty).

Pin-Outs for EEPROM and FRAM chips
 Pin Name Expl.
 1 /S Chip Select
 2 Q Data Out
 3 /W Write-Protect (not used in NDS, wired to VCC)
 4 VSS Ground
 5 D Data In
 6 C Clock
 7 /HOLD Transfer-pause (not used in NDS, wired to VCC)
 8 VCC Supply 2.5 to 5.5V for M95xx0-W

FRAM (Ferroelectric Nonvolatile RAM) is fully backwards compatible with normal EEPROMs, but comes up with faster write/erase time (no delays), and with lower power consumption, and unlimited number of write/erase cycles. Unlike as for normal RAM, as far as I understand, the data remains intact without needing any battery.

 DS Cartridge I/O Ports

The Gamecard bus registers can be mapped to NDS7 or NDS9 via EXMEMCNT, see
DS Memory Control

40001A0h - NDS7/NDS9 - AUXSPICNT - Gamecard ROM and SPI Control
 0-1 SPI Baudrate (0=4MHz/Default, 1=2MHz, 2=1MHz, 3=512KHz)
 2-5 Not used (always zero)
 6 SPI Hold Chipselect (0=Deselect after transfer, 1=Keep selected)
 7 SPI Busy (0=Ready, 1=Busy) (presumably Read-only)
 8-12 Not used (always zero)
 13 NDS Slot Mode (0=Parallel/ROM, 1=Serial/SPI-Backup)
 14 Transfer Ready IRQ (0=Disable, 1=Enable) (for ROM, not for AUXSPI)
 15 NDS Slot Enable (0=Disable, 1=Enable) (for both ROM and AUXSPI)

The "Hold" flag should be c leared BEFORE transferring the LAST data unit, the chipselect will be then automatically c leared after the transfer, the program should issue a WaitByLoop(12) (on NDS7, or longer on NDS9) manually AFTER the LAST transfer.

40001A2h - NDS7/NDS9 - AUXSPIDATA - Gamecard SPI Bus Data/Strobe (R/W)
The SPI transfer is started on writing to this register, so one must <write> a dummy value (should be zero) even when intending to <read> from SPI bus.
 0-7 Data
 8-15 Not used (always zero)

During transfer, the Busy flag in AUXSPICNT is set, and the written DATA value is transferred to the device (via output line), simultaneously data is received (via input line). Upon transfer completion, the Busy flag goes off, and the received value can be then read from AUXSPIDATA, if desired.

40001A4h - NDS7/NDS9 - ROMCTRL - Gamecard Bus ROMCTRL (R/W)
 Bit Expl.
 0-12 KEY1 length part1 (0-1FFFh) (forced min 08F8h by BIOS)
 13 KEY2 encrypt data (0=Disable, 1=Enable KEY2 Encryption for Data)
 14 "SE" Unknown? (usually same as Bit13)
 15 KEY2 Apply Seed (0=No change, 1=Apply Encryption Seed) (Write only)
 16-21 KEY1 length part2 (0-3Fh) (forced min 18h by BIOS)
 22 KEY2 encrypt cmd (0=Disable, 1=Enable KEY2 Encryption for Commands)
 23 Data-Word Status (0=Busy, 1=Ready/DRQ) (Read-only)
 24-26 Data Block size (0=None, 1..6=100h SHL (1..6) bytes, 7=4 bytes)
 27 Transfer CLK rate (0=6.7MHz=33.51MHz/5, 1=4.2MHz=33.51MHz/8)
 28 Secure Area Mode (0=Normal, 1=Other)
 29 "RESB" Unknown (always 1 ?) (not read/write-able)
 30 "WR" Unknown (always 0 ?) (read/write-able)
 31 Block Start/Status (0=Ready, 1=Start/Busy) (IRQ See 40001A0h/Bit14)

The cartridge header is booted at 4.2MHz CLK rate, and following transfers are then using ROMCTRL settings specified in cartridge header entries [060h] and [064h], which are usually using 6.7MHz CLK rate. When using other CLK rate, the Timeout in header [06Eh] must be probably adjusted accordingly.
Transfer length of null, four, and 200h..4000h bytes are supported by the console, however, regular cartridges support only max 1000h bytes.

40001A8h - NDS7/NDS9 - Gamecard bus 8-byte Command Out
The separate commands are described in the Cartridge Protocol chapter, however, once when the BIOS boot procedure has completed, one would usually only need command "B7aaaaaaaa000000h", for reading data (usually 200h bytes) from address aaaaaaaah (which should be usually aligned by 200h).
 0-7 1st Command Byte (at 40001A8h) (eg. B7h) (MSB)
 8-15 2nd Command Byte (at 40001A9h) (eg. addr bit 24-31)
 16-23 3rd Command Byte (at 40001AAh) (eg. addr bit 16-23)
 24-31 4th Command Byte (at 40001ABh) (eg. addr bit 8-15) (when aligned=even)
 32-39 5th Command Byte (at 40001ACh) (eg. addr bit 0-7) (when aligned=00h)
 40-47 6th Command Byte (at 40001ADh) (eg. 00h)
 48-57 7th Command Byte (at 40001AEh) (eg. 00h)
 56-63 8th Command Byte (at 40001AFh) (eg. 00h) (LSB)

Observe that the command/parameter MSB is located at the smallest memory location (40001A8h), ie. compared with the CPU, the byte-order is reversed.

4100010h - NDS7/NDS9 - Gamecard bus 4-byte Data In (R)
 0-7 1st received Data Byte (at 4100010h)
 8-15 2nd received Data Byte (at 4100011h)
 16-23 3rd received Data Byte (at 4100012h)
 24-31 4th received Data Byte (at 4100013h)

After sending a command, data can be read from this register manually (when the DRQ bit is set), or by DMA (with DMASAD=4100010h, Fixed Source Address, Length=1, S ize=32bit, Repeat=On, Mode=DS Gamecard).

40001B0h - 32bit - NDS7/NDS9 - Encryption Seed 0 Lower 32bit (W)
40001B4h - 32bit - NDS7/NDS9 - Encryption Seed 1 Lower 32bit (W)
40001B8h - 16bit - NDS7/NDS9 - Encryption Seed 0 Upper 7bit (bit8-15 unused)
40001BAh - 16bit - NDS7/NDS9 - Encryption Seed 1 Upper 7bit (bit8-15 unused)
These registers are used by the NDS7 BIOS to initialize KEY2 encryption (and there's normally no need to change that initial settings). Writes to the Seed registers do not have direct effect on the internal encryption registers, until the Seed gets applied by writing "1" to ROMCTRL.Bit15.
 For more info:
DS Encryption by Random Seed (KEY2)

Note: There are <separate> Seed registers for both NDS7 and NDS9, which can be applied by ROMCTRL on NDS7 and NDS9 respectively (however, once when applied to the internal registers, the new internal setting is used for <both> CPUs).

 DS Cartridge NitroROM File System

NitroROM
The NitroROM Filesystem is used by many commercial games, at least those that have been developed with Nintendo's tools. The filesystem allows to load data from cartridge ROM by filenames and/or by Overlay IDs.
However, the DS hardware, BIOS , and Firmware do NOT contain any built-in filesystem functions. The ARM9/ARM7 boot code (together max 3903KB), and Icon/Title information are automatically loaded on power-up.
Programs that require to load additional data from cartridge ROM may do that either by implementing whatever functions to translate filenames to ROM addresses, or by reading from ROM directly.

File Allocation Table (FAT) (base/size defined in cart header)
Contains ROM addresses for up to 61440 files (File IDs 0000h and up).
 Addr Size Expl.
 00h 4 Start address of file in ROM (8000h and up) (0=Unused Entry)
 04h 4 End address of file in ROM (Start+Len...-1?) (0=Unused Entry)

Directories are fully defined in FNT area, and do not require FAT entries.

File Name Table (FNT) (base/size defined in cart header)
Consists of the FNT Directory Table, followed by one or more FNT Sub-Tables.
To interprete the directory tree: S tart at the 1st Main-Table entry, which is referencing to a Sub-Table, any directories in the Sub-Table are referencing to Main-Table entries, which are referencing to further Sub-Tables, and so on.

FNT Directory Main-Table (base=FNT+0, size=[FNT+06h]*8)
Consists of a list of up to 4096 directories (Directory IDs F000h and up).
 Addr Size Expl.
 00h 4 Offset to Sub-table (originated at FNT base)
 04h 2 ID of first file in Sub-table (0000h..EFFFh)

For first entry (ID F000h, root directory):
 06h 2 Total Number of directories (1..4096)

Further entries (ID F001h..FFFFh, sub-directories):
 06h 2 ID of parent directory (F000h..FFFEh)

FNT Sub-tables (base=FNT+offset, ends at Type/Length=00h)
Contains ASCII names for all files and sub-directories within a directory.
 Addr Size Expl.
 00h 1 Type/Length
 01h..7Fh File Entry (Length=1..127, without ID field)
 81h..FFh Sub-Directory Entry (Length=1..127, plus ID field)
 00h End of Sub-Table
 80h Reserved
 01h LEN File or Sub-Directory Name, case-sensitive, without any ending
 zero, ASCII 20h..7Eh, except for characters \/?"<>*:;|

Below for Sub-Directory Entries only:
 LEN+1 2 Sub-Directory ID (F001h..FFFFh) ;see FNT+(ID AND FFFh)*8

File Entries do not have above ID field. Instead, File IDs are assigned in incrementing order (starting at the "First ID" value specified in the Directory Table).

ARM9 and ARM7 Overlay Tables (OVT) (base/size defined in cart header)
Somehow related to Nintendo's compiler, allows to assign compiler Overlay IDs to filesystem File IDs, and to define additional information such like load addresses.
 Addr Size Expl.
 00h 4 Overlay ID
 04h 4 RAM Address ;Point at which to load
 08h 4 RAM Size ;Amount to load
 0Ch 4 BSS Size ;Size of BSS data region
 10h 4 Static initialiser start address
 14h 4 Static initialiser end address
 18h 4 File ID (0000h..EFFFh)
 1Ch 4 Reserved (zero)

Cartridge Header
The base/size of FAT, FNT, OVT areas is defined in cartridge header,
DS Cartridge Header

 DS Cartridge PassMe/PassThrough

PassMe is an adapter connected between the DS and an original NDS cartridge, used to boot unencrypted code from a flash cartridge in the GBA slot, it replaces the following entries in the original NDS cartridge header:
 Addr Siz Patch
 004h 4 E59FF018h ;opcode LDR PC,[027FFE24h] at 27FFE04h
 01Fh 1 04h ;set autostart bit
 022h 1 01h ;set ARM9 rom offset to nn01nnnnh (above secure area)
 024h 4 027FFE04h ;patch ARM9 entry address to endless loop
 034h 4 080000C0h ;patch ARM7 entry address in GBA slot
 15Eh 2 nnnnh ;adjust header crc16

After having verified the encrypted chip IDs (from the original cartridge), the console thinks that it has successfully loaded a NDS cartridge, and then jumps to the (patched) entrypoints.

GBA Flashcard Format
Although the original PassMe requires only the entrypoint, PassMe programs should additionally contain one (or both) of the ID values below, allowing firmware patches to identify & start PassMe games without real PassMe hardware.
 0A0h GBA-style Title ("DSBooter")
 0ACh GBA-style Gamecode ("PASS")
 0C0h ARM7 Entrypoint (32bit ARM code)

Of course, that applies only to early homebrew programs, newer games should use normal NDS cartridge headers.

ARM9 Entrypoint
The GBA-slot access rights in the EXMEMCNT register are initially assigned to the ARM7 CPU, so the ARM9 cannot boot from the flashcard, instead it is switched into an endless loop in Main RAM (which contains a copy of the cartridge header at 27FFE00h and up). The ARM7 must thus copy ARM9 code to Main RAM, and the set the ARM9 entry address by writing to [027FFE24h].

 DS Cartridge GBA Slot

Aside from the 17-pin NDS slot, the DS also includes a 32-pin GBA slot. Which is used for backwards compatibility GBA mode. Additionally, in DS mode, it can be as expansion port, or for importing data from GBA games.
In DS mode, ROM, SRAM, FLASH backup, and whatever peripherals contained in older GBA cartridges can be accessed (almost) identically as in GBA mode,
GBA Cartridges

Addressing
In DS mode, only one ROM-region is present at 8000000h-9FFFFFFh (ie. without the GBA's mirrored WS1 and WS2 regions at A000000h-DFFFFFFh). The expansion region (for SRAM/FLASH/etc) has been moved from E000000h-E00FFFFh (GBA-mode) to A000000h-A00FFFFh (DS-mode).

Timings
GBA timings are specified as "waitstates" (excluding 1 access cycle), NDS timings are specified as (total) "access time". And, the NDS bus-clock is twice as fast as for GBA. So, for "N" GBA waitstates, the NDS access time should be "(N+1)*2". Timings are controlled via NDS EXMEMCNT instead GBA WAITCNT,
DS Memory Control - Cartridges and Main RAM

GBA EEPROM
EEPROMs in GBA carts cannot be accessed in DS mode. The EEPROMs should be accessed with 8 waits on GBA, ie. 18 cycles on NDS on both 1st/2nd access. But, 2nd access is restricted to max 6 cycles in NDS mode, which is ways too fast.

 DS Cart Rumble Pak

DS Rumble Option Pak
The Rumble Pak comes bundled with Metroid Prime Pinball. It contains a small actuator made by ALPS to make it rumble. The original device (NTR-008) is sized like a normal GBA cartridge, and there's also shorter variant for the DS-Lite (USG-006).
The rumble pak is pretty simple internally, it only wires up to a few pins on the GBA Cartridge Port:
 VCC, GND, /WR, AD1, and IRQ (grounded)

AD1 runs into a little 8 pin chip, which is probably just a latch on the rising edge of /WR. A line runs from this chip to a transistor that is directly connected to the actuator. The only other chip on the board is a 5 pin jobber, probably a power component.
For detection, AD1 seems to be pulled low when reading from it, the other AD lines are open bus (containing the halfword address), so one can do:
 for i=0 to 0FFFh
 if halfword[8000000h+i*2]<>(i and FFFDh) then <not_a_ds_rumble_pak>
 next i

The actuator doesn't have an on/off setting like a motor, it rumbles when you switch it between the two settings. Switch frequently for a fast rumble, and fairly slowly for more of a 'tick' effect. That should be done via timer irq:
 rumble_state = rumble_state xor 0002h
 halfword[8000000h]=rumble_state

Unknown if one of the two states has higher power-consumption than the other, ie. if it's a "pull/release" mechanism, if so, then disabling rumble should be done by using the "release" state, which would be AD1=0, or AD1=1...?
Note: The v3 firmware can detect the Rumble Pak as an option pak, but it does not provide an enable/disable rumble option in the alarm menu.

GBA Rumble Carts
There are also a few GBA games that contain built-in Rumble, and which could be used by NDS games as well. To be user friendly, best support both types.
GBA Cart Rumble

 DS Cart Unknown Add-Ons

DS Memory Expansion Pak (NTR-011 or USG-007)
Connects to the GBA slot. Reportedly used for a NDS browser. Might be also used by other bloated programs. Up to now, access times, memory region, bus-width, chip types, and even the memory size seem to be totally unknown.

 DS Cart Cheat Action Replay DS

The first commercial DS cheat code solution, this device was developed by Datel. It supports swapping out cartridges after loading the AR software. For updating, the user may either manually enter codes or use the included proprietary USB cable that comes with the device. The user has been able to manually update codes since firmware version 1.52.

Action Replay DS Codes
 ABCD-NNNNNNNN Game ID ;ASCII Gamecode [00Ch] and CRC32 across [0..1FFh]
 00000000 XXXXXXXX manual hook codes (rarely used) (default is auto hook)
 0XXXXXXX YYYYYYYY word[XXXXXXX+offset] = YYYYYYYY
 1XXXXXXX 0000YYYY half[XXXXXXX+offset] = YYYY
 2XXXXXXX 000000YY byte[XXXXXXX+offset] = YY
 3XXXXXXX YYYYYYYY IF YYYYYYYY > word[XXXXXXX] ;unsigned ;\
 4XXXXXXX YYYYYYYY IF YYYYYYYY < word[XXXXXXX] ;unsigned ; for v1.54,
 5XXXXXXX YYYYYYYY IF YYYYYYYY = word[XXXXXXX] ; when X=0,
 6XXXXXXX YYYYYYYY IF YYYYYYYY <> word[XXXXXXX] ; uses
 7XXXXXXX ZZZZYYYY IF YYYY > ((not ZZZZ) AND half[XXXXXXX]) ; [offset]
 8XXXXXXX ZZZZYYYY IF YYYY < ((not ZZZZ) AND half[XXXXXXX]) ; instead of
 9XXXXXXX ZZZZYYYY IF YYYY = ((not ZZZZ) AND half[XXXXXXX]) ; [XXXXXXX]
 AXXXXXXX ZZZZYYYY IF YYYY <> ((not ZZZZ) AND half[XXXXXXX]) ;/
 BXXXXXXX 00000000 offset = word[XXXXXXX+offset]
 C0000000 YYYYYYYY FOR loopcount=0 to YYYYYYYY ;execute Y+1 times
 C4000000 00000000 offset = address of the C4000000 code ;v1.54
 C5000000 XXXXYYYY counter=counter+1, IF (counter AND YYYY) = XXXX ;v1.54
 C6000000 XXXXXXXX [XXXXXXXX]=offset ;v1.54
 D0000000 00000000 ENDIF
 D1000000 00000000 NEXT loopcount
 D2000000 00000000 NEXT loopcount, and then FLUSH everything
 D3000000 XXXXXXXX offset = XXXXXXXX
 D4000000 XXXXXXXX datareg = datareg + XXXXXXXX
 D5000000 XXXXXXXX datareg = XXXXXXXX
 D6000000 XXXXXXXX word[XXXXXXXX+offset]=datareg, offset=offset+4
 D7000000 XXXXXXXX half[XXXXXXXX+offset]=datareg, offset=offset+2
 D8000000 XXXXXXXX byte[XXXXXXXX+offset]=datareg, offset=offset+1
 D9000000 XXXXXXXX datareg = word[XXXXXXXX+offset]
 DA000000 XXXXXXXX datareg = half[XXXXXXXX+offset]
 DB000000 XXXXXXXX datareg = byte[XXXXXXXX+offset] ;bugged on pre-v1.54
 DC000000 XXXXXXXX offset = offset + XXXXXXXX
 EXXXXXXX YYYYYYYY Copy YYYYYYYY parameter bytes to [XXXXXXXX+offset...]
 44332211 88776655 parameter bytes 1..8 for above code (example)
 0000AA99 00000000 parameter bytes 9..10 for above code (padded with 00s)
 FXXXXXXX YYYYYYYY Copy YYYYYYYY bytes from [offset..] to [XXXXXXX...]

IF/ENDIF can be nested up to 32 times. FOR/NEXT cannot be nested, any FOR statement does forcefully terminate any prior loop. FOR does backup the current IF condidition flags, and NEXT does restore these flags, so ENDIF(s) aren't required inside of the loop. The NEXT+FLUSH command does (after finishing the loop) reset offset=0, datareg=0, and does c lear all condition flags, so further ENDIF(s) aren't required after the loop.
Before v1.54, the DB000000 code did accidently set offset=offset+XXXXXXX after execution of the code. For all word/halfword accesses, the address should be aligned accordingly. For the COPY commands, addresses should be aligned by four (all data is copied with ldr/str, except, on odd lengths, the last 1..3 bytes do use ldrb/strb).
offset, datareg, loopcount, and counter are internal registers in the action replay software.

> The condition register is checked, for all code types
> but the D0, D1 and D2 code type
Makes sense.

> and for the C5 code type it's checked AFTER the counter has
> been incremented (so the counter is always incremented
I love that exceptions ;-)

Hook
The hook codes consist of a series of nine 00000000 XXXXXXXX codes, and must be marked as (M) code (for not being confused with normal 0XXXXXXX YYYYYYYY codes). For all nine codes, the left 32bit are actually don't care (but should be zero), the meaning of the right 32bit varies from 1st to 9th code.
 1st: Address used prior to launching game (eg. 23xxxxxh)
 2nd: Address to write the hook at (inside the ARM7 executable)
 3rd: Hook final address (huh?)
 4th: Hook mode selection (0=auto, 1=mode1, 2=mode2)
 5th: Opcode that replaces the hooked one (eg. E51DE004h)
 6th: Address to store important stuff (default 23FE000h)
 7th: Address to store the code handler (default 23FE074h)
 8th: Address to store the code list (default 23FE564h)
 9th: Must be 1 (00000001h)

For most games, the AR does automatically hook code on the ARM7. Doing that automatic ally is nice, but hooking ARM7 means that there is no access to VRAM, TCM and Cache, which <might> cause problems since effic ient games <should> store all important data in TCM or Cache (though, in practice, I'd doubt that any existing NDS games are that effic ient).

Thanks
To Kenobi and Dualscreenman from Kodewerx for above ARDS cheat info.

 DS Cart Cheat Codebreaker DS

This is Pelican's entry into the DS cheat-device industry. It supports swapping out the cartridges, and alternately, also gives the user the option of connecting another gamecard onto it. For updating, the user may either manually enter codes, or use Wifi to connect to the Codebreaker update site (that updating will overwrite all manually entered codes though).

Codebreaker DS Codes
 ---Initialization---
 0000CR16 GAMECODE Specify Game ID, use Encrypted codes
 8000CR16 GAMECODE Specify Game ID, use Unencrypted codes
 BEEFC0DE XXXXXXXX Change Encryption Keys
 A0XXXXXX YYYYYYYY Bootup-Hook 1, X=Address, Y=Value
 A8XXXXXX YYYYYYYY Bootup-Hook 2, X=Address, Y=Value
 F0XXXXXX TYYYYYYY Code-Hook 1 (T=Type,Y=CheatEngineAddr,X=HookAddr)
 F8XXXXXX TPPPPPPP Code-Hook 2 (T=Type,X=CheatEngineHookAddr,P=Params)
 ---General codes---
 00XXXXXX 000000YY [X]=YY
 10XXXXXX 0000YYYY [X]=YYYY
 20XXXXXX YYYYYYYY [X]=YYYYYYYY
 60XXXXXX 000000YY ZZZZZZZZ 00000000 [[X]+Z]=YY
 60XXXXXX 0000YYYY ZZZZZZZZ 10000000 [[X]+Z]=YYYY
 60XXXXXX YYYYYYYY ZZZZZZZZ 20000000 [[X]+Z]=YYYYYYYY
 30XXXXXX 000000YY [X]=[X] + YY
 30XXXXXX 0001YYYY [X]=[X] + YYYY
 38XXXXXX YYYYYYYY [X]=[X] + YYYYYYYY
 70XXXXXX 000000YY [X]=[X] OR YY
 70XXXXXX 001000YY [X]=[X] AND YY
 70XXXXXX 002000YY [X]=[X] XOR YY
 70XXXXXX 0001YYYY [X]=[X] OR YYYY
 70XXXXXX 0011YYYY [X]=[X] AND YYYY
 70XXXXXX 0021YYYY [X]=[X] XOR YYYY
 ---Memory fill/copy---
 40XXXXXX 2NUMSTEP 000000YY 000000ZZ byte[X+(0..NUM-1)*STEP*1]=Y+(0..NUM-1)*Z
 40XXXXXX 1NUMSTEP 0000YYYY 0000ZZZZ half[X+(0..NUM-1)*STEP*2]=Y+(0..NUM-1)*Z
 40XXXXXX 0NUMSTEP YYYYYYYY ZZZZZZZZ word[X+(0..NUM-1)*STEP*4]=Y+(0..NUM-1)*Z
 50XXXXXX YYYYYYYY ZZZZZZZZ 00000000 copy Y bytes from [X] to [Z]
 ---Conditional codes (bugged)---
 60XXXXXX 000000YY ZZZZZZZZ 01c100VV IF [[X]+Z] .. VV THEN [[X]+Z]=YY
 60XXXXXX 000000YY ZZZZZZZZ 01c0VVVV IF [[X]+Z] .. VVVV THEN [[X]+Z]=YY
 60XXXXXX 0000YYYY ZZZZZZZZ 11c100VV IF [[X]+Z] .. VV THEN [[X]+Z]=YYYY
 60XXXXXX 0000YYYY ZZZZZZZZ 11c0VVVV IF [[X]+Z] .. VVVV THEN [[X]+Z]=YYYY
 60XXXXXX YYYYYYYY ZZZZZZZZ 21c100VV IF [[X]+Z] .. VV THEN [[X]+Z]=YYYYYYYY
 60XXXXXX YYYYYYYY ZZZZZZZZ 21c0VVVV IF [[X]+Z] .. VVVV THEN [[X]+Z]=YYYYYYYY
 ---Conditional codes (working)---
 D0XXXXXX NNc100YY IF [X] .. YY THEN exec max(1,NN) lines
 D0XXXXXX NNc0YYYY IF [X] .. YYYY THEN exec max(1,NN) lines

The condition digits (c=0..7), have the following functions:
 0 IF [mem] = imm THEN ... 4 IF ([mem] AND imm) = 0 THEN ...
 1 IF [mem] <> imm THEN ... 5 IF ([mem] AND imm) <> 0 THEN ...
 2 IF [mem] < imm THEN ... (unsigned) 6 IF ([mem] AND imm) = imm THEN ...
 3 IF [mem] > imm THEN ... (unsigned) 7 IF ([mem] AND imm) <> imm THEN ...

Notes
 GAMECODE Cartridge Header[00Ch] (32bit in reversed byte-order)
 CR16 Cartridge Header[15Eh] (16bit in normal byte-order)
 XXXXXX 27bit addr (actually 7 digits, XXXXXXX, overlaps 5bit code number)

The "bugged" conditional codes (60XXXXXX) are accidently skipping NN lines when the c ondition is false, where NN is taken from the upper 8bit of the code's last 32bit values (ie. exactly as for the D0XXXXXX codes). For byte-writes, that would be NN=01h, which can be eventually dealt with, although there may be compatibility problems which future versions that might fix that bug. For halfword/word writes, NN would be 11h or 21h, so that codes are about totally unusable.

Codebreaker DS / Encrypted Codes
The overall "address value" decryption works like so:
 for i=4Fh to 00h
 y=77628ECFh
 if i>13h then y=59E5DC8Ah
 if i>27h then y=054A7818h
 if i>3Bh then y=B1BF0855h
 address = (Key0-value) xor address
 value = value - Key1 - (address ror 1Bh)
 address = (address xor (value + y)) ror 13h
 if (i>13h) then
 if (i<=27h) or (i>3Bh) then x=Key2 xor Key1 xor Key0
 else x=((Key2 xor Key1) and Key0) xor (Key1 and Key2)
 value=value xor (x+y+address)
 x = Secure[((i*4+00h) and FCh)+000h]
 x = Secure[((i*4+34h) and FCh)+100h] xor x
 x = Secure[((i*4+20h) and FCh)+200h] xor x
 x = Secure[((i*4+08h) and FCh)+300h] xor x
 address = address - (x ror 19h)
 next i

Upon startup, the initial key settings are:
 Secure[0..7FFh] = Copy of the ENCRYPTED 1st 2Kbytes of the game's Secure Area
 Key0 = 0C2EAB3Eh, Key1 = E2AE295Dh, Key2 = E1ACC3FFh, Key3 = 70D3AF46h
 scramble_keys

Upon BEEFC0DE XXXXXXXX, the keys get changed like so:
 Key0 = Key0 + (XXXXXXXX ror 1Dh)
 Key1 = Key1 - (XXXXXXXX ror 05h)
 Key2 = Key2 xor (Key3 xor Key0)
 Key3 = Key3 xor (Key2 - Key1)
 scramble_keys

The above scramble_keys function works like so:
 for i=0 to FFh
 y = byte(xlat_table[i])
 Secure[i*4+000h] = (Secure[i*4+000h] xor Secure[y*4]) + Secure[y*4+100h]
 Secure[i*4+400h] = (Secure[i*4+400h] xor Secure[y*4]) - Secure[y*4+200h]
 next i
 for i=0 to 63h
 Key0 = Key0 xor (Secure[i*4] + Secure[i*4+190h])
 Key1 = Key1 xor (Secure[i*4] + Secure[i*4+320h])
 Key2 = Key2 xor (Secure[i*4] + Secure[i*4+4B0h])
 Key3 = Key3 xor (Secure[i*4] + Secure[i*4+640h])
 next i
 Key0 = Key0 - Secure[7D0h]
 Key1 = Key1 xor Secure[7E0h]
 Key2 = Key2 + Secure[7F0h]
 Key3 = Key3 xor Secure[7D0h] xor Secure[7F0h]

the xlat_table consists of 256 fixed 8bit values:
 34h,59h,00h,32h,7Bh,D3h,32h,C9h,9Bh,77h,75h,44h,E0h,73h,46h,06h
 0Bh,88h,B3h,3Eh,ACh,F2h,BAh,FBh,2Bh,56h,FEh,7Ah,90h,F7h,8Dh,BCh
 8Bh,86h,9Ch,89h,00h,19h,CDh,4Ch,54h,30h,01h,93h,30h,01h,FCh,36h
 4Dh,9Fh,FDh,D7h,32h,94h,AEh,BCh,2Bh,61h,DFh,B3h,44h,EAh,8Bh,A3h
 2Bh,53h,33h,54h,42h,27h,21h,DFh,A9h,DDh,C0h,35h,58h,EFh,8Bh,33h
 B4h,D3h,1Bh,C7h,93h,AEh,32h,30h,F1h,CDh,A8h,8Ah,47h,8Ch,70h,0Ch
 17h,4Eh,0Eh,A2h,85h,0Dh,6Eh,37h,4Ch,39h,1Fh,44h,98h,26h,D8h,A1h
 B6h,54h,F3h,AFh,98h,83h,74h,0Eh,13h,6Eh,F4h,F7h,86h,80h,ECh,8Eh
 EEh,4Ah,05h,A1h,F1h,EAh,B4h,D6h,B8h,65h,8Ah,39h,B3h,59h,11h,20h
 B6h,BBh,4Dh,88h,68h,24h,12h,9Bh,59h,38h,06h,FAh,15h,1Dh,40h,F0h
 01h,77h,57h,F5h,5Dh,76h,E5h,F1h,51h,7Dh,B4h,FAh,7Eh,D6h,32h,4Fh
 0Eh,C8h,61h,C1h,EEh,FBh,2Ah,FCh,ABh,EAh,97h,D5h,5Dh,E8h,FAh,2Ch
 06h,CCh,86h,D2h,8Ch,10h,D7h,4Ah,CEh,8Fh,EBh,03h,16h,ADh,84h,98h
 F5h,88h,2Ah,18h,ACh,7Fh,F6h,94h,FBh,3Fh,00h,B6h,32h,A2h,ABh,28h
 64h,5Ch,0Fh,C6h,23h,12h,0Ch,D2h,BAh,4Dh,A3h,F2h,C9h,86h,31h,57h
 0Eh,F8h,ECh,E1h,A0h,9Ah,3Ch,65h,17h,18h,A0h,81h,D0h,DBh,D5h,AEh

all used operations are unsigned 32bit integer.

Thanks
To Kenobi and Dualscreenman from Kodewerx for above CBDS cheat info.

 DS Encryption by Gamecode/Idcode (KEY1)

KEY1 - Gamecode / Idcode Encryption
The KEY1 encryption relies only on the gamecode (or firmware idcode), it does not contain any random components. The fact that KEY1 encrypted commands appear random is just because the <unencrypted> commands contain random values, so the encryption result looks random.

KEY1 encryption is used for KEY1 encrypted gamecart commands (ie. for loading the sec ure area). It is also used for resolving the extra decryption of the first 2K of the secure area, and for firmware decryption, and to decode some encrypted values in gamecart/firmware header.

Below are KEY1 encryption formulas. The formulas can be used only with a copy of the key table (1048h bytes) from the NDS ARM7 BIOS (address 0030h..1077h).

crypt_64bit_up(ptr) / crypt_64bit_down(ptr)
 Y=[ptr+0]
 X=[ptr+4]
 FOR I=0 TO 0Fh (up), or FOR I=11h TO 02h (down)
 Z=[keybuf+I*4] XOR X
 X=[keybuf+048h+((Z SHR 24) AND FFh)*4]
 X=[keybuf+448h+((Z SHR 16) AND FFh)*4] + X
 X=[keybuf+848h+((Z SHR 8) AND FFh)*4] XOR X
 X=[keybuf+C48h+((Z SHR 0) AND FFh)*4] + X
 X=Y XOR X
 Y=Z
 NEXT I
 [ptr+0]=X XOR [keybuf+40h], or [ptr+0]=X XOR [keybuf+4h] (down)
 [ptr+4]=Y XOR [keybuf+44h], or [ptr+4]=Y XOR [keybuf+0h] (down)

apply_keycode(modulo)
 crypt_64bit_up(keycode+4)
 crypt_64bit_up(keycode+0)
 [scratch]=0000000000000000h ;S=0 (64bit)
 FOR I=0 TO 44h STEP 4 ;xor with reversed byte-order (bswap)
 [keybuf+I]=[keybuf+I] XOR bswap_32bit([keycode+(I MOD modulo)])
 NEXT I
 FOR I=0 TO 1040h STEP 8
 crypt_64bit_up(scratch) ;encrypt S (64bit) by keybuf
 [keybuf+I+0]=[scratch+4] ;write S to keybuf (first upper 32bit)
 [keybuf+I+4]=[scratch+0] ;write S to keybuf (then lower 32bit)
 NEXT I

init_keycode(idcode,level,modulo)
 copy [arm7bios+0030h..1077h] to [keybuf+0..1047h]
 [keycode+0]=[idcode]
 [keycode+4]=[idcode]/2
 [keycode+8]=[idcode]*2
 IF level>=1 THEN apply_keycode(modulo) ;first apply (always)
 IF level>=2 THEN apply_keycode(modulo) ;second apply (optional)
 [keycode+4]=[keycode+4]*2
 [keycode+8]=[keycode+8]/2
 IF level>=3 THEN apply_keycode(modulo) ;third apply (optional)

firmware_decryption
 init_keycode(firmware_header+08h,1,0Ch) ;idcode (usually "MACP"), level 1
 crypt_64bit_down(firmware_header+18h) ;rominfo
 init_keycode(firmware_header+08h,2,0Ch) ;idcode (usually "MACP"), level 2
 decrypt ARM9 and ARM7 bootcode by crypt_64bit_down (each 8 bytes)
 decompress ARM9 and ARM7 bootcode by LZ77 function (swi)
 calc CRC16 on decrypted/decompressed ARM9 bootcode followed by ARM7 bootcode

Note: The sizes of the compressed/encrypted bootcode areas are unknown (until they are fully decompressed), one way to solve that problem is to decrypt the next 8 bytes each time when the decompression function requires more data.

gamecart_decryption
 init_keycode(cart_header+0Ch,1,08h) ;gamecode, level 1, modulo 8
 crypt_64bit_down(cart_header+78h) ;rominfo (secure area disable)
 init_keycode(cart_header+0Ch,2,08h) ;gamecode, level 2, modulo 8
 crypt_64bit_up all KEY1 commands (1st command byte in MSB of 64bit value)
 after loading the secure_area, calculate secure_area crc, then
 crypt_64bit_down(secure_area+0) ;first 8 bytes of secure area
 init_keycode(cart_header+0Ch,3,08h) ;gamecode, level 3, modulo 8
 crypt_64bit_down(secure_area+0..7F8h) ;each 8 bytes in first 2K of secure

After decryption, the ID field in the first 8 bytes should be "encryObj", if it matches then first 8 bytes are filled with E7FFDEFFh, otherwise the whole 2K are filled by that value.

Gamecart Command Register
Observe that the byte-order of the command register [40001A8h] is reversed. The way how the CPU stores 64bit data in memory (and the way how the "crypt_64bit_up" function for KEY1-encrypted commands expects data in memory) is LSB at [addr+0] and MSB at [addr+7]. This value is to be transferred MSB first. However, the DS hardware transfers [40001A8h+0] first, and [40001A8h+7] last. So, the byte order must be reversed when copying the value from memory to the command register.

Note
The KEY1 encryption is based on Bruce Schneier's "Blowfish Encryption Algorithm".

 DS Encryption by Random Seed (KEY2)

KEY2 39bit Seed Values
The pre-initialization settings at cartridge-side (after reset) are:
 Seed0 = 58C56DE0E8h
 Seed1 = 5C879B9B05h

The post-initialization settings (after sending command 4llllmmmnnnkkkkkh to the cartridge, and after writing the Seed values to Port 40001Bxh) are:
 Seed0 = (mmmnnn SHL 15)+6000h+Seedbyte
 Seed1 = 5C879B9B05h

The seedbyte is selected by Cartridge Header [013h].Bit0-2, this index value should be usually in range 0..5, however, possible values for index 0..7 are: E8h,4Dh,5Ah,B1h,17h,8Fh,99h,D5h.
The 24bit random value (mmmnnn) is derived from the real time clock setting, and also scattered by KEY1 encryption, anyways, it's just random and doesn't really matter where it comes from.

KEY2 Encryption
Relies on two 39bit registers (x and y), which are initialized as such:
 x = reversed_bit_order(seed0) ;ie. LSB(bit0) exchanged with MSB(bit38), etc.
 y = reversed_bit_order(seed1)

During transfer, x, y, and transferred data are modified as such:
 x = (((x shr 5)xor(x shr 17)xor(x shr 18)xor(x shr 31)) and 0FFh)+(x shl 8)
 y = (((y shr 5)xor(y shr 23)xor(y shr 18)xor(y shr 31)) and 0FFh)+(y shl 8)
 data = (data xor x xor y) and 0FFh

 DS Firmware Serial Flash Memory

ST Microelectronics SPI Bus Compatible Serial FLASH Memory
 ST M45PE20 - ID 20h,40h,12h - 256 KBytes (Nintendo DS) (in my old DS)
 ST M35PE20 - ID 20h,50h,12h - 256 KBytes (Nintendo DS) (in my DS-Lite)
 ST M25PE40 - ID 20h,80h,13h - 512 KBytes (iQue DS, with chinese charset)

More than 100,000 Write Cycles, more than 20 Year Data Retention
The Firmware Flash Memory is accessed via SPI bus,
DS Serial Peripheral Interface Bus (SPI)

Instruction Codes
 06h WREN Write Enable (No Parameters)
 04h WRDI Write Disable (No Parameters)
 9Fh RDID Read JEDEC Identification (Read 1..3 ID Bytes)
 (Manufacturer, Device Type, Capacity)
 05h RDSR Read Status Register (Read Status Register, endless repeated)
 Bit7-2 Not used (zero)
 Bit1 WEL Write Enable Latch (0=No, 1=Enable)
 Bit0 WIP Write/Program/Erase in Progess (0=No, 1=Busy)
 03h READ Read Data Bytes (Write 3-Byte-Address, read endless data stream)
 0Bh FAST Read Data Bytes at Higher Speed (Write 3-Byte-Address, write 1
 dummy-byte, read endless data stream) (max 25Mbit/s)
 0Ah PW Page Write (Write 3-Byte-Address, write 1..256 data bytes)
 (changing bits to 0 or 1) (reads unchanged data, erases the page,
 then writes new & unchanged data) (11ms typ, 25ms max)
 02h PP Page Program (Write 3-Byte-Address, write 1..256 data bytes)
 (changing bits from 1 to 0) (1.2ms typ, 5ms max)
 DBh PE Page Erase 100h bytes (Write 3-Byte-Address) (10ms typ, 20ms max)
 D8h SE Sector Erase 10000h bytes (Write 3-Byte-Address) (1s typ, 5s max)
 B9h DP Deep Power-down (No Parameters) (consumption 1uA typ, 10uA max)
 (3us) (ignores all further instructions, except RDP)
 ABh RDP Release from Deep Power-down (No Parameters) (30us)

Write/Program may not cross page-boundaries. Write/Program/Erase are rejected during first 1..10ms after power up. The WEL bit is automatically c leared on Power-Up, on /Reset, and on completion of WRDI/PW/PP/PE/SE instructions. WEL is set by WREN instruction (which must be issued before any write/program/erase instructions). Don't know how RDSR behaves when trying to write to the write-protected region?

Communication Protocol
 Set Chip Select LOW to invoke the command
 Transmit the instruction byte
 Transmit any parameter bytes
 Transmit/receive any data bytes
 Set Chip Select HIGH to finish the command

All bytes (and 3-byte addresses) transferred most significant bit/byte first.

Pin-Outs
 1 D Serial Data In (latched at rising clock edge) _________
 2 C Serial Clock (max 25MHz) /|o |
 3 /RES Reset 1 -| | |- 8
 4 /S Chip Select (instructions start at falling edge) 2 -| | |- 7
 5 /W Write Protect (makes first 256 pages read-only) 3 -| |_________|- 6
 6 VCC Supply (2.7V..3.6V typ) (4V max) (DS:VDD3.3) 4 -|/ |- 5
 7 VSS Ground |___________|
 8 Q Serial Data Out (changes at falling clock edge)

 DS Firmware Header

Firmware Memory Map
 00000h-00029h Firmware Header
 0002Ah-001FFh Wifi Settings
 00200h-3FDFFh Firmware Code/Data
 3FE00h-3FEFFh User Settings Area 1
 3FF00h-3FFFFh User Settings Area 2

On iQue DS (with 512K flash memory), user settings are moved to 7FE00h and up, and, there seems to be some unknown stuff at 200h..27Fh.

Firmware Header (00000h-001FFh)
 Addr Size Expl.
 000h 2 part3 romaddr/8 (arm9 gui code) (LZ/huffman compression)
 002h 2 part4 romaddr/8 (arm7 gui code) (LZ/huffman compression)
 004h 2 part3/4 CRC16 arm9/7 gui code
 006h 2 part1/2 CRC16 arm9/7 boot code
 008h 4 firmware identifier (usually nintendo "MAC",nn) (or nocash "XBOO")
 the 4th byte (nn) occassionally changes in different version
 00Ch 2 part1 arm9 boot code romaddr/2^(2+shift1) (LZSS compressed)
 00Eh 2 part1 arm9 boot code 2800000h-ramaddr/2^(2+shift2)
 010h 2 part2 arm7 boot code romaddr/2^(2+shift3) (LZSS compressed)
 012h 2 part2 arm7 boot code 3810000h-ramaddr/2^(2+shift4)
 014h 2 shift amounts, bit0-2=shift1, bit3-5=shift2, bit6-8=shift3,
 bit9-11=shift4, bit12-15=maybe_chipsize/128K
 016h 2 part5 data/gfx romaddr/8 (LZ/huffman compression)
 018h 8 Optional KEY1-encrypted "enPngOFF"=Cartridge KEY2 Disable
 (feature isn't used in any consoles, instead contains timestamp)
 018h 5 Firmware version built timestamp (BCD minute,hour,day,month,year)
 01Dh 1 Console type? (FFh=NDS, 20h=NDS-lite, 43h=iQueDS)
 01Eh 2 Unused (FFh-filled)
 020h 2 User Settings Offset (div8) (usually last 200h flash bytes)
 022h 2 Unknown
 024h 2 Unknown
 026h 2 part5 CRC16 data/gfx
 028h 2 unused (FFh-filled)

Wifi Calibration/Settings (located directly after Firmware Header)
 Addr Size Expl.
 02Ah 2 CRC16 (with initial value 0) of [2Ch..2Ch+config_length-1]
 02Ch 2 config_length (usually 0138h, ie. entries 2Ch..163h)
 02Eh 1 Unused (00h)
 02Fh 1 Wifi version (00h=v1..v4, 03h=v5, 05h=v6..v7)
 030h 6 Unused (00h-filled)
 036h 6 48bit MAC address (v1-v5: 0009BFxxxxxx, v6-v7: 001656xxxxxx)
 03Ch 2 list of enabled channels ANDed with 7FFE (Bit1..14 = Channel 1..14)
 (usually 3FFEh, ie. only channel 1..13 enabled)
 03Eh 2 Whatever Flags (usually FFFFh)
 040h 1 RF Chip Type (usually 02h)
 041h 1 RF Bits per entry at 0CEh (usually 18h=24bit=3byte) (Bit7=?)
 042h 1 RF Number of entries at 0CEh (usually 0Ch)
 043h 1 Unknown (usually 01h)
 044h 2 Initial Value for [4808146h]
 046h 2 Initial Value for [4808148h]
 048h 2 Initial Value for [480814Ah]
 04Ah 2 Initial Value for [480814Ch]
 04Ch 2 Initial Value for [4808120h]
 04Eh 2 Initial Value for [4808122h]
 050h 2 Initial Value for [4808154h]
 052h 2 Initial Value for [4808144h]
 054h 2 Initial Value for [4808130h]
 056h 2 Initial Value for [4808132h]
 058h 2 Initial Value for [4808140h]
 05Ah 2 Initial Value for [4808142h]
 05Ch 2 Initial Value for [4808038h]
 05Eh 2 Initial Value for [4808124h]
 060h 2 Initial Value for [4808128h]
 062h 2 Initial Value for [4808150h]
 064h 69h Initial 8bit values for BB[0..68h]
 0CDh 1 Unused (00h)

Below for Type2 (ie. when [044h]=2) (Mitsumi MM3155 and RF9008):
 0CEh 24h Initial 24bit values for RF[0,4,5,6,7,8,9,0Ah,0Bh,1,2,3]
 0F2h 54h Channel 1..14 2x24bit values for RF[5,6]
 146h 0Eh Channel 1..14 8bit values for BB[1Eh] (usually somewhat B1h..B7h)
 154h 0Eh Channel 1..14 8bit values for RF[9].Bit10..14 (usually 10h-filled)

Below for Type3 (ie. when [044h]=3) (Mitsumi MM3218):
 --- Type3 values are originated at 0CEh, following addresses depend on: ---
 1) number of initial values, found at [042h] ;usually 29h
 2) number of BB indices, found at [0CEh+[042h]] ;usually 02h
 3) number of RF indices, found at [043h] ;usually 02h
 --- Below example addresses assume above values to be set to 29h,02h,02h ---
 0CEh 29h Initial 8bit values for RF[0..28h]
 0F7h 1 Number of BB indices per channel
 0F8h 1 1st BB index
 0F9h 14 1st BB data for channel 1..14
 107h 1 2nd BB index
 108h 14 2nd BB data for channel 1..14
 116h 1 1st RF index
 117h 14 1st RF data for channel 1..14
 125h 1 2nd RF index
 126h 14 2nd RF data for channel 1..14
 134h 46 Unused (FFh-filled)

Below for both Type2 and Type3:
 162h 1 Unknown (usually 19h..1Ch)
 163h 1 Unused (FFh) (Inside CRC16 region, with config_length=138h)
 164h 9Ch Unused (FFh-filled) (Outside CRC16 region, with config_length=138h)

Most of the Wifi settings seem to be always the same values on all currently existing consoles. Except for:
Values that are (obviously) different are the CRC16, and 4th-6th bytes of the MAC address. Also, initial values for BB[01h] and BB[1Eh], and channel 1..14 values for BB[1Eh], and unknown entry [162h] contain different calibration settings on all consoles.
Firmware v5 is having a new wifi ID [2Fh]=03h, and different RF[9] setting.
Firmware v6 (dslite) has wifi ID [2Fh]=05h, and same RF[9] setting as v5, additionally, v6 and up have different 2nd-3rd bytes of the MAC address.

Moreover, a LOT of values are different with Type3 chips (ie. when [044h]=3).

Note
Unlike for Firmware User Settings, the Firmware Header (and Wifi Settings) aren't stored in RAM upon boot. So the data must be retrieved via SPI bus by software.

Note 2
Newer firmware versions seem to have additional Wifi- and/or Internet-related data at FLASH offset 3FA00h or so...?

 DS Firmware User Settings

Current Settings (RAM 27FFC80h-27FFCFFh)
User Settings 0 (Firmware 3FE00h-3FEFFh)
User Settings 1 (Firmware 3FF00h-3FFFFh)
 Addr Size Expl.
 000h 2 Version (5) (Always 5, for all Firmware versions)
 002h 1 Favorite color (0..15) (0=Gray, 1=Brown, etc.)
 003h 1 Birthday month (1..12) (Binary, non-BCD)
 004h 1 Birthday day (1..31) (Binary, non-BCD)
 005h 1 Not used (zero)
 006h 20 Nickname string in UTF-16 format
 01Ah 2 Nickname length in characters (0..10)
 01Ch 52 Message string in UTF-16 format
 050h 2 Message length in characters (0..26)
 052h 1 Alarm hour (0..23) (Binary, non-BCD)
 053h 1 Alarm minute (0..59) (Binary, non-BCD)
 054h
 056h 1 80h=enable alarm (huh?), bit 0..6=enable?
 057h Zero (1 byte)
 058h 2x2 touch-screen calibration point (adc.x1,y1) 12bit ADC-position
 05Ch 2x1 touch-screen calibration point (scr.x1,y1) 8bit pixel-position
 05Eh 2x2 touch-screen calibration point (adc.x2,y2) 12bit ADC-position
 062h 2x1 touch-screen calibration point (scr.x2,y2) 8bit pixel-position
 064h 2 Language and Flags (see below)
 066h 2 Unknown
 068h 4 RTC Offset (difference in seconds when RTC time/date was changed)
 06Ch 4 Not used (FFh-filled, sometimes 00h-filled)

Below not stored in RAM (found only in FLASH memory)...
 070h 1/2 update counter (used to check latest)
 072h 2 CRC16 of entries 00h..6Fh
 074h 8Ch Not used (FFh-filled) (except iQue, see below)

Additional data in chinese iQue DS only:
 074h 4 Unknown (01 01 7E 00) (maybe version and language...?)
 078h 86h Not used (FFh-filled)
 0FEh 2 CRC16 of entries 74h..FDh

Language and Flags (Entry 64h)
 Bit
 0..2 Language (0=Japanese, 1=English, 2=French, 3=German,
 4=Italian, 5=Spanish, 6=Chinese, 7=Reserved)
 (the language setting also implies time/data format)
 (chinese is supported by chinese firmware only)
 (chinese is NOT supported by chinese firmware?)
 (or only when chinese cartridge is inserted?)
 (or chinese is defined elsewhere than entry 64h?)
 3 GBA mode screen selection (0=Upper, 1=Lower)
 4-5 Backlight Level (0..3=Low,Med,High,Max) (DS-Lite only)
 6 Bootmenu Disable (0=Manual/bootmenu, 1=Autostart game)
 9 User Settings Lost (0=Normal, 1=Prompt/Settings Lost)
 13
 14
 The Health and Safety message is skipped if Bit9=1, or if
 one or more of the following bits is zero: Bits 10,11,13,14,15.
 However, as soon as entering the bootmenu, the Prompt occurs.

Bit9: Prompt for User Info, and Language, and Calibration
Bit10: Prompt for User Info
Bit11: Same as Bit10
Bit12: No function
Bit13: Prompt for User Info, and Language
Bit14: Same as Bit10
Bit15: Same as Bit10

Note: There are two User Settings areas in the firmware chip, at offset 3FE00h and 3FF00h, if both areas have valid CRCs, then the current/newest area is that whose Update Counter is one bigger than in the other/older area.
 IF count1=((count0+1) AND 7Fh) THEN area1=newer ELSE area0=newer

When changing settings, the older area is overwritten with new data (and incremented Update Counter). The two areas allow to recover previous settings in case of a write-error (eg. on a battery failure during write).

Battery Removal
Even though the battery is required only for the RTC (not for the firmware flash memory), most of the firmware user settings are reset when removing the battery. This appears to be a strange bug-or-feature of the DS bios, at least, fortunately, it still keeps the rest of the firmware intact.

 DS Firmware Extended Settings

Extended Settings contain some additional information which is not supported by the original firmware (current century, date/time formats, temperature calibration, etc.), the settings are supported by Nocash Firmware, by the no$gba emulator, and may be eventually also supported by other emulators. If present, the values can be used by games, otherwise games should use either whatever default settings, or contain their own configuration menu.

Extended Settings - loaded to 23FEE00h (aka fragments of NDS9 boot code)
 Addr Siz Expl.
 00h 8 ID "XbooInfo"
 08h 2 CRC16 Value [0Ch..0Ch+Length-1]
 0Ah 2 CRC16 Length (from 0Ch and up)
 0Ch 1 Version (currently 01h)
 0Dh 1 Update Count (newer = (older+1) AND FFh)
 0Eh 1 Bootmenu Flags
 Bit6 Important Info (0=Disable, 1=Enable)
 Bit7 Bootmenu Screen (0=Upper, 1=Lower)
 0Fh 1 GBA Border (0=Black, 1=Gray Line)
 10h 2 Temperature Calibration TP0 ADC value (x16) (sum of 16 ADC values)
 12h 2 Temperature Calibration TP1 ADC value (x16) (sum of 16 ADC values)
 14h 2 Temperature Calibration Degrees Kelvin (x100) (0=none)
 16h 1 Temperature Flags
 Bit0-1 Format (0=Celsius, 1=Fahrenheit, 2=Reaumur, 3=Kelvin)
 17h 1 Backlight Intensity (0=0ff .. FFh=Full)
 18h 4 Date Century Offset (currently 20, for years 2000..2099)
 1Ch 1 Date Month Recovery Value (1..12)
 1Dh 1 Date Day Recovery Value (1..31)
 1Eh 1 Date Year Recovery Value (0..99)
 1Fh 1 Date/Time Flags
 Bit0-1 Date Format (0=YYYY-MM-DD, 1=MM-DD-YYYY, 2=DD-MM-YYYY)
 Bit2 Friendly Date (0=Raw Numeric, 1=With Day/Month Names)
 Bit5 Time DST (0=Hide DST, 1=Show DST=On/Off)
 Bit6 Time Seconds (0=Hide Seconds, 1=Show Seconds)
 Bit7 Time Format (0=24 hour, 1=12 hour)
 20h 1 Date Separator (Ascii, usually Slash, or Dot)
 21h 1 Time Separator (Ascii, usually Colon, or Dot)
 22h 1 Decimal Separator (Ascii, usually Comma, or Dot)
 23h 1 Thousands Separator (Ascii, usually Comma, or Dot)
 24h 1 Daylight Saving Time (Nth)
 Bit 0-3 Activate on (0..4 = Last,1st,2nd,3rd,4th)
 Bit 4-7 Deactivate on (0..4 = Last,1st,2nd,3rd,4th)
 25h 1 Daylight Saving Time (Day)
 Bit 0-3 Activate on (0..7 = Mon,Tue,Wed,Thu,Fri,Sat,Sun,AnyDay)
 Bit 4-7 Deactivate on (0..7 = Mon,Tue,Wed,Thu,Fri,Sat,Sun,AnyDay)
 26h 1 Daylight Saving Time (of Month)
 Bit 0-3 Activate DST in Month (1..12)
 Bit 4-7 Deactivate DST in Month (1..12)
 27h 1 Daylight Saving Time (Flags)
 Bit 0 Current DST State (0=Off, 1=On)
 Bit 1 Adjust DST Enable (0=Disable, 1=Enable)

Note: With the original firmware, the memory region at 23FEE00h and up contains un-initialized, non-zero-filled data (fragments of boot code).

 DS Wireless Communications

DS Wifi I/O Map
DS Wifi Control
DS Wifi Interrupts
DS Wifi Power-Down Registers
DS Wifi Receive Control
DS Wifi Receive Buffer
DS Wifi Receive S tatistics
DS Wifi Transmit Control
DS Wifi Transmit Buffers
DS Wifi Transmit Errors
DS Wifi S tatus
DS Wifi Timers
DS Wifi Configuration Ports
DS Wifi Baseband Chip (BB)
DS Wifi RF Chip
DS Wifi Unknown Registers
DS Wifi Unused Registers
DS Wifi Initialization
DS Wifi Flowcharts
DS Wifi Hardware Headers
DS Wifi Multiboot
DS Wifi IEEE802.11 Frames
DS Wifi IEEE802.11 Managment Frames (Type=0)
DS Wifi IEEE802.11 Control and Data Frames (Type=1 and 2)

2.4GHz band, Wireless LAN (WLAN) IEEE802.11b protocol

Credits
A very large part of the DS Wifi chapters is based on S tephen S tair's great DS Wifi document, thanks there.

 DS Wifi I/O Map

Notice
Wifi Registers & RAM cannot be written to by STRB opcodes (ignored).

Registers - NDS7 - 4808000h..4808FFFh
 Addr Dir Name r/w [Init] Description
 000h R W_ID ---- [1440] Chip ID (1440h=DS, C340h=DS-Lite)
 004h R/W W_MODE_RST 9fff [0000] Mode/Reset
 006h R/W W_MODE_WEP --7f [0000] Mode/Wep modes
 008h R/W W_TXSTATCNT ffff [0000] Beacon Status Request
 00Ah R/W W_X_00Ah ffff [0000] [bit7 - ingore rx duplicates]
 010h R/W W_IF ackk [0000] Wifi Interrupt Request Flags
 012h R/W W_IE ffff [0000] Wifi Interrupt Enable
 018h R/W W_MACADDR_0 ffff [0000] Hardware MAC Address (first 2 bytes)
 01Ah R/W W_MACADDR_1 ffff [0000] Hardware MAC Address (next 2 bytes)
 01Ch R/W W_MACADDR_2 ffff [0000] Hardware MAC Address (last 2 bytes)
 020h R/W W_BSSID_0 ffff [0000] BSSID (first 2 bytes)
 022h R/W W_BSSID_1 ffff [0000] BSSID (next 2 bytes)
 024h R/W W_BSSID_2 ffff [0000] BSSID (last 2 bytes)
 028h R/W W_AID_LOW ---f [0000] usually as lower 4bit of AID value
 02Ah R/W W_AID_FULL -7ff [0000] AID value assigned by a BSS.
 02Ch R/W W_TX_RETRYLIMIT ffff [0707] Tx Retry Limit (set from 0x00-0xFF)
 02Eh R/W W_INTERNAL ---1 [0000]
 030h R/W W_RXCNT ff0e [0000] Receive control
 032h R/W W_WEP_CNT ffff [0000] WEP engine enable
 034h R? W_INTERNAL 0000 [0000] bit0,1 (see port 004h and 1A0h)

Power-Down Registers (and Random Generator)
 036h R/W W_POWER_US ---3 [0001]
 038h R/W W_POWER_TX ---7 [0003]
 03Ch R/W W_POWERSTATE -r-2 [0200]
 040h R/W W_POWERFORCE 8--1 [0000]
 044h R W_RANDOM 0xxx [0xxx]
 048h R/W W_POWER_? ---3 [0000]

WLAN Memory Ports
 050h R/W W_RXBUF_BEGIN ffff [4000]
 052h R/W W_RXBUF_END ffff [4800]
 054h R W_RXBUF_WRCSR 0rrr [0000]
 056h R/W W_RXBUF_WR_ADDR -fff [0000]
 058h R/W W_RXBUF_RD_ADDR 1ffe [0000]
 05Ah R/W W_RXBUF_READCSR -fff [0000]
 05Ch R/W W_RXBUF_COUNT -fff [0000]
 060h R W_RXBUF_RD_DATA rrrr [xxxx]
 062h R/W W_RXBUF_GAP 1ffe [0000]
 064h R/W W_RXBUF_GAPDISP -fff [0000]
 068h R/W W_TXBUF_WR_ADDR 1ffe [0000]
 06Ch R/W W_TXBUF_COUNT -fff [0000]
 070h W W_TXBUF_WR_DATA xxxx [xxxx]
 074h R/W W_TXBUF_GAP 1ffe [0000]
 076h R/W W_TXBUF_GAPDISP 0fff [0000]

xxx
 078h W W_INTERNAL mirr [mirr] Read: Mirror of 068h
 080h R/W W_TXBUF_BEACON ffff [0000] Beacon Transmit Location
 084h R/W W_TXBUF_TIM --ff [0000] Beacon TIM Index in Frame Body
 088h R/W W_LISTENCOUNT --ff [0000] Listen Count
 08Ch R/W W_BEACONINT -3ff [0064] Beacon Interval
 08Eh R/W W_LISTENINT --ff [0000] Listen Interval
 090h R/W W_TXBUF_EXTRA ffff [0000] (used by firmware part4)
 094h R/W x ffff [0000] ? (used by firmware part4)
 098h R x 0000 [0000] (used by firmware part4)
 09Ch R/W W_INTERNAL ffff [0050] value 4x00h --> preamble+x*12h us?
 0A0h R/W W_TXBUF_LOC1 ffff [0000]
 0A4h R/W W_TXBUF_LOC2 ffff [0000]
 0A8h R/W W_TXBUF_LOC3 ffff [0000]
 0ACh W W_TXREQ_RESET fixx [0050]
 0AEh W W_TXREQ_SET fixx [0050]
 0B0h R W_TXREQ_READ --1f [0010]
 0B4h W W_TXBUF_RESET 0000 [0000] (used by firmware part4)
 0B6h R W_TXBUSY 0000 [0000] (used by firmware part4)
 0B8h R W_TXSTAT 0000 [0000]
 0BAh ? W_INTERNAL 0000 [0000]
 0BCh R/W W_PREAMBLE ---3 [0001]
 0C0h R/W x ffff [0000] (used by firmware part4)
 0C4h R/W x ffff [0000] (used by firmware part4)
 0C8h ? W_INTERNAL 0000 [0000]
 0D0h R/W W_RXFILTER 1fff [0401]
 0D4h R/W W_CONFIG_0D4h ---3 [0001]
 0D8h R/W W_CONFIG_0D8h -fff [0004]
 0DAh R/W W_CONFIG_0DAh ffff [0602]
 0E0h R/W W_RXFILTER2 ---f [0008]

Wifi Timers
 0E8h R/W W_US_COUNTCNT ---1 [0000] Microsecond counter enable
 0EAh R/W W_US_COMPARECNT ---1 [0000] Microsecond compare enable
 0ECh R/W W_CONFIG_0ECh 3f1f [3F03]
 0EEh R/W W_EXTRACOUNTCNT ---1 [0001]
 0F0h R/W W_US_COMPARE0 fc-- [FC00] Microsecond compare, bits 0-15
 0F2h R/W W_US_COMPARE1 ffff [FFFF] Microsecond compare, bits 16-31
 0F4h R/W W_US_COMPARE2 ffff [FFFF] Microsecond compare, bits 32-47
 0F6h R/W W_US_COMPARE3 ffff [FFFF] Microsecond compare, bits 48-63
 0F8h R/W W_US_COUNT0 ffff [0000] Microsecond counter, bits 0-15
 0FAh R/W W_US_COUNT1 ffff [0000] Microsecond counter, bits 16-31
 0FCh R/W W_US_COUNT2 ffff [0000] Microsecond counter, bits 32-47
 0FEh R/W W_US_COUNT3 ffff [0000] Microsecond counter, bits 48-63
 100h ? W_INTERNAL 0000 [0000]
 102h ? W_INTERNAL 0000 [0000]
 104h ? W_INTERNAL 0000 [0000]
 106h ? W_INTERNAL 0000 [0000]
 10Ch R/W W_CONTENTFREE ffff [0000] ...
 110h R/W W_PRE_BEACON ffff [0000]
 118h R/W W_EXTRACOUNT ffff [0000]
 11Ch R/W W_BEACONCOUNT1 ffff [0000] decreases; reloaded with W_BEACONINT

Configuration Ports (and some other Registers)
 120h R/W W_CONFIG_120h 81ff [0048] ...init from firmware[04Ch]
 122h R/W W_CONFIG_122h ffff [4840] ...init from firmware[04Eh]
 124h R/W W_CONFIG_124h ffff [0000] ...init from firmware[05Eh], or 00C8h
 126h ? W_INTERNAL fixx [0080]
 128h R/W W_CONFIG_128h ffff [0000] ...init from firmware[060h], or 07D0h
 12Ah ? W_INTERNAL fixx [1000] lower 12bit are same as W_CONFIG_128h
 130h R/W W_CONFIG_130h -fff [0142] ...init from firmware[054h]
 132h R/W W_CONFIG_132h 8fff [8064] ...init from firmware[056h]
 134h R/W W_BEACONCOUNT2 ffff [FFFF] ...
 140h R/W W_CONFIG_140h ffff [0000] ...init from firmware[058h], or xx
 142h R/W W_CONFIG_142h ffff [2443] ...init from firmware[05Ah]
 144h R/W W_CONFIG_144h --ff [0042] ...init from firmware[052h]
 146h R/W W_CONFIG_146h --ff [0016] ...init from firmware[044h]
 148h R/W W_CONFIG_148h --ff [0016] ...init from firmware[046h]
 14Ah R/W W_CONFIG_14Ah --ff [0016] ...init from firmware[048h]
 14Ch R/W W_CONFIG_14Ch ffff [162C] ...init from firmware[04Ah]
 150h R/W W_CONFIG_150h ff3f [0204] ...init from firmware[062h], or 202h
 154h R/W W_CONFIG_154h 7a7f [0058] ...init from firmware[050h]

Baseband Chip Ports
 158h W W_BB_CNT mirr [00B5] BB Access Start/Direction/Index
 15Ah W W_BB_WRITE ???? [0000] BB Access data byte to write
 15Ch R W_BB_READ 00rr [00B5] BB Access data byte read
 15Eh R W_BB_BUSY 000r [0000] BB Access Busy flag
 160h R/W W_BB_MODE 41-- [0100] BB Access Mode
 168h R/W W_BB_POWER 8--f [800D] BB Access Powerdown

Internal Stuff
 16Ah ? W_INTERNAL 0000 [0001] (or 0000h?)
 170h ? W_INTERNAL 0000 [0000]
 172h ? W_INTERNAL 0000 [0000]
 174h ? W_INTERNAL 0000 [0000]
 176h ? W_INTERNAL 0000 [0000]
 178h W W_INTERNAL fixx [0800] Read: mirror of 17Ch

RF Chip Ports
 17Ch R/W W_RF_DATA2 ffff [0800]
 17Eh R/W W_RF_DATA1 ffff [C008]
 180h R W_RF_BUSY 000r [0000]
 184h R/W W_RF_CNT 413f [0018]

xxx
 190h R/W W_INTERNAL ffff [0000]
 194h R/W x ---7 [0000] (used by firmware part4) (0 or 6)
 198h R/W W_INTERNAL ---f [0000]
 19Ch R W_RF_PINS fixx [0004]
 1A0h R/W x -933 [0000] (used by firmware part4) (0 or 823h)
 1A2h R/W x ---3 [0001] (used by firmware part4)
 1A4h R/W x ffff [0000] "Rate used when signal test..."

Wifi Statistics
 1A8h R W_RXSTAT_INC_IF rrrr [0000] Statistics Increment Flags
 1AAh R/W W_RXSTAT_INC_IE ffff [0000] Statistics Increment IRQ Enable
 1ACh R W_RXSTAT_OVF_IF rrrr [0000] Statistics Half-Overflow Flags
 1AEh R/W W_RXSTAT_OVF_IE ffff [0000] Statistics Half-Overflow IRQ Enable
 1B0h R/W W_RXSTAT --ff [0000]
 1B2h R/W W_RXSTAT ffff [0000] RX_LengthErrorCount RX_RateErrorCount
 1B4h R/W W_RXSTAT rrff [0000] ... firmware uses also MSB ... ?
 1B6h R/W W_RXSTAT ffff [0000]
 1B8h R/W W_RXSTAT --ff [0000]
 1BAh R/W W_RXSTAT --ff [0000]
 1BCh R/W W_RXSTAT ffff [0000]
 1BEh R/W W_RXSTAT ffff [0000]
 1C0h R/W W_TX_ERR_COUNT --ff [0000] TransmitErrorCount
 1C4h R W_RX_COUNT fixx [0000]

[1D0 - 1DE are 15 entries related to multiplayer response errors]
 1D0h R/W W_STAT ff-- [0000]
 1D2h R/W W_STAT ffff [0000]
 1D4h R/W W_STAT ffff [0000]
 1D6h R/W W_STAT ffff [0000]
 1D8h R/W W_STAT ffff [0000]
 1DAh R/W W_STAT ffff [0000]
 1DCh R/W W_STAT ffff [0000]
 1DEh R/W W_STAT ffff [0000]

Internal Diagnostics Registers (usually not used for anything)
 1F0h R/W W_INTERNAL ---3 [0000]
 204h ? W_INTERNAL fixx [0000]
 208h ? W_INTERNAL fixx [0000]
 20Ch W W_INTERNAL fixx [0050]
 210h R W_TX_SEQNO fixx [0000]
 214h R W_RF_STATUS XXXX [0009] (used by firmware part4)
 21Ch W W_IF_SET fbff [0000] Force Interrupt (set bits in W_IF).
 220h R/W W_INTERNAL ffff [0000] "Has something to do with whether the
 packet is ignored or allowed by the
 packet filtering system"
 Bit0-1: Enable/Disable WifiRAM
 (nothing to do with filtering, just
 locks memory at 4000h-5FFFh)
 224h R/W W_INTERNAL ---3 [0003]
 228h W x fixx [0000] (used by firmware part4) (bit3)
 230h R/W W_INTERNAL --ff [0047]
 234h R/W W_INTERNAL -eff [0EFF]
 238h R/W W_INTERNAL ffff [0000]
 23Ch ? W_INTERNAL fixx [0000] like W_TXSTAT, but ONLY for beacons?
 244h R/W x ffff [0000] (used by firmware part4)
 248h R/W W_INTERNAL ffff [0000]
 24Ch ? W_INTERNAL fixx [0000]
 24Eh ? W_INTERNAL fixx [0000]
 250h ? W_INTERNAL fixx [0000]
 254h ? W_CONFIG_254h fixx [0000] (is EEEEh on DS-Lite)
 258h ? W_INTERNAL fixx [0000]
 25Ch ? W_INTERNAL fixx [0000]
 260h ? W_INTERNAL fixx [0FEF]
 264h ? W_INTERNAL fixx [0000]
 268h R x W_RXUNITS fixx [0005]
 270h ? W_INTERNAL fixx [0000]
 274h ? W_INTERNAL fixx [0001]
 278h R/W W_INTERNAL ffff [000F]
 27Ch ? W_INTERNAL fixx [000A]
 290h (R/W) x fixx [FFFF] bit 0 = ? (used by firmware part4)
 298h W W_INTERNAL fixx [0000]
 2A0h R/W W_INTERNAL ffff [0000]
 2A2h R W_INTERNAL XXXX [7FFF] 15bit shift reg (used during tx...?)
 2A4h ? W_INTERNAL fixx [0000]
 2A8h W W_INTERNAL fixx [0000]
 2ACh ? W_INTERNAL fixx [0038]
 2B0h W W_INTERNAL fixx [0000]
 2B4h R/W W_INTERNAL -1-3 [0000]
 2B8h ? W_INTERNAL fixx [0000]
 2C0h R/W W_INTERNAL ---1 [0000]
 2C4h ? W_INTERNAL fixx [000A]
 2C8h ? W_INTERNAL fixx [0000]
 2CCh ? W_INTERNAL fixx [0000]
 2D0h DIS W_INTERNAL ;"W_POWERACK" (not used by firmware)
 ;normally DISABLED (except on FORCE)
 2F0h R/W W_INTERNAL ffff [0000]
 2F2h R/W W_INTERNAL ffff [0000]
 2F4h R/W W_INTERNAL ffff [0000]
 2F6h R/W W_INTERNAL ffff [0000]

All other ports in range 000h..FFFh are unused.
All registers marked as "W_INTERNAL" aren't used by Firmware part4, and are probably unimportant, except for whatever special diagnostics purposes.
Reading from write-only ports (W) often mirrors to data from other ports.

Additionally, there are 69h Baseband Chip Registers (BB), and 0Ch RF Chip Registers (see BB and RF chapters).

For Wifi Power Managment (POWCNT2), for Wifi Waitstates (WIFIWAITCNT), and for the Power LED Blink Feature (conventionally used to indicate Wifi activity) see:
DS Power Management

For Wifi Configuration and Calibration data in Firmware Header, see:
DS Cartridges, Encryption, Firmware

Wifi RAM - NDS7 - Memory (4804000h..4805FFFh)
 4804000h W_MACMEM RX/TX Buffers (2000h bytes) (excluding below specials)
 4805F60h Used for something, not included in the rx circular buffer.
 4805F80h W_WEPKEY_0 (32 bytes)
 4805FA0h W_WEPKEY_1 (32 bytes)
 4805FC0h W_WEPKEY_2 (32 bytes)
 4805FE0h W_WEPKEY_3 (32 bytes)

Unlike all other NDS memory, Wifi RAM is left uninitialized after boot.

5F80h - W_WEPKEY_0 thru W_WEPKEY_3 - Wifi WEP keys (R/W)
These WEP key slots store the WEP keys that are used for encryption for 802.11 keys IDs 0-3.

 DS Wifi Control

000h - W_ID - Wifi Chip ID (R)
 0-15 Chip ID (1440h on NDS, C340h on NDS-lite)

The NDS-lite is more or less backwards compatible with the original NDS (the W_RXBUF_GAPDISP and W_TXBUF_GAPDISP are different, and most of the garbage effects on unused/mirrored ports are different, too).

004h - W_MODE_RST - Wifi Hardware mode / reset (R/W)
 0 Adjust some ports (0/1=see lists below) (R/W)
 TX Master Enable for LOC1..3 and Beacon (0=Disable, 1=Enable)
 1-12 Unknown (R/W)
 13 Reset some ports (0=No change, 1=Reset/see list below) (Write-Only)
 14 Reset some ports (0=No change, 1=Reset/see list below) (Write-Only)
 15 Unknown (R/W)

006h - W_MODE_WEP - Wifi Software mode / Wep mode (R/W)
 0-2 specify a software mode for wifi operation
 (may be related to hardware but a correlation has not yet been found)
 3-5 specify the hardware WEP mode
 0=no WEP, 1=64bit WEP (48bit key), and 3=128bit WEP.
 (Values 2 and 4 exist too, but are nonstandard)
 6 Unknown
 8-15 Always zero

018h - W_MACADDR_0 - MAC Address (R/W)
01Ah - W_MACADDR_1 - MAC Address (R/W)
01Ch - W_MACADDR_2 - MAC Address (R/W)
48bit MAC Address of the console. Should be initialized from firmware[036h]. The hardware receives only packets that are sent to this address (or to group addresses, like FF:FF:FF:FF:FF:FF).

020h - W_BSSID_0 - BSSID (R/W)
022h - W_BSSID_1 - BSSID (R/W)
024h - W_BSSID_2 - BSSID (R/W)
48bit BSS ID stored here. Ie. the MAC address of the host, obtained from Beacon frames (on the host itself, that should be just same as W_MACADDR). See W_RXFILTER.

028h - W_AID_LOW (R/W)
 Bit0-3 Maybe player-number, assuming that HW supports such? (1..15, or 0)
 Bit4-15 Not used

Usually set equal to the lower 4bit of the W_AID_FULL value.

02Ah - W_AID_FULL - Association ID (R/W)
 Bit0-10 Association ID (AID) (1..2007, or zero)
 Bit11-15 Not used

032h - W_WEP_CNT - WEP Engine Enable (R/W)
 0-14 Unknown (usually zero)
 15 WEP Engine Enable (0=Disable, 1=Enable)

[expl. I - bit15 enables/disables WEP processing of sent/received packets]
[expl. II - bit15 enables wep processing on packets which bear the WEP flag in the 802.11 header]
[expl. III - bit15 seems to react on 0-to-1 transitions]

044h - W_RANDOM - Random Generator (R)
 0-10 Random
 11-15 Not used (zero)

The random generator is updated at 33.51MHz rate, as such:
 X = (X AND 1) XOR (X ROL 1) ;(rotation within 11bit range)

That random sequence goes through 5FDh different values before it restarts.
When reading from the random register, the old latched value is returned to the CPU, and the new current random value is then latched, so reads always return the older value, timed from the previous read.
Occassionally, about once every some thousand reads, the latching appears to occur 4 cycles earlier than normally, so the value on the next read will be 4 cycles older than expected.
The random register has ACTIVE mirrors.

0BCh - W_PREAMBLE - Preamble Control (R/W)
 Bit Dir Expl.
 0 R/W Unknown (this does NOT affect TX)
 1 R/W Preamble (0=Long, 1=Short) (this does NOT affect TX)
 2 W Preamble (0=Long, 1=Short) (this does affect TX) (only at 2Mbit/s)
 3-15 - Always zero

Short preamble works only with 2Mbit/s transfer rate (ie. when set like so in TX hardware header). 1Mbit/s rate always uses long preamble.
 Type Carrier Signal SFD Value PLCP Header Data
 Long 128bit, 1Mbit 16bit, 1Mbit 48bit, 1Mbit N bits, 1Mbit or 2Mbit
 Short 56bit, 1Mbit 16bit, 1Mbit 48bit, 2Mbit N bits, 2Mbit

Length of the Carrier+SFD+PLCP part is thus 192us (long) or 96us (short).
Note: The Carrier+SFD+PLCP part is sent between IRQ14 and IRQ07 (not between IRQ07 and IRQ01).

Writing "0-then-1" to W_MODE_RST.Bit0 does reset following ports:
 [034h]=0002h ;W_INTERNAL
 [19Ch]=0046h ;W_RF_PINS
 [214h]=0009h ;W_RF_STATUS
 [27Ch]=0005h ;W_INTERNAL
 [2A2h]=? ;...unstable?

Writing "1-then-0" to W_MODE_RST.Bit0 does reset following ports:
 [27Ch]=000Ah ;W_INTERNAL

Writing "1" to W_MODE_RST.Bit13 does reset following ports:
 [056h]=0000h ;W_RXBUF_WR_ADDR
 [0C0h]=0000h ; x
 [0C4h]=0000h ; x
 [1A4h]=0000h ; x
 [278h]=000Fh ;W_INTERNAL
 ...Also, following may be affected (results are unstable though)...
 [0AEh]=? ;or rather the actual port (which it is an mirror of)
 [0BAh]=? ;W_INTERNAL (occassionally unstable)
 [204h]=? ;W_INTERNAL
 [25Ch]=? ;W_INTERNAL
 [268h]=? ;W_RXUNITS
 [274h]=? ;W_INTERNAL

Writing "1" to W_MODE_RST.Bit14 does reset following ports:
 [006h]=0000h ;W_MODE_WEP
 [008h]=0000h ;W_TXSTATCNT
 [00Ah]=0000h ;W_X_00Ah
 [018h]=0000h ;W_MACADDR_0
 [01Ah]=0000h ;W_MACADDR_1
 [01Ch]=0000h ;W_MACADDR_2
 [020h]=0000h ;W_BSSID_0
 [022h]=0000h ;W_BSSID_1
 [024h]=0000h ;W_BSSID_2
 [028h]=0000h ;W_AID_LOW
 [02Ah]=0000h ;W_AID_FULL
 [02Ch]=0707h ;W_TX_RETRYLIMIT
 [02Eh]=0000h ;W_INTERNAL
 [050h]=4000h ;W_RXBUF_BEGIN
 [052h]=4800h ;W_RXBUF_END
 [084h]=0000h ;W_TXBUF_TIM
 [0BCh]=0001h ;W_PREAMBLE
 [0D0h]=0401h ;W_RXFILTER
 [0D4h]=0001h ;W_CONFIG_0D4h
 [0E0h]=0008h ;W_RXFILTER2
 [0ECh]=3F03h ;W_CONFIG_0ECh
 [194h]=0000h ; x
 [198h]=0000h ;W_INTERNAL
 [1A2h]=0001h ; x
 [224h]=0003h ;W_INTERNAL
 [230h]=0047h ;W_INTERNAL

 DS Wifi Interrupts

010h - W_IF - Wifi Interrupt Request Flags (R/W)
 0 Receive Complete (packet received and stored in the RX fifo)
 1 Transmit Complete (packet is done being transmitted) (no matter if error)
 2 Receive Event Increment (IRQ02, see W_RXSTAT_INC_IE)
 3 Transmit Error Increment (IRQ03, see W_TX_ERR_COUNT)
 4 Receive Event Half-Overflow (IRQ04, see W_RXSTAT_OVF_IE)
 5 Transmit Error Half-Overflow (IRQ05, see W_TX_ERR_COUNT.Bit7)
 6 Start Receive (a packet has just started to be received)
 7 Start Transmit (a packet has just started to be transmitted)
 8 Txbuf Count Expired (IRQ08, see W_TXBUF_COUNT)
 9 Rxbuf Count Expired (IRQ09, see W_RXBUF_COUNT)
 10 Not used (always zero, even when trying to set it with W_IF_SET)
 11 RF Wakeup (IRQ11, see W_POWERSTATE)
 12 ? (IRQ12, see W_EXTRACOUNT)
 13 Post-Beacon Timeslot (IRQ13, see W_BEACONCOUNT2)
 14 Beacon Timeslot (IRQ14, see W_BEACONCOUNT1/W_US_COMPARE)
 15 Pre-Beacon Timeslot (IRQ15, see W_BEACONCOUNT1/W_PRE_BEACON)

Write a '1' to a bit to c lear it.
The Transmit S tart/Complete bits (Bit7,1) are set for EACH packet (including beacons, and including retries).

012h - W_IE - Wifi Interrupt Enable Flags (R/W)
 0-15 Enable Flags, same bits as W_IF (0=Disable, 1=Enable)

In W_IE, Bit10 is R/W, but seems to have no function since IRQ10 doesn't exist.

21Ch - W_IF_SET (W_INTERNAL) - Force Wifi Interrupt Flags (W)
 0-15 Set corresponding bits in W_IF (0=No change, 1=Set Bit)

Notes: Bit10 cannot be set since no IRQ10 exists. This register does only set IRQ flags, but without performing special actions (such like W_BEACONCOUNT1 and W_BEACONCOUNT2 reloads that occur on real IRQ14's).

Wifi Primary IRQ Flag (IF.Bit24, Port 4000214h)
IF.Bit24 gets set <only> when (W_IF AND W_IE) changes from 0000h to non-zero.
IF.Bit24 can be reset (ack) <even> when (W_IF AND W_IE) is still non-zero.
 Caution Caution Caution Caution Caution
 That means, when acknowledging IF.Bit24, then NO FURTHER wifi IRQs
 will be executed whilst and as long as (W_IF AND W_IE) is non-zero.

One work-around is to process/acknowledge ALL wifi IRQs in a loop, including further IRQs that may occur inside of that loop, until (W_IF AND W_IE) becomes 0000h.
Another work-around (for single IRQs) would be to acknowledge IF and W_IF, and then to set W_IE temporarily to 0000h, and then back to the old W_IE setting.

 DS Wifi Power-Down Registers

036h - W_POWER_US (R/W)
 0 Disable W_US_COUNT and W_BB_ports (0=Enable, 1=Disable)
 1 Unknown (usually 0)
 2-15 Always zero

Bit0=0 enables RFU by setting RFU.Pin11=HIGH, which activates the 22.000MHz oscillator on the RFU board, the 22MHz clock is then output to RFU.Pin26.

038h - W_POWER_TX (R/W)
transmit-related power save or sth
init from firmware[05Ch]
 0 Auto Wakeup (1=Leave Idle Mode a while after IRQ15)
 1 Auto Sleep (0=Enter Idle Mode on IRQ13)
 2 Unknown
 3 Unknown (Write-only) (used by firmware)
 4-15 Always zero

03Ch - W_POWERSTATE (R/W)/(R)
 0 Unknown (usually 0) (R/W)
 1 Request Power Enable (0=No, 1=Yes/queued) (R/W, but not always)
 2-7 Always zero
 8 Indicates that Bit9 is about the be cleared (Read only)
 9 Current power state (0=Enabled, 1=Disabled) (Read only)
 10-15 Always zero

[value =1: queue disable power state] ;<-- seems to be incorrect
[value =2: queue enable power state] ;<-- seems to be correct
Enabling causes wakeup interrupt (IRQ11).
Note: That queue stuff seems to work only if W_POWER_US=0 and W_MODE_RST=1.

040h - W_POWERFORCE - Force Power State (R/W)
 0 New value for W_POWERSTATE.Bit9 (0=Clear/Delayed, 1=Set/Immediately)
 1-14 Always zero
 15 Apply Bit0 to W_POWERSTATE.Bit9 (0=No, 1=Yes)

Setting W_POWERFORCE=8000h whilst W_POWERSTATE.Bit9=1 acts delayed:
 W_POWERSTATE.Bit8 gets set to indicate the pending operation,
 while pending, changes to W_POWERFORCE aren't applied to W_POWERSTATE,
 while pending, W_POWERACK becomes Read/Write-able,
 writing 0000h to W_POWERACK does clear W_POWERSTATE.Bit8,
 and does apply POWERFORCE.Bit0 to W_POWERSTATE.Bit9
 and does deactivate Port W_POWERACK again.

(After that sequence, the hardware seems to be messed up)

048h - W_POWER_? (R/W)
 0 Unknown
 1 Unknown
 2-15 Always zero

At whatever time (during transmit or so) it gets set to 0003h by hardware.

See also: POWCNT2, W_BB_POWER.

 DS Wifi Receive Control

030h - W_RXCNT - Wifi Receive Control (R/W)
 Bit Description
 0 Latch registers for RX FIFO (Write-only) (always reads as zero)
 1-3 Unknown (R/W)
 4-6 Always zero
 7 Related to Port 094h (Write-only) (always reads as zero)
 8-14 Unknown (R/W)
 15 Enable Queuing received data to RX FIFO (R/W)

Latched registers include: W_RXBUF_BEGIN, W_RXBUF_END and also W_RXBUF_WRCSR=W_RXBUF_WR_ADDR

0D0h - W_RXFILTER - (R/W)
 Bit Description
 0 (0=Insist on W_BSSID, 1=Accept no matter of W_BSSID)
 1-6 Unknown (usually zero)
 7 Unknown (0 or 1)
 8 Unknown (0 or 1)
 9 Unknown (0 or 1)
 10 Unknown (0 or 1) (when set, receives beacons, and maybe others)
 11 Unknown (usually zero)
 12 (0=Normal, 1=Accept even whatever garbage)
 13-15 Not used (always zero)

Specifies what packets to allow.
0000h = Disable receive.
FFFFh = Enable receive.
0400h = Receives managment frames (and possibly others, too)

0E0h - W_RXFILTER2 - (R/W)
 0 Unknown (0=Receive Data Frames, 1=Ignore Data Frames) (?)
 1 Unknown
 2 Unknown
 3 Unknown (usually set)
 4-15 Not used (always zero)

Firmware writes values 08h, 0Bh, 0Dh (aka 1000b, 1011b, 1101b).
Firmware usually has bit0 set, even when receiving data frames, so, in some situations data frames seem to pass-through even when bit0 is set...? Possibly that situation is when W_BSS ID matches...?
Control/PS -Poll frames seem to be passed always (even if W_RXFILTER2=0Fh).

 DS Wifi Receive Buffer

The dimensions of the c ircular Buffer are set with BEGIN/END values, hardware automatically wraps to BEGIN when an incremented pointer hits END address.

Write Area
Memory between WRCSR and READCSR is free for receiving data, the hardware writes incoming packets to this region (to WRCSR and up) (but without exceeding READCSR), once when it has successfully received a complete packet, the hardware moves WRCSR after the packet (aligned to a 4-byte boundary).

Read Area
Memory between READCSR and WRCSR contains received data, which can be read by the CPU via RD_ADDR and RD_DATA registers (or directly from memory). Once when having processed that data, the CPU must set READCSR to the end of it.

050h - W_RXBUF_BEGIN - Wifi RX Fifo start location (R/W)
052h - W_RXBUF_END - Wifi RX Fifo end location (R/W)
 0-15 Byte-offset in Wifi Memory (usually 4000h..5FFEh)

Although the full 16bit are R/W, only the 12bit halfword offset in Bit1-12 is actually used, the other bits seem to have no effect.
Some or all (?) of the below incrementing registers are automatically matched to begin/end, that is, after incrementing, IF adr=end THEN adr=begin.
 W_RXBUF_BEGIN and W_RXBUF_END are reportedly "latched"
 when bottom bit of W_RXCNT is set
 no idea if/where/what is "latched" to/from what location,
 eventually means that above register settings are forwarded to internal
 receive registers..?

054h - W_RXBUF_WRCSR - Wifi RX Fifo Write or "end" cursor (R)
 0-11 Halfword Address in RAM
 12-15 Always zero

This is a hardware controlled write location - it shows where the next packet will be written..

056h - W_RXBUF_WR_ADDR - Wifi RX Fifo Write Cursor Latch value (R/W)
 0-11 Halfword Address in RAM
 12-15 Always zero

This is a value that is latched into W_RXBUF_WRCSR, when the W_RXCNT latch bit (W_RXCNT.Bit0) is written.

058h - W_RXBUF_RD_ADDR - Wifi CircBuf Read Address (R/W)
 0 Always zero
 1-12 Halfword Address in RAM for reading via W_RXBUF_RD_DATA
 13-15 Always zero

The circular buffer limits are the same as the range specified for the receive FIFO, however the address can be set outside of that range and will only be affected by the FIFO boundary if it crosses the FIFO end location by reading from the circular buffer.

05Ah - W_RXBUF_READCSR - Wifi RX Fifo Read or "start" cursor (R/W)
 0-11 Halfword Address in RAM
 12-15 Always zero

This value is specified the same as W_RXBUF_WRCSR - it's purely software controlled so it's up to the programmer to move the start cursor after loading a packet. if W_RXBUF_READCSR != W_RXBUF_WRCSR, then one or more packets exist in the FIFO that need to be processed. (See the section on HW RX Headers, for information on calculating packet lengths) Once a packet has been processed, the software should advance the read cursor to the beginning of the next packet.

060h - W_RXBUF_RD_DATA - Wifi CircBuf Read Data (R)
 0-15 Data

returns the 16bit value at the address specified by W_RXBUF_RD_ADDR, and increments W_RXBUF_RD_ADDR by 2. If the increment causes W_RXBUF_RD_ADDR to equal the address specified in W_RXBUF_END, W_RXBUF_RD_ADDR will be reset to the address specified in W_RXBUF_BEGIN.
Ports 1060h, 6060h, 7060h are PASS IVE mirrors of 0060h, reading from these mirrors returns the old latched value from previous read from 0060h, but without reading a new value from RAM, and without incrementing the address.

062h - W_RXBUF_GAP - Wifi RX Gap Address (R/W)
 0 Always zero
 1-12 Halfword Address in RAM
 13-15 Always zero

Seems to be intended to define a "gap" in the c ircular buffer, done like so:
 Addr=Addr+2 and 1FFEh ;address increment (by W_RXBUF_RD_DATA read)
 if Addr=RXBUF_END then ;normal begin/end wrapping (done before gap wraps)
 Addr=RXBUF_BEGIN
 if Addr=RXBUF_GAP then ;now gap-wrap (may include further begin/end wrap)
 Addr=RXBUF_GAP+RXBUF_GAPDISP*2
 if Addr>=RXBUF_END then Addr=Addr+RXBUF_BEGIN-RXBUF_END ;wrap more

To disable the gap stuff, set both W_RXBUF_GAP and W_RXBUF_GAPDISP to zero.

064h - W_RXBUF_GAPDISP - Wifi RX Gap Displacement Offset (R/W)
 0-11 Halfword Offset, used with W_RXBUF_GAP (see there)
 12-15 Always zero

Caution: On the DS-Lite, after adding it to W_RXBUF_RD_ADDR, the W_RXBUF_GAPDISP setting is destroyed (reset to 0000h) by hardware. The original DS leaves W_RXBUF_GAPDISP intact.

05Ch - W_RXBUF_COUNT (R/W)
 0-11 Decremented on reads from W_RXBUF_RD_DATA
 12-15 Always zero

Triggers IRQ09 when it reaches zero, and does then stay at zero (without further decrementing, and without generating further IRQs).
Note: Also decremented on (accidental) writes to read-only W_RXBUF_RD_DATA.

 DS Wifi Receive Statistics

1A8h - W_RXSTAT_INC_IF - Statistics Increment Flags (R)
 0-12 Increment Flags (see Port 1B0h..1BFh)
 13-15 Always zero

Bitmask for which statistics have been increased at least once.
Unknown how to reset/acknowledge these bits... possibly by reading from 1A8h, or by reading from 1B0h..1BFh, or eventually/obscurely by writing to 1ACh.

1AAh - W_RXSTAT_INC_IE - Statistics Increment Interrupt Enable (R/W)
 0-12 Counter Increment Interrupt Enable (see Port 1B0h..1BFh) (1=Enable)
 13-15 Unknown (usually zero)

Statistic Interrupt Enable Control register for Count Up.
Note: ------> seems to trigger IRQ02 ...?

1ACh - W_RXSTAT_OVF_IF - Statistics Half-Overflow Flags (R)
 0-12 Half-Overflow Flags (see Port 1B0h..1BFh)
 13-15 Always zero

The W_RXSTAT_OVF_IF bits are simply containing the current bit7-value of the corresponding counters, setting or c learing that counter bits is directly reflected to W_RXSTAT_OVF_IF.
The recommended way to acknowledge W_RXSTAT_OVF_IF is to read the corresponding counters (which are reset to 00h after reading). For some reason, the firmware is additionally writing FFFFh to W_RXSTAT_OVF_IF (that is possibly a bug, or it does acknowlege something internally?).

1AEh - W_RXSTAT_OVF_IE - Statistics Half-Overflow Interrupt Enable (R/W)
 0-12 Half-Overflow Interrupt Enable (see Port 1B0h..1BFh) (1=Enable)
 13-15 Unknown (usually zero)

Statistic Interrupt Enable for Overflow, bits same as in W_RXSTAT_INC_IE
Note: ------> seems to trigger IRQ04 ...?

1B0h..1BFh - W_RXSTAT - Receive Statistics (R/W, except 1B5h: Read-only)
W_RXSTAT is a collection of 8bit counters, which are incremented upon certain events. These entries are automatically reset to 0000h after reading. Should be accessed with LDRH opcodes (using LDRB to read only 8bits does work, but the read is internally expanded to 16bit, and so, the whole 16bit value will be reset to 0000h).
 Port Dir Bit Expl.
 1B0h R/W 0 W_RXSTAT ?
 1B1h - - Always 0 -
 1B2h R/W 1 W_RXSTAT ? "RX_LengthErrorCount or RX_RateErrorCount"
 1B3h R/W 2 W_RXSTAT Length>2348 error
 1B4h R/W 3 W_RXSTAT RXBUF Full error
 1B5h R 4? W_RXSTAT ? (R) (but seems to exist; used by firmware)
 1B6h R/W 5 W_RXSTAT Length=0 Error ;"0x20=FCS_ERROR,"
 1B7h R/W 6 W_RXSTAT Packet Received Okay ;"0x40=FCS_OK,"
 (also increments on W_MACADDR mis-match)
 (also increments on internal ACK packets)
 (also increments on invalid IEEE type=3)
 (also increments TOGETHER with 1BCh and 1BEh)
 (not incremented on RXBUF_FULL error)
 1B8h R/W 7 W_RXSTAT ?
 1B9h - - Always 0 -
 1BAh R/W 8 W_RXSTAT ?
 1BBh - - Always 0 -
 1BCh R/W 9 W_RXSTAT WEP Error (when FC.Bit14 is set)
 1BDh R/W 10 W_RXSTAT ?
 1BEh R/W 11 W_RXSTAT (duplicated sequence control) ;"0x800 = DUPE, ?"
 1BFh R/W 12 W_RXSTAT ?

1C4h - W_RX_COUNT (W_INTERNAL) (R)
 0-? Receive Okay Count (increments together with ports 1B4h + 1B7h)
 8-? Receive Error Count (increments together with ports 1B3h + 1B6h)

Increments when receiving a packet. Automatically reset to zero after reading.

1D0h..1DFh - W_STAT - Related to multiplayer response errors (R/W)
 1D0h Not used (always zero)
 1D1h..1DFh Client 1..15

Incremented on errors (and/or on success?). Probably related to W_AID_LOW.
Automatically reset to zero after reading. Responses should be somehow sent through Port 094h, don't know how/when/if that data is transferred, maybe automatically after receiving beacons...?

 DS Wifi Transmit Control

0ACh - W_TXREQ_RESET - Reset Transfer Request Bits (W)
 0-3 Reset corresponding bits in W_TXREQ_READ (0=No change, 1=Reset)
 4-15 Unknown (if any)

Firmware writes values 01h,02h,08h,0Dh, and FFFFh.

0AEh - W_TXREQ_SET - Set Transfer Request Bits (W)
 0-3 Set corresponding bits in W_TXREQ_READ (0=No change, 1=Set)
 4-15 Unknown (if any)

Firmware writes values 01h,02h,05h,08h,0Dh.

0B0h - W_TXREQ_READ - Get Transfer Request Bits (R)
 0 Send W_TXBUF_LOC1 (1=Transfer, if enabled in W_TXBUF_LOC1.Bit15)
 1 Send W_TXBUF_EXTRA (1=Transfer, if enabled in W_TXBUF_EXTRA.Bit15)
 2 Send W_TXBUF_LOC2 (1=Transfer, if enabled in W_TXBUF_LOC2.Bit15)
 3 Send W_TXBUF_LOC3 (1=Transfer, if enabled in W_TXBUF_LOC3.Bit15)
 4 Unknown (seems to be always 1) (never used by firmware part4)
 5-15 Unknown/Not used

Bit0-3 can be set/reset via W_TXREQ_SET/W_TXREQ_RESET. The setting in W_TXREQ_READ remains intact even after the transfer(s) have completed.
If more than one of the LOC1,2,3 bits is set, then LOC3 is transferred first, LOC1 last. Beacons are transferred in every Beacon Timeslot (if enabled in W_TXBUF_BEACON.Bit15).
Bit0,2,3 are automatically reset upon IRQ14 (by hardware).

0B6h - W_TXBUSY (R)
 0 W_TXBUF_LOC1 (1=Requested Transfer busy, or not yet started at all)
 1 W_TXBUF_EXTRA (1=Requested Transfer busy, or not yet started at all)
 2 W_TXBUF_LOC2 (1=Requested Transfer busy, or not yet started at all)
 3 W_TXBUF_LOC3 (1=Requested Transfer busy, or not yet started at all)
 4 W_TXBUF_BEACON (1=Beacon Transfer busy)
 5-15 Unknown (if any)

Busy bits. If all three W_TXBUF_LOC's are sent, then it goes through values 0Dh,05h,01h,00h; ie. LOC3 is transferred first, LOC1 last. The register is updated upon IRQ01 (by hardware).
Bit4 is set only in Beacon Timeslots.

0B8h - W_TXSTAT - RESULT - Status of transmitted frame (R)
For LOC1-3, this register is updated at the end of a transfer (upon the IRQ01 request), if retries occur then it is updated only after the final retry.
For BEACON, this register is updated only if enabled in W_TXSTATCNT.Bit15, and only after successful transfers (since beacon errors result in infinite retries).
For EXTRA, this register is updated only if enabled in W_TXSTATCNT.Bit13,14).
Bit0/1 act similar to W_IF Bit1/3, however, the W_IF Bits are set after each transmit (including retries).
 0 One (or more) Packet has Completed (1=Yes)
 (No matter if successful, for that info see Bit1)
 (No matter if ALL packets are done, for that info see Bit12-13)
 1 Packet Failed (1=Error)
 2-7 Unknown/Not used
 8-11 Usually 0, ...but firmware is checking for values 03h,08h,0Bh
 (gets set to 07h when transferred W_TXBUF_LOC1/2/3 did have Bit12=set)
 (gets set to 00h otherwise)
 (gets set to 03h after beacons; if enabled in W_TXSTATCNT.Bit15)
 (gets set to 08h or 0Bh after EXTRA; depending on W_TXSTATCNT.Bit13,14)
 12-13 Packet which has updated W_TXSTAT (0=LOC1/BEACON/EXTRA, 1=LOC2, 2=LOC3)
 14-15 Unknown/Not used

No idea how to reset bit0/1 once when they are set?

008h - W_TXSTATCNT (R/W)
 0-12 Unknown (usually zero)
 13 Update W_TXSTAT=0B01h and trigger IRQ01 after EXTRA transmits (1=Yes)
 14 Update W_TXSTAT=0800h and trigger IRQ01 after EXTRA transmits (1=Yes)
 15 Update W_TXSTAT and trigger IRQ01 after BEACON transmits (0=No, 1=Yes)

If both Bit13 and Bit14 are set, then Bit13 is having priority.
Note: LOC1..3 transmits are always updating W_TXSTAT and triggering IRQ01.

210h - W_TX_SEQNO - Transmit Sequence Number (R)
 0-11 Increments on IRQ07 (Transmit Start Interrupt)
 12-15 Always zero

Also incremented shortly after IRQ12.
When enabled in W_TXBUF_LOCn.Bit13, this value replaces the upper 12bit of the IEEE F rame Header's Sequence Control value (otherwise, when disabled, the original value in Wifi RAM is used, and, in that case, W_TX_SEQNO is NOT incremented).

 DS Wifi Transmit Buffers

068h - W_TXBUF_WR_ADDR - Wifi CircBuf Write Address (R/W)
 0 Always zero
 1-12 Halfword Address in RAM for Writes via W_TXBUF_WR_DATA
 13-15 Always zero

070h - W_TXBUF_WR_DATA - Wifi CircBuf Write Data (W)
 0-15 Data to be written to address specified in W_TXBUF_WR_ADDR

After writing to this register, W_TXBUF_WR_ADDR is automatically incremented by 2, and, if it gets equal to W_TXBUF_GAP, then it gets additonally incremented by W_TXBUF_GAPDISP*2.

074h - W_TXBUF_GAP - Wifi CircBuf Write Top (R/W)
 0 Always zero
 1-12 Halfword Address
 13-15 Always zero

076h - W_TXBUF_GAPDISP - Wifi CircBuf Write Offset from Top to Bottom (R/W)
 0-11 Halfword Offset (added to; if equal to W_TXBUF_GAP)
 12-15 Always zero

Should be "0-write_buffer_size" (wrap from end to begin), or zero (no wrapping).
Caution: On the DS-Lite, after adding it to W_TXBUF_WR_ADDR, the W_TXBUF_GAPDISP setting is destroyed (reset to 0000h) by hardware. The original DS leaves W_TXBUF_GAPDISP intact.

Note: W_TXBUF_GAP and W_TXBUF_GAPDISP may be (not TOO probably) also used by transmits via W_TXBUF_LOCn and W_TXBUF_BEACON (not tested).

080h - W_TXBUF_BEACON - Beacon Transmit Location (R/W)
090h - W_TXBUF_EXTRA - Extra Transmit Location (R/W)
0A0h - W_TXBUF_LOC1 - Transmit location 1 (R/W)
0A4h - W_TXBUF_LOC2 - Transmit location 2 (R/W)
0A8h - W_TXBUF_LOC3 - Transmit location 3 (R/W)
 0-11 Halfword Address of TX Frame Header in RAM
 12 For LOC1-3: When set, W_TXSTAT.bit8-10 are set to 07h after transfer
 For BEACON: Unknown, no effect on W_TXSTAT
 For EXTRA: Unknown, no effect on W_TXSTAT
 13 IEEE Sequence Control (0=From W_TX_SEQNO, 1=Value in Wifi RAM)
 For BEACON: Unknown (always uses W_TX_SEQNO) (no matter of bit13)
 14 Unknown
 15 Transfer Request (1=Request/Pending)

For LOC1..3 and EXTRA, Bit15 is automatically c leared after transfer (no matter if the transfer was successful). For Beacons, bit15 is kept unchanged since beacons are intended to be transferred repeatedly.
The purpose of W_TXBUF_EXTRA is unknown... maybe for automatic replies...? Pictochat seems to use it for host-to-c lient data frames. W_TXBUF_EXTRA.Bit15 can be set ONLY while W_EXTRACOUNT is non-zero.

0B4h - W_TXBUF_RESET (W)
 0 Disable LOC1 (0=No change, 1=Reset W_TXBUF_LOC1.Bit15)
 1 Disable EXTRA (0=No change, 1=Reset W_TXBUF_EXTRA.Bit15)
 2 Disable LOC2 (0=No change, 1=Reset W_TXBUF_LOC2.Bit15)
 3 Disable LOC3 (0=No change, 1=Reset W_TXBUF_LOC3.Bit15)
 4-5 Unknown/Not used
 6 Unknown (used by firmware) (probably ack/reset Port 098h...?)
 7 Unknown (0=No change, 1=Reset Port 094h.Bit15)
 8-15 Unknown/Not used

Firmware writes values FFFFh, 40h, 02h, xxxx, 09h, 01h, 02h, C0h.

084h - W_TXBUF_TIM - Beacon TIM Index in Frame Body (R/W)
 0-7 Location of TIM parameters within Beacon Frame Body
 8-15 Not used/zero

Usually set to 15h, that assuming that preceeding Frame Body content is: Timestamp(8), BeaconInterval(2), Capability(2), SuppRatesTagLenParams(4), ChannelTagLenParam(3), TimTagLen(2); so the value points to TimParams (ie. after TimTagLen).

06Ch - W_TXBUF_COUNT (R/W)
 0-11 Decremented on writes to W_TXBUF_WR_DATA
 12-15 Always zero

Triggers IRQ08 when it reaches zero, and does then stay at zero (without further decrementing, and without generating further IRQs).
Note: Not affected by (accidental) reads from write-only W_TXBUF_WR_DATA.

 DS Wifi Transmit Errors

Automatic ACKs
Transmit errors occur on missing ACKs. The NDS hardware is automatically responding with an ACK when receiving a packet (if it has been addressed to the receipients W_MACADDR setting). And, when sending a packet, the NDS hardware is automatically checking for ACK responses.
The only exception are packets that are sent to group addresses (ie. Bit0 of the 48bit MAC address being set to "1", eg. Beacons sent to FF:FF:FF:FF:FF:FF), the receipient(s) don't need to respond to such packets, and the sender always passes okay without checking for ACKs.

02Ch - W_TX_RETRYLIMIT (R/W)
Specifies the maximum number of retries on Transmit Errors (eg. 07h means one initial transmit, plus 7 retries, ie. max 8 transmits in total).
 0-7 Retry Count (usually 07h)
 8-15 Unknown (usually 07h)

The Retry Count value is decremented on each Error (unless it is already 00h). There's no automatic reload, so W_TX_RETRYLIMIT should be reinitialized by software prior to each transmit. When sending multiple packets (by setting more than one bit with W_TXREQ_SET), then the first packet may eat-up all retries, leaving only a single try to the other packet(s).

1C0h - W_TX_ERR_COUNT - TransmitErrorCount (R/W)
 0-7 TransmitErrorCount
 8-15 Always zero

Increments on Transmit Errors. Automatically reset to zero after reading.
IRQ03 triggered when W_TX_ERR_COUNT is incremented (for NON-beacons ONLY).
IRQ05 triggered when W_TX_ERR_COUNT > 7Fh (happens INCLUDING for beacons).

Error Notification
Transmit Errors can be sensed via W_TX_ERR_COUNT, IRQ03, IRQ05, TX Hardware Header entry [00h], and W_TXSTAT.Bit1.

W_TXBUF_BEACON Errors
As the name says, W_TXBUF_BEACON is intended for sending Beacons to group addresses (which do not require to respond by ACKs). So, transmit errors would occur only when mis-using W_TXBUF_BEACON to send packets to individual addresses, but the W_TXBUF_BEACON error handling isn't fully implemented:
First of, W_TX_RETRYLIMIT isn't used, instead, W_TXBUF_BEACON errors will result in infinite retries.
Moreover, W_TXBUF_BEACON errors seem to increment W_TX_ERR_COUNT, but without generating IRQ03, however, IRQ05 is generated when W_TX_ERR_COUNT>7Fh.

Other Errors
The NDS transmit hardware seems to do little error checking on the packet headers. The only known error-checked part is byte [04h] in the TX hardware header (which must be 00h, 01h, or 02h). Aside from that, when sent to a group address, it is passing okay even with invalid IEEE type/subtypes, and even with Length/Rate entries set to zero. However, when sending such data to an individual address, the receiving NDS won't respond by ACKs.

Note
Received ACKs aren't stored in WifiRAM (or, possibly, they ARE stored, but without advancing W_RXBUF_WRCSR, so that the software won't see them, and so that they will be overwritten by the next packet).

 DS Wifi Status

19Ch - W_RF_PINS - Status of RF-Chip Control Signals (R)
 0 Reportedly "carrier sense" (maybe 1 during RX.DTA?) (usually 0)
 1 TX.MAIN (RFU.Pin17) Transmit Data Phase (0=No, 1=Active)
 2 Unknown (RFU.Pin3) Seems to be always high (Always 1=high?)
 3-5 Not used (Always zero)
 6 TX.ON (RFU.Pin14) Transmit Preamble+Data Phase (0=No, 1=Active)
 7 RX.ON (RFU.Pin15) Receive Mode (0=No, 1=Enabled)
 8-15 Not used (Always zero)

Physical state of the RFU board's RX/TX pins. S imilar to W_RF_STATUS.

214h - W_RF_STATUS - Current Transmit/Receive State (R)
 0-3 Current Transmit/Receive State:
 0 = Initial Value on power-up (before raising W_MODE_RST.Bit0)
 1 = RX Mode enabled (waiting for incoming data)
 2 = Switching from RX to TX (takes a few clock cycles)
 3 = TX Mode active (sending preamble and data)
 4 = Switching from TX to RX (takes a few clock cycles)
 5 = Unknown, firmware checks for that value (maybe RX busy)
 6 = Unknown, firmware checks for that value (maybe RX busy)
 9 = Idle (upon IRQ13, and upon raising W_MODE_RST.Bit0)
 4-15 Always zero?

Numeric S tatus Code. S imilar to W_RF_PINS .

 DS Wifi Timers

0E8h - W_US_COUNTCNT - Microsecond counter enable (R/W)
 0 Counter Enable (0=Disable, 1=Enable)
 1-15 Always zero

Activates W_US_COUNT, and also W_BEACONCOUNT1 and W_BEACONCOUNT2 (which are decremented when lower 10bit of W_US_COUNT wrap from 3FFh to 000h). Note: W_POWER_US must be enabled, too.

0F8h - W_US_COUNT0 - Microsecond counter, bits 0-15 (R/W)
0FAh - W_US_COUNT1 - Microsecond counter, bits 16-31 (R/W)
0FCh - W_US_COUNT2 - Microsecond counter, bits 32-47 (R/W)
0FEh - W_US_COUNT3 - Microsecond counter, bits 48-63 (R/W)
 0-63 Counter Value in microseconds (incrementing)

Clocked by the 22.00MHz oscillator on the RFU board (ie. not by the 33.51MHz system c lock). The 22.00MHz are divided by a 22-step prescaler.

0EAh - W_US_COMPARECNT - Microsecond compare enable (R/W)
 0 Compare Enable (0=Disable, 1=Enable) (IRQ14/IRQ15)
 1 Force IRQ14 (0=No, 1=Force Now) (Write-only)
 2-15 Always zero

Activates IRQ14 on W_US_COMPARE matches, and IRQ14/IRQ15 on W_BEACONCOUNT1.

0F0h - W_US_COMPARE0 - Microsecond compare, bits 0-15 (R/W)
0F2h - W_US_COMPARE1 - Microsecond compare, bits 16-31 (R/W)
0F4h - W_US_COMPARE2 - Microsecond compare, bits 32-47 (R/W)
0F6h - W_US_COMPARE3 - Microsecond compare, bits 48-63 (R/W)
 0 Always zero... firmware writes 1 though (maybe write-only flag?)
 1-9 Always zero
 10-63 Compare Value in milliseconds (aka microseconds/1024)

Triggers IRQ14 (see IRQ14 notes below) when W_US_COMPARE matches W_US_COUNT.
Usually set to FFFFFFFFFFFFFC00h (ie. almost/practically never). Instead, IRQ14 is usually derived via W_BEACONCOUNT1.

11Ch - W_BEACONCOUNT1 (R/W)
Triggers IRQ14 and IRQ15 (see IRQ14/IRQ15 notes below) when it reaches 0000h (if W_PRE_BEACON is non-zero, then IRQ15 occurs that many microseconds in advance).
 0-15 Decrementing Millisecond Counter (reloaded with W_BEACONINT upon IRQ14)

Set to W_BEACONINT upon IRQ14 events (unlike the other W_US_COMPARE related actions, this is done always, even if W_US_COMPARECNT is zero).
When reaching 0000h, it is immediately reloaded (as for US_COUNT matches), so the counting sequence is ..,3,2,1,BEACONINT,.. (not 3,2,1,ZERO,BEACONINT).

134h - W_BEACONCOUNT2 - Post-Beacon Counter (R/W)
 0-15 Decrementing Millisecond Counter (reloaded with FFFFh upon IRQ14)

Triggers IRQ13 when it reaches 0000h (no matter of W_US_COMPARECNT), and does then stay fixed at 0000h (without any further decrement/wrapping to FFFFh).
Set to FFFFh upon IRQ14 (by hardware), the IRQ14 handler should then adjust the register (by software) by adding the Tag DDh Beacon header's S tepping value (usually 000Ah) to it.
Seems to be used to indicate beacon transmission time (possible including additional time being reserved for responses)?

08Ch - W_BEACONINT - Beacon Interval (R/W)
Reload value for W_BEACONCOUNT1.
 0-9 Frequency in milliseconds of beacon transmission
 10-15 Always zero

Should be initialized randomly to 0CEh..0DEh or so. The random setting reduces risk of repeated overlaps with beacons from other hosts.

110h - W_PRE_BEACON - Pre-Beacon Time (R/W)
 0-15 Pre-Beacon Time in microseconds (static value, ie. NOT decrementing)

Allows to define the distance between IRQ15 and IRQ14. The setting doesn't affect the IRQ14 timing (which occurs at the W_BEACONCOUNT1'th millisecond boundary), but IRQ15 occurs in advance (at the W_BEACONCOUNT1'th millisecond boundary minus W_PRE_BEACON microseconds). If W_PRE_BEACON is zero, then both IRQ14 and IRQ15 occur exactly at the same time.

088h - W_LISTENCOUNT - Listen Count (R/W)
 0-7 Decremented by hardware at IRQ14 events (ie. once every beacon)
 8-15 Always zero

Reload occurs immediately BEFORE decrement, ie. with W_LISTENINT=04h, it will go through values 03h,02h,01h,00h,03h,02h,01h,00h,etc.

08Eh - W_LISTENINT - Listen Interval (R/W)
 0-7 Listen Interval, counted in beacons (usually 02h)
 8-15 Always zero

Reload value for W_LISTENCOUNT.

10Ch - W_CONTENTFREE (R/W)
 0-15 Decrementing microsecond counter

Operated always (no matter of W_US_COUNTCNT).
Once when it has reached 0000h, it seems to stay fixed at 0000h.
"[Set to the remaining duration of contention-free period when
receiving beacons - only *really* necessary for powersaving mode]"

0EEh - W_EXTRACOUNTCNT (R/W)
 0 Enable W_EXTRACOUNT (0=Disable, 1=Enable)
 1-15 Always Zero

118h - W_EXTRACOUNT (R/W) x ffff [0000] (used by firmware part4)
 0-15 Decremented once every 10 microseconds (Stopped at 0000h)

Unknown. Beacon / Timeslot related ?
Written by firmware. Firmware IRQ14 handler checks for read value<=0Ah.
When it reaches zero, W_TXBUF_EXTRA is transferred (if enabled in W_TXBUF_EXTRA.Bit15, and in W_TXREQ_READ.Bit1), it does then trigger two (!) transfer start interrupts (IRQ07), transfer end is then indicated by a single IRQ12, optionally (when enabled in W_TXSTATCNT, IRQ01 (transfer done) is additionally generated (simultaneously with above IRQ12).
NOPE, above isn't quite right..... when W_EXTRACOUNT is set to a very small value, then ONLY IRQ12 is triggered (so it might specify the duration during which the IRQ07's for W_TXBUF_EXTRA are allowed?)

IRQ13 Notes (Post-Beacon Interrupt)
IRQ13 is generated by W_BEACONCOUNT2. It's simply doing:
 W_IF.Bit13=1 ;interrupt request

If W_POWER_TX.Bit1=0, then additionally enter sleep mode:
 W_RF_PINS.Bit7=0 ;disable receive (enter idle mode) (RX.ON=Low)
 W_RF_STATUS=9 ;indicate idle mode

Unlike for IRQ14/IRQ15, that's done no matter of W_US_COMPARECNT.

IRQ14 Notes (Beacon Interrupt)
IRQ14 is generated by W_US_COMPARE, and by W_BEACONCOUNT1.
Aside from just setting the IRQ flag in W_IF, the hardware does:
 W_BEACONCOUNT1=W_BEACONINT ;next IRQ15/IRQ14
 (Above is NOT done when IRQ14 was forced via W_US_COMPARECNT.Bit1)

If W_US_COMPARECNT is 1, then the hardware does additionally:
 (Below IS ALSO DONE when IRQ14 was forced via W_US_COMPARECNT.Bit1)
 W_IF.Bit14=1
 W_BEACONCOUNT2=FFFFh ;about 64 secs (ie. almost never) ;next IRQ13 ("never")
 W_TXREQ_READ=W_TXREQ_READ AND FFF2h
 if W_TXBUF_BEACON.15 then W_TXBUSY.Bit4=1
 if W_LISTENCOUNT=00h then W_LISTENCOUNT=W_LISTENINT
 W_LISTENCOUNT=W_LISTENCOUNT-1

If W_TXBUF_BEACON.Bit15=1, then following is done shortly after IRQ14:
 W_RF_PINS.Bit7=0 ;disable receive (RX.ON=Low)
 W_RF_STATUS=2 ;indicate switching from RX to TX mode

If W_TXBUF_BEACON.Bit15=1, then following is done a bit later:
 W_RF_PINS.Bit6=1 ;transmit preamble start (TX.ON=High)
 W_RF_STATUS=3 ;indicate TX mode

The IRQ14 handler should then do the following (by software):
 W_BEACONCOUNT2 = W_BEACONCOUNT2 + TagDDhSteppingValue ;next IRQ13

For using only ONE of the two IRQ14 sources: W_BEACONCOUNT1 can be disabled by setting both W_BEACONCOUNT1 and W_BEACONINT to zero. W_US_COMPARE can be sorts of "disabled" by setting it to value distant from W_US_COUNT, such like compare=count-400h.

IRQ07 Notes (Transmit Start Data; occurs after preamble)
 W_IF.Bit7=1 ;interrupt request
 W_RF_PINS.Bit1=1 ;start data transfer (preamble finished now) (TX.MAIN=High)

Below only if packet was sent through W_TXBUF_BEACON, or if it was sent via W_TXBUF_LOCn, with W_TXBUF_LOCn.Bit13 being zero:
 [TXBUF...] = W_TX_SEQNO*10h ;auto-adjust IEEE Sequence Control
 W_TX_SEQNO=W_TX_SEQNO+1 ;increase sequence number

IRQ01 Notes (Transmit Done)
The following happens shortly before IRQ01:
 W_RF_PINS.Bit6=0 ;disable TX (TX.ON=Low)
 W_RF_STATUS=4 ;indicate switching from TX to RX mode

Then, upon IRQ01, the following happens:
 W_IF.Bit1=1 ;interrupt request
 W_RF_PINS.Bit1=0 ;disable TX (TX.MAIN=Low)
 W_RF_PINS.Bit7=1 ;enable RX (RX.ON=High)
 W_RF_STATUS=1 ;indicate RX mode

IRQ15 Notes (Pre-Beacon Interrupt)
IRQ15 is generated via W_BEACONCOUNT1 and W_PRE_BEACON. It's simply doing:
 if W_US_COMPARECNT=1 then W_IF.Bit15=1

If W_POWER_TX.Bit0=1, then additionally wakeup from sleep mode:
 W_RF_PINS.Bit7=1 ;enable RX (RX.ON=High) ;\gets set like so a good while
 W_RF_STATUS=1 ;indicate RX mode ;/after IRQ15 (but not immediately)

Beacon IRQ Sequence
 IRQ15 Pre-Beacon (beacon will be transferred soon)
 IRQ14 Beacon (beacon will be transferred very soon) (carrier starts)
 IRQ07 Tx Start (beacon transfer starts) (if enabled in W_TXBUF_BEACON.15)
 IRQ01 Tx End (beacon transfer done) (if enabled in W_TXSTATCNT.15)
 IRQ13 Post-Beacon (beacon transferred) (unless next IRQ14 occurs earlier)

That, for tranmitting beacons. (For receiving, IRQ07/IRQ01 would be replaced by Rx IRQ's, provided that a remote unit is sending beacons).

 DS Wifi Configuration Ports

120h - W_CONFIG_120h (R/W) ;81ff 0048->SAME ...init from firmware[04Ch]
122h - W_CONFIG_122h (R/W) ;ffff 4840->SAME ...init from firmware[04Eh]
124h - W_CONFIG_124h (R/W) ;ffff 0000->0032 ...init from firmware[05Eh]
128h - W_CONFIG_128h (R/W) ;ffff 0000->01F4 ...init from firmware[060h]
130h - W_CONFIG_130h (R/W) ;0fff 0142->0140 ...init from firmware[054h]
132h - W_CONFIG_132h (R/W) ;8fff 8064->SAME ...init from firmware[056h]
140h - W_CONFIG_140h (R/W) ;ffff 0000->E0E0 ...init from firmware[058h]
142h - W_CONFIG_142h (R/W) ;ffff 2443->SAME ...init from firmware[05Ah]
144h - W_CONFIG_144h (R/W) ;00ff 0042->SAME ...init from firmware[052h]
146h - W_CONFIG_146h (R/W) ;00ff 0016->0002 ...init from firmware[044h]
148h - W_CONFIG_148h (R/W) ;00ff 0016->0017 ...init from firmware[046h]
14Ah - W_CONFIG_14Ah (R/W) ;00ff 0016->0026 ...init from firmware[048h]
14Ch - W_CONFIG_14Ch (R/W) ;ffff 162C->1818 ...init from firmware[04Ah]
150h - W_CONFIG_150h (R/W) ;ff3f 0204->0101 ...init from firmware[062h]
154h - W_CONFIG_154h (R/W) ;7a7f 0058->SAME ...init from firmware[050h]
These ports are to be initialized from firmware settings.
Above comments show the R/W bits (eg. 81FFh means bit15 and bit8-0 are R/W, bit14-9 are always zero), followed by the initial value on Reset (eg. 0048h), followed by new value after initialization from firmware settings (eg. 0032h, or SAME if the Firmware value is equal to the Reset value), followed by the location in firmware where the new value comes from (these values seem to be identical in all currently existing consoles).
Note: Firmware part4 changes W_CONFIG_124h to C8h, and W_CONFIG_128h to 7D0h, and W_CONFIG_150h to 202h, and W_CONFIG_140h depending on tx rate and preamble:
 W_CONFIG_140h = firmware[058h]+0202h ;1Mbit/s
 W_CONFIG_140h = firmware[058h]+0202h-6161h ;2Mbit/s with long preamble
 W_CONFIG_140h = firmware[058h]+0202h-6161h-6060h ;2Mbit/s with short preamble

0ECh - W_CONFIG_0ECh (R/W) ;firmware writes 3F03h (same as on power-up)
0D4h - W_CONFIG_0D4h (R/W) ;firmware writes 0003h (affected by W_MODE_RST)
0D8h - W_CONFIG_0D8h (R/W) ;firmware writes 0004h (same as on power-up)
0DAh - W_CONFIG_0DAh (R/W) ;firmware writes 0602h (same as on power-up)
254h - W_CONFIG_254h (?) ;firmware writes 0000h (read: EEEEh on DS-Lite)
Firmware just initializes these ports with fixed values, without further using them after initialization.

 DS Wifi Baseband Chip (BB)

BB-Chip Mitsumi MM3155 (DS), or BB/RF-Chip Mitsumi MM3218 (DS-Lite)

158h - W_BB_CNT - Baseband serial transfer control (W)
 0-7 Index (00h-68h)
 8-11 Not used (should be zero)
 12-15 Direction (5=Write BB_WRITE to Chip, 6=Read from Chip to BB_READ)

Transfer is started after writing to this register.

15Ah - W_BB_WRITE - Baseband serial write data (W)
 0-7 Data to be sent to chip (by following W_BB_CNT transfer)
 8-15 Not used (should be zero)

15Ch - W_BB_READ - Baseband serial read data (R)
 0-7 Data received from chip (from previous W_BB_CNT transfer)
 8-15 Not used (always zero)

15Eh - W_BB_BUSY - Baseband serial busy flag (R)
 0 Transfer Busy (0=Ready, 1=Busy)
 1-15 Always zero

Used to sense transfer completion after writes to W_BB_CNT.
Not sure if I am doing something wrong... but the busy flag doesn't seem to get set immediately after W_BB_CNT writes, and works only after waiting a good number of c lock cycles?

160h - W_BB_MODE (R/W)
 0-7 Always zero
 8 Unknown (usually 1) (no effect no matter what setting?)
 9-13 Always zero
 14 Unknown (usually 0) (W_BB_READ gets unstable when set)
 15 Always zero

This register is initialized by firmware bootcode - don't change.

168h - W_BB_POWER (R/W)
 0-3 Disable whatever (usually 0Dh=disable)
 4-14 Always zero
 15 Disable W_BB_ports (usually 1=Disable)

Must be set to 0000h before accessing BB registers.

Read-Write-Ability of the BB registers
 Index Num Dir Expl.
 00h 1 R always 6Dh (R) (Chip ID)
 01h..0Ch 12 R/W 8bit R/W
 0Dh..12h 6 - always 00h
 13h..15h 3 R/W 8bit R/W
 16h..1Ah 5 - always 00h
 1Bh..26h 12 R/W 8bit R/W
 27h 1 - always 00h
 28h..4Ch R/W 8bit R/W
 4Dh 1 R always 00h or BFh (depending on other regs)
 4Eh..5Ch R/W 8bit R/W
 5Dh 1 R always 01h (R)
 5Eh..61h - always 00h
 62h..63h 2 R/W 8bit R/W
 64h 1 R always FFh or 3Fh (depending on other regs)
 65h 1 R/W 8bit R/W
 66h 1 - always 00h
 67h..68h 2 R/W 8bit R/W
 69h..FFh - always 00h

Important BB Registers
Registers 0..68h are initialized by firmware bootcode, and (most) of these settings do not need to be changed by other programs, except for:
 Addr Initial Meaning
 01h 0x9E [unsetting/resetting bit 7 initializes/resets the system?]
 13h 0x00 CCA operation - criteria for receiving
 0=only use Carrier Sense (CS)
 1=only use Energy Detection (ED)
 2=receive if CS OR ED
 3=receive only if CS AND ED
 1Eh 0xBB see change channels flowchart
 35h 0x1F Energy Detection (ED) criteria
 value 0..61 (representing energy levels of -60dBm to -80dBm)

 DS Wifi RF Chip

RF-Chip RF9008 (manufacturer?) (DS), or BB/RF-Chip Mitsumi MM3218 (DS-Lite)

17Ch - W_RF_DATA2 - RF chip serial data/transfer enable (R/W)
For Type2 (ie. firmware[040h]<>3):
 0-1 Upper 2bit of 18bit data
 2-5 Index (00h..0Bh)
 6-7 Should be zero (part of 24bit transfer)
 8-15 Should be zero (not used with 24bit transfer)

For Type3 (ie. firmware[040h]=3):
 0-3 Command (should be 5=write data)
 4-15 Should be zero (not used with 20bit transfer)

Writing to this register starts the transfer.

17Eh - W_RF_DATA1 - RF chip serial data (R/W)
For Type2 (ie. firmware[040h]<>3):
 0-15 Lower 16bit of 18bit data

For Type3 (ie. firmware[040h]=3):
 0-7 Data
 8-15 Index (usually 00h..28h)

This value should be set before setting W_RF_DATA2.

180h - W_RF_BUSY - RF chip serial busy flag (R)
 0 Transfer Busy (0=Ready, 1=Busy)
 1-15 Always zero

Used to sense transfer completion after writes to W_RF_DATA2.

184h - W_RF_CNT - RF chip serial control (R/W)
 0-5 Transfer length (init from firmware[041h].Bit0-5)
 6-7 Always zero
 8 Unknown (init from firmware[041h].Bit7)
 9-13 Always zero
 14 Unknown (usually 0)
 15 Always zero

This register is initialized by firmware bootcode - don't change.
Usually, Type2 has length=24bit and flag=0. Type3 uses length=20bit and flag=1.

RF chip data (Type2) (initial settings from firmware, example)
 Firmware Index Data
 (24bit) (4bit) (18bit)
 00C007h = 00h + 0C007h ;-also set to 0C008h for power-down?
 129C03h = 04h + 29C03h
 141728h = 05h + 01728h ;\these are also written when changing channels
 1AE8BAh = 06h + 2E8BAh ;/
 1D456Fh = 07h + 1456Fh
 23FFFAh = 08h + 3FFFAh
 241D30h = 09h + 01D30h ;-bit10..14 should be also changed per channel?
 280001h = 0Ah + 00001h
 2C0000h = 0Bh + 00000h
 069C03h = 01h + 29C03h
 080022h = 02h + 00022h
 0DFF6Fh = 03h + 1FF6Fh

 DS Wifi Unknown Registers

268h - W_RXUNITS (R)
 0-11 Halfword address
 12-15 Always zero

"Contains the number of HWORDs written to MAC mem since the start of the packet (this + W_RXBUF_WRCSR = next empty word in MAC mem) (used by firmware part4)."
Note: Looks more like a full address (without the +W_RXBUF_WRCSR offset).
Note: Seems to be used for both RX and TX.

094h (R/W) ffff [0000] ? (used by firmware part4)
Seems to contain a RXBUF or TXBUF address, with a flag in bit15.
1) [Firmware takes the value from Port 098h, and writes it to Port 094h, and then writes "1" to W_RXCNT.Bit7 (which is probably an instant transfer request), and does then restore the old Port 094h setting]
2) [Firmware also uses this register to send client-to-host responses, that without using W_RXCNT.Bit7, so there must be another kind of "transfer request" in this case, possibly it get's transferred automatically shortly after receiving data or beacons or so from the host]

098h (R) 0000 [0000] (used by firmware part4) (IRQ06 among others)
Seems to contain a RXBUF or TXBUF address, with a flag in bit15.
S ince it's read-only, it might be rather RXBUF than TXBUF related.
However, it seems to be always 0000h (during and after both TX and RX).
[Looking at how it is used in conjunction with Port 094h, this register seems to contain the address of a received packet which is to be forwarded to another station, ie. that't be in situations where two of the destination address fields in the IEEE header aren't equal to each other.] [Alternately, it may hold TX location after transmit errors, for retry/transmit purposes?].

00Ah - W_X_00Ah (R/W)
 0-15 Unknown (usually zero)

"[bit7 - ingore rx duplicates]" <--- that is NOT correct (no effect).
Firmware writes 0000h to it. That, done many times. So, eventually some bits in these register are automatically set by hardware in whatever situations, otherwise repeatedly writing 0000h to it would be kinda useless...?

0C0h R/W x ffff [0000] (used by firmware part4) (Duration/ID...?)
0C4h R/W x ffff [0000] (used by firmware part4)
Unknown. Firmware writes something to them. The two registers are used in combination.

194h R/W x ---7 [0000]
 0-2 Unknown. Firmware writes values 00h, 06h.
 3-15 Always zero

1A0h R/W x -933 [0000]
 0-1 Unknown
 2-3 Always zero
 4-5 Unknown
 6-7 Always zero
 8 Unknown
 9-10 Always zero
 11 Unknown
 12-15 Always zero

Firmware writes values 000h, 823h. Seems to be power-related. The following experimental code toggles RXTX.ON (RFU.Pin4): "x=0 / @@lop: / [1A0h]=x / [036h]=0 / x=x XOR 3 / wait_by_loop(1000h) / b @@lop".
Also, writing to port 1A0h affects ports 034h, 19Ch, 21Ch, and 2A2h.

1A2h R/W x ---3 [0001] (used by firmware part4)
 0-1 Unknown. Firmware writes values 03h, 01h, and VAR.
 2-15 Always zero

Used in combination with Port 1A0h, so it's probably power-related, too.

1A4h R/W x ffff [0000]
"Rate used when signal test is enabled (0x0A or 0x14 for 1 or 2 mbit)"
(Not too sure if that's correct, there is no visible relation to any rate.)
(This register seems to be R/W only on certain port 1A0h settings.)
Unknown. Firmware writes whatever.

244h R/W x ffff [0000] (used by firmware part4)
Unknown. Seems to be W_IF/W_IE related. Firmware sets Port 244h bits 6,7,12 to 1-then-0 upon IRQ06,IRQ07,IRQ12 respectively.

228h W x fixx [0000] (used by firmware part4) (bit3)
Unknown. Firmware writes 8-then-0 (done in IRQ06 handler, after Port 244h access).

290h (R/W or Disabled)
Reportedly, this is the "antenna" register, which should exist on offic ial devkits, allowing to switch between wired Ethernet, and wireless Wifi mode.
 0 Unknown (R/W) (if present)
 1-15 Not used

On normal NDS release versions, this register seems to be disabled (if it is implemented at all), and trying to read from it acts as for unused registers, ie. reads return FFFFh (or probably 0000h on NDS-lite). The NDS firmware contains code for accessing this port, even in release versions.

W_INTERNAL
All registers marked as "W_INTERNAL" aren't used by Firmware part4, and are probably unimportant, except for whatever special diagnostics purposes.

Wifi DMA
Wifi RAM can be accessed with normal "S tart Immediately" DMA transfers (typically by reading through W_RXBUF_RD_DATA, so the DMA automatically wraps from END to BEGIN).
Additionally, DMA0 and DMA2 can be reportedly synchronized to "Wireless Interrupt" (rather than using "S tart Immediately" timing), no idea if/how that's working though... and if it gets started on any Wifi IRQ, or only on specific IRQs...?
Possibly some of the above unknown registers, or some unknown bits in other registers, are DMA related...?
Reportedly, early firmwares (v1 and/or v2) did use "Wireless Interrupt" DMAs.

 DS Wifi Unused Registers

Wifi WS0 and WS1 Regions in NDS7 I/O Space
Wifi hardware occupies two 32K slots, but most of it is filled with unused or duplicated regions. The timings (waitstates) for WS0 and WS1 are initialized in WIFIWAITCNT (by firmware).
 4800000h-4807FFFh Wifi WS0 Region (32K)
 4808000h-4808000h Wifi WS1 Region (32K)
 4810000h-4FFFFFFh Not used (00h-filled)

Structure of the 32K Wifi Regions (WS0 and WS1)
 Wifi-WS0-Region Wifi-WS1-Region Content
 4800000h-4800FFFh 4808000h-4808FFFh Registers
 4801000h-4801FFFh 4809000h-4809FFFh Registers (mirror)
 4802000h-4803FFFh 480A000h-480BFFFh Unused
 4804000h-4805FFFh 480C000h-480DFFFh Wifi RAM (8K)
 4806000h-4806FFFh 480E000h-480EFFFh Registers (mirror)
 4807000h-4807FFFh 480F000h-480FFFFh Registers (mirror)

Wifi Registers (recommended 4808000h-4808FFFh) appear more stable in WS1?
Wifi RAM (recommended 4804000h-4805FFFh) appears more stable in WS0?

Unused Ports (Original NDS)
Aside from those ports listed in the Wifi I/O Map, all other ports in range 000h..FFFh are unused. On the original DS , reading from these ports returns FFFFh.

Unused Ports (NDS-Lite)
Reading from unused I/O ports acts as PASS IVE mirror of W_RXBUF_RD_DATA. Exceptions are: Ports 188h, and 2D8h..2E6h; which always return 0000h.

Unused Memory (Original NDS)
Unused Wifi Memory is at 2000h..3FFFh. On the original DS , reading from that region returns FFFFh.

Unused Memory (NDS-Lite)
Reading from unused memory acts as PASS IVE mirror of WifiRAM (ie. reading from it returns the value being most recently read from 4000h..5FFFh) (that not affected by indirect WifiRAM reads via W_RXBUF_RD_DATA) (and, that not affected by writes to wifi memory, including writes that do overwrite the most recent read value) (and, that only i f WifiRAM is properly enabled, ie. Port 220h.Bits0-1 should be 0).
Moreover, certain addresses are additionally ORed with mirrored I/O Ports. That addresses are:
 2030h, 2044h, 2056h, 2080h, 2090h, 2094h, 2098h, 209Ch, 20A0h, 20A4h,
 20A8h, 20AAh, 20B0h, 20B6h, 20BAh, 21C0h, 2208h, 2210h, 2244h, 31D0h,
 31D2h, 31D4h, 31D6h, 31D8h, 31DAh, 31DCh, 31DEh.

For example, 2044h is a PASS IVE mirror of WifiRAM, ORed with an ACTIVE mirror of W_RANDOM (Port 044h). Note that some mirrors are at 2000h-2FFFh, and some at 3000h-3FFFh. The W_STAT_xxx mirrors are PASS IVE (that, in unused memory region only) (in normal port-mirror regions like 1000h-1FFF, W_STAT_xxx mirrors are ACTIVE).

Known (W) Mirrors (when reading from Write-only ports)
 Read from (W) Mirrors to (DS) Or to (DS-Lite)
 070h W_TXBUF_WR_DATA 060h W_RXBUF_RD_DATA 074h W_TXBUF_GAP
 078h W_INTERNAL 068h W_TXBUF_WR_ADDR 074h W_TXBUF_GAP
 0ACh W_TXREQ_RESET 09Ch W_INTERNAL ? (zero)
 0AEh W_TXREQ_SET 09Ch W_INTERNAL ? (zero)
 0B4h W_TXBUF_RESET 0B6h W_TXBUSY ? (zero)
 158h W_BB_CNT 15Ch W_BB_READ ? (zero)
 15Ah W_BB_WRITE ? (zero) ? (zero)
 178h W_INTERNAL 17Ch W_RF_DATA2 ? (zero)
 20Ch W_INTERNAL 09Ch W_INTERNAL ? (zero)
 21Ch W_IF_SET 010h W_IF 010h-OR-05Ch-OR-more?
 228h x ? (zero) ? (zero)
 298h W_INTERNAL 084h W_TXBUF_TIM 084h W_TXBUF_TIM
 2A8h W_INTERNAL 238h W_INTERNAL 238h W_INTERNAL
 2B0h W_INTERNAL 084h W_TXBUF_TIM 084h W_TXBUF_TIM

Notes: The mirror to W_RXBUF_RD_DATA is a passive mirror.
The DS-Lite mirror at 21Ch consists of several ports ORed with each other (known components are Ports 010h and 05Ch, but there seem to be even more values ORed with it).

Port Mirror Regions
The Wifi Port region at 000h..FFFh is mirrored to 1000h..1FFFh, 6000h..6FFFh, and 7000h..7FFFh. Many of that mirrored ports are PASS IVE mirrors. Eg. reading from 1060h (mirror of Port 060h, W_RXBUF_RD_DATA) returns the old W_RXBUF_RD_DATA values (but without loading a new value from Wifi RAM, and without incrementing W_RXBUF_RD_ADDR). However, other registers, like W_RANDOM do have ACTIVE mirrors.

 DS Wifi Initialization

Initialization sequence
These events must be done somewhat in sequence. There is some flexibility as to how they can be ordered but it's best to follow this order:
 [4000304h].Bit1 = 1 ;POWCNT2 ;-Enable power to the wifi system
 W_MACADDR = firmware[036h] ;-Set 48bit Mac address
 reg[012h] = 0000h ;W_IE ;-Disable interrupts

Wake Up the wireless system:
 reg[036h] = 0000h ;W_POWER_US ;\clear all powerdown bits
 delay 8 ms ; (works without that killer-delay ?)
 reg[168h] = 0000h ;W_BB_POWER ;/
 temp=BB[01h] ;\
 BB[01h]=temp AND 7Fh ; reset BB[01h].Bit7, then restore old BB[01h]
 BB[01h]=temp ;/
 delay 30 ms ;-(more killer-delay now getting REALLY slow)
 call init_sub_functions ;- same as "Init 16 registers by firmware[..]"
 ; and "Init RF registers", below.
 ; this or the other one probably not necessary

Init the Mac system:
 reg[004h] = 0000h - W_MODE_RST ;set hardware mode
 reg[008h] = 0000h - W_TXSTATCNT ;
 reg[00Ah] = 0000h - ? W_X_00Ah ;(related to rx filter)
 reg[012h] = 0000h - W_IE ;disable interrupts (again)
 reg[010h] = FFFFh - W_IF ;acknowledge/clear any interrupts
 reg[254h] = 0000h - W_CONFIG_254h ;
 reg[0B4h] = FFFFh - W_TXBUF_RESET ;--reset TXBUF_LOC's
 ; so, why does it still work???
 reg[080h] = 0000h - W_TXBUF_BEACON ;disable automatic beacon transmission
 reg[02Ah] = 0000h - W_AID_FULL ;\clear AID
 reg[028h] = 0000h - W_AID_LOW ;/
 reg[0E8h] = 0000h - W_US_COUNTCNT ;disable microsecond counter
 reg[0EAh] = 0000h - W_US_COMPARECNT ;disable microsecond compare
 reg[0EEh] = 0001h - W_EXTRACOUNTCNT ;(not by firmware) (set reset anyways)
 reg[0ECh] = 3F03h - W_CONFIG_0ECh ;
 reg[1A2h] = 0001h - ? ;
 reg[1A0h] = 0000h - ? ;
 reg[110h] = 0800h - W_PRE_BEACON ;(firmware doesn't do that?)
 reg[0BCh] = 0001h - W_PREAMBLE ;disable short preamble
 reg[0D4h] = 0003h - W_CONFIG_0D4h ;
 reg[0D8h] = 0004h - W_CONFIG_0D8h ;
 reg[0DAh] = 0602h - W_CONFIG_0DAh ;
 reg[076h] = 0000h - W_TXBUF_GAPDISP ;disable gap/skip (offset=zero)

Init 16 registers by firmware[044h..063h]
 reg[146h] = firmware[044h] ;W_CONFIG_146h
 reg[148h] = firmware[046h] ;W_CONFIG_148h
 reg[14Ah] = firmware[048h] ;W_CONFIG_14Ah
 reg[14Ch] = firmware[04Ah] ;W_CONFIG_14Ch
 reg[120h] = firmware[04Ch] ;W_CONFIG_120h
 reg[122h] = firmware[04Eh] ;W_CONFIG_122h
 reg[154h] = firmware[050h] ;W_CONFIG_154h
 reg[144h] = firmware[052h] ;W_CONFIG_144h
 reg[130h] = firmware[054h] ;W_CONFIG_130h
 reg[132h] = firmware[056h] ;W_CONFIG_132h
 reg[140h] = firmware[058h] ;W_CONFIG_140h
 reg[142h] = firmware[05Ah] ;W_CONFIG_142h
 reg[038h] = firmware[05Ch] ;W_POWER_TX
 reg[124h] = firmware[05Eh] ;W_CONFIG_124h
 reg[128h] = firmware[060h] ;W_CONFIG_128h
 reg[150h] = firmware[062h] ;W_CONFIG_150h

Init RF registers
 numbits = BYTE firmware[041h] ;usually 18h
 numbytes = (numbits+7)/8 ;usually 3
 reg[0x184] = (numbits+80h) AND 017Fh -- W_RF_CNT
 for i=0 to BYTE firmware[042h]-1 ;number of entries (usually 0Ch) (0..0Bh)
 if BYTE firmware[040h]=3
 RF[i]=firmware[0CEh+i]
 else
 RF_Write(numbytes at firmware[0CEh+i*numbytes])
 endif

Init the BaseBand System
 (this should be not required, already set by firmware bootcode)
 reg[160h] = 0100h ;W_BB_MODE
 BB[0..68h] = firmware[64h+(0..68h)]

Set Mac address
 copy 6 bytes from firmware[036h] to mac address at 0x04800018 (why again ?)

Now just set some default varibles
 reg[02Ch]=0007h ;W_TX_RETRYLIMIT - XXX needs to be set for every transmit?
 Set channel (see section on changing channels)
 Set Mode 2 -- sets bottom 3 bits of W_MODE_WEP to 2
 Set Wep Mode / key -- Wep mode is bits 3..5 of W_MODE_WEP
 BB[13h] = 00h ;CCA operation (use only carrier sense, without ED)
 BB[35h] = 1Fh ;Energy Detection Threshold (ED)

-- To further init wifi to the point that you can properly send
-- and receive data, there are some more variables that need to be set.
 reg[032h] = 8000h -- W_WEP_CNT ;Enable WEP processing
 reg[134h] = FFFFh -- W_BEACONCOUNT2;reset post-beacon counter to LONG time
 reg[028h] = 0000h -- W_AID_LOW ;\clear W_AID value, again?!
 reg[02Ah] = 0000h -- W_AID_FULL ;/
 reg[0E8h] = 0001h -- W_US_COUNTCNT ;enable microsecond counter
 reg[038h] = 0000h -- W_POWER_TX ;disable transmit power save
 reg[020h] = 0000h -- W_BSSID_0 ;\
 reg[022h] = 0000h -- W_BSSID_1 ; clear BSSID
 reg[024h] = 0000h -- W_BSSID_2 ;/

-- TX prepare
 reg[0AEh] = 000Dh -- W_TXREQ_SET ;flush all pending transmits (uh?)

-- RX prepare
 reg[030h] = 8000h W_RXCNT ;enable RX system (done again below)
 reg[050h] = 4C00h W_RXBUF_BEGIN ;(example values)
 reg[052h] = 5F60h W_RXBUF_END ;(length = 4960 bytes)
 reg[056h] = 0C00h/2 W_RXBUF_WR_ADDR ;fifo begin latch address
 reg[05Ah] = 0C00h/2 W_RXBUF_READCSR ;fifo end, same as begin at start.
 reg[062h] = 5F60h-2 W_RXBUF_GAP ;(set gap<end) (zero should work, too)
 reg[030h] = 8001h W_RXCNT ;enable, and latch new fifo values to hardware

--
 reg[030h] = 8000h W_RXCNT enable receive (again?)
 reg[010h] = FFFFh W_IF clear interrupt flags
 reg[012h] = whatever W_IE set enabled interrupts
 reg[1AEh] = 1FFFh W_RXSTAT_OVF_IE desired STAT Overflow interrupts
 reg[1AAh] = 0000h W_RXSTAT_INC_IE desired STAT Increase interrupts
 reg[0D0h] = 0181h W_RXFILTER set to 0x581 when you successfully connect
 to an access point and fill W_BSSID with a mac
 address for it. (W_RXFILTER) [not sure on the values
 for this yet]
 reg[0E0h] = 000Bh -- W_RXFILTER2 ;
 reg[008h] = 0000h -- ? W_TXSTATCNT ;(again?)
 reg[00Ah] = 0000h -- ? W_X_00Ah ;(related to rx filter) (again?)
 reg[004h] = 0001h -- W_MODE_RST ;hardware mode
 reg[0E8h] = 0001h -- W_US_COUNTCNT ;enable microsecond counter (again?)
 reg[0EAh] = 0001h -- W_US_COMPARECNT ;enable microsecond compare
 reg[048h] = 0000h -- W_POWER_? ;[disabling a power saving technique]
 reg[038h].Bit1 = 0 -- W_POWER_TX ;[this too]
 reg[048h] = 0000h -- W_POWER_? ;[umm, it's done again. necessary?]
 reg[0AEh] = 0002h -- W_TXREQ_SET ;
 reg[03Ch].Bit1 = 1 -- W_POWERSTATE ;queue enable power (RX power, we believe)
 reg[0ACh] = FFFFh -- W_TXREQ_RESET;reset LOC1..3

That's it, the DS should be now happy to send and receive packets.
It's very possible that there are some unnecessary registers set in here.

 DS Wifi Flowcharts

Wifi Transmit Procedure
To transmit data via wifi (Assuming you've already initialized wifi and changed channels to the channel you want):
 (1) Copy the TX Header followed by the 802.11 packet to send anywhere it
 will fit in MAC memory (halfword-aligned)
 (2) Take the offset from start of MAC memory that you put the packet,
 divide it by 2, and or with 0x8000 - store this in one of the
 W_TXBUF_LOC registers
 (3) Set W_TX_RETRYLIMIT, to allow your packet to be retried until an ack is
 received (set it to 7, or something similar)
 (4) Store the bit associated with the W_TXBUF_LOC register you used
 into W_TXREQ_SET - this will send the packet.
 (5) You can then read the result data in W_TXSTAT when the TX is over
 (you can tell either by polling or interrupt) to find out how many
 retries were used, and if the packet was ACK'd

Of course, this is just the simplest approach, you can be a lot more c lever about it.

Wifi Receive Procedure
To receive data via wifi, you either need to handle the wifi received data interrupt, or you need to poll W_RXBUF_WRCSR - whenever it is != W_RXBUF_READCSR, there is a new packet. When there is a new packet, take the following approach:
 (1) Calculate the length of the new packet (read "received frame length"
 which is +8 bytes from the start of the packet) - total frame length
 is (12 + received frame length) padded to a multiple of 4 bytes.
 (2) Read the data out of the RX FIFO area (keep in mind it's a circular
 buffer and you may have to wrap around the end of the buffer)
 (3) Set the value of W_RXBUF_READCSR to the location of the next packet
 (add the length of the packet, and wrap around if necessary)

Keep in mind, W_RXBUF_READCSR and W_RXBUF_WRCSR must be multiplied by 2 to get a byte offset from the start of MAC memory.

Wifi Change Channels Procedure (ch=1..14)
For Type2 (ie. firmware[040h]<>3):
 RF[firmware[F2h+(ch-1)*6]/40000h] = firmware[F2h+(ch-1)*6] AND 3FFFFh
 RF[firmware[F5h+(ch-1)*6]/40000h] = firmware[F5h+(ch-1)*6] AND 3FFFFh
 delay a few milliseconds ;huh?
 BB[1Eh] = firmware[146h+(ch-1)]

For Type3 (ie. firmware[040h]=3):
 num_initial_regs = firmware[042h]
 addr=0CEh+num_initial_regs
 num_bb_writes = firmware[addr]
 num_rf_writes = firmware[43h]
 addr=addr+1
 for i=1 to num_bb_writes
 BB[firmware[addr]] = firmware[addr+ch]
 addr=addr+15
 next i
 for i=1 to num_rf_writes
 RF[firmware[addr]] = firmware[addr+ch]
 addr=addr+15
 next i

Congrats, you are now ready to transmit/receive on whatever channel you picked.

Channels
The IEEE802.11b standard (and the NDS hardware) support 14 channels (1..14).
Channels 1..13 use frequencies 2412MHz..2472MHz (in 5MHz steps). Channel 14 uses frequency 2484MHz. Which channels are allowed to be used varies from country to country, as indicated by Bit1..14 of firmware[03Ch]. Channel 14 is rarely used (dated back to an older japanese standard).

Caution: Nearby channels do overlap, you'll get transmission errors on packets that are transferred simultaneously with packets on nearby channels. But, you won't successfully receive packets from nearby channels (so you won't even "see" that they are there, which is bad, as it doesn't allow you to share the channel synchronized with other hosts; ie. it'd be better if two hosts are using the SAME channel, rather than to use nearby channels).
To avoid that problem, conventionally only channels 1,6,11 are used - however Nintendo uses channels 1,7,13 - which is causing conflicts between channel 6,7, and maybe also between 11,13.

 DS Wifi Hardware Headers

Hardware TX Header (12 bytes)
The TX header immediately precedes the data to be sent, and should be put at the location that will be given to the register activating a transmission.
 Addr Siz Expl.
 00h 2 Status - In: Don't care - Out: Status (0000h=Failed, 0001h=Okay)
 02h 2 Unknown - In: Don't care
 04h 1 Unknown - In: Must be 00h..02h (should be 00h)
 (03h..FFh result in error: W_TXSTAT.Bit1 gets set, but
 nethertheless header entry[00h] is kept set to 0001h=Okay)
 ;00h = use W_TX_SEQNO (if enabled in TXBUF_LOCn)
 ;01h = force NOT to use W_TX_SEQNO (even if it is enabled in LOCn)
 ;02h = seems to behave same as 01h
 05h 1 Unknown - In: Don't care - Out: Set to 00h
 06h 2 Unknown - In: Don't care
 08h 1 Transfer Rate (0Ah=1Mbit/s, 14h=2Mbit/s) (other values=1MBit/s, too)
 09h 1 Unknown - In: Don't care
 0Ah 2 Length of IEEE Frame Header+Body+checksum(s) in bytes
 (14bits, upper 2bits are unused/don't care)

The eight "Don't care" bytes should be usually set to zero (although setting them to FFh seems to be working as well). Entries [00h] and [05h] are modified by hardware, all other entries are kept unchanged.

Important note! TX length includes the length of a 4-byte "FCS" (checksum) for the packet. The hardware generates the FCS for you, but you still must include it in the packet length. Also note that if the 802.11 WEP enabled bit is set in the header, the packet will be automatically encrypted via the wep algorithm - however, the software is responsible for providing the 4-byte IV block with the WEP key ID and the 24bit IV value. - ALSO, you must include the length of the *encrypted* FCS used in packets that have wep enabled (increase the tx length by another 4 bytes) - this value is calculated automatic ly for you, but you are responsible for including it in the length of your packet (if you have data there, it'll be replaced by the FCS .)

Hardware RX Header (12 bytes)
The RX header is an informational structure that provides needed information about a received packet. It is written right before the received packet data in the rx c ircular buffer.
 Addr Siz Expl.
 00h 2 Flags
 Bit0-3: Frame type/subtype:
 0 managment/any frame (except beacon and invalid subtypes)
 1 managment/beacon frame
 5 control/ps-poll frame
 8 data/any frame (subtype0..7) (ie. except invalid subtypes)
 C,D,E,F unknown (firmware is checking for that values)
 Bit4: Seems to be always set
 Bit5-7: Seems to be always zero
 Bit8: Set when FC.Bit10 is set (more fragments)
 Bit9: Set when the lower-4bit of Sequence Control are nonzero,
 it is also set when FC.Bit10 is set (more fragments)
 So, probably, it is set on fragment-mismatch-errors
 Bit10-14: Seems to be always zero
 Bit15: Set when Frame Header's BSSID value equals W_BSSID register
 02h 2 Unknown (usually 0040h)
 04h 2 Time since last packet (eg. when receiving beacons: total random on
 first some packets, but later on it gets equal to Beacon Interval)
 In other cases, this value is equal to the 1st 2 bytes of the DA ?
 [Above time/da effects might be explained by other reason: maybe
 this entry is left unchanged, simply containing old WifiRAM value?]
 06h 2 Transfer Rate (N*100kbit/s) (ie. 14h for 2Mbit/s)
 08h 2 Length of IEEE Frame Header+Body in bytes (excluding FCS checksum)
 0Ah 1 MAX RSSI
 0Bh 1 MIN RSSI

Important Note: Received frame lengths are always multiples of 4 bytes. While the actual header length + received frame length may be less, when incrementing the read cursor you must pad the length to a multiple of 4 bytes.

IEEE Header
The above Hardware headers should (must) be followed by valid IEEE headers. Although that headers are to be generated by software, the hardware does do some interaction with the IEEE headers, such like comparing address fields with W_MACADDR and W_BSS ID. And, it does modify some entries of it:
1) The sequence control value is replaced by W_TX_SEQNO*10h (when enabled in W_TXBUF_LOCn.Bit13), this replacement does also overwrite the local TXBUF value.
2) The frame control value is modified, namely, the hardware tends to set Bit12 of it . This replacement does NOT modify the local TXBUF, but the remote RXBUF will receive the modified value. Also, Bit0-1 (protocol version) are forcefully set to 0.
3) Transmits via W_TXBUF_BEACON do additionally modify the 64bit timestamp (so W_TXBUF_BEACON should be used ONLY for packets WITH timestamp, ie. Beacons or Probe-Responses). The local TXBUF seems to be left unchanged, but the remote RXBUF will contain the (sender's) W_US_COUNT value.
C) For Control Frames, the hardware headers Length value is transferred as normally (ie. excluding the FCS length, remote RXBUF will contain TXBUF length minus 4), but - no matter of that length value - only 10 or 16 bytes (depending on the subtype) of the IEEE frame are actually transferred and/or stored in RXBUF.
X) For Control Frames with Subtype 0Ah, the AID entry is set to C000h, that, probably ORed with original value in WifiRAM, or with the W_AID_FULL register?
XX) No idea if it's possible to send Control Frames with subtype 0Bh..0Fh, as for now, it seems that either they aren't sent, or the receipient is ignoring them (or processing them internally, but without storing them in RXBUF).

 DS Wifi Multiboot

Available Game Advertisement
WMB uses beacon frames to advertise available games for download. The beacon frames are normally used to advertise available access points in most 802.11 systems, but there is nothing preventing their use in this capacity. The advertisement data is fragmented and stored partially in each beacon frame as the payload of a custom information element (tag: 0xDD).

The DS Download Play menu only lists games when the beacons are broadcasted on one of the following channels: 1, 3, 4, 5, 7, 9, 10, 11, 13, and 14 (that is WRONG, firmware_v3 checks only channels 1,7,13). However, the DS hosting mechanism only seems to transmit on channels 1, 7, and 13 (apparently selected at random).

All beacon frames transmitted by a DS host have the following format:
 802.11 management frame
 802.11 beacon header
 Supported rates (tagged IE, advertises 1 Mbit and 2 Mbit)
 DS parameter set (tagged IE, note: Distribution System, not Nintendo DS)
 TIM vector (tagged IE, transmitted as empty)
 Custom extension (tagged IE, tag 0xDD)

Nintendo specific beacon fragment format (information element code 0xDD):
 Offset Description
 00h Nintendo Beacon ID (00h,09h,BFh,00h)
 04h Stepping Offset for 4808134h/W_BEACONCOUNT2 (always 000Ah)
 06h Strange Timestamp (W_US_COUNT*2-VCOUNT*7Fh)/128 (0000h for multiboot)
 08h 01 00
 0Ah 40 00
 0Ch 24 00
 0Eh 40 00
 10h Randomly generated stream code
 12h Number of bytes from entry 18h and up (70h for multiboot) (0 if Empty)
 13h Beacon Type (0Bh=Multiboot, 01h=Multicart/Pictochat, 09h=Empty)
 14h 0100 0008 (some kind of max,min values?)

For Empty (length zero, is used at very begin of multiboot)
 18h No data.

For Multicart (variable length)
 18h Custom data, usually containing the host name, either in 8bit ascii,
 or 16bit unicode format. Sometimes taken from Firmware User Settings,
 and sometimes from Cartridge Backup Memory.

For Pictochat (length 8)
 18h Fixed (always 2348h)
 1Ah xxxx
 1Ch Chatroom number (00h..03h for Chatroom A..D)
 1Dh Number of users already connected (01h..10h) (including host)
 1Eh Fixed (always 0004h)

For Multiboot (always 70h bytes)
 18h 24 00 40 00 (varies from game to game)
 1Ch End of advertisement flag (00 for non-end, 02 for end packets)
 1Dh Always 00, 01, 02, or 04
 1Eh Number of players already connected
 1Fh Sequence number (0 .. total_advertisement_length)
 20h Checksum (on entries 22h and up)
 chksum=0, for i=22h to 86h step 2, chksum=chksum+halfword[i], next i,
 chksum=FFFFh AND NOT (chksum+chksum/10000h)
 22h Sequence number in non-final packet, # of players in final packet
 23h Total advertisement length - 1 (in beacons)
 24h Datasize in bytes (2 byte little-endian)
 (0062h for seq 0..7, 0048h for seq 8, 0001h for seq 9)
 26h Data (always 62h bytes, padded with 00h if Datasize<62h)

The advertisement fragments are reordered and assembled according to their internal sequence number, to form the overall advertisement payload, as defined below:
 Offset Size Description
 000h 32 Icon Palette (same as for ROM Cartridge Icon)
 020h 512 Icon Bitmap (same as for ROM Cartridge Icon)
 220h 1 Unknown (0Bh)
 221h 1 Length of hosting name ;(probably same as firmware
 222h 20 Name of hosting DS (10 UCS-2) ;user name?)
 236h 1 Max number of players
 237h 1 Unknown (00h)
 238h 96 Game name (48 UCS-2) (same as 1st line of ROM Cartridge Title)
 298h 192 Description (96 UCS-2) (same as further lines of ROM Cart Title)
 358h 64 00's if no users are connected <---WRONG: LEN=1, not 64
 398h 0 End of data if no users are connected

Authentication process
Once a user B chooses a download offered by a host A, the following standard 802.11 authentication process observed.
 Host A advertises a game in beacon frames as described above
 Client B sends an authentication request (sequence 1) to A
 Host A replies with an ACK
 Host A sends an authentication reply (sequence 2) to B
 Client B replies with an association request
 Host A replies with an ACK
 Host A sends an association response
 Client B responds with an ACK

After this, the two are associated, and will remain so until the transfer is complete or one is idle for several seconds, at which point they will de-associate. For more information on the association process, see the 802.11 standard.

Download process (after authentication)
 Host sends Pings (type 0x01, replies are 0x00, 0x07)
 Host sends RSA frame (type 0x03, replies 0x08)
 Host sends NDS header (type 0x04, replies 0x09)
 Host sends ARM9 binary (type 0x04, replies 0x09)
 Host sends ARM7 binary (type 0x04, replies 0x09)
 Host terminates transfer (type 0x05, no replies)

The WMB protocol ostensibly implements layers 3 to 7 of the OS I network model, but does not define a new type of network addresses. However, it does define a couple of special broadcast-like MAC addresses within the assigned Nintendo namespace (00:09:BF).

The three channels or flows used for all communications after the MAC broadcast beacons take the form 03:09:BF:00:00:xx, where xx is:
 00 for the main data flow, from host to client (sent via Port 090h)
 10 for the client to host replies (sent via Port 094h)
 03 for the feedback flow, host to client (acknowledges the replies)

Observed commands:
 Command Description
 0x01 Ping / Name request
 0x03 RSA signature frame
 0x04 Data packet
 0x05 Post-idle / unknown

Observed replies
 Reply ID Description
 0x00 Pong (ping reply)
 0x07 Name reply
 0x08 RSA frame reply
 0x09 Data packet reply

The host does something unusual with the 802.11 sequence control field, each packet sent out on the 00 flow has a sequence control number 2 greater than the previous one, even if they are sent sequentially. When the host acknowledges a reply (on flow 03) from the c lient about a particular packet, it uses the sequence number one after the original packet number it sent out on 00. This is the root of one of the major problems in finding a PC card that can transmit WMB packets, as very few cards provide user control over it. Even when a card is capable of `raw' 802.11 transmission, it typically takes care of the sequence control field in hardware or firmware, filling it with a constantly incrementing number.

Host-to-c lient packets (on the 0x00 flow)
 0 1 2 3 4 5 6..e-3 e-2 e-1 e-0
 06 01 02 00 Size Flags Payload 00 02 00

The size field is in terms of half-words (16 bits), and includes the flags byte along with the payload (so a size of 0x03 represents a flag byte, a command byte, and 4 bytes of payload).
When flags is 0x11, the first byte of the payload is a command. There seems to be no important data when flags is not 0x11 (seen occasionally as 0x01), and ignoring them still results in a complete dump.

The Ping messages (type 0x00) have a payload size of 0x03, but always contain zeroes in the payload. They seem to be used only to keep the connection alive while waiting for the host DS to start the transfer, to prevent a time-out de-association.

RSA signature frame payload (type 0x03)
The RSA frame format (type 0x03) sends a table of information about the game being downloaded (most of it redundant with the NDS header, see Appendix), as well as the RSA signature for the DS . I have not looked into computing the signature, as homebrew developers are not privy to Nintendo's private key, making signing a fruitless activity, but it is my understanding that the signature is a 128 byte public key and an 8 byte SHA-1 message digest over the NDS header, ARM9 binary, and ARM7 binary. Notably: the RSA frame itself is not included as part of the data being signed, bringing up various security issues and making Nintendo's firmware engineers look amateurish at best.
There are several abortive sendings of empty RSA frames with a size field of 0x03, before the real frame is sent (always with a size field of 0x75).
 Offset Size Description
 0x00 4 ARM9 execute address
 0x04 4 ARM7 execute address
 0x08 4 0x00
 0x0C 4 Header destination
 0x10 4 Header destination
 0x14 4 Header size (0x160)
 0x18 4 0x00
 0x1C 4 ARM9 destination address
 0x20 4 ARM9 destination address
 0x24 4 ARM9 binary size
 0x28 4 0x00
 0x2C 4 0x022C0000
 0x30 4 ARM7 destination address
 0x34 4 ARM7 binary size
 0x38 4 0x01
 0x3C 136 Signature block
 0xC4 36 0x00's
 0xE8 0 End of frame payload

The offsets in the table are from after the command byte, i.e. two bytes into the 234 bytes of payload including the flags.
The unknown address 0x022C0000 is probably ARM7 related, by comparison with the duplicated header and ARM9 destination addresses 32 and 16 bytes before it, although it has no known significance according to the NDS header.

Data packet (type 0x04)
The data packets (type 0x04) include a transport-layer sequence number inside of the data packet itself, but no destination offset or other mechanism to allow the packets to be processed out-of-order. The only way to place the data at the correct location in memory is to re-order the packets according to the sequence number and process them sequentially.
 0 1 2 3 .. End
 00 [Sequence #] xx .. yy

The sequence number is a zero based little-endian number. Each packet only contains data for one of the three destination blocks (header, ARM9, ARM7), so the change-of-destination check only needs to be made on packet boundaries.

Client to Host Replies (on the 0x10 flow)
The replies from client to host are sent on the 0x10 flow. The c lient uses an incrementing sequence control number for all of its packets, with no unusual trickery. Each reply is sent as a standard 802.11 data frame (typically as a Data + CF-Acknowledgement), consisting of 10 data bytes for the WMB payload. The first two are always 0x04 0x81, with the third byte indicating the type of reply, and the remaining 7 bytes being reply-specific .

Idle / Pong reply (type 0x00)
 0 1 2 3 4 5 6 7 8 9
 04 81 00 00 00 00 00 00 00 00

One type of packet frequently sent before a download gets underway is what I have termed the Idle or Pong packet (in response to 0x00 `Pings'). It has a reply type field of 0x00, and does not contribute any additional information.

Name reply (type 0x07)
 0 1 2 3 4 5 6 7 8 9
 04 81 07 01 [Character0] [Character1] [Character2]
 04 81 07 02 [Character3] [Character4] [Character5]
 04 81 07 03 [Character6] [Character7] [Character8]
 04 81 07 04 [Character9] 01 00 00 00

The name reply (type 0x07) is sent shortly after association is completed, although I am not certain what triggers it. There are a variable number of pings preceding this reply, but most are replied via Pongs. The name reply sends the user-configured DS name (set in the firmware menu) split over four messages (with the 4th byte of the pac ket specifying which message fragment this is, 1 based). This can be a total length of 10 UCS-2 characters, although all four messages are still sent if it is shorter (padded with nulls to 10 characters, and then 01 and then nulls until the end of the frame).

RSA frame receipt reply (type 0x08)
 0 1 2 3 4 5 6 7 8 9
 04 81 08 xx xx xx xx xx xx xx

The RSA frame receipt reply contains no extra information; it only acknowledges receipt of a type 0x03 host packet on the main flow (0x00). Bizarrely, the xx bytes in the above table are not driven to a particular value when replying to an RSA frame, and usually contain the same data as the second (of four) name response frames.

Data packet receipt reply (type 0x09)
 0 1 2 3 4 5 6 7 8 9
 04 81 09 [Last packet] [Best packet] 00 00 00

[last packet] is the packet number being acknowledged
[best packet] is the highest continuous packet number seen so far
Packet IDs are little-endian numbers, like other Nintendo provided data.

Host to c lient acknowledgements (on the 0x03 flow)

These packets contain four data bytes, but three are always zero. The first seems to be random, with no connection to the acknowledged data. The actual indication of acknowledgement is the sequence control number of the packet. It is set to be one greater than the sequence control number of the initial host packet (sent on flow 0x00) that the c lient has just responded to, to indicate that the reply was received.

Host-to-client acknowledgement
 0 1 2 3
 ?? 00 00 00

The .NDS format is the standard format for Nintendo DS programs; it originated on original game cards and also appears to a limited extent in WMB binaries. The WMB process only transfers the first 0x160 bytes of the header, the ARM9 binary, and the ARM7 binary (in that order), ignoring the file name and file allocation tables, the overlay data, and some information stored in the banner (the rest is transmitted partially via the beacon advertisement process).

 DS Wifi IEEE802.11 Frames

MAC Frame Format
 10..30 bytes MAC Header
 0..2312 bytes Frame Body
 4 bytes Frame Check Sequence (FCS) (aka checksum)

MAC Header (10..30 bytes)
 Size Content
 2 Frame Control Field (FC)
 2 Duration/ID
 6 Address 1
 (6) Address 2 (if any)
 (6) Address 3 (if any)
 (2) Sequence Control (if any)
 (6) Address 4 (if any)

Frame Control Field (FC)
 Bit Expl.
 0-1 Protocol Version (0=Current, 1..3=Reserved)
 2-3 Type (0=Managment, 1=Control, 2=Data, 3=Reserved)
 4-7 Subtype (see next chapters) (meaning depends on above Type)
 8 To Distribution System (DS)
 9 From Distribution System (DS)
 10 More Fragments
 11 Retry
 12 Power Managment (0=Active, 1=STA will enter Power-Safe mode after..)
 13 More Data
 14 Wired Equivalent Privacy (WEP)
 15 Order

Bit 8-11 and Bit 13-15 are always 0 in Control Frames.

Duration/ID Field (16bit)
 0000h..7FFFh Duration (0-32767)
 8000h Fixed value within frames transmitted during the CFP
 (CFP=Contention Free Period)
 8001h..BFFFh Reserved
 C000h Reserved
 C001h..C7D7h Association ID (AID) (1..2007) in PS-Poll frames
 C7D8h..FFFFh Reserved

48bit MAC Addresses
MAC Addresses are 48bit (6 bytes) (Bit0 is the LSB of the 1st byte),
 0 Group Flag (0=Individual Address, 1=Group Address)
 1 Local Flag (0=Universally Administered Address, 1=Locally Administered)
 2-23 22bit Manufacturer ID (assigned by IEEE)
 24-47 24bit Device ID (assigned by the Manufacturer)

Special NDS related Addresses:
 00 09 BF xx xx xx NDS-Consoles (Original NDS with firmware v1-v5)
 00 16 56 xx xx xx NDS-Consoles (Newer NDS-Lite with firmware v6 and up)
 03 09 BF 00 00 00 NDS-Multiboot: host to client (main data flow)
 03 09 BF 00 00 10 NDS-Multiboot: client to host (replies)
 03 09 BF 00 00 03 NDS-Multiboot: host to client (acknowledges replies)
 FF FF FF FF FF FF Broadcast to all stations (eg. Beacons)

Sequence Control Field
 Bit Expl.
 0-3 Fragment Number (0=First (or only) fragment)
 4-15 Sequence Number

(increment by 1, except on retransmissions, ie. retries)

WEP Frame Body
 3 bytes Initialization Vector
 1 byte Pad (6bit, all zero), Key ID (2bit)
 1..? bytes Data (encrypted data)
 4 bytes ICV (encrypted CRC32 across Data)

 DS Wifi IEEE802.11 Managment Frames (Type=0)

All Managment Frames have 24-byte Frame Header, with following values:
 FC(2), Duration(2), DA(6), SA(6), BSSID(6), Sequence Control(2)

The content of the Frame Body depends on the FC's Subtype:
 Subtype Frame Body
 0 Association request Capability, ListenInterval, SSID, SuppRates
 1 Association response Capability, Status, AID, SuppRates
 2 Reassociation request Capability, ListenInterval, CurrAP, SSID, SuppRates
 3 Reassociation response Capability, Status, AID, SuppRates
 4 Probe request SSID, SuppRates
 5 Probe response Same as for Beacon (but without TIM)
 8 Beacon Timestamp,BeaconInterval,Capability,SSID,SuppRates,
 FH Parameter Set (when using Frequency Hopping),
 DS Parameter Set (when using Direct Sequence),
 CF Parameter Set (when supporting PCF),
 IBSS Parameter Set (when in an IBSS),
 TIM (when generated by AP)
 9 Announcement traffic indication message (ATIM) Body is "null" (=none?)
 A Disassociation ReasonCode
 B Authentication AuthAlgorithm, AuthSequence, Status, ChallengeText
 C Deauthentication ReasonCode

Subtypes 6..7, and D..F are Reserved.

The separate components of the Frame Body are...
64bit Parameters (8 bytes)
 Timestamp: value of the TSFTIMER (see 11.1) of a frame's source. Uh?

48bit Parameters (6 bytes)
 Current AP (Access Point): MAC Address of AP with which station is associated

16bit Parameters (2 bytes)
 Capability Information (see list below)
 Status code (see list below) (0000h=Successful, other=Error code)
 Reason code (see list below) (Error code)
 Association ID (AID) (C000h+1..2007)
 Authentication Algorithm (0=Open System, 1=Shared Key, 2..FFFFh=Reserved)
 Authentication Transaction Sequence Number (Open System:1-2, Shared Key:1-4)
 Beacon Interval (Time between beacons, N*1024 us)
 Listen Interval (see note below)

Information elements (1byte ID, 1byte LEN, followed by LEN byte(s) data)
 ID LEN Expl.
 00h 00h-20h SSID (LEN=0 for broadcast SSID)
 01h 01h-08h Supported rates; each (nn AND 7Fh)*500kbit/s, bit7=flag
 02h 05h FH (Frequency Hopping) Parameter Set
 DwellTime(16bit), HopSet, HopPattern, HopIndex
 03h 01h DS (Distribution System) Parameter Set; Channel (01h..0Eh)
 04h 06h CF Parameter Set; Count, Period, MaxDuration, RemainDuration
 05h 04h..FEh TIM; Count,Period,Control, 1-251 bytes PartialVirtualBitmap
 06h 02h IBSS Parameter Set; ATIM Window length (16bit)
 07h-0Fh - Reserved
 10h 02h..FEh Challenge text; 1-253 bytes Authentication data
 (Used only for Shared Key sequence no 2,3)
 (none such for Open System)
 (none such for Shared key sequence no 1,4)
 11h-1Fh - Reserved for challenge text extension
 20h-FFh - Reserved
 DDh var Reserved but used by Nintendo for NDS-Multiboot beacons

IDs 20h-FFh are commonly used; I've received values 2xh..3xh and DDh (from non-nintendo network routers in the neighborhood); no idea if these "Reserved" IDs are somewhere offic ially documented?

Capability Information
 Bit0 ESS
 Bit1 IBSS
 Bit2 CF-Pollable
 Bit3 CF-Poll Request
 Bit4 Privacy
 Bit5 Short Preamble (IEEE802.11b only)
 Bit6 PBCC (IEEE802.11b only)
 Bit7 Channel Agility (IEEE802.11b only)
 Bit5-7 Reserved (0) (original IEEE802.11 specs)
 Bit8-15 Reserved (0)

Listen Interval
 ... used to indicate to the AP how often an STA wakes to listen to Beacon
 management frames. The value of this parameter is the STA's Listen Interval
 parameter of the MLME-Associate. request primitive and is expressed in
 units of Beacon Interval.

Reason codes
 00h Reserved
 01h Unspecified reason
 02h Previous authentication no longer valid
 03h Deauthenticated because sending station is leaving (or has left) IBSS
 or ESS
 04h Disassociated due to inactivity
 05h Disassociated because AP is unable to handle all currently associated
 stations
 06h Class 2 frame received from nonauthenticated station
 07h Class 3 frame received from nonassociated station
 08h Disassociated because sending station is leaving (or has left) BSS
 09h Station requesting (re)association is not authenticated with responding
 station
 0Ah..FFFFh Reserved

Status codes
 00h Successful
 01h Unspecified failure
 02h..09h Reserved
 0Ah Cannot support all requested cap's in the Capability Information field
 0Bh Reassociation denied due to inability to confirm that association exists
 0Ch Association denied due to reason outside the scope of this standard
 0Dh Responding station doesn't support the specified authentication algorithm
 0Eh Received an Authentication frame with authentication transaction sequence
 number out of expected sequence
 0Fh Authentication rejected because of challenge failure
 10h Authentication rejected due to timeout waiting for next frame in sequence
 11h Association denied because AP is unable to handle additional associated
 stations
 12h Association denied due to requesting station not supporting all of the
 data rates in the BSSBasicRateSet parameter
 13h Association denied due to requesting station not supporting
 the Short Preamble option (IEEE802.11b only)
 14h Association denied due to requesting station not supporting
 the PBCC Modulation option (IEEE802.11b only)
 15h Association denied due to requesting station not supporting
 the Channel Agility option (IEEE802.11b only)
 13h-15h Reserved (original IEEE802.11 specs)
 16h..FFFFh Reserved

 DS Wifi IEEE802.11 Control and Data Frames (Type=1 and 2)

Control Frames (Type=1)
All Control Frames have 10-byte or 16-byte headers, depending on the Subtype:
 Subtype Frame Header
 A Power Save (PS)-Poll FC AID BSSID TA
 B Request To Send (RTS) FC Duration RA TA
 C Clear To Send (CTS) FC Duration RA -
 D Acknowledgment (ACK) FC Duration RA -
 E Contention-Free (CF)-End FC Duration RA BSSID
 F CF-End + CF-Ack FC Duration RA BSSID

Subtypes 0..9 are Reserved. Control Frames do not have a Frame Body, so the Header is directly followed by the FCS .

Data Frames (Type=2)
All Data Frames consist of the following components:
 FC, Duration/ID, Address 1, Address 2, Address 3, Sequence Control,
 Address 4 (only on From DS to DS), Frame Body, FCS.

The meaning of the 3 or 4 addresses depends on Frame Control FromDS/ToDS bits:
 Frame Control Address 1 Address 2 Address 3 Address 4
 From STA to STA DA SA BSSID -
 From DS to STA DA BSSID SA -
 From STA to DS BSSID SA DA -
 From DS to DS RA TA DA SA

Frame Control Subtypes for Data Frames (Type=2) are:
 0 Data
 1 Data + CF-Ack
 2 Data + CF-Poll
 3 Data + CF-Ack + CF-Poll
 4 Null function (no data)
 5 CF-Ack (no data)
 6 CF-Poll (no data)
 7 CF-Ack + CF-Poll (no data)
 8-F Reserved

 DS Backwards-compatible GBA-Mode

When booting a 32pin GBA cartridge, the NDS is automatically switched into GBA mode, in that mode all NDS related features are disabled, and the console behaves (almost) like a GBA.

GBA Features that are NOT supported on NDS in GBA Mode.
Unlike real GBA, the NDS does not support 8bit DMG/CGB cartridges.
The undocumented Internal Memory Control register (Port 800h) isn't supported, so the NDS doesn't allow to use 'overclocked' RAM.
The NDS doesn't have a link-port, so GBA games can be played only in single player mode, link-port accessories cannot be used, and the NDS cannot run GBA code via multiboot.

GBA Features that are slightly different on NDS in GBA Mode.
The CPU, Timers, and Sound Frequencies are probably c locked at 16.76MHz; 33.51Mhz /2; a bit slower than the original GBA's 16.78MHz clock?
In the BIOS , a single byte in a formerly 00h-filled area has been changed from 00h to 01h, resulting in SWI 0Dh returning a different BIOS checksum.
The GBA picture can be shown on upper or lower screen (selectable in boot-menu), the backlight for the selected screen is always on, resulting in different colors & much better visibility than original GBA. Unlike GBA-SP, the NDS doesn't have a backlight-button.

Screen Border in GBA mode
The GBA screen is centered in the middle of the NDS screen. The surrounding pixels are defined by 32K-color bitmap data in VRAM Block A and B. Each frame, the GBA picture is captured into one block, and is displayed in the next frame (while capturing new data to the other block).
To get a flicker-free border, both blocks should be initialized to contain the same image before entering GBA mode (usually both are zero-filled, resulting in a plain black border).
Note: When using two different borders, the flickering will be irregular - so there appears to be a frame inserted or skipped once every some seconds in GBA mode?!

Switching from NDS Mode to GBA Mode
 --- NDS9: ---
 ZEROFILL VRAM A,B ;init black screen border (or other color/image)
 POWCNT=8003h ;enable 2D engine A on upper screen (0003h=lower)
 EXMEMCNT=... ;set Async Main Memory mode (clear bit14)
 IME=0 ;disable interrupts
 SWI 06h ;halt with interrupts disabled (lockdown)
 --- NDS7: ---
 POWERMAN.REG0=09h ;enable sound amplifier & upper backlight (05h=lower)
 IME=0 ;disable interrupts
 wait for VCOUNT=200 ;wait until VBlank
 SWI 1Fh with R2=40h ;enter GBA mode, by CustomHalt(40h)

After that, the GBA BIOS will be booted, the GBA Intro will be displayed, and the GBA cartridge (if any) will be started.

 DS Xboo

DS XBOO Connection
 Console Pin/Names Parallel Port Pin/Names
 RFU.9 FMW.1 D ---|>|--- DSUB.14 CNTR.14 AutoLF
 RFU.6 FMW.2 C ---|>|--- DSUB.1 CNTR.1 Strobe
 RFU.10 FMW.3 /RES ---|>|--- DSUB.16 CNTR.31 Init
 RFU.7 FMW.4 /S ---|>|--- DSUB.17 CNTR.36 Select
 RFU.5 FMW.5 /W --. SL1A - - N.C.
 RFU.28 FMW.6 VCC __| SL1B - - N.C.
 RFU.2,12 FMW.7 VSS --------- DSUB.18-25 CNTR.19-30 Ground
 RFU.8 FMW.8 Q --------- DSUB.11 CNTR.11 Busy
 P00 Joypad-A ---|>|--- DSUB.2 CNTR.2 D0
 P01 Joypad-B ---|>|--- DSUB.3 CNTR.3 D1
 P02 Joypad-Select ---|>|--- DSUB.4 CNTR.4 D2
 P03 Joypad-Start ---|>|--- DSUB.5 CNTR.5 D3
 P04 Joypad-Right ---|>|--- DSUB.6 CNTR.6 D4
 P05 Joypad-Left ---|>|--- DSUB.7 CNTR.7 D5
 P06 Joypad-Up ---|>|--- DSUB.8 CNTR.8 D6
 P07 Joypad-Down ---|>|--- DSUB.9 CNTR.9 D7
 RTC.1 INT aka SI --------- DSUB.10 CNTR.10 /Ack

Parts List: 15 wires, four (DS) or twelve (DS-Lite) "BAT 85" diodes, 1 parallel port socket.

DS XBOO Connection Notes
The Firmware chip (FMW.Pins) hides underneath of the RFU shielding plate, so it'd be easier to connect the wires to the RFU.Pins (except DS-Lite: The RFU pins are terribly small (and have different pin-numbers), so either using FMW.Pins, or using mainboard vias (see below GIF) would be easier). The easiest way for the /W-to-VCC connection is to shortcut SL1 by putting some solder onto it.
The P00..P07 and INT signals are labeled on the switch-side of the mainboard, however, there should be more room for the cables when connecting them to via's at the bottom-side (except DS-Lite: P01 is found only at switch-side) image below may help to loc ate that pins,
 http://nocash.emubase.de/nds-pins.gif (GIF-Image, 7.5KBytes)

At the parallel port side, DSUB.Pins or CNTR.Pins can be used for 25pin DSUB or 36pin Centronics sockets, the latter one allowing to use a standard printer cable.
The ring printed on the diodes is pointing towards parallel port side, the 4 diodes are required to prevent the parallel port to pull-up LOW levels on the NDS side, be sure to use BAT85 diodes, cheaper ones like 1N4148 are loosing too much voltage and won't gain stable LOW levels.
The power managment chip in the DS-Lite simply refuses to react to the Power-On button when P00..P07 are dragged high by the parallel port (even if it is in HighZ state), the 8 diodes in the data-lines are solving that problem (they are required on DS-Lite only, not on original DS).

DS XBOO Operation Notes
The main Upload function is found in no$gba Utility menu, together with further functions in Remote Access sub-menu.
Before uploading anything: download the original firmware, the file is saved as FIRMnnnn.BIN, whereas "nnnn" is equal to the last 16bit of the consoles 48bit MAC address, so Firmware-images from different consoles are having unique filenames. If you don't already have, also download the NDS BIOS , the BIOS contains encryption seed data required to encrypt/decrypt secure area; without having downloaded the BIOS , no$gba will be working only with unencrypted ROM-images. Next, select Patch Firmware to install the nocash firmware.

DS XBOO Troubleshooting
Be sure that the console is switched on, and that the XBOO cable is connected, and that you have selected the correct parallel port in no$gba setup (the "multiboot" options in Various Options screen), and, of course, try avoid to be fiddling with the joypad during uploads.
I've tested the cable on two computers, the overall upload/download stuff should work stable. The firmware access functions - which are required only for (un-)installation - worked only with one of the two computers; try using a different computer/parallel port in case of problems.

Nocash Firmware
The primary purpose is to receive uploaded NDS-images via parallel port connection, additionally it's containing bootmenu and setup screens similar to the original firmware. The user interface is having less cryptic symbols and should be alltogether faster and easier to use. Important Information about Whatever is supported (but it can be disabled). The setup contains a couple of additional options like automatic daylight saving time adjustment.
The bootmenu allows to boot normal NDS and GBA carts, it does additionally allow to boot NDS-images (or older PassMe-images) from flashcards in GBA slot. Furthermore, benefits of asm coding, the nocash firmware occupies less than 32KBytes, allowing to store (and boot) smaller NDS-images in the unused portion of the firmware memory (about 224KBytes), the zero-filled region between cart header and secure area, at 200h..3FFFh, is automatically excluded, so the image may be slightly bigger than the available free memory space.

Missing
Unlike the original firmware, the current version cannot boot via WLAN. Help or hardware would be welcome (I am having only one NDS, and my PC doesn't have WLAN, so I cannot test any WLAN transfers right now).

 About this Document

About
GBATEK written 2001-2007 by Martin Korth, programming specs for the GBA and NDS hardware, I've been trying to keep the specs both as short as possible, and as complete as possible. The document is part of the no$gba debuggers built-in help text.

Updates
The standalone docs in TXT and HTM format are updated when having added any major changes to the document. The no$gba built-in version will be updated more regularly, inc luding for minor changes, along with all no$gba updates.

Homepage
http://nocash.emubase.de/gba.htm - no$gba emulator homepage (freeware)
http://nocash.emubase.de/gba-dev.htm - no$gba debugger homepage
http://nocash.emubase.de/gbapics.htm - no$gba debugger screenshots
http://nocash.emubase.de/gbatek.htm - gbatek html version
http://nocash.emubase.de/gbatek.txt - gbatek text version

Feedback
If you find any information in this document to be misleading, incomplete, or incorrect, please say something! My spam-shielded email address is found at:
http://nocash.emubase.de/email.htm - contact
Mail from programmers only, please. No gaming questions, thanks.

Credits
Thanks for GBATEK fixes, and for info about GBA and NDS hardware,
- Jasper Vijn
- Remi Veilleux (DS video details)
- Randy Linden
- Sebastian Rasmussen
- S tephen S tair (DS Wifi)
- Damien Good (DS Bios Dumping, and lots of e-Reader info)
- Kenobi and Dualscreenman (lots of ARDS/CBDS cheat info)
- Flubba (GBA X/Y-Axis tilt sensor, and GBA Gameboy Player info)
- DarkFader (DS Key2)
- Dstek.xml (DS Sound)
- Christian Auby
- Jeff Frohwein
- NDSTech Wiki, http://www.bottledlight.com/ds/ (lots of DS info)

Formatting
TXT is 80 columns, TXT is 80 columns, TXT is 80 columns.
Don't trust anything else. Never.

否☀U倦T 瀀楲瑮朮慬敤瀀... 琀牡敧彴敬杮桴 〠 唦☀呐☀D牰湩 汧摡e牰湩...

倦T 瀀楲瑮朮慬敤瀀楲瑮摟... 琀牡敧彴敬杮桴 〠 瀀楲瑮朮慬敤瀀楲瑮摟慩...

