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Abstract
Higher-order languages that encourage currying are implemented
using one of two basic evaluation models: push/enter or eval/apply.
Implementors use their intuition and qualitative judgements to
choose one model or the other.

Our goal in this paper is to provide, for the first time, a more sub-
stantial basis for this choice, based on our qualitative andquanti-
tative experience of implementing both models in a state-of-the-art
compiler for Haskell.

Our conclusion is simple, and contradicts our initial intuition: com-
piled implementations should use eval/apply.

1 Introduction
There are two basic ways to implement function application in
a higher-order language, when the function is unknown: the
push/entermodel or theeval/applymodel [11]. To illustrate the
difference, consider the higher-order functionzipWith, which zips
together two lists, using a functionk to combine corresponding list
elements:zipWith :: (a->b->
) -> [a℄ -> [b℄ -> [
℄zipWith k [℄ [℄ = [℄zipWith k (x:xs) (y:ys) = k x y : zipWith xs ys
Herek is anunknown function, passed as an argument; global flow
analysis aside, the compiler does not know what functionk is bound
to. How should the compiler deal with the callk x y in the body
of zipWith? It can’t blithely applyk to two arguments, becausek might in reality take just one argument and compute for a while
before returning a function that consumes the next argument; or k
might take three arguments, so that the result of thezipWith is a
list of functions.

In the push/enter model, the call proceeds bypushingthe argumentsx andy on the stack, andenteringthe code fork. Every function’s
entry code is required to check how many arguments are on the
stack, and behave appropriately: if there are too few arguments, the
function must construct a partial application and return. If there
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are too many arguments, then only the required arguments arecon-
sumed, the rest of the arguments are left on the stack to be con-
sumed later, presumably by the function that will be the result of
this call.

In the eval/apply approach, the caller firstevaluatesthe functionk,
and thenappliesit to the correct number of arguments. The latter
step involves some run-time case analysis, based on information
extracted from the closure fork. If k takes two arguments, we can
call it straightforwardly. If it takes only one, we must callit passingx, and then call the function it returns passingy; if it takes more
than two, we must build a closure for the partial applicationk x y
and return that closure.

The crucial difference between push/enter and eval/apply is this.
When a function of statically-unknown arity is applied, twopieces
of information come together at run-time: the arity of the function
and the number of arguments in the call. The two models differin
whether they place responsibility for arity-matching withthe func-
tion itself, or with the caller:

Push/enter: the function, which statically knows its own arity, ex-
amines the stack to figure out how many arguments it has
been passed, and where they are. The nearest analogy is C’s
“varargs” calling convention.

Eval/apply: thecaller, which statically knows what the arguments
are, examines the function closure, finds its arity, and makes
an exact call to the function.

Which of the two is best in practice? The trouble is that the eval-
uation model has a pervasive effect on the implementation, so it is
too much work to implement both and pick the best. Historically,
compilers for strict languages (using call-by-value) havetended to
use eval/apply, while those for lazy languages (using call-by-need)
have often used push/enter, but this is 90% historical accident — ei-
ther approach will work in both settings. In practice, implementors
choose one of the two approaches based on a qualitative assessment
of the trade-offs. In this paper we put the choice on a firmer basis:� We explain precisely what the two models are, in a common

notational framework (Section 4). Surprisingly, this has not
been done before.� The choice of evaluation model affects many other design
choices in subtle but pervasive ways. We identify and dis-
cuss these effects in Sections 5 and 6, and contrast them in
Section 7. There are lots of nitty-gritty details here, for which
we make no apology — they were far from obvious to us, and
articulating these details is one of our main contributions.

In terms of its impact on compiler and run-time system com-
plexity, eval/apply seems decisively superior, principally be-
cause push/enter requires a stack like no other: stack-walking
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is more difficult, and compiling to an intermediate language
like C orC-- is awkward or impossible.� We give the first detailed quantitative measurements (Sec-
tion 8) that contrast the two approaches, based on a credible,
optimising compiler (the Glasgow Haskell Compiler, GHC).
We give both bottom-line results such as wall-clock time, total
instruction count and allocation, and also some more insight-
ful numbers such as breakdowns of call patterns.

Our experiments show that the execution costs of push/enter
and eval/apply are very similar, despite their pervasive differ-
ences. What you gain on the swings you lose on the round-
abouts.

Our conclusion is simple, and contradicts the abstract-machine her-
itage of the lazy functional-language community: eval/apply is a
clear win. We have now adopted eval/apply for GHC.

2 Background: efficient currying
The choice between push/enter and eval/apply is only important if
the language encouragescurrying. In a higher-order language one
can write a multi-argument function in two ways:f :: (Int,Int) -> Intf (x,y) = x*yg :: Int -> Int -> Intg x y = x*y
Here,f is un-curried. It takes a single argument that is a pair, un-
packs the pair, and multiplies its components. On the other hand,g
is curried. Notionally at least,g takes one argument, and returns a
function that takes a second argument, and multiplies the two. The
type ofg should be read right-associatively, thus:g :: Int -> (Int -> Int)
Currying appeals to our sense of beauty, because multi-argument
functions come “for free”; one does not need data structuresto sup-
port them.

In any higher-order language one canwrite curried functions, sim-
ply by writing a function that returns a function, but languages dif-
fer in the degree to which their syntaxencouragesit. For the pur-
poses of this paper, we assume that currying is to be regardedas the
native way to define multi-argument functions, and that we wish to
make multi-argument curried functions as fast as possible.

We said that “notionally at leastg takes one argument”, but suppose
that, given the above definition ofg, the compiler is faced with the
call g 3 4. The call is to aknown function— one whose definition
the compiler can “see”. It would be ridiculous to follow the curry-
ing story literally. To do that, we would callg passing one argu-
ment,3, get a function closure in return, and then call that function,
again passing one argument,4. No, in this situation, any decent
compiler must load the arguments3 and4 into registers, or on the
stack, and call the code forg directly, and that is true whether the
basic evaluation model is push/enter or eval/apply. In the rest of
this paper we will take it for granted that saturated calls to“known”
functions are compiled using an efficient argument-passingconven-
tion. The push/enter and eval/apply models differ only in how they
handle calls to “unknown” functions.

3 Language
To make our discussion concrete we use a small, non-strict inter-
mediate language similar to that used inside the Glasgow Haskell
Compiler. Its syntax is given in Figure 1. In essence it is theSTG

language [11], but we have adjusted some of the details for this
paper.

Although the push/enter vs eval/apply question applies equally to
strict and non-strict languages, we treat a non-strict one here be-
cause it is the slightly more complicated case, and because our
quantitative data is for Haskell.

The idea is that each syntactic construct in Figure 1 has a direct
operational reading. We give these operational intuitionshere, and
we will make them precise in Section 4:� A literal is an unboxed32-bit integer,i, or 64-bit double-

precision floating-point number,d. We have more to say about
unboxed values in Section 3.3.� A call, f k a1 : : :an, applies the functionf to the arguments
a1 : : :an. The application is in A-normal form [5] — that is,
each argument is an atom (literal or variable) — so there is no
argument preparation to perform first. The superscriptk de-
scribes the statically-known information about the function’s
arity. It takes two forms:

– f n, wheren is an integer, indicates that the compiler
statically knows the arity off , usually because there
is a lexically-enclosing binding forf that binds it to a
FUN object with arityn.

– f � indicates that the compiler has no static information
about f ’s arity. It would be safe to annotate every ap-
plication with�.

There is no guarantee that the function’s arity (whether stat-
ically known or not) matches the number of arguments sup-
plied at the call site.� A let expression (and only alet) allocates an object in the
heap. We discuss the forms of heap object in Section 3.1.
In this paper we will only discuss simple, non-recursivelet
expressions. GHC supports a mutually-recursiveletre
 as
well, of course, but recursive bindings do not affect the issues
discussed this paper, so we omit them to save clutter. The
top-level definitions of a program are recursive, however.� A 
ase evaluates a sub-expression, called thescrutinee, and
optionally performs case analysis on its value. More con-
cretely,
ase saves any live variables that are needed in the
case alternatives, pushes a return address, and then evaluates
the scrutinee. At the return address, it performs case analysis
on the returned value. All
ase expressions are exhaustive:
either there is a default alternative as a catch-all, or the pat-
terns cover all the possibilities in the data type. We often omit
the curly braces in our informal examples, using layout in-
stead.

3.1 Heap objects
The language does not provide a syntactic form of expressionfor
constructor applications, or for anonymous lambdas; instead, they
must be explicitly allocated usinglet. In general,let performs
heap allocation, and the right hand side of alet is aheap object.
There are exactly five kinds of heap objects:

FUN(x1 : : :xn ! e) is a function closure, with argumentsxi and
bodye (which may have free variables other than thexi). The
function is curried — that is, it may be applied to fewer than
n, or more thann, arguments — but it still has anarity of n.

PAP( f a1 : : :an) represents a partial application of functionf to
argumentsa1 : : :an. Here, f is guaranteed to beFUN object,
and the arity of thatFUN is guaranteed to be strictly greater
thann.
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Variables x;y; f ;g
Constructors C Defined in data type declarations

Literals lit ::= i j d Unboxed integer or double
Atoms a;v ::= lit j x Function arguments are atomic

Function arity k ::= � Unknown arityj n Known arityn� 1

Expressions e ::= a Atomj f k a1 : : :an Function call(n� 1)j � a1 : : :an Saturated primitive operation(n� 1)j let x = ob j in ej 
ase eof falt1; : : : ;altng (n� 1)
Alternatives alt ::= C x1 : : :xn ! e (n� 0)j x! e Default alternative

Heap objects ob j ::= FUN(x1 : : :xn ! e) Function (arity= n� 1)j PAP( f a1 : : :an) Partial application (f is always aFUN
with arity( f )> n� 1)j CON(C a1 : : :an) Saturated constructor(n� 0)j THUNK e Thunkj BLACKHOLE [only during evaluation]

Programs prog ::= f1=ob j1; : : : ; fn=ob jn

Figure 1. Syntax

CON(C a1 : : :an) is a data value, the saturated application of con-
structorC to argumentsa1 : : :an.

THUNK e represents a thunk, or suspension. When its value is
needed,e is evaluated, and the thunk overwritten with (an in-
direction to) the value ofe.

BLACKHOLE is used only during evaluation of a thunk, never in
a source program. While a thunk is being evaluated, it is re-
placed byBLACKHOLE to avoid space leaks and to catch
certain forms of divergence [7].

Of these,FUN, PAP andCON objects arevalues, and cannot be
evaluated any further.

A top-level definition creates a statically-allocated object, at a fixed
address, whereas alet allocates a heap object dynamically.

3.2 Case expressions
The language offers conventional algebraic data type declarations,
such asdata Tree a = Leaf a | Bran
h (Tree a) (Tree a)data Bool = False | Truedata List a = Nil | Cons a (List a)
Values of typeTree are built with the constructorsLeaf andBran
h, and can be discriminated and taken apart with a
ase ex-
pression. The boolean typeBool is just a regular algebraic data
type, so that a conditional is implemented by a
ase expression.
Constructors are always saturated; unsaturated constructors can al-
ways be saturated by eta expansion.

To give the idea, here is the Haskell definition of themap function:map f [℄ = [℄map f (x:xs) = f x : map f xs
and here is its rendition into our intermediate language:nil = CON Nilmap = FUN (f xs ->
ase xs of

Nil -> nilCons y ys -> let h = THUNK (f y)t = THUNK (map f ys)r = CON (Cons h t)in r)
The top-level definition ofnil is automatically generated by GHC,
so that there is a value to hand formap to return in theNil case alter-
native. A similar top-level definition is generated for eachnullary
constructor.

The scrutinee of a
ase expression is anexpressionrather than
an atom. This is important, because it lets us write, for example,
ase (null xs) of ..., rather thanlet y = THUNK (null xs) in 
ase y of ...
There is no need to construct a thunk!

3.3 Unboxed values

Another slightly unusual feature of our language is the use of un-
boxed values[12]. Supporting unboxed values is vital for perfor-
mance, but it has significant consequences for the implementation:
both heap objects and the stack may contain a mix of pointer and
non-pointer values.

Most values are represented by a pointer to a heap object, including
all data structures, function closures, and thunks. Our intermediate
language also supports a handful of primitive, unboxed datatypes,
of which we consider onlyInt# andDouble# here. AnInt# is
a 32-bit integer, in the native machine representation; it is not a
pointer. Similarly, aDouble# is a 64-bit double-precision floating-
point value in IEEE representation. These unboxed values can be
passed as a arguments to a function, returned as results, stored in
data structures, and so on. For example, here is how the (boxed)
typeInt is defined, as an ordinary algebraic data type:data Int = I# Int#
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That is, anInt value is a heap-allocated data structure, built with
theI# constructor, containing anInt#.

Having explicit unboxed values allows us to make boxing and un-
boxing operations explicit in our intermediate language. For exam-
ple, here is howInt addition is defined:plusInt :: Int -> Int -> IntplusInt a b= 
ase a of { I# x ->
ase b of { I# y ->I# (x +# y)}}
The first
ase expression evaluates the argumenta (in case it is
a thunk) and takes it apart; the second
ase does the same tob;
the
ase x +# y of ... adds the two unboxed values using the
primitive addition operator+#, while the final use ofI# boxes the
result back into anInt.

4 The two evaluation models
It is now time to become precise about what we mean by a
“push/enter” or “eval/apply” model. We do so by giving an oper-
ational semantics that exposes the key differences betweenthese
models, while still hiding some representation details that only
confuse the picture. Douence and Fradet give a completely dif-
ferent, combinator-based, formalism that allows them to contrast
push/enter with eval/apply [2], but the one we give here mapsmore
directly to operational intuitions.

Figure 2 gives the operational semantics for both evaluation models,
using a small-step transition relation of the form

e1; s1; H1 ) e2; s2; H2

The components of the program state are:

The code e, is the expression under evaluation, in the syntax of
Figure 1.

The stack s, is a stack of continuations that says what to do when
the current expression is evaluated.

The heap H, is a finite mapping from variables (which we treat as
synonymous with heap addresses) to heap objects. The latter
have the syntax given in Figure 1.

The stack continuations,k, take the following forms:

k ::= 
ase�offalt1; : : : ;altngj Upd t � Update thunkt with returned valuej (� a1 : : :an) Apply the returned function toa1 : : :an
[eval/apply only]j Arg a Pending argument [push/enter only]

The meaning of these continuations should become clear as wedis-
cuss the evaluation rules. The rules themselves are fairly dense, so
the following subsections explain them in some detail. After that,
we sketch how the operational semantics is mapped onto a realma-
chine by the Glasgow Haskell Compiler.

4.1 Rules common to both models
The first block of evaluation rules in Figure 2 are common to both
push/enter and eval/apply.

The first rule,LET, says what happens when the expression to be
evaluated is alet form. Following Launchbury [8], we simply
allocate the right-hand sideob j in the heap, using a fresh name
x0, extend the heap thusH[x0 7! ob j℄. The use of a fresh name
corresponds to allocating an unused address in the heap. Lastly,
we substitutex0 for x in e, the body of thelet, before continuing.
In a real implementation this substitution would be managedby

keeping a pointer to the new object in a register, or accessing it by
offset from the allocation pointer, but we do not need to model those
details here.

The next group of four rules deal with
ase expressions. Rule
CASE, starts the evaluation of a
ase expression by pushing a
ase
continuation on the stack, and evaluating the scrutinee,e. When
evaluation is complete, a valuev (either a literal or a pointer to a
heap value) is returned to the
ase continuation byRET.

If v is (a pointer to) a constructor, ruleCASECONapplies; it resumes
the appropriate branch of the
ase, binding the constructor argu-
ments toxi . If the returned value does not match any other
ase
alternative, the default alternative is used (ruleCASEANY). These
two rules precedeCASE because they overlap it, and we use the
convention that the first applicable rule takes precedence.To reduce
clutter, we use the (slightly unusual) convention that no binding is
ever removed from the heap. For example, in ruleCASECON the
heapH on the right-hand side of the rule still has a binding forv.

The next two rules deal with thunks. If the expression to be evalu-
ated is a thunk, we push an update continuation (orupdate frame),
Upd t �, which points to the thunk to be updated (ruleTHUNK).
While the thunkt is being evaluated we update the heap so thatt
points to aBLACKHOLE. No left-hand sides matchBLACKHOLE
so evaluation will “get stuck” if we try to evaluate a thunk during
its own evaluation. This simple trick has been known for a long
time, and is also crucially important to avoid space leaks [7]. When
evaluation is complete, we overwrite the thunk with the value (rule
UPDATE).

The last two rules deal withsaturatedapplications ofknownfunc-
tions, either primitive operations (PRIMOP) or user-defined ones
(KNOWNCALL ). Both are very simple and can be compiled effi-
ciently, with fast parameter-passing mechanisms. Notice that the
call to f is a tail call. No continuation is pushed; instead control is
simply transferred tof ’s body.

The big remaining question is how function application is handled
when the function is unknown, or is applied to too many or too few
arguments. And that is the key point at which the two evaluation
models differ, of course.

4.2 The push/enter model
The rules in the second block of Figure 2 are the ones specific to the
push/enter model. First consider rulePUSH, which deals with func-
tion applications. It simply pushes the arguments onto the stack,
aspending arguments, using theArg continuation, and enters the
function. The next three rules deal with what “entering the func-
tion” means:� First, the functionf might turn out to be aFUN object of ar-

ity n, and there might ben or more arguments on the stack. In
that case (ruleFENTER), we can proceed to evaluate the body
of the function, binding the actual arguments to the formal pa-
rameters as usual. Any excess pending arguments are left on
the stack, to be consumed by the function thate (presumably)
evaluates to.� What if there aren’t enough pending arguments on the stack?
This could happen either because a function-valued thunk
pushed an update frame, or because a
ase expression eval-
uated a function (see Section 3.2). In either case, we must
construct a value to return to the “caller” and that value is a
partial application, orPAP, as rulePAP1 shows.� What if f is a PAP and not aFUN? In that case, we sim-
ply unpack thePAP’s arguments onto the stack, and enter the
function (rulePENTER).
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Rules common to push/enter and eval/applylet x = ob j in e; s; H ) e[x0=x℄; s; H[x0 7! ob j℄ (LET)
x0 fresh
ase v of f: : : ;C x1 : : :xn ! e; : : :g; s;

H[v 7!CON(C a1 : : :an)℄ ) e[a1=x1 : : :an=xn℄; s; H (CASECON)
ase vof f: : : ;x! eg; s; H ) e[v=x℄; s; H (CASEANY)
if v is a literal or H[v℄ is a value, and does not
match any other case alternative
ase eof f: : :g; s; H ) e; 
ase�of f: : :g : s; H (CASE)

v; 
ase�of f: : :g : s; H ) 
ase v of f: : :g; s; H (RET)
if v is a literal orH[v℄ is a value

x; s; H[x 7! THUNK e℄ ) e; Upd x� : s; H[x 7! BLACKHOLE℄ (THUNK)
y; Upd x� : s; H ) y; s; H[x 7!H[y℄℄ (UPDATE)

if H[y℄ is a value

f n a1 : : :an; s; H[ f 7! FUN(x1 : : :xn ! e)℄ ) e[a1=x1 : : :an=xn℄; s; H (KNOWNCALL)� a1 : : :an; s; H ) a; s; H (PRIMOP)
wherea is the result of applying the primitive op-
eration� to argumentsa1 : : :an

Rules for push/enter

f k a1 : : :am; s; H ) f ; Arg a1 : : :Arg am : s; H (PUSH)
f ; Arg a1 : : :Arg an : s; H[ f 7! FUN(x1 : : :xn ! e)℄ ) e[a1=x1 : : :an=xn℄; s; H (FENTER)
f ; Arg a1 : : :Arg am : s; H[ f 7! FUN(x1 : : :xn ! e)℄ ) p; s; H[p 7! PAP( f a1 : : :am)℄ (PAP1)

if m� 1; the top element ofs is not of the form
Arg y; p fresh

f ; Arg an+1 : s; H[ f 7! PAP(g a1 : : :an)℄ ) g; Arg a1 : : :Arg an : Arg an+1 : s; H (PENTER)
Rules for eval/apply

f � a1 : : :an; s; H[ f 7! FUN(x1 : : :xn ! e)℄ ) e[a1=x1 : : :an=xn℄; s; H (EXACT)
f k a1 : : :am; s; H[ f 7! FUN(x1 : : :xn ! e)℄ ) e[a1=x1 : : :an=xn℄; (� an+1 : : :am) : s; H (CALLK)

if m> n) p; s; H[p 7! PAP( f a1 : : :am)℄ (PAP2)
if m< n, p fresh

f � a1 : : :am; s; H[ f 7! THUNK e℄ ) f ; (� a1 : : :am) : s; H (TCALL)
f k an+1 : : :am; s; H[ f 7! PAP(g a1 : : :an)℄ ) g� a1 : : :an an+1 : : :am; s; H (PCALL)

f ; (� a1 : : :an) : s; H ) f � a1 : : :an; s; H (RETFUN)
H[ f ℄ is aFUN or PAP

Figure 2. The evaluation rules
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Info pointer

Info table

Entry code

Payload

Object type

Layout info

Type-specific
fields

Figure 3. A heap object

The three cases above do not exhaust the possible forms off . It
might also be aTHUNK, but we have already dealt with that case
(ruleTHUNK). It might be aCON, in which case there cannot be any
pending arguments on the stack, and rulesUPDATE or RET apply.

4.3 The eval/apply model
The last block of Figure 2 shows how the eval/apply model deals
with function application. The first three rules all deal with the case
of aFUN applied to some arguments:� If there are exactly the right number of arguments, we behave

exactly like ruleKNOWNCALL , by tail-calling the function.
RuleEXACT is still necessary — and indeed has a direct coun-
terpart in the implementation — because the function might
not be statically known.� If there are too many arguments, ruleCALLK pushes acall
continuationon the stack, which captures the excess argu-
ments. This is the essence of eval/apply. Given an applicationf x y wheref takes one argument, first callf x, and then
apply the resulting function toy.� If there are too few arguments, we build aPAP (rule PAP2),
which becomes the value of the expression.

These rules work by dynamically inspecting the arity of the function
closure in the heap, which works fine for both known and unknown
calls, but we can do better for known calls. RuleKNOWNCALL has
already dealt with the saturated known case, and it is probably not
worth the bother of treating under- and over-saturated known calls
specially because they are very uncommon (see Section 8).

Another possibility is that the function in an application is a
THUNK (ruleTCALL ). This case is very like the over-applied func-
tion of ruleCALLK ; we push a call continuation and enter the thunk.
(This in turn will push an update frame via ruleTHUNK.)

Finally, the function in an application might be a partial application
of another functionf 0 (rule PCALL). In that case we unpack the
PAP and apply f 0 to its new arguments. Sincef 0 is sure to be a
FUN, this will take us back to one of the cases in rulesEXACT,
CALLK or PAP2.

That concludes the rules for function application. We need one last
rule, RETFUN, which returns a function value (PAPor FUN) to a
call continuation, in the obvious way. This rule re-activates a call
continuation, exactly as ruleRET re-activates a
ase continuation.

4.4 Heap objects
To provide the context for our subsequent discussion, we now
sketch briefly how GHC maps the operational semantics onto a real
machine. Figure 3 shows the layout of a heap object. In GHC,
the first word of every object is called the object’sinfo pointer,
and points to an immutable, statically-allocatedinfo table. The

remainder of the object is called thepayload, and may consist of
a mixture of pointers and non-pointers. For example, the object
CON(C a1 : : :an) would be represented by an object whose info
pointer represented the constructorC and whose payload is the ar-
gumentsa1 : : :an.

The info table contains:� Executable code for the object. For example, aFUN object
has code for the function body.� An object-type field, which distinguishes the various kindsof
objects (FUN, PAP, CONetc) from each other.� Layout information for garbage collection purposes, which
describes the size and layout of the payload. By “layout” we
mean which fields contain pointers and which contain non-
pointers, information that is essential for accurate garbage col-
lection.� Type-specific information, which varies depending on the ob-
ject type. For example, aFUN object contains its arity; a
CON object contains its constructor tag, a small integer that
distinguishes the different constructors of a data type; and so
on.

In the case of a PAP, the size of the object is not fixed by its info
table; instead, its size is stored in the object itself. The layout of its
fields (e.g. which are pointers) is described by the (initialsegment
of) an argument-descriptor field in the info table of the FUN object
which is always the first field of a PAP. The other kinds of heap
object all have a size that is statically fixed by their info table.

A very common operation is to jump to the entry code for the object,
so GHC uses a slightly-optimised version of the representation in
Figure 3. GHC places the info table at the addressesimmediately
beforethe entry code, and reverses the order of its fields, so that
the info pointeris the entry-code pointer, and all the other fields of
the info table can be accessed by negative offsets from this pointer.
This is a somewhat delicate hack, because it involves juxtaposing
code and data, but (sadly) it does improve performance significantly
(on the order of 5%). Again, however, is not germane to this paper
and we ignore it from now on.

4.5 The evaluation stack
In GHC, the evaluation stacks, in Section 4, is represented by a
contiguous block of memory1. The abstract stack of Section 4 is a
stack of continuations,k. These continuations are each represented
concretely by astack frame. The stack frames for the two continu-
ations common to both push/enter and eval/apply are these:� An update continuationUpd x � is represented by a small

stack frame, consisting of a return address and a pointer to
the thunk to be updated,x. In the push/enter model, an up-
date frame must contain a second word, which points to the
next update frame down in the stack (see Section 5). Having
a return address in the update frame means that a value can
simply return to the topmost return address, without havingto
test whether the top frame is an update continuation or a
ase
continuation.

The return address for every update frame can be identical,
though; it points to a hand-written code fragment, part of the
runtime system, that performs the update, pops the update
frame, and returns to the next frame.

1In fact, GHC supports lightweight concurrency, so there are
many threads. Each has its own stack, of limited size. The compiler
generates explicit stack-overflow tests, and grows the stack when
necessary. None of this is relevant to the discussion of thispaper,
so we do not discuss concurrency or stack overflow any further.
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� A 
ase continuation
ase �of faltsg is represented by a re-
turn address, together with the free variables of the alterna-
tivesalts, which must be saved on the stack across the evalu-
ation of the scrutinee. For example, consider this function:f :: (Int,Int) -> (Bool,Int) -> Intf x y = 
ase h1 x of(_,b) -> 
ase h2 y ofw -> w+b
Across the call toh1 x, we must savey on the stack, because
it is used later, but we need not savex; then across the call toh2 y we must saveb, but we need not savey.

Unlike an update frame, the return address for each
ase ex-
pression is different: it points to code for the case alternatives
of that particular
ase expression.

In both cases,the frame can be thought of as a stack-allocated func-
tion closure: the return address is the info pointer, and it “knows”
the layout of the rest of the frame — that is, where the pointers,
non-pointers and (in the case of
ase continuations) dead slots are.
In our implementation, the stack grows downward, so the return
address is at the lowest address, and a stack frame looks exactly
like Figure 3. A return address has an info table that the garbage
collector uses to navigate over the frame.

In the next sections we describe how the other two continuations
are implemented: theArg continuation for push/enter (Section 5)
and the(� a1 : : :an) continuation for eval/apply (Section 6).

5 Implementing push/enter
The push/enter model uses the stack to store pending arguments,
represented by continuations of formArg a. Unlike the other con-
tinuations, these have no return address. When a function with arity
n is entered, it begins work by grabbing the topn arguments from
the stack (ruleFENTER), not by returning to them! This is precisely
the difference alluded to in the Introduction: the functionis in con-
trol.

How does the function know how many arguments are on the stack?
It needs to know this so that it can perform ruleFENTER or PAP1
respectively. In GHC the answer is this: we dedicate a register2,
calledSu (“u” for “update”), to point to the topmost update frame
or 
ase frame, rather like the frame pointer in a conventional com-
piler. Then the function can see if there are enough arguments by
taking the difference between the stack pointer andSu. (The func-
tion knows not only how many arguments it is expecting, but how
many words they occupy.) This is the so-calledargument satisfac-
tion check.

Every function is compiled with two entry points. Thefast entry
point is used for known calls; it expects its arguments in registers
(plus some on the stack if there are too many to fit in registers). The
slow entry pointexpects all its arguments on the stack, and begins
by performing the argument-satisfaction check. If the argument-
satisfaction check fails, the slow entry point builds a PAP and re-
turns to the return address pointed to bySu; if it succeeds, the slow
entry point loads the arguments from the stack into registers and
jumps (or falls through, in fact) to the fast entry point.

5.1 Reducing the number ofSu pushes
In conventional compilers, the frame pointer is really onlyneeded
to support debugging, and some compilers provide a flag to omit it,
thereby freeing up a register. We cannot get rid ofSu altogether, but
when pushing a new frame it is often unnecessary to saveSu and
make it point to the new frame. Consider:

2or a memory location on register-starved architectures

Pending arguments

Regular frame, with return address

Figure 4. Stack layout for push/enter
ase x of { (a,b) -> .... }
We know for sure thatx will evaluate to a pair, not to a function!
There is no need to makeSu point to the
ase frame during eval-
uation ofx. The only time we need to do so is when the scrutinee
cannot statically be determined to be a non-function type.The clas-
sic example is the polymorphicseq function:seq :: a -> b -> bseq a b = 
ase a of { x -> b }
In some calls toseq, a will evaluate to a function, while in others
it will not. In the former case we must ensure thatSu points to the
ase frame, so that rulePAP1 applies.

In principle, the same is true about update frames, but in practice
there are several reasons that we want to walk the chain of update
frames (see Section 7) so GHC always savesSu in every update
frame.

To avoid that some
ase frames have a savedSu and some do not,
we insteadneversaveSu in a 
ase frame. Instead, in the (rare)
situation of a non-data-typed
ase, we pushtwo continuations, a
regular
ase continuation, and, on top of it, aseq framecontainingSu. A seq frame is like an update frame with no update: it serves
only to restoreSu before returning to the
ase frame underneath.

5.2 Accurate stack walking
The most painful aspect of the push/enter model is the problem
of representingArg continuations, which hold pending arguments.
Consider these functions:g :: Int -> Int -> Int# -> Double# -> Intg x = ....f :: Int -> Intf x = g x x 3 4.5
Under the push/enter model, we push the pending argumentsx, 3,
and4.5 onto the stack before making the tail callg x. The func-
tion g might compute for a very long time before returning a func-
tion that consumes the pending arguments. During this period, the
pending arguments simply sit on the stack waiting to be consumed.

An accurate garbage collector must be able to identify everypointer
in the stack. The push/enter model leads to stack layout thatlooks
like Figure 4. Update and
ase continuations, whose representation
was discussed in Section 4.5, are represented by “regular” stack
frames, consisting of a return address (shown black) on top of a
block of data (shown white)whose exact layout is “known” to the
return address. The garbage collector can use the return address to
access the info table for the return address (Section 4.5 again), just
as it does for a heap-allocated closure. The info table describes the
layout of the stack frame, including exactly where in the frame the
(live) pointers are stored, so that the garbage collector can follow

7



them; it also gives the size of the frame, so that the garbage collector
knows where to start looking for the next frame.

These regular stack frames are the easy (and well-understood) part.
However, between each regular stack frame are zero or moreArg
continuations, or pending arguments (shown grey). The difficulty
is thatthere is no description of their number or layoutin the stack
data structure. The function that pushed them “knows” what they
are, and the function that consumes them knows too — but an ar-
bitrarily long period may elapse between push and consumption,
and during that time the garbage collector must somehow dealwith
them. There are two sub-problems:� Identifying which are pointers and which are non-pointers;as

the example above showed, there may be a mixture.� Distinguishing the last pending argument from the next return
address on the stack, which heralds a new stack frame.

One alternative is to have a separate stack for pending arguments,
which solves the second of these sub-problems, but not the first. Or,
the separate stack could be for pending non-pointer arguments only,
which solves the first sub-problem, but not the second. However, a
separate stack carries heavy costs of its own, to allocate it, main-
tain a pointer to the stack top, and check for overflow. We do not
consider this alternative further.

Another non-alternative is to use a conservative garbage collector.
Firstly, to plug space leaks we would then have to use extra memory
writes to stub off dead pointers, something the frame layoutmaps
deal with automatically; this turns out to be very importantin prac-
tice. Second, there are other reasons that GHC’s runtime system has
to walk the stack accurately: to black-hole thunks under evaluation,
and to raise exceptions. Third, stacks may have to move in order to
grow; GHC’s lightweight concurrency precludes simply allocating
a gigantic stack for each thread.

Failing these alternatives, the obvious approach is to add atag
word to eachArg continuation. The tag word distinguishes pointer-
carrying from non-pointer-carryingArg continuations, specifies the
size of latter kind, and can be distinguished from the returnaddress
that heralds the next regular stack frame. Easy enough, but ineffi-
cient. In the following two sections we describe two optimisations
that GHC uses to reduce the tagging cost.

5.2.1 Omitting tags on pointers
Our first optimisation is to not to tag pointer arguments at all. This
is attractive because pointer arguments dominate (see Section 8).
Furthermore it looks relatively easy to distinguish a pointer from
the return address that heralds the next stack frame, whereas non-
pointer arguments, which can hold any bit-pattern whatsoever, can-
not be distinguished in general. We were wrong to think it was
easy, though: the problem of distinguishing pointers from return
addresses is much trickier than it looks, as we now discuss.

GHC allocates some heap objects statically, compiling themdi-
rectly into the binary. So we distinguish an object pointer from
a return address in two steps:

Step 1: distinguish a pointer to a dynamic heap object from a static
pointer. Stack-walking aside, the garbage collector needsto
make this distinction frequently, because it needs to know
whether to copy the object referenced by a given pointer or
not. We could do this by examining the info table of the
object, but it’s more efficient if the test can be done without
dereferencing the pointer and polluting the cache, especially
if it turns out that we aren’t otherwise going to touch the ob-
ject that it points to (static objects are assumed to be in theold
generation in GHC’s generational collector, so they rarelyget
touched).

GHC therefore implements the static/dynamic test without
dereferencing the pointer, using an address-based test – we
know exactly where the dynamic heap is – and we re-use that
test to perform Step 1 of the heap-object/return-address test
when stack-walking.

Step 2: distinguish a pointer to a static object from a return ad-
dresses. In earlier versions of GHC we did this by keeping
static objects in a separate linker segment from the code: static
objects are data, whereas return addresses are in the text seg-
ment. Determining the border between text and data can usu-
ally be done, although it is non-portable and usually needs to
be implemented in a different way for each new platform the
compiler is ported to. Furthermore, this breaks down when
dynamic linking is added to the mix, because there may be
many text and data segments scattered throughout the address
space. One alternative, which we used on Win32 systems with
DLLs, was to place a zero word before every static closure
and use this to discriminate, making use of the fact that a re-
turn address is never preceded by a zero word. The problem
with this is that it means dereferencing the pointer, which is
something we were trying to avoid for efficiency reasons.

The problem of distinguishing pointers from return addresses could
be solved in another way: by savingSu in a known place every
regular frame. Then the stack-walker could rely on anSu chain
linking every regular frame, so it would always know where the next
regular frame began. However, building a chain of all frameswould
impose a non-trivial run-time cost by increasing memory traffic.

5.2.2 Lazy tagging
Tagging non-pointer pending arguments carries only a modest run-
time cost, because (in Haskell at least) it is rare to call a function
that returns a function that consumes non-pointer arguments. GHC
therefore tags non-pointerArg continuations staightforwardly, with
a tag word pushed on top of the non-pointer argument, containing
the length in words of the non-pointer argument (usually 1 or2). A
tag can always be distinguished from a pointer argument, because
pointer arguments never point to very low addresses.

Even tagging non-pointers is tiresome. When calling the fast entry
point of a function, we can pass some arguments in registers,but
when there are too many we pass them on the stack. It would make
sense for the stack layout of these overflow parameters to be the
same as the latter part of the stack layout expected by the slow entry
point (which takes all its arguments on the stack). The latter has
tagged slots for non-pointers, so the former had better do sotoo.
But we do not want to take the instructions to explicitly tag the
slots when making a fast call — fast calls to functions takingnon-
pointer arguments are not at all rare — so we allocate space for the
tags but do not fill the tags in. (In a call to a known function when
too many arguments are supplied, we must generate code to tagthe
“extra” arguments but not the “known” ones.)

So the invariant at the fast entry point is that there is spacefor the
tags of the non-pointer arguments passed on the stack, but these
slots are non necessarily initialised. The fast entry pointtypically
starts with a heap-overflow check; if it fails, it must remember to
fill in the tags, so that the top frame of the stack is self-describing.

The exact details are unimportant here. The point is that, while tag-
ging non-pointers in the stack is feasible and reasonably efficient,
it imposes a significant complexity burden on both code generator
and the the run-time system.

5.3 GeneratingC--
Some compilers generate native code directly, but a very popular
alternative route is to generate code in C, or a portable assembly
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language such asC--, leaving to another compiler the tasks of in-
struction selection, register allocation, instruction scheduling, and
so on. A significant disadvantage of the push/enter model is that it
makes this attractive route much harder, or at least much less effi-
cient.

The problem, again, is the pending arguments. Suppose that we
want to generate C. We plainly cannot push the pending arguments
onto the C stack, because C controls its own stack layout. There is
just no way to have C stack frames separated by chunks of pending
arguments.

The only way out of this is to maintain a separate stack for pending
arguments. In fact, GHC uses C as a code generator, and it keeps
everythingon the separately-maintained stack: pending arguments,
saved variables, return addresses, and so on. Indeed, GHC does not
use the C stack at all, so we only have to maintain a single stack.

Unfortunately, we thereby give up much of the benefit of the
portable assembly language. If we do not use the C stack, we
cannot use C’s parameter-passing mechanisms. Instead, we pass
arguments either in global variables that are explicitly allocated in
registers (using ag

 directive) or on the explicit stack. We have to
perform our own liveness analysis to figure out what variables are
live across a call, and generate code to save them to to the explicit
stack. In short, we only use C to compile basic blocks, managing
the entire call/return interface manually.

There are other reasons why we could not use C’s stack, however.
There is no easy way to check for stack overflow, or to move stacks
around (both important in our concurrent Haskell system). Cmay
save live variables across a call, but does not generate stack de-
scriptors for the garbage collector (Section 5.2). Portable exception
handing is tricky. And so on.C--, on the other hand, is a portable assembly language designed
specifically to act as a back end for high-level-language compilers.
It provides explicit and very general support for tail calls, garbage
collection, exception handling, and concurrency, and so addresses
many of C’s deficiencies. Yet,we have found no general or clean
way to extendC--’s design to incorporate pending arguments. So,
like C, C-- provides no way to push an arbitrary number of words
on the stack that should persist beyond the end of the currentcall.

The bottom line is this. The pending arguments required by the
push/enter model are incompatible with any portable assembly lan-
guage known to us, except by using that language in a way that
vitiates many of its advantages. We count this as a serious strike
against the push/enter model.

6 Implementing eval/apply
Next, we turn our attention to the implementation details for
eval/apply. The eval/apply model usescall continuations, of form(� a1 : : :an), which are represented by a stack frame consisting of
a return address, together with the argumentsa1 : : :an. This return
address is entered when a function has evaluated to a value (FUN or
PAP), and returns. This is the moment when the complicated rules
(EXACT, CALLK , PAP2, and so on) are needed, and that involves
quite a lot of code. So we do not generate a fresh batch of code for
each call site; instead, we pre-generate a range of call-continuation
return addresses, for 1, 2, 3, . . . N arguments.

What if we need to push a call continuation for more than N argu-
ments? Then we push a succession of call continuations, eachfor
as many arguments as possible, given the range of pre-generated
return addresses. In effect, this reverts to something morelike
the argument-at-a-time function application process, except that we
deal with the arguments N at a time. We can measure how often

this happens, and arrange to pre-generate enough call continuations
to cover 99.9% of the cases (Section 8). The remainder are handled
by pushing multiple call continuations.

An important complication is that we need different call continua-
tions when some of the arguments are unboxed. Why? Because:
(a) the calling convention for the function that the continuation will
call may depend on the types of its arguments (e.g. a floating-point
argument might be passed in a floating-point register); and (b) the
call-continuation return address must (like any return address) have
layout information to guide the garbage collector. So cannot get
away with just N continuations, but (in principle) we need 3N. The
“3” comes from the three basic cases we deal with: pointer, 32-bit
non-pointer and 64-bit non-pointer. There might well be more if,
for example, a 32-bit float was passed in a different registerthan a
32-bit integer. Hence the importance of measurements, to identify
the common cases.

6.1 Generic application in more detail
To be more concrete, we will imagine that we compile Haskell intoC-- [13] (we will introduce any unusual features ofC-- as we go
along). Here is the code that the callf 3 x, wheref is an unknown
function, might generate:jump stgApplyNP( f, 3, x )
This transfers control — the “jump” indicates a tail call — to a
pre-generated piece of run-time system code,stgApplyNP, where
the “NP” suffix means “one 32-bit non-pointer, and one pointer”.
The first parameter is the address of the closure forf. It’s just as
if the original Haskell call had beenstgApplyNP f 3 x, wherestgApplyNP is a known function, so we make a fast call to it.

The run-time system provides a whole bunch ofstgApplyNP func-
tions, for various argument combinations. Indeed, we generate
them by feeding the desired argument combinations to a generator
program.

Figure 5 shows (approximately) is the code we generate forstgApplyNP. In this code we assume thatTYPE(f) is a macro that
gets the type field from the info table of heap objectf, ARITY(f)
gets the arity from the info table of aFUN object, and so on.CODE(f) gets the fast entry point of the function, which takes the
function arguments in registers (plus stack if necessary).

First, the function might be aTHUNK; in that case, we evaluate it
(by calling its entry point, passing the thunk itself as an argument),
before looping around tostgApplyNP again.

Next, consider theFUN case, which begins by switching on the arity
of the function:� 
ase 2: if it takes exactly two arguments, we just jump to

the function’s code, passing the argumentsa andb. We also
pass a pointer tof, the function closure itself, because the free
variables of the function are stored therein.

Note that if we end up taking this route, then the function ar-
guments might not even hit the stack:a andb can be passed
in registers tostgApplyNP, and passed again in registers
when performing the final call. This is an improvement over
push/enter, where arguments to unknown function calls are
always stored on the stack.� 
ase 1: if the function takes fewer arguments than the num-
ber required byf — in this case there is just one such branch
— we must save the excess arguments, make the call, and then
apply the resulting function to the remaining arguments. The
code for anN-arystgApply must have a case for eachi < N.
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stgApplyNP( f, a, b ) {/* Apply f to arguments a and b */swit
h TYPE(f) {
ase THUNK:fun_
ode = CODE(f) ;f = fun_
ode( f );/* a,b saved a
ross this 
all */jump stgApplyNP( f, a, b )
ase FUN:swit
h ARITY(f) {
ase 1: /* Too many args */fun_
ode = CODE(f) ;f = fun_
ode( f, a );/* b saved a
ross this 
all */jump stgApplyP( f, b );
ase 2: /* Exa
tly right! */fun_
ode = CODE(f) ;jump fun_
ode( f, a, b );other: /* Too few args */...
he
k for enough heapspa
e to allo
ate PAP...r = ...build PAP for (f a b)...return( r )}
ase PAP:swit
h PAP_ARITY(f) {
ase 1: /* Too many args */f = applyPapN( f, a ) ;jump stgApplyP( f, b );
ase 2: /* Just right */jump applyPapNP( f, a, b )other: /* Too many args */...
he
k for enough heap...r = ...build PAP for (f a b)...return( r )} }
Figure 5. The generic apply functionStgApplyNP

So we get a quadratic number of cases, but since it’s all gen-
erated mechanically, and the smaller arities cover almost all
cases, this is not much of a problem in practice.� other: otherwise the function is applied to too few argu-
ments, so we should build a partial application in the heap.

The third case is thatf might be a partial application. The three
cases are similar to those for aFUN, but they make use of an aux-
iliary family of functionsapplyPapX etc which apply a saturated
PAP. This apply operation is not entirely straightforward,because
PAP contains a statically-unknown number of arguments. Oneso-
lution is to copy the argument block from the PAP, followed bythe
argument(s) toapplyPapX to a temporary chunk of memory, and
call a separate entry point for the function that expects itsarguments
in a contiguous chunk of memory. The advantage of this approach
is that it requires no knowledge of the calling convention. Another
solution (currently used by GHC) is to exploit knowledge of the
calling convention to make a generic call; in GHC’s case we just
copy the arguments onto the stack.

There are several opportunities for optimisation. First, we can have
specialisedFUN types for functions of small arity (1, 2, 3, say); that
way we could combine the node-type and arity tests. Second, atop
level function has no (non-constant) free variables, so there is no
need to pass its function closure as its first argument. We would

need anotherFUN node type to distinguish this case.

6.2 Too many arguments
What do we do with an unknown call for which there is no pre-
generatedstgApplyX function? Answer, we just split it into two
(or more) chunks. For example, suppose we only hadstgApplyX
functions for a single argument. Then our callf 3 x would com-
pile to:f1 = stgApplyN( f, 3 );jump stgApplyP( f1, x );
Of course, x must be saved on the stack across the call tostgApplyN.

7 A qualitative comparison
Having described the two implementations, we now summarisethe
main differences.

In favour of eval/apply:� Much easier to map to a portable assembly language, such asC-- or C.� No need to distinguish return addresses from heap pointers.
This is a big win (Section 5.2.1).� No tagging for non-pointers; this reduces complexity and
makes stack frames and PAPs a little smaller.� No need for theSu pointer, perhaps saving a register; and
update frames become one word smaller, because there is no
need to saveSu.� Because the arity-matching burden is on the caller, not
the callee, run-time system support functions, callable from
Haskell, become more convenient to write.� When calling anunknownfunction with the right number of
arguments, the arguments can be passed in registers rather
than on the stack. Push/enter pretty much mandates passing
arguments to unknown functions in memory, on the stack.

In favour of push/enter:� Appears to be a natural fit with currying.� Eliminates somePAP allocations compared to eval/apply.� The payload of aPAP object can be self-describing because
the arguments are tagged. In contrast, an eval/applyPAP ob-
ject relies on itsFUN to describe the layout of the payload;
this results in some extra complication in the garbage collec-
tor, and an extra global invariant: aPAP must contain aFUN, it
cannot contain anotherPAP.

Plain differences:� Push/enter requires a slow entry point for each function, incor-
porating the argument-satisfaction check. Eval/apply does not
need this, but (in some renditions) may require an entry point
in which the arguments are in a contiguous memory block.� The Su pointer makes it easy to walk the chain of update
frames. That is useful for two reasons. First, at garbage col-
lection time we want to black-hole any thunks that are under
evaluation [7]. Second, a useful optimisation is to squeeze
out chains of adjacent update frames, which we also do at
garbage-collection time. Under eval/apply, however, one can
still find the update frames by a single stack walk; but it may
take a little longer because the stack-walk must examine other
frames on the stack in order to hop over them. Notice, though,
that there is nothing to stop us adding anSu register, pointing
to the topmost update frame, to the eval/apply model, if that
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Uneval Unknown (%) Known (%)
Program (%) < = > < = >
anna 0.8 0.0 25.5 0.0 0.6 73.8 0.0
cacheprof 0.3 0.0 25.2 0.0 0.2 74.5 0.0
compress 0.0 0.0 1.6 0.0 0.0 98.4 0.0
fem 0.0 0.0 5.4 0.0 0.0 94.6 0.0
fulsom 0.4 0.0 25.0 0.0 0.2 74.8 0.0
hidden 0.1 0.0 13.8 0.0 0.0 86.1 0.1
infer 0.1 0.0 18.8 0.0 0.1 81.1 0.0
scs 0.5 0.0 17.3 0.0 0.0 82.5 0.2
circsim 0.0 0.0 14.5 0.0 0.0 85.5 0.0
fibheaps 5.1 5.8 8.3 0.0 0.0 85.3 0.6
typecheck 0.5 0.0 27.3 0.0 0.5 72.2 0.0
simple 0.0 0.0 49.2 0.0 0.0 50.8 0.0
Min 0.0 0.0 0.0 0.0 0.0 21.2 0.0
Max 18.7 8.3 78.8 1.1 3.9 100.0 1.6
Average 1.0 0.4 20.3 0.0 0.2 79.0 0.1

Figure 6. Anatomy of calls

turned out to be faster for the reasons just described. We have
not tried this.

From this list we conclude two things. First, it is essentially impos-
sible to come to a rational conclusion about performance based on
these differences. The only way is to build both both models and
measure the difference. Second, the eval/apply model seemsto have
decisive advantages in terms of complexity. Yes, thestgApplyX
generator is a new component, but it is well isolated, and nottoo
large (it amounts to some 580 lines of Haskell including com-
ments). The big wins are that complexity elsewhere is reduced,
and it is easier to map the code to a portable assembly language.

The bottom line is this: if eval/apply is no more expensive than
push/enter, it is definitely to be preferred.

8 Measurements
Our measurements are made on the Glasgow Haskell Compiler ver-
sion 5.04 (approximately; it does not correspond exactly toany re-
leased version). We made measurements across the entirenofib
benchmark suite of 88 programs; we present detailed figures for a
representative set of a dozen larger benchmarks, but the tables also
give minimum, maximum and mean figuresacross the whole suite.

8.1 The anatomy of calls
First of all, we present data on the dynamic frequency of the dif-
ferent categories of function call. All these figures are independent
of evaluation model; they are simply facts about programs inour
benchmark suite, as compiled by GHC.

Figure 6 show the relative dynamic frequency of:� Calls to an unknown (lambda-bound or case-bound) function
which turned out to be unevaluated (as a percentage of the
total calls),� Calls to unknown functions with (a) too few arguments, (b)
exactly the right number of arguments, and (c) too many ar-
guments (each as a percentage of the total calls),� Calls to a known (let-bound) function with (a) too few ar-
guments, (b) exactly the right number of arguments, and (c)
too many arguments (again, each as a percentage of the total
calls).

The last six columns of the table together cover all calls, and add
up to 100%. Note that “known” simply means that a let(rec) bind-
ing for the function is statically visible at the call site; the function
may be bound at top level, or may be nested. GHC propagates arity

Eval/apply change (∆%)
Code Memory Run-

Program size Alloc Instrs reads writes time
anna -5.1 +1.7 +2.0 +2.5 -3.2 -0.7
cacheprof -4.0 -0.0 +10.7 +10.3 +0.3 +4.1
circsim +0.2 +0.0 +0.2 +1.0 -9.4 -4.7
compress +2.2 -0.0 +1.8 +3.1 +3.6 +1.8
fem -0.8 +0.0 -5.5 -3.2 -7.7 -
fibheaps +1.0 +0.9 +3.3 +4.5 -3.1 -
fulsom -2.1 +0.1 -2.5 -2.3 -7.9 -3.6
hidden -2.4 +0.0 +3.3 +4.0 -6.1 +2.0
infer -1.6 +0.2 +2.4 +2.4 -0.9 -
scs -2.3 +0.0 +0.6 +1.4 -2.4 -3.7
simple -1.8 +0.0 +3.5 +2.5 -4.7 +1.4
typecheck +4.6 +1.2 +6.8 +6.6 -4.7 +3.0
Min -5.1 -2.7 -10.1 -8.0 -13.6 -23.1
Max +7.6 +2.9 +11.6 +20.8 +21.4 +6.8
G. Mean +1.8 +0.1 +0.0 +1.0 -4.8 -2.4

Figure 8. Space and time

information across module boundaries, which greatly increases the
number of known calls. Also notice that every over-saturated appli-
cation of a known or unknown function gives rise to a subsequent
call to the unknown function returned as its result; these unknown
calls are included in one of the “unknown calls” columns. Forex-
ample, each execution of the callid f x would count as one call
to a known function (id) with too many arguments, and one call to
the unknown function returned byid.

These numbers lead to three immediate conclusions. First, known
calls are common, and sometimes dominate, but unknown callscan
be the majority in some programs. Unknown calls must be handled
efficiently. Second, known calls are almost always saturated; the
efficiency of handling under- or over-saturated known callsis not
important, and they can be treated like unknown calls (c.f. Sec-
tion 4.3). Third, even unknown calls are almost always to an evalu-
ated function with the correct number of arguments, so it is worth-
while optimising this case. For example, we can pass the arguments
to the generic apply function in registers, in the hope that it can just
pass them directly to the function.

Figure 7 classifies the unknown calls of Figure 6, by their argument
patterns. This data is helpful in deciding how many different ver-
sions ofstgApply to generate. We don’t care about known func-
tions because we generate inline code for their calls. The column
headings use one character per argument to indicate the pattern with
the key:p = pointer,v = void. pp, for example, means a call with
two pointer arguments. A “void” argument is an argument of size
zero; such arguments are used for the “state token” used for imple-
menting theIO monad. The general conclusion is clear: a double-
handful of 9 argument patterns is enough to cope with 99.9% ofall
situations.

8.2 The bottom line
What really matters in the end is time and space. Figure 8 shows
the percentage change we measured in moving from push/enter
to eval/apply. Somewhat to our surprise, there is only a small
difference between the two models, with eval/apply edging out
push/enter by around 2-3% of runtime on average.

The runtime figures are wall-clock times, averaged over 5 runs, dis-
counting any programs that ran for less than 0.5 seconds on our
1GHz Pentium III (around half of the suite). The machine was oth-
erwise unloaded at the time of the test.

There are significantly fewer memory writes in the eval/apply
model, which we believe is due mostly to not having to save the
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Argument pattern (% of all unknown calls)
Program v p pv pp ppv ppp pppv pppp ppppp OTHER
anna 0.0 29.6 0.0 69.3 0.0 1.1 0.0 0.0 0.0 0.0
cacheprof 0.0 91.6 0.0 8.1 0.0 0.3 0.0 0.0 0.0 0.0
compress 0.4 73.9 0.0 12.9 0.0 12.7 0.0 0.0 0.0 0.0
fem 0.0 91.3 0.0 8.1 0.0 0.6 0.0 0.0 0.0 0.0
fulsom 0.0 17.5 0.0 82.5 0.0 0.0 0.0 0.0 0.0 0.0
hidden 0.2 48.7 0.0 14.3 0.0 36.8 0.0 0.0 0.0 0.0
infer 0.0 51.8 0.0 48.1 0.0 0.1 0.0 0.0 0.0 0.0
scs 1.4 19.6 0.0 79.0 0.0 0.0 0.0 0.0 0.0 0.0
circsim 0.0 70.2 0.0 8.6 0.0 21.2 0.0 0.0 0.0 0.0
fibheaps 0.0 43.2 13.7 43.1 0.0 0.0 0.0 0.0 0.0 0.0
typecheck 0.0 89.5 0.0 10.5 0.0 0.0 0.0 0.0 0.0 0.0
simple 0.0 20.1 0.0 79.9 0.0 0.0 0.0 0.0 0.0 0.0
Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 58.6 100.0 13.7 100.0 15.5 98.9 6.2 11.3 0.3 0.1
Average 5.2 54.4 0.3 34.4 0.3 5.2 0.1 0.1 0.0 0.0

Figure 7. Argument patterns

value of theSu register in each update frame. We conjecture that
this reduction in memory writes is largely responsible for the slight
improvement in performance of eval/apply compared to push/enter.

Heap allocation is largely unaffected by the change from push/enter
to eval/apply, as can be seen in the “Alloc” column of Figure 8. A
small change in allocation can be explained by two factors. First,
eval/apply will allocate a PAP when returning a function applied to
too few arguments, whereas push/enter may get away without heap
allocation because the function can find its missing arguments on
the stack. Second, the PAPs in eval/apply may be slightlysmaller
because there is no need to tag their non-pointer components(Sec-
tion 4.4).

9 Related work
Two of the most popular and influential abstract machines forlazy
languages, the G-machine [6] and the Three Instruction Machine
(TIM) [3], both use push/enter. As a result, many compilers for
lazy languages, including GHC andhb
, use push/enter.

However Faxén’s OCP compiler for the lazy language Plain uses
eval/apply [4]. Rather than have genericstgApplyXX application
procedures, OCP creates specialised function entry points. For each
functionf of arity n, and for eachi < n; j <= n� i, OCP makes an
entry pointf_i j that expects to findi arguments in a PAP object,
and j extra arguments passed in registers. That looks like an aw-
ful lot of entry points, but a global flow analysis allows OCP to
prune many entry points that cannot be used. The possibilityof
such specialisation is an additional benefit of eval/apply (see [1] for
an extreme version). Eager Haskell, an unusual implementation of
Haskell based on eager evaluation, also uses eval/apply [10].

Caml, a call-by-value language, uses push/enter for the interpreter
[9], but eval/apply for the compiler, largely for the reasons outlined
in Section 7. Indeed

10 Conclusions
Our main conclusion is easy to state: for a high-performance, com-
piled implementation of a higher order language, use eval/apply!
There is not much to choose between the two models on perfor-
mance grounds, and eval/apply makes it noticeably easier toman-
age the complexity of a compiler and runtime system for a higher
order language, as Section 7 explained. We are confident of this
result for a non-strict language, and we believe that that the benefit
is likely to be more pronounced for a strict one.

Many of the complexities of push/enter are caused by efficiency
hacks, however. For an interpreter, where performance is not such
an issue, these hacks are not important, and push/enter may well be
a more elegant solution.
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