which are studied in combinatory logic (see [10, 9, 11]). We will derive the asymptotic order of
the number of BCI(p)-terms. Computing the asymptotic number of BCK (p)-terms appears to
be much more involved. Thus we only derive the functional equation for the generating func-
tion corresponding to BC'K (p)-terms (as well as that of closed lambda-term without any further
restriction) and briefly discuss this case.

The enumeration of BCI(1)-terms was carried out by Bodini et al. [2] by constructing a nice
bijection to certain diagrams. They also determined the asymptotic number of BC' K (1)-terms.

2 Notation and basic facts

A lambda-term can be regarded as a so-called enriched tree which is a particular directed acyclic
graph. In fact, consider a Motzkin tree (i.e., a rooted unary-binary tree) and add directed edges
connecting a unary node and a leaf such that each leaf is “bound” by a directed edge from exactly
one of the unary nodes that are its ancestors in the tree. The correspondence is obvious (see
Figure 1): leaves correspond to variables, unary nodes to abstractions, binary nodes to applications
and the additional directed edges to the binding relations between abstractions and variables.
Clearly, since all leaves are bound, the lambda-term is closed. Of course, open lambda-terms
can be represented in an analogous manner by a directed acyclic graph where some leaves have
in-degree zero.

x x x Yy

(Az.(z * ) * \y.y) Ay.(A\z.z * Az.y)

Figure 1: Two enriched trees and the closed lambda-terms corresponding to them. Note that the
node labels can be omitted, since (Ax.(x * z) * Ay.y) and (Aa.(a * a) * Ab.b) are the same term.

We will not distinguish between a lambda-term and its enriched tree representation. In addi-
tion, when speaking of lambda-terms, we will utilize the following abuse of the wording: A unary
node of a lambda-term is a unary node (i.e. node of out-degree one) of the underlying Motzkin
tree (i.e. a node becoming unary if all directed edges are removed). These are precisely the nodes
corresponding to abstractions. Analogously, we call the nodes corresponding to applications binary
nodes and nodes corresponding to variables leaves of the lambda-term. In a strict sense, leaves
have always degree one and in-degree one as well.

Moreover, we distinguish between edges, i.e. edges of the underlying Motzkin tree, and pointers,
i.e. directed edges from a unary node to a leaf.

Definition 1. e BCI(p) is the set of (non-empty) closed lambda-terms where each unary
node has ezxactly p pointers, i.e. binds exactly p occurrences of its variable.

e BCK(p) is the set of closed lambda-terms where each unary node binds at most p leaves.

A lambda-term from BC1(p) has three types of nodes: unary nodes (which are actually of arity
p + 1, as there are p pointers going from this node to leaves), binary nodes, and leaves. The size
of such a lambda-term is the total number of its nodes. We start with some obvious observations:

Fact 1. The smallest terms of BCI(p) have one unary node at the root and p leaves. There are p
pointers from the root to all the leaves. Obviously, if we remove the root and all its pointers, we
are left with a binary tree. Cleary, their size is 2p.

The number of such terms is therefore equal to the number of binary trees with p — 1 binary

nodes and p leaves. This is precisely the Catalan number Cp—1 = (217”__12) /p-



