Making a fast curry
Push/enter vs eval/apply for higher-order languages

March 17,

2004

Simon Marlow and Simon Peyton Jones

Microsoft Researc

Abstract

Higher-order languages that encourage currying are impteet
using one of two basic evaluation models: push/enter ofagugaly.
Implementors use their intuition and qualitative judgetseto
choose one model or the other.

Our goal in this paper is to provide, for the first time, a maue-s
stantial basis for this choice, based on our qualitative qunahti-
tative experience of implementing both models in a statthefart
compiler for Haskell.

Our conclusion is simple, and contradicts our initial ititi: com-
piled implementations should use eval/apply.

1 Introduction

There are two basic ways to implement function application i
a higher-order language, when the function is unknown: the
push/entermodel or theeval/applymodel [11]. To illustrate the
difference, consider the higher-order functiatpWith, which zips
together two lists, using a functianto combine corresponding list
elements:

zipWith :: (a->b->c) -> [a] -> [b] -> [c]
zipWith k [] 1 =[]
zipWith k (x:xs) (y:ys) = k x y : zipWith xs ys

Herek is anunknown functionpassed as an argument; global flow
analysis aside, the compiler does not know what funcatimbound
to. How should the compiler deal with the callx y in the body

of zipWith? It can't blithely applyk to two arguments, because
k might in reality take just one argument and compute for a evhil
before returning a function that consumes the next argunoent
might take three arguments, so that the result ofzhgWith is a
list of functions.

In the push/enter model, the call proceedgbghingthe arguments

x andy on the stack, andnteringthe code fok. Every function’s
entry code is required to check how many arguments are on the
stack, and behave appropriately: if there are too few argusnéhe
function must construct a partial application and returhthéere

Permission to make digital or hard copies of all or part o twork for personal or
classroom use is granted without fee provided that copesiar made or distributed
for profit or commercial advantage and that copies bear thiis@ and the full citation
on the first page. To copy otherwise, to republish, to postesmess or to redistribute
to lists, requires prior specific permission and/or a fee.

h, Cambridge

are too many arguments, then only the required argumentoare
sumed, the rest of the arguments are left on the stack to be con
sumed later, presumably by the function that will be the ltesiu

this call.

In the eval/apply approach, the caller fiestaluateghe functionk,
and therappliesit to the correct number of arguments. The latter
step involves some run-time case analysis, based on infanma
extracted from the closure far. If k takes two arguments, we can
call it straightforwardly. If it takes only one, we must clpassing

x, and then call the function it returns passiygif it takes more
than two, we must build a closure for the partial applicator y
and return that closure.

The crucial difference between push/enter and eval/apphyis.
When a function of statically-unknown arity is applied, tpi@ces
of information come together at run-time: the arity of thedtion
and the number of arguments in the call. The two models differ
whether they place responsibility for arity-matching wiie func-
tion itself, or with the caller:

Push/enter: thefunction which statically knows its own arity, ex-
amines the stack to figure out how many arguments it has
been passed, and where they are. The nearest analogy is C’s
“varargs” calling convention.

Eval/apply: thecaller, which statically knows what the arguments
are, examines the function closure, finds its arity, and make
an exact call to the function.

Which of the two is best in practice? The trouble is that thal-ev
uation model has a pervasive effect on the implementatioit,is
too much work to implement both and pick the best. Histolycal
compilers for strict languages (using call-by-value) htamded to
use eval/apply, while those for lazy languages (using lmglheed)
have often used push/enter, but this is 90% historical actig- ei-
ther approach will work in both settings. In practice, impkntors
choose one of the two approaches based on a qualitativesassss
of the trade-offs. In this paper we put the choice on a firmsisha

e We explain precisely what the two models are, in a common
notational framework (Section 4). Surprisingly, this hag n
been done before.

The choice of evaluation model affects many other design
choices in subtle but pervasive ways. We identify and dis-
cuss these effects in Sections 5 and 6, and contrast them in
Section 7. There are lots of nitty-gritty details here, fdrigh

we make no apology — they were far from obvious to us, and
articulating these details is one of our main contributions

In terms of its impact on compiler and run-time system com-
plexity, eval/apply seems decisively superior, prindipdle-
cause push/enter requires a stack like no other: stackiwvealk

is more difficult, and compiling to an intermediate language
like C orc-- is awkward or impossible.

e We give the first detailed quantitative measurements (Sec-

language [11], but we have adjusted some of the details fer th
paper.
Although the push/enter vs eval/apply question appliesiy|to

tion 8) that contrast the two approaches, based on a credible strict and non-strict languages, we treat a non-strict cere lbe-

optimising compiler (the Glasgow Haskell Compiler, GHC).
We give both bottom-line results such as wall-clock tim<o
instruction count and allocation, and also some more itsigh
ful numbers such as breakdowns of call patterns.

cause it is the slightly more complicated case, and because o
guantitative data is for Haskell.

The idea is that each syntactic construct in Figure 1 hasexdir
operational reading. We give these operational intuitioei®, and

Our experiments show that the execution costs of push/enter we will make them precise in Section 4:

and eval/apply are very similar, despite their pervasiviedi

ences. What you gain on the swings you lose on the round-

abouts.

Our conclusion is simple, and contradicts the abstracthmader-
itage of the lazy functional-language community: evallgpp a
clear win. We have now adopted eval/apply for GHC.

2 Background: efficient currying

The choice between push/enter and eval/apply is only imapbit
the language encouragesrrying. In a higher-order language one
can write a multi-argument function in two ways:

f :: (Int,Int) -> Int
f (x,y) = x*y

g :: Int -> Int -> Int

g Xy = x*xy
Here, £ is un-curried. It takes a single argument that is a pair, un-
packs the pair, and multiplies its components. On the othrd|g
is curried. Notionally at leasg takes one argument, and returns a
function that takes a second argument, and multiplies tloe The
type ofg should be read right-associatively, thus:

g :: Int -> (Int -> Int)

Currying appeals to our sense of beauty, because multiraegt
functions come “for free”; one does not need data structiaresip-
port them.

In any higher-order language one oarite curried functions, sim-
ply by writing a function that returns a function, but langea dif-

fer in the degree to which their synt&ncouragest. For the pur-
poses of this paper, we assume that currying is to be regasitt
native way to define multi-argument functions, and that wehvto

make multi-argument curried functions as fast as possible.

We said that “notionally at leagttakes one argument”, but suppose
that, given the above definition gf the compiler is faced with the
callg 3 4. The call is to &nown function— one whose definition
the compiler can “see”. It would be ridiculous to follow thergy-
ing story literally. To do that, we would cag passing one argu-
ment,3, get a function closure in return, and then call that functio
again passing one argumeat, No, in this situation, any decent
compiler must load the argumergsand4 into registers, or on the
stack, and call the code fgrdirectly, and that is true whether the
basic evaluation model is push/enter or eval/apply the rest of
this paper we will take it for granted that saturated call&twwn”
functions are compiled using an efficient argument-passimgen-
tion. The push/enter and eval/apply models differ only iwhbey
handle calls to “unknown” functions.

3 Language

To make our discussion concrete we use a small, non-sttiet-in
mediate language similar to that used inside the Glasgovketlas
Compiler. Its syntax is given in Figure 1. In essence it is$1&s

e A literal is an unboxed32-bit integer,i, or 64-bit double-
precision floating-point numbed, We have more to say about
unboxed values in Section 3.3.

e Acall, f€ay...an, applies the functiorf to the arguments
ai...an. The application is in A-normal form [5] — that is,
each argument is an atom (literal or variable) — so there is no
argument preparation to perform first. The supersdkipe-
scribes the statically-known information about the fuos
arity. It takes two forms:

— f", wheren is an integer, indicates that the compiler
statically knows the arity off, usually because there
is a lexically-enclosing binding fof that binds it to a
FUN object with arityn.

— f* indicates that the compiler has no static information
aboutf’s arity. It would be safe to annotate every ap-
plication withe.

There is no guarantee that the function’s arity (whethetr sta
ically known or not) matches the number of arguments sup-
plied at the call site.

e A let expression (and only &et) allocates an object in the
heap. We discuss the forms of heap object in Section 3.1.
In this paper we will only discuss simple, non-recursive
expressions. GHC supports a mutually-recurdieerec as
well, of course, but recursive bindings do not affect theiéss
discussed this paper, so we omit them to save clutter. The
top-level definitions of a program are recursive, however.

e A case evaluates a sub-expression, called shautinee and
optionally performs case analysis on its value. More con-
cretely, case saves any live variables that are needed in the
case alternatives, pushes a return address, and thentegalua
the scrutinee. At the return address, it performs case aisaly
on the returned value. Alkase expressions are exhaustive:
either there is a default alternative as a catch-all, or tite p
terns cover all the possibilities in the data type. We oftanito
the curly braces in our informal examples, using layout in-
stead.

3.1 Heap objects

The language does not provide a syntactic form of expredsion
constructor applications, or for anonymous lambdas; atstéhey
must be explicitly allocated usinget. In general,let performs
heap allocation, and the right hand side dfea is aheap object
There are exactly five kinds of heap objects:

FUN(X1...Xy — €) is a function closure, with arguments and
body e (which may have free variables other than ¥ The
function is curried — that is, it may be applied to fewer than
n, or more tham, arguments — but it still has arity of n.

PAP(f a;...an) represents a partial application of functidnto
argumentsa; ... an. Here, f is guaranteed to bEUN object,
and the arity of thaFUN is guaranteed to be strictly greater
thann.

Variables x,y, f,g
Constructors C
Literals lit == i]
Atoms av = lit|x
Function arity k = o
| n
Expressions e = a
‘ fk aj...an
‘ dag...an
| letx=objine
| caseeof {alty;..
Alternatives at = Cx...Xn — €
| x—e
Heap objects obj = FUN(Xp...Xn—€)
| PAR(fa...an)
| CONCa...an)
| THUNKe
| BLACKHOLE
Programs prog = fi=o0bj;..

Defined in data type declarations
Unboxed integer or double
Function arguments are atomic
Unknown arity

Known arityn> 1

Atom

Function call(n > 1)
Saturated primitive operatiofm > 1)

saltn} (n>1)

(n>0)
Default alternative

Function (arity=n > 1)

Partial application { is always aFUN
with arity(f) > n> 1)

Saturated constructgn > 0)

Thunk

[only during evaluation]

.;fn=0bjn

Figure 1. Syntax

CON(C & ...an) is a data value, the saturated application of con-

structorC to argumentsy .. . an.

THUNK e represents a thunk, or suspension. When its value is
neededeg is evaluated, and the thunk overwritten with (an in-

direction to) the value oé.

BLACKHOLE is used only during evaluation of a thunk, never in

Nil -> nil
Cons y ys -> let h = THUNK (f y)
t = THUNK (map f ys)
r = CON (Cons h t)
in r

)

a source program. While a thunk is being evaluated, it is re- The top-level definition ofi1 is automatically generated by GHC,

placed byBLACKHOLEto avoid space leaks and to catch

certain forms of divergence [7].

Of these,FUN, PAP andCON objects arevalues and cannot be

evaluated any further.

A top-level definition creates a statically-allocated abjat a fixed

address, whereaslat allocates a heap object dynamically.
3.2 Case expressions

The language offers conventional algebraic data type deas,

such as

data Tree a = Leaf a | Branch (Tree a) (Tree a)
data Bool False | True
data List a = Nil | Cons a (List a)

Values of typeTree are built with the constructorseaf and
Branch, and can be discriminated and taken apart witage ex-
pression. The boolean ty@ol is just a regular algebraic data
type, so that a conditional is implemented by #se expression.
Constructors are always saturated; unsaturated constsuzan al-

ways be saturated by eta expansion.

To give the idea, here is the Haskell definition of e function:

map f [] = []
map f (x:xs) = f x : map f xs

and here is its rendition into our intermediate language:
nil = CON Nil

map = FUN (f xs ->
case xs of

so that there is a value to hand fiexp to return in thelil case alter-
native. A similar top-level definition is generated for eaxhlary
constructor.

The scrutinee of aase expression is amxpressionrather than
anatom This is important, because it lets us write, for example,
case (null xs) of ...,ratherthan

let y = THUNK (null xs) in case y of ...
There is no need to construct a thunk!

3.3 Unboxed values

Another slightly unusual feature of our language is the usane
boxed valugd2]. Supporting unboxed values is vital for perfor-
mance, but it has significant consequences for the impleatient
both heap objects and the stack may contain a mix of pointgr an
non-pointer values.

Most values are represented by a pointer to a heap objetiding

all data structures, function closures, and thunks. Oerimediate
language also supports a handful of primitive, unboxed tigtes,

of which we consider onlyint# andDouble# here. AnInt# is

a 32-bit integer, in the native machine representations iat a
pointer. Similarly, abouble# is a 64-bit double-precision floating-
point value in IEEE representation. These unboxed valuasea
passed as a arguments to a function, returned as resultsd $to
data structures, and so on. For example, here is how the ¢boxe
typeInt is defined, as an ordinary algebraic data type:

data Int = I# Int#

That is, anInt value is a heap-allocated data structure, built with
the I# constructor, containing ant#.

Having explicit unboxed values allows us to make boxing amd u
boxing operations explicit in our intermediate languager. #&xam-
ple, here is hovint addition is defined:

plusInt :: Int -> Int -> Int
plusInt a b
= case a of { I# x —->
case b of { I# y —>
I# (x +# y)

1

The firstcase expression evaluates the argumantin case it is

a thunk) and takes it apart; the secotke does the same tb;
thecase x +# y of ... adds the two unboxed values using the
primitive addition operator#, while the final use ofi# boxes the
result back into annt.

4 The two evaluation models

It is now time to become precise about what we mean by a
“push/enter” or “eval/apply” model. We do so by giving an ope
ational semantics that exposes the key differences bette=e
models, while still hiding some representation detailst thialy
confuse the picture. Douence and Fradet give a completély di
ferent, combinator-based, formalism that allows them totrest
push/enter with eval/apply [2], but the one we give here nmpee
directly to operational intuitions.

Figure 2 gives the operational semantics for both evaloatiodels,
using a small-step transition relation of the form

e, s1; Hi = e s H
The components of the program state are:

The code e, is the expression under evaluation, in the syntax of
Figure 1.

The stack s, is a stack of continuations that says what to do when
the current expression is evaluated.

The heap H, is a finite mapping from variables (which we treat as

keeping a pointer to the new object in a register, or accgssioy
offset from the allocation pointer, but we do not need to nhtfuese
details here.

The next group of four rules deal witbase expressions. Rule
CASE, starts the evaluation of@ase expression by pushingase
continuation on the stack, and evaluating the scrutieeé/Nhen
evaluation is complete, a value(either a literal or a pointer to a
heap value) is returned to tk@se continuation byRET.

If vis (a pointer to) a constructor, ruteASECONapplies; it resumes
the appropriate branch of thease, binding the constructor argu-
ments tox;. If the returned value does not match any othese
alternative, the default alternative is used (raleseaNY). These
two rules precedecASE because they overlap it, and we use the
convention that the first applicable rule takes precedehzeeduce
clutter, we use the (slightly unusual) convention that mairig is
ever removed from the heap. For example, in rakesecoNthe
heapH on the right-hand side of the rule still has a bindingJor

The next two rules deal with thunks. If the expression to taev
ated is a thunk, we push an update continuatiorufmfate framg
Upd te, which points to the thunk to be updated (ralaunk).
While the thunkt is being evaluated we update the heap so that
points to BBLACKHOLE No left-hand sides matdBLACKHOLE
so evaluation will “get stuck” if we try to evaluate a thunkrihg

its own evaluation. This simple trick has been known for aglon
time, and is also crucially important to avoid space leaks\[?hen
evaluation is complete, we overwrite the thunk with the ealwle
UPDATE).

The last two rules deal witkaturatedapplications oknownfunc-
tions, either primitive operationsPRIMOP) or user-defined ones
(KNOWNCALL). Both are very simple and can be compiled effi-
ciently, with fast parameter-passing mechanisms. Notieg the
call to f is atail call. No continuation is pushed; instead control is
simply transferred td’'s body.

The big remaining question is how function application isdiad
when the function is unknown, or is applied to too many or o f
arguments. And that is the key point at which the two evatumati
models differ, of course.

synonymous with heap addresses) to heap objects. The latter

have the syntax given in Figure 1.
The stack continuationg, take the following forms:

k casesof {alty;...;alty}

| Updte Update thunk with returned value

| (eaz...an) Apply the returned function tay...an
[eval/apply only]

| Arga Pending argument [push/enter only]

The meaning of these continuations should become clear dgswe
cuss the evaluation rules. The rules themselves are farigel so
the following subsections explain them in some detail. Aftet,
we sketch how the operational semantics is mapped onto engeal
chine by the Glasgow Haskell Compiler.

4.1 Rules common to both models

The first block of evaluation rules in Figure 2 are common tthbo
push/enter and eval/apply.

The first rule,LET, says what happens when the expression to be
evaluated is daet form. Following Launchbury [8], we simply
allocate the right-hand sidebj in the heap, using a fresh name
X, extend the heap thud[xX — objl. The use of a fresh name
corresponds to allocating an unused address in the heagly,Las
we substituted for x in e, the body of thelet, before continuing.

In a real implementation this substitution would be manabgd

4.2 The push/enter model

The rules in the second block of Figure 2 are the ones speaifitet
push/enter model. First consider rirlesH which deals with func-
tion applications. It simply pushes the arguments onto theks
aspending argumentausing theArg continuation, and enters the
function. The next three rules deal with what “entering thad
tion” means:

e First, the functionf might turn out to be &UN object of ar-
ity n, and there might ba or more arguments on the stack. In
that case (rul€ENTER), we can proceed to evaluate the body
of the function, binding the actual arguments to the fornzal p
rameters as usual. Any excess pending arguments are left on
the stack, to be consumed by the function gagiresumably)
evaluates to.

e What if there aren’t enough pending arguments on the stack?
This could happen either because a function-valued thunk
pushed an update frame, or becaussase expression eval-
uated a function (see Section 3.2). In either case, we must
construct a value to return to the “caller” and that value is a
partial application, oPAP, as rulePAP1 shows.

e What if f is a PAP and not aFUN? In that case, we sim-
ply unpack thePAPs arguments onto the stack, and enter the
function (rulePENTER).

Rules common to push/enter and eval/apply

let x=objine s H = €Xx/x; s H[X — obj| (LET)
X fresh
caseVof {...;CX1...Xn — €,...}; S Lo
H[V>—>COJ%\|(C al.l..an)} } = ela/x1...an/X]; S H (CASECON
caseVof {...;x—¢€}; ss H = e€v/x; s H (CASEANY)

if vis a literal orH[v] is a value, and does not
match any other case alternative

caseeof {...}; s H = € caseeof{...}:s H (casE)
V; caseeof{...}:ss H = casevof{...}; s H (RET)
if vis a literal orH[Vv] is a value
X; s, Hx— THUNK g = € Updxe:s, H{x— BLACKHOLH (THUNK)
y, Updxe:ss H = vy, s Hx—H[y] (UPDATE)
if H]y] is a value
flag...an; s H[f = FUN(X1...Xn—€)] = €a/x1...an/xn]; S H (KNOWNCALL)
day...an; S H = a s H (PRIMOP)

wherea is the result of applying the primitive op-
erationé to argumentsy; ... an

Rules for push/enter

fkal...am; ss H = f;, Arga;...Argan:s H (PUSH)
f; Arga...Argan:s, H[f = FUN(x;...xn —>€)] = e€a/X1...an/xn]; S H (FENTER)
f; Arga...Argam:s, H[f = FUN(x;...xp—€)] = p; s, Hlp— PAR(fa;...am)] (PAPL)
if m> 1; the top element of is not of the form
Argy; pfresh
f; Argans1:s H[f = PAP(g&...an)] = 0 Arga...Argan:Argan:1:s H (PENTER
Rules for eval/apply
f®a;...an; s, H{f = FUN(X3...Xn —€)] = e€laj/X1...an/%n]; S, H (EXACT)
fa;...am s H[f = FUN(x...Xo—€)] = ela/xi...an/*n); (®@ns1...am):s; H (CALLK)
Lm>p;n$ Hip— PAR(f a;...am)] (PAP2)
if m< n, pfresh
f*a...am; s H[f = THUNKE = f; (e3...am):s H (TCALL)
fKani1...am; s H[f = PAP(ga...an)] = ¢'a;...anans1...am; S, H (PCALL)
f; (ea1...an):ss H = f*a...an; S H (RETFUN)

H[f] isaFUN or PAP

Figure 2. The evaluation rules

4)
Info pointer
® Payload
Info table
> @—+—» Entry code
Object type
Layout info
Type-specific
fields
- J

Figure 3. A heap object

The three cases above do not exhaust the possible forrhs kf
might also be & HUNK, but we have already dealt with that case
(rule THUNK). It might be aCON, in which case there cannot be any
pending arguments on the stack, and rule®ATE or RET apply.

4.3 The eval/apply model

The last block of Figure 2 shows how the eval/apply modelsieal
with function application. The first three rules all deallwihe case
of aFUN applied to some arguments:

e If there are exactly the right number of arguments, we behave
exactly like rulekNOWNCALL, by tail-calling the function.
RuleexAcT is still necessary — and indeed has a direct coun-
terpart in the implementation — because the function might
not be statically known.

e If there are too many arguments, rubaLLK pushes aall
continuationon the stack, which captures the excess argu-
ments. This is the essence of eval/apply. Given an appitati
f x y wheref takes one argument, first call x, and then
apply the resulting function tg.

e If there are too few arguments, we buildPAP (rule PAP2),
which becomes the value of the expression.

These rules work by dynamically inspecting the arity of tinedtion
closure in the heap, which works fine for both known and unkmow
calls, but we can do better for known calls. RuleOWNCALL has
already dealt with the saturated known case, and it is pghadi
worth the bother of treating under- and over-saturated knoalls
specially because they are very uncommon (see Section 8).

Another possibility is that the function in an applicatios a
THUNK (ruleTcALL). This case is very like the over-applied func-
tion of ruleCcALLK ; we push a call continuation and enter the thunk.
(This in turn will push an update frame via rul@UNK.)

Finally, the function in an application might be a partiaphgation
of another functionf’ (rule PCALL). In that case we unpack the
PAP and applyf’ to its new arguments. Sincg is sure to be a
FUN, this will take us back to one of the cases in rulesacT,
CALLK Or PAP2.

That concludes the rules for function application. We nemellast
rule, RETFUN, which returns a function valuePAP or FUN) to a
call continuation, in the obvious way. This rule re-actast call
continuation, exactly as rulRET re-activates aase continuation.

4.4 Heap objects

To provide the context for our subsequent discussion, we now
sketch briefly how GHC maps the operational semantics orgala r
machine. Figure 3 shows the layout of a heap object. In GHC,
the first word of every object is called the objecirso pointer,

and points to an immutable, statically-allocatedo table The

remainder of the object is called tipayload and may consist of

a mixture of pointers and non-pointers. For example, theaibj
CON(C & ...an) would be represented by an object whose info
pointer represented the construc®and whose payload is the ar-
gumentsa; ...an.

The info table contains:

e Executable code for the object. For exampld;@N object
has code for the function body.

e An object-type field, which distinguishes the various kinds
objects FUN, PAP, CON etc) from each other.

e Layout information for garbage collection purposes, which
describes the size and layout of the payload. By “layout” we
mean which fields contain pointers and which contain non-
pointers, information that is essential for accurate gaetzol-
lection.

¢ Type-specific information, which varies depending on the ob
ject type. For example, BUN object contains its arity; a
CON object contains its constructor tag, a small integer that
distinguishes the different constructors of a data type; sm
on.

In the case of a PAP, the size of the object is not fixed by its inf
table; instead, its size is stored in the object itself. Tyout of its
fields (e.g. which are pointers) is described by the (ingegment
of) an argument-descriptor field in the info table of the FUbjext
which is always the first field of a PAP. The other kinds of heap
object all have a size that is statically fixed by their infblea

A very common operation is to jump to the entry code for thezob)j

so GHC uses a slightly-optimised version of the represiemtan
Figure 3. GHC places the info table at the addregsesediately
beforethe entry code, and reverses the order of its fields, so that
the info pointeris the entry-code pointer, and all the other fields of
the info table can be accessed by negative offsets from tliggy.

This is a somewhat delicate hack, because it involves jasiag
code and data, but (sadly) it does improve performancefggnily

(on the order of 5%). Again, however, is not germane to thjzepa
and we ignore it from now on.

4.5 The evaluation stack

In GHC, the evaluation stack in Section 4, is represented by a
contiguous block of memoty The abstract stack of Section 4 is a
stack of continuationgk. These continuations are each represented
concretely by atack frame The stack frames for the two continu-
ations common to both push/enter and eval/apply are these:

e An update continuatiotdpd x e is represented by a small
stack frame, consisting of a return address and a pointer to
the thunk to be updated, In the push/enter model, an up-
date frame must contain a second word, which points to the
next update frame down in the stack (see Section 5). Having
a return address in the update frame means that a value can
simply return to the topmost return address, without hating
test whether the top frame is an update continuationdarsa
continuation.

The return address for every update frame can be identical,
though; it points to a hand-written code fragment, part ef th
runtime system, that performs the update, pops the update
frame, and returns to the next frame.

1in fact, GHC supports lightweight concurrency, so there are
many threads. Each has its own stack, of limited size. Thepdem
generates explicit stack-overflow tests, and grows thekstdmen
necessary. None of this is relevant to the discussion ofpthyer,
so we do not discuss concurrency or stack overflow any further

¢ A case continuationcase o of {alts} is represented by a re-
turn address, together with the free variables of the altern
tivesalts, which must be saved on the stack across the evalu-
ation of the scrutinee. For example, consider this function

f :: (Int,Int) -> (Bool,Int) -> Int
f x y = case hl x of
(_,b) -> case h2 y of
w > wtb

Across the call ta1 x, we must savg on the stack, because
it is used later, but we need not savehen across the call to
h2 y we must savé, but we need not saye

Unlike an update frame, the return address for eacte ex-
pression is different: it points to code for the case altévea
of that particularcase expression.

In both caseshe frame can be thought of as a stack-allocated func-
tion closure the return address is the info pointer, and it “knows”
the layout of the rest of the frame — that is, where the posmter
non-pointers and (in the caseafse continuations) dead slots are.
In our implementation, the stack grows downward, so thermetu
address is at the lowest address, and a stack frame lookdyexac
like Figure 3. A return address has an info table that the ageb
collector uses to navigate over the frame.

In the next sections we describe how the other two continnati
are implemented: thArg continuation for push/enter (Section 5)
and the(e a; ...an) continuation for eval/apply (Section 6).

5 Implementing push/enter

The push/enter model uses the stack to store pending argsimen
represented by continuations of forng a. Unlike the other con-
tinuations, these have no return address. When a functitmanity
nis entered, it begins work by grabbing the togrguments from
the stack (ruleeENTER), not by returning to them! This is precisely
the difference alluded to in the Introduction: the functisin con-
trol.

How does the function know how many arguments are on the 3tack
It needs to know this so that it can perform rtHENTER Or PAPL
respectively. In GHC the answer is this: we dedicate a regist
calledsu (“u” for “update”), to point to the topmost update frame
or case frame, rather like the frame pointer in a conventional com-
piler. Then the function can see if there are enough argusnant
taking the difference between the stack pointer smd(The func-
tion knows not only how many arguments it is expecting, but ho
many words they occupy.) This is the so-calldument satisfac-
tion check

Every function is compiled with two entry points. Tlast entry
pointis used for known calls; it expects its arguments in regsster
(plus some on the stack if there are too many to fit in registaise
slow entry pointexpects all its arguments on the stack, and begins
by performing the argument-satisfaction check. If the argat-
satisfaction check fails, the slow entry point builds a PA ge-
turns to the return address pointed today if it succeeds, the slow
entry point loads the arguments from the stack into regiséerd
jumps (or falls through, in fact) to the fast entry point.

5.1 Reducing the number ofSu pushes

In conventional compilers, the frame pointer is really ongeded
to support debugging, and some compilers provide a flag toigmi
thereby freeing up a register. We cannot get risofltogether, but
when pushing a new frame it is often unnecessary to Savand
make it point to the new frame. Consider:

2or a memory location on register-starved architectures

4 N
Pending arguments
s —= A —
Regular frame, with return address
- J
Figure 4. Stack layout for push/enter
case x of { (a,b) > }

We know for sure thak will evaluate to a pair, not to a function!
There is no need to malg point to thecase frame during eval-
uation ofx. The only time we need to do so is when the scrutinee
cannot statically be determined to be a non-function tyfffe clas-

sic example is the polymorphigq function:

seq :: a > b ->b
seq ab=case aof {x ->b}

In some calls teeq, a will evaluate to a function, while in others
it will not. In the former case we must ensure tBatpoints to the
case frame, so that rul®ApP1 applies.

In principle, the same is true about update frames, but intjpe
there are several reasons that we want to walk the chain aftepd
frames (see Section 7) so GHC always savesn every update
frame.

To avoid that somease frames have a saveth and some do not,
we insteadheversavesSu in a case frame. Instead, in the (rare)
situation of a non-data-typeckse, we pushtwo continuations, a
regularcase continuation, and, on top of it,sseq framecontaining

Su. A seq frame is like an update frame with no update: it serves
only to restoresu before returning to thease frame underneath.

5.2 Accurate stack walking

The most painful aspect of the push/enter model is the pnoble
of representingirg continuations, which hold pending arguments.
Consider these functions:

g :: Int -> Int -> Int# -> Double# -> Int
gx =

f :: Int -> Int

fx=gxx34.5

Under the push/enter model, we push the pending argunests
and4.5 onto the stack before making the tail cgllx. The func-
tion g might compute for a very long time before returning a func-
tion that consumes the pending arguments. During this getiee
pending arguments simply sit on the stack waiting to be coesl

An accurate garbage collector must be able to identify epeimter

in the stack. The push/enter model leads to stack layoutdbls
like Figure 4. Update anekse continuations, whose representation
was discussed in Section 4.5, are represented by “regulack s
frames, consisting of a return address (shown black) on fop o
block of data (shown white)shose exact layout is “known” to the
return address The garbage collector can use the return address to
access the info table for the return address (Section 4 iB)agast
as it does for a heap-allocated closure. The info table descthe
layout of the stack frame, including exactly where in thexfeathe
(live) pointers are stored, so that the garbage collectorfoliow

them; it also gives the size of the frame, so that the garbalgctor
knows where to start looking for the next frame.

These regular stack frames are the easy (and well-undejgpaot.
However, between each regular stack frame are zero or e
continuations, or pending arguments (shown grey). Thecditfy
is thatthere is no description of their number or layantthe stack
data structure. The function that pushed them “knows” whay t

are, and the function that consumes them knows too — but an ar-

bitrarily long period may elapse between push and consampti
and during that time the garbage collector must somehowwiéal
them. There are two sub-problems:

¢ Identifying which are pointers and which are non-pointas;
the example above showed, there may be a mixture.

e Distinguishing the last pending argument from the nextrretu
address on the stack, which heralds a new stack frame.

One alternative is to have a separate stack for pending angism
which solves the second of these sub-problems, but not gie@r,
the separate stack could be for pending non-pointer argtsoaity,
which solves the first sub-problem, but not the second. Hewev
separate stack carries heavy costs of its own, to allocateain-

tain a pointer to the stack top, and check for overflow. We db no

consider this alternative further.

Another non-alternative is to use a conservative garbatiector.

Firstly, to plug space leaks we would then have to use extraong
writes to stub off dead pointers, something the frame layoaps
deal with automatically; this turns out to be very importamprac-

tice. Second, there are other reasons that GHC's runtinterayjsas
to walk the stack accurately: to black-hole thunks undeluateon,

and to raise exceptions. Third, stacks may have to move ier ¢od
grow; GHC's lightweight concurrency precludes simply aliting

a gigantic stack for each thread.

Failing these alternatives, the obvious approach is to adiaga
word to eachArg continuation. The tag word distinguishes pointer-
carrying from non-pointer-carryingrg continuations, specifies the
size of latter kind, and can be distinguished from the retutdress
that heralds the next regular stack frame. Easy enoughnbift-i
cient. In the following two sections we describe two optiatisns
that GHC uses to reduce the tagging cost.

5.2.1 Omitting tags on pointers

Our first optimisation is to not to tag pointer arguments atEhis
is attractive because pointer arguments dominate (seéBe’jt
Furthermore it looks relatively easy to distinguish a peirfrom
the return address that heralds the next stack frame, whew@a
pointer arguments, which can hold any bit-pattern whatsp@an-

not be distinguished in general. We were wrong to think it was

easy, though: the problem of distinguishing pointers fratum
addresses is much trickier than it looks, as we now discuss.

GHC allocates some heap objects statically, compiling tloém
rectly into the binary. So we distinguish an object pointemf
a return address in two steps:

Step 1: distinguish a pointer to a dynamic heap object from a static

pointer. Stack-walking aside, the garbage collector needs

make this distinction frequently, because it needs to know
whether to copy the object referenced by a given pointer or

not. We could do this by examining the info table of the

object, but it's more efficient if the test can be done without

dereferencing the pointer and polluting the cache, esihecia

if it turns out that we aren’t otherwise going to touch the ob-

ject that it points to (static objects are assumed to be iolihe
generation in GHC's generational collector, so they ragely
touched).

GHC therefore implements the static/dynamic test without
dereferencing the pointer, using an address-based test — we
know exactly where the dynamic heap is — and we re-use that
test to perform Step 1 of the heap-object/return-addrests te
when stack-walking.

Step 2: distinguish a pointer to a static object from a return ad-

dresses. In earlier versions of GHC we did this by keeping
static objects in a separate linker segment from the codéc st
objects are data, whereas return addresses are in the gext se
ment. Determining the border between text and data can usu-
ally be done, although it is non-portable and usually needs t
be implemented in a different way for each new platform the
compiler is ported to. Furthermore, this breaks down when
dynamic linking is added to the mix, because there may be
many text and data segments scattered throughout the addres
space. One alternative, which we used on Win32 systems with
DLLs, was to place a zero word before every static closure
and use this to discriminate, making use of the fact that a re-
turn address is never preceded by a zero word. The problem

with this is that it means dereferencing the pointer, whigh i
something we were trying to avoid for efficiency reasons.

The problem of distinguishing pointers from return addesssould
be solved in another way: by savirsm in a known place every
regular frame. Then the stack-walker could rely onsanchain
linking every regular frame, so it would always know where tiext
regular frame began. However, building a chain of all franvesld
impose a non-trivial run-time cost by increasing memortfica

5.2.2 Lazytagging

Tagging non-pointer pending arguments carries only a niagdes
time cost, because (in Haskell at least) it is rare to callrection
that returns a function that consumes non-pointer argusnéitiC
therefore tags non-pointérg continuations staightforwardly, with
a tag word pushed on top of the non-pointer argument, canin
the length in words of the non-pointer argument (usually 2)oA
tag can always be distinguished from a pointer argumentser
pointer arguments never point to very low addresses.

Even tagging non-pointers is tiresome. When calling thedatry
point of a function, we can pass some arguments in regidteits,

when there are too many we pass them on the stack. It would make

sense for the stack layout of these overflow parameters thde t
same as the latter part of the stack layout expected by thessitry
point (which takes all its arguments on the stack). The fdtses
tagged slots for non-pointers, so the former had better dimso
But we do not want to take the instructions to explicitly tdum t
slots when making a fast call — fast calls to functions takiog-
pointer arguments are not at all rare — so we allocate spadbdo
tags but do not fill the tags in. (In a call to a known functionenh
too many arguments are supplied, we must generate code tiotag
“extra” arguments but not the “known” ones.)

So the invariant at the fast entry point is that there is sfacthe
tags of the non-pointer arguments passed on the stack, ése th
slots are non necessarily initialised. The fast entry ptipically
starts with a heap-overflow check; if it fails, it must remeanko
fill in the tags, so that the top frame of the stack is self-dbsw.

The exact details are unimportant here. The point is thatewdg-
ging non-pointers in the stack is feasible and reasonalfilgiezft,
it imposes a significant complexity burden on both code geoer
and the the run-time system.

5.3 GeneratingC--

Some compilers generate native code directly, but a verylpop
alternative route is to generate code in C, or a portablenasise

language such as--, leaving to another compiler the tasks of in-
struction selection, register allocation, instructiomeduling, and
so on. A significant disadvantage of the push/enter modéakisit
makes this attractive route much harder, or at least muchdéis
cient.

The problem, again, is the pending arguments. Suppose that w
want to generate C. We plainly cannot push the pending argteme
onto the C stack, because C controls its own stack layoutreTike
just no way to have C stack frames separated by chunks of pgndi
arguments.

The only way out of this is to maintain a separate stack fodpen
arguments. In fact, GHC uses C as a code generator, and i keep
everythingon the separately-maintained stack: pending arguments,
saved variables, return addresses, and so on. Indeed, Géthdb
use the C stack at all, so we only have to maintain a singlé&.stac

Unfortunately, we thereby give up much of the benefit of the

this happens, and arrange to pre-generate enough calhoatitns
to cover 99.9% of the cases (Section 8). The remainder acidtan
by pushing multiple call continuations.

An important complication is that we need different call tiona-
tions when some of the arguments are unboxed. Why? Because:
(a) the calling convention for the function that the conétian will
call may depend on the types of its arguments (e.g. a flogirgt
argument might be passed in a floating-point register); ahdhe
call-continuation return address must (like any returrrass) have
layout information to guide the garbage collector. So carged
away with just N continuations, but (in principle) we neéd The
“3" comes from the three basic cases we deal with: pointeh)i82
non-pointer and 64-bit non-pointer. There might well be endy
for example, a 32-bit float was passed in a different regisian a
32-bit integer. Hence the importance of measurements etatiiy
the common cases.

portable assembly language. If we do not use the C stack, we6.1 Generic application in more detalil

cannot use C’s parameter-passing mechanisms. Insteadasge p
arguments either in global variables that are explicitipeated in
registers (using gcc directive) or on the explicit stack. We have to
perform our own liveness analysis to figure out what variafale
live across a call, and generate code to save them to to thieiexp
stack. In short, we only use C to compile basic blocks, mamagi
the entire call/return interface manually.

There are other reasons why we could not use C’s stack, howeve
There is no easy way to check for stack overflow, or to movekstac
around (both important in our concurrent Haskell systemm&y
save live variables across a call, but does not generatk d&c
scriptors for the garbage collector (Section 5.2). Poga&xception
handing is tricky. And so on.

C--, on the other hand, is a portable assembly language designed[

specifically to act as a back end for high-level-languagepitars.

It provides explicit and very general support for tail catigrbage
collection, exception handling, and concurrency, and sbresses
many of C’s deficiencies. Yetye have found no general or clean
way to extend--’s design to incorporate pending argumengo,
like C, c-- provides no way to push an arbitrary number of words
on the stack that should persist beyond the end of the curadint

The bottom line is this. The pending arguments required lgy th
push/enter model are incompatible with any portable askelaf-

To be more concrete, we will imagine that we compile Hasked i
C-- [13] (we will introduce any unusual features ©f- as we go
along). Here is the code that the call3 x, wheref is an unknown
function, might generate:

jump stgApplyNP(f, 3, x)

This transfers control — thejump” indicates a tail call — to a
pre-generated piece of run-time system cadgsApplyNP, where
the “NP” suffix means “one 32-bit non-pointer, and one pointer”.
The first parameter is the address of the closuretfolt’s just as

if the original Haskell call had beestgApplyNP f 3 x, where
stgApplyNP is a known function, so we make a fast call to it.

The run-time system provides a whole bunckegApplyNP func-
ions, for various argument combinations. Indeed, we gaper
them by feeding the desired argument combinations to a gtrer
program.

Figure 5 shows (approximately) is the code we generate for
stgApplyNP. In this code we assume tHERPE (£) is a macro that
gets the type field from the info table of heap objecARITY (£)

gets the arity from the info table of BUN object, and so on.
CODE(f) gets the fast entry point of the function, which takes the
function arguments in registers (plus stack if necessary).

guage known to us, except by using that language in a way thatFirst, the function might be @HUNK; in that case, we evaluate it

vitiates many of its advantages. We count this as a serigike st
against the push/enter model.

6 Implementing eval/apply

Next, we turn our attention to the implementation details fo
eval/apply. The eval/apply model useall continuations of form

(e a;...an), which are represented by a stack frame consisting of
a return address, together with the arguments . a,. This return
address is entered when a function has evaluated to a vl ¢F
PAP), and returns. This is the moment when the complicatks ru
(EXACT, CALLK, PAP2, and so on) are needed, and that involves
quite a lot of code. So we do not generate a fresh batch of arde f
each call site; instead, we pre-generate a range of catlre@iion
return addresses, for 1, 2, 3, ... N arguments.

What if we need to push a call continuation for more than N argu
ments? Then we push a succession of call continuations,feach
as many arguments as possible, given the range of pre-gedera
return addresses. In effect, this reverts to something rfikee

the argument-at-a-time function application processepkthat we
deal with the arguments N at a time. We can measure how often

(by calling its entry point, passing the thunk itself as sguanent),
before looping around tetgApplyNP again.

Next, consider th&UN case, which begins by switching on the arity
of the function:

e case 2: If it takes exactly two arguments, we just jump to
the function’s code, passing the argumea@ndb. We also
pass a pointer tg, the function closure itself, because the free
variables of the function are stored therein.

Note that if we end up taking this route, then the function ar-
guments might not even hit the stackandb can be passed

in registers tostgApplyNP, and passed again in registers
when performing the final call. This is an improvement over
push/enter, where arguments to unknown function calls are
always stored on the stack.

case 1: if the function takes fewer arguments than the num-
ber required byt — in this case there is just one such branch
— we must save the excess arguments, make the call, and then
apply the resulting function to the remaining argumentse Th
code for arN-ary stgApply must have a case for eack N.

stgApplyNP(£, a, b) {
/* Apply f to arguments a and b */

switch TYPE(f) {
case THUNK:

fun_code =

f =

CODE(f) ;

fun_code(f);

/* a,b saved across this call */
jump stgApplyNP(£, a, b)

case FUN:
switch ARITY(f) {
case 1: /* Too many args */
fun_code = CODE(f) ;
f = fun_code(f, a);
/* b saved across this call */
jump stgApplyP(£, b);
case 2: /* Exactly right! */
fun_code = CODE(f) ;
jump fun_code(£, a, b);

other: /* Too few args */
...check for enough heap
space to allocate PAP...
...build PAP for (f a b)...
return(r)

r =

}

case PAP:
switch PAP_ARITY(f) {
case 1: /* Too many args */
f = applyPapN(f, a) ;
jump stghpplyP(£, b);

case 2: /* Just right */
jump applyPapNP(f, a, b)

other: /* Too many args */
...check for enough heap...
r = ...build PAP for (f a b)...
return(r)

} }
Figure 5. The generic apply functionStgApplyNP

So we get a quadratic number of cases, but since it's all gen-

erated mechanically, and the smaller arities cover almibst a
cases, this is not much of a problem in practice.

e other: otherwise the function is applied to too few argu-
ments, so we should build a partial application in the heap.

The third case is that might be a partial application. The three
cases are similar to those forFaN, but they make use of an aux-
iliary family of functionsapplyPapX etc which apply a saturated
PAP. This apply operation is not entirely straightforwabecause
PAP contains a statically-unknown number of arguments. $dre
lution is to copy the argument block from the PAP, followedtbhg
argument(s) tapplyPapX to a temporary chunk of memory, and
call a separate entry point for the function that expectrigsments
in a contiguous chunk of memory. The advantage of this agbroa
is that it requires no knowledge of the calling conventiomother
solution (currently used by GHC) is to exploit knowledge bét
calling convention to make a generic call; in GHC's case w&t ju
copy the arguments onto the stack.

There are several opportunities for optimisation. Firs,aan have
specialisedUN types for functions of small arity (1, 2, 3, say); that
way we could combine the node-type and arity tests. Secotugh a
level function has no (non-constant) free variables, seoetlieno
need to pass its function closure as its first argument. Wedvou

10

need anotheFUN node type to distinguish this case.
6.2 Too many arguments

What do we do with an unknown call for which there is no pre-
generatedstgApplyX function? Answer, we just split it into two
(or more) chunks. For example, suppose we only staghpplyX
functions for a single argument. Then our call3 x would com-
pile to:

f1 = stgApplyN(£, 3);

jump stgApplyP(f1, x);
Of course, x must be saved on the stack across the call to
stgApplyN.

7 A qualitative comparison

Having described the two implementations, we now summahise
main differences.

In favour of eval/apply:

e Much easier to map to a portable assembly language, such as
c--orC.

¢ No need to distinguish return addresses from heap pointers.
This is a big win (Section 5.2.1).

e No tagging for non-pointers; this reduces complexity and
makes stack frames and PAPs a little smaller.

e No need for theSu pointer, perhaps saving a register; and
update frames become one word smaller, because there is no
need to saveu.

e Because the arity-matching burden is on the caller, not
the callee, run-time system support functions, callabbenfr
Haskell, become more convenient to write.

e When calling arunknownfunction with the right number of
arguments, the arguments can be passed in registers rather
than on the stack. Push/enter pretty much mandates passing
arguments to unknown functions in memory, on the stack.

In favour of push/enter:
e Appears to be a natural fit with currying.
e Eliminates som@AP allocations compared to eval/apply.

e The payload of @AP object can be self-describing because
the arguments are tagged. In contrast, an eval/apyityob-
ject relies on itsFUN to describe the layout of the payload;
this results in some extra complication in the garbage colle
tor, and an extra global invariant;PAP must contain &UN, it
cannot contain anoth@ap.

Plain differences:

e Push/enter requires a slow entry point for each functicriin
porating the argument-satisfaction check. Eval/applysdums
need this, but (in some renditions) may require an entrytpoin
in which the arguments are in a contiguous memory block.

e The Su pointer makes it easy to walk the chain of update
frames. That is useful for two reasons. First, at garbage col
lection time we want to black-hole any thunks that are under
evaluation [7]. Second, a useful optimisation is to squeeze
out chains of adjacent update frames, which we also do at
garbage-collection time. Under eval/apply, however, cae c
still find the update frames by a single stack walk; but it may
take a little longer because the stack-walk must examineroth
frames on the stack in order to hop over them. Notice, though,
that there is nothing to stop us addingsanregister, pointing
to the topmost update frame, to the eval/apply model, if that

Uneval Unknown (%) Known (%) Eval/apply change/{%)
Program (%) < = > < = > Code Memory Run-
anna 08| 00| 255| 00| 06| 738 0.0 Program size | Alloc | Instrs| reads| writes | time
cacheprof 03|/ 00| 252|0.0| 02| 745| 0.0 anna 51| +1.7] 420 +25 -3.2| -0.7
compress 00| 00| 16| 00| 00| 984 0.0 cacheprof| -4.0 -0.0 | +10.7 | +10.3 +0.3 | +4.1
fem 00| 00| 54|00| 00| 946 0.0 circsim +0.2| +0.0| +0.2| +1.0 94| -47
fulsom 04 00| 250| 00| 02| 748| 0.0 compress | +2.2 -0.0| +1.8| +3.1 +3.6 | +1.8
hidden 0.1 00| 138| 00| 00| 86.1| 0.1 fem -0.8 | +0.0 -5.5 -3.2 -7.7 -
infer 0.1 00| 188| 00| 02| 811| 0.0 fibheaps +1.0| +0.9| +3.3| +4.5 -3.1 -
scs 05| 00| 173| 00| 0.0| 825 0.2 fulsom 21| +01 -2.5 -2.3 -79| -3.6
circsim 00| 00| 145| 00| 0.0| 855]| 0.0 hidden 24| +0.0| +3.3| +4.0 -6.1| +2.0
fibheaps 51| 58| 83| 00| 00| 853]| 0.6 infer -16| +0.2| +24| +24 -0.9 -
typecheck 05|/ 00| 273| 00| 05| 722| 0.0 scs -23| +0.0| +06| +1.4 24| -3.7
simple 00|/ 0.0| 49.2| 0.0| 0.0| 50.8| 0.0 simple -1.8| +0.0| +35| +25 47| +1.4
Min 00|/ 00| O00|0.0]|00] 21.2] 0.0 typecheck| +4.6 | +1.2| +6.8| +6.6 -4.7 | +3.0
Max 18.7| 83| 788 | 1.1 | 3.9 | 100.0| 1.6 Min -51] -27] -10.1 -80| -136] -23.1
Average 1.0 04| 203| 00| 02| 79.0| 01 Max +7.6| +29| +11.6| +20.8 | +21.4| +6.8

Figure 8. Space and time

turned out to be faster for the reasons just described. We hav

not tried this. information across module boundaries, which greatly iases the
number of known calls. Also notice that every over-satutatepli-
cation of a known or unknown function gives rise to a subsetjue
call to the unknown function returned as its result; thesenown
calls are included in one of the “unknown calls” columns. Err
ample, each execution of the cal £ x would count as one call

generator is a new component, but it is well isolated, andtoot to a known function {d) with too many arguments, and one call to

large (it amounts to some 580 lines of Haskell including com- the unknown function returned bid.

ments). The big wins are that complexity elsewhere is rediuce These numbers lead to three immediate conclusions. Firetyk
and it is easier to map the code to a portable assembly larguag calls are common, and sometimes dominate, but unknownazails
be the majority in some programs. Unknown calls must be feghdl
efficiently. Second, known calls are almost always satdratiee
efficiency of handling under- or over-saturated known callaot
important, and they can be treated like unknown calls (cdc-S

From this list we conclude two things. First, it is esseljiahpos-
sible to come to a rational conclusion about performancedas
these differences. The only way is to build both both modat$ a
measure the difference. Second, the eval/apply model sedmse
decisive advantages in terms of complexity. Yes, ¢hgApplyX

The bottom line is this: if eval/apply is no more expensivarth
push/enter, it is definitely to be preferred.

8 Measurements tion 4.3). Third, even unknown calls are almost always toaiue
Our measurements are made on the Glasgow Haskell Compiler ve ated function with the correct number of arguments, so itostiv
sion 5.04 (approximately; it does not correspond exactigriyp re- while optimising this case. For example, we can pass thenaegts
leased version). We made measurements across the eofii® to the generic apply function in registers, in the hope thean just
benchmark suite of 88 programs; we present detailed figurea f pass them directly to the function.

representative set of a dozen larger benchmarks, but thestalso Figyre 7 classifies the unknown calls of Figure 6, by theitargnt
give minimum, maximum and mean figurasross the whole suite patterns. This data is helpful in deciding how many difféneer-
8.1 The anatomy of calls sions ofstgApply to generate. We don’t care about known func-

. .] tions because we generate inline code for their calls. Theamo
First of all, we present data on the dynamic frequency of tfie d = Leadings use one character per argument to indicate treuaith
ferent categories of function call. All these figures areejpendent the key: p = pointer,v = void. pp, for example, means a call with

of evaluation model; they are simply facts about programeun o pointer arguments. A “void” argument is an argument asi

benchmark suite, as compiled by GHC. zero; such arguments are used for the “state token” usednfolet

Figure 6 show the relative dynamic frequency of: menting theI0 monad. The general conclusion is clear: a double-
e Calls to an unknown (lambda-bound or case-bound) function zsﬂgtfilélnzf 9 argument pattems is enough to cope with 99.98dlof

which turned out to be unevaluated (as a percentage of the)
total calls), 8.2 The bottom line

e Calls to unknown functions with (a) too few arguments, (b) What really matters in the end is time and space. Figure 8 show

exactly the right number of arguments, and (c) too many ar- the percentage change we measured in moving from push/enter
guments (each as a percentage of the total calls), to eval/apply. Somewhat to our surprise, there is only a kmal

« Calls to a known (let-bound) function with (a) too few ar- difference between the two models, with eval/apply edging o

guments, (b) exactly the right number of arguments, and (c) Push/enter by around 2-3% of runtime on average.

too many arguments (again, each as a percentage of the totalThe runtime figures are wall-clock times, averaged over 5 rdis-

calls). counting any programs that ran for less than 0.5 seconds on ou
The last six columns of the table together cover all calls| add 1GHz Pentium I1l (around half of the suite). The machine wiss o
up to 100%. Note that “known” simply means that a let(recpbin €rwise unloaded at the time of the test.

ing for the function is statically visible at the call sitégetfunction There are significantly fewer memory writes in the eval/gppl
may be bound at top level, or may be nested. GHC propagatgs ari model, which we believe is due mostly to not having to save the

11

Argument pattern (% of all unknown calls)
Program v P| pv PP | PPV | PPP | PPPV | ppPP | ppppp | OTHER
anna 00| 296| 0.0 69.3| 0.0 1.1 0.0 0.0 0.0 0.0
cacheprof| 0.0| 91.6| 0.0 81| 00| 03 00| 0.0 0.0 0.0
compress| 04| 73.9| 0.0 129| 0.0 12.7 0.0 0.0 0.0 0.0
fem 00| 91.3| 0.0 81| 00| 06 00| 0.0 0.0 0.0
fulsom 0.0 175| 00| 825| 00| 0.0 0.0 0.0 0.0 0.0
hidden 02| 487| 00| 143| 0.0|368| 0.0]| 0.0 0.0 0.0
infer 0.0| 518| 00| 481| 0.0 0.1 0.0 0.0 0.0 0.0
scs 14| 196| 00| 79.0| 00| 0.0 00| 0.0 0.0 0.0
circsim 0.0 70.2| 0.0 86| 00| 21.2 0.0 0.0 0.0 0.0
fibheaps 0.0| 43.2|13.7| 43.1| 0.0| 00 00| 0.0 0.0 0.0
typecheck| 0.0| 89.5(0.0 105| 0.0| 0.0 0.0 0.0 0.0 0.0
simple 00| 20.1| 0.0| 79.9| 0.0| 0. 00| 0.0 0.0 0.0
Min 0.0 00] 0.0 0.0] 0.0 00 00| 0.0 0.0 0.0
Max 58.6 | 100.0 | 13.7 | 100.0| 15.5| 98.9 6.2 | 11.3 0.3 0.1
Average 52| 544| 03| 344| 03| 52 01| 0.1 0.0 0.0

Figure 7. Argument patterns

value of theSu register in each update frame. We conjecture that Many of the complexities of push/enter are caused by effigien
hacks, however. For an interpreter, where performancetisunch
an issue, these hacks are not important, and push/enter eiblyav
a more elegant solution.

this reduction in memory writes is largely responsible foe slight
improvement in performance of eval/apply compared to pargief.

Heap allocation is largely unaffected by the change fronhfmreer
to eval/apply, as can be seen in the “Alloc” column of FigureA8

small change in allocation can be explained by two factoisst,F

eval/apply will allocate a PAP when returning a function lgggpto

too few arguments, whereas push/enter may get away witheayt h

allocation because the function can find its missing argusnen
the stack. Second, the PAPs in eval/apply may be sligimtigller
because there is no need to tag their non-pointer compo(gets
tion 4.4).

9 Related work
Two of the most popular and influential abstract machinedaoy

Acknowledgments

Many thanks to Robert Ennals, Karl-Filip Faxén, Xavieraerdan-
Willem Maessen, Greg Morrisett, Alan Mycroft, Norman Ragse

and Keith Wansbrough for giving the paper a careful read.

11 References

languages, the G-machine [6] and the Three Instruction Mach
(TIM) [3], both use push/enter. As a result, many compilems f

lazy languages, including GHC ahdéc, use push/enter.

However Faxén’s OCP compiler for the lazy language Pla#sus

eval/apply [4]. Rather than have genesitgApplyXX application
procedures, OCP creates specialised function entry pdtotseach

function£ of arity n, and for each < n, j <= n—i, OCP makes an

entry pointf_ij that expects to find arguments in a PAP object,
and j extra arguments passed in registers. That looks like an aw-
ful lot of entry points, but a global flow analysis allows OGP t
prune many entry points that cannot be used. The possiloifity

such specialisation is an additional benefit of eval/appbe (1] for
an extreme version). Eager Haskell, an unusual implemrientat
Haskell based on eager evaluation, also uses eval/apgly [10

Caml, a call-by-value language, uses push/enter for tleegrdter
[9], but eval/apply for the compiler, largely for the reasautlined
in Section 7. Indeed

10 Conclusions

Our main conclusion is easy to state: for a high-performaocm-
piled implementation of a higher order language, use epply&

There is not much to choose between the two models on perfor-

mance grounds, and eval/apply makes it noticeably easi®ato

age the complexity of a compiler and runtime system for adiigh
order language, as Section 7 explained. We are confidentiof th

result for a non-strict language, and we believe that thebemefit
is likely to be more pronounced for a strict one.

12

[1]

(2]

(3]

[4]

[5]

[6]

[7]
(8]

9]

U. Boquist. Code Optimisation Techniques for Lazy Func-
tional Languages PhD thesis, Chalmers University of Tech-
nology, Sweden, April 1999.

R. Douence and P. Fradet. A systematic study of functiona
language implementationsACM Transactions on Program-
ming Languages and Syster2§(2):344-387, March 1998.

J. Fairbairn and S. Wray. TIM - a simple lazy abstract ma-
chine to execute supercombinators. In G. Kahn, edRaoc
IFIP conference on Functional Programming Languages and
Computer Architecture, Portlangages 34-45. Springer Ver-
lag LNCS 274, Sept. 1987.

K.-F. Faxén. Analysing, Transforming and Compiling Lazy
Functional Programs PhD thesis, Department of Teleinfor-
matics, Royal Institute of Technology, June 1997.

C. Flanagan, A. Sabry, B. Duba, and M. Felleisen. The
essence of compiling with continuations. ACM Confer-
ence on Programming Languages Design and Implementation
(PLDI'93), pages 237-247. ACM, June 1993.

T. Johnsson. Efficient compilation of lazy evaluation PFroc
SIGPLAN Symposium on Compiler Construction, Montreal
ACM, June 1984.

R. Jones. Tail recursion without space leaksurnal of Func-
tional Programming2(1):73-80, Jan 1992.

J. Launchbury. A natural semantics for lazy evaluatidn.
20th ACM Symposium on Principles of Programming Lan-
guages (POPL'93)pages 144-154. ACM, Jan. 1993.

X. Leroy. The Zinc experiment: an economical implementa
tion of the ML language. Tr 117, inria-rocquencourt, INRIA,
Feb. 1990.

[10] J.-W. MaessenHybrid Eager and Lazy Evaluation for Effi-
cient Compilation of HaskellPhD thesis, Massachusetts In-
stitute of Technology, June 2002.

[11] S. Peyton Jones. Implementing lazy functional langsaon
stock hardware: The spineless tagless G-machlaernal of
Functional Programming2(2):127—-202, Apr. 1992.

[12] S. Peyton Jones and J. Launchbury. Unboxed values as
first class citizens. In R. Hughes, editohkCM Confer-
ence on Functional Programming and Computer Architecture
(FPCA'91), volume 523 ofLecture Notes in Computer Sci-
ence pages 636-666, Boston, 1991. Springer Verlag.

[13] S. Peyton Jones, N. Ramsey, and F. Reig:: a portable as-
sembly language that supports garbage collection. In G. Na-
dathur, editor,International Conference on Principles and
Practice of Declarative Programmingiumber 1702 in Lec-
ture Notes in Computer Science, pages 1-28, Berlin, Sept.
1999. Springer.

13

