[Pkg-octave-commit] [SCM] Debian packaging for octave branch, master, updated. debian/3.4.3-1-5-gc815e77

Sébastien Villemot sebastien.villemot at ens.fr
Fri Dec 30 20:30:07 UTC 2011


The following commit has been merged in the master branch:
commit c815e7773edeba48cad8a9981903b6ae2120ecdb
Author: Sébastien Villemot <sebastien.villemot at ens.fr>
Date:   Fri Dec 30 20:45:47 2011 +0100

    New patch: use_system_arpack

diff --git a/debian/liboctave0.symbols b/debian/liboctave0.symbols
index fb36421..cb46cb7 100644
--- a/debian/liboctave0.symbols
+++ b/debian/liboctave0.symbols
@@ -12,7 +12,6 @@ libcruft.so.0 liboctave0 #MINVER#
  algams_ at Base 3.4.3
  alngam_ at Base 3.4.3
  alnrel_ at Base 3.4.3
- arscnd_ at Base 3.4.3
  asinh_ at Base 3.4.3
  asnprintf at Base 3.4.3
  atanh_ at Base 3.4.3
@@ -53,19 +52,10 @@ libcruft.so.0 liboctave0 #MINVER#
  cconv2o_ at Base 3.4.3
  cdotc3_ at Base 3.4.3
  cfode_ at Base 3.4.3
- cgetv0_ at Base 3.4.3
  chdir_long at Base 3.4.3
  ckscl_ at Base 3.4.3
  cmatm3_ at Base 3.4.3
  cmlri_ at Base 3.4.3
- cmout_ at Base 3.4.3
- cnaitr_ at Base 3.4.3
- cnapps_ at Base 3.4.3
- cnaup2_ at Base 3.4.3
- cnaupd_ at Base 3.4.3
- cneigh_ at Base 3.4.3
- cneupd_ at Base 3.4.3
- cngets_ at Base 3.4.3
  crati_ at Base 3.4.3
  crcrot1_ at Base 3.4.3
  crcrot2_ at Base 3.4.3
@@ -76,8 +66,6 @@ libcruft.so.0 liboctave0 #MINVER#
  cseri_ at Base 3.4.3
  csevl_ at Base 3.4.3
  cshch_ at Base 3.4.3
- csortc_ at Base 3.4.3
- cstatn_ at Base 3.4.3
  cuchk_ at Base 3.4.3
  cunhj_ at Base 3.4.3
  cuni1_ at Base 3.4.3
@@ -91,7 +79,6 @@ libcruft.so.0 liboctave0 #MINVER#
  current_liboctave_error_with_id_handler at Base 3.4.3
  current_liboctave_warning_handler at Base 3.4.3
  current_liboctave_warning_with_id_handler at Base 3.4.3
- cvout_ at Base 3.4.3
  cwrsk_ at Base 3.4.3
  d1mach_ at Base 3.4.3
  d9gmit_ at Base 3.4.3
@@ -124,7 +111,6 @@ libcruft.so.0 liboctave0 #MINVER#
  ddot3_ at Base 3.4.3
  ddstp_ at Base 3.4.3
  ddwnrm_ at Base 3.4.3
- debug_ at Base 3.4.3
  derf_ at Base 3.4.3
  derfc_ at Base 3.4.3
  dfnrmd_ at Base 3.4.3
@@ -139,13 +125,11 @@ libcruft.so.0 liboctave0 #MINVER#
  dgengam_ at Base 3.4.3
  dgennor_ at Base 3.4.3
  dgenunf_ at Base 3.4.3
- dgetv0_ at Base 3.4.3
  dhels_ at Base 3.4.3
  dheqr_ at Base 3.4.3
  dignpoi_ at Base 3.4.3
  dinvwt_ at Base 3.4.3
  dir_len at Base 3.4.3
- dlaqrb_ at Base 3.4.3
  dlbeta_ at Base 3.4.3
  dlgams_ at Base 3.4.3
  dlinsd_ at Base 3.4.3
@@ -155,17 +139,8 @@ libcruft.so.0 liboctave0 #MINVER#
  dlsode_ at Base 3.4.3
  dmatd_ at Base 3.4.3
  dmatm3_ at Base 3.4.3
- dmout_ at Base 3.4.3
- dnaitr_ at Base 3.4.3
- dnapps_ at Base 3.4.3
- dnaup2_ at Base 3.4.3
- dnaupd_ at Base 3.4.3
- dnconv_ at Base 3.4.3
  dnedd_ at Base 3.4.3
  dnedk_ at Base 3.4.3
- dneigh_ at Base 3.4.3
- dneupd_ at Base 3.4.3
- dngets_ at Base 3.4.3
  dnsd_ at Base 3.4.3
  dnsid_ at Base 3.4.3
  dnsik_ at Base 3.4.3
@@ -183,27 +158,12 @@ libcruft.so.0 liboctave0 #MINVER#
  dqpsrt_ at Base 3.4.3
  drchek_ at Base 3.4.3
  droots_ at Base 3.4.3
- dsaitr_ at Base 3.4.3
- dsapps_ at Base 3.4.3
- dsaup2_ at Base 3.4.3
- dsaupd_ at Base 3.4.3
- dsconv_ at Base 3.4.3
- dseigt_ at Base 3.4.3
- dsesrt_ at Base 3.4.3
- dseupd_ at Base 3.4.3
- dsgets_ at Base 3.4.3
  dslvd_ at Base 3.4.3
  dslvk_ at Base 3.4.3
- dsortc_ at Base 3.4.3
- dsortr_ at Base 3.4.3
  dspigm_ at Base 3.4.3
- dstatn_ at Base 3.4.3
- dstats_ at Base 3.4.3
- dstqrb_ at Base 3.4.3
  dsubsp_ at Base 3.4.3
  dup_cloexec at Base 3.4.3
  dup_safer at Base 3.4.3
- dvout_ at Base 3.4.3
  dyypnw_ at Base 3.4.3
  erf_ at Base 3.4.3
  erfc_ at Base 3.4.3
@@ -242,8 +202,6 @@ libcruft.so.0 liboctave0 #MINVER#
  gl_sockets_startup at Base 3.4.3
  globe_ at Base 3.4.3
  i1mach_ at Base 3.4.3
- icnteq_ at Base 3.4.3
- icopy_ at Base 3.4.3
  ignbin_ at Base 3.4.3
  ignlgi_ at Base 3.4.3
  ignnbn_ at Base 3.4.3
@@ -254,9 +212,6 @@ libcruft.so.0 liboctave0 #MINVER#
  inits_ at Base 3.4.3
  inrgcm_ at Base 3.4.3
  intdy_ at Base 3.4.3
- iset_ at Base 3.4.3
- iswap_ at Base 3.4.3
- ivout_ at Base 3.4.3
  ixsav_ at Base 3.4.3
  j4save_ at Base 3.4.3
  last_component at Base 3.4.3
@@ -350,48 +305,21 @@ libcruft.so.0 liboctave0 #MINVER#
  sexchqz_ at Base 3.4.3
  sexpo_ at Base 3.4.3
  sgamma_ at Base 3.4.3
- sgetv0_ at Base 3.4.3
  sintdy_ at Base 3.4.3
- slaqrb_ at Base 3.4.3
  sls001_ at Base 3.4.3
  slsode_ at Base 3.4.3
  smatm3_ at Base 3.4.3
- smout_ at Base 3.4.3
- snaitr_ at Base 3.4.3
- snapps_ at Base 3.4.3
- snaup2_ at Base 3.4.3
- snaupd_ at Base 3.4.3
- snconv_ at Base 3.4.3
- sneigh_ at Base 3.4.3
- sneupd_ at Base 3.4.3
- sngets_ at Base 3.4.3
  snorm_ at Base 3.4.3
  solsy_ at Base 3.4.3
  sprepj_ at Base 3.4.3
- ssaitr_ at Base 3.4.3
- ssapps_ at Base 3.4.3
- ssaup2_ at Base 3.4.3
- ssaupd_ at Base 3.4.3
- ssconv_ at Base 3.4.3
- sseigt_ at Base 3.4.3
- ssesrt_ at Base 3.4.3
- sseupd_ at Base 3.4.3
- ssgets_ at Base 3.4.3
  ssolsy_ at Base 3.4.3
- ssortc_ at Base 3.4.3
- ssortr_ at Base 3.4.3
- sstatn_ at Base 3.4.3
- sstats_ at Base 3.4.3
  sstode_ at Base 3.4.3
- sstqrb_ at Base 3.4.3
  ssubsp_ at Base 3.4.3
  stode_ at Base 3.4.3
  strip_trailing_slashes at Base 3.4.3
  strmode at Base 3.4.3
  strnlen1 at Base 3.4.3
  svnorm_ at Base 3.4.3
- svout_ at Base 3.4.3
- timing_ at Base 3.4.3
  vasnprintf at Base 3.4.3
  vnorm_ at Base 3.4.3
  xacosh_ at Base 3.4.3
@@ -467,19 +395,10 @@ libcruft.so.0 liboctave0 #MINVER#
  zdconv2o_ at Base 3.4.3
  zdiv_ at Base 3.4.3
  zdotc3_ at Base 3.4.3
- zgetv0_ at Base 3.4.3
  zkscl_ at Base 3.4.3
  zmatm3_ at Base 3.4.3
  zmlri_ at Base 3.4.3
  zmlt_ at Base 3.4.3
- zmout_ at Base 3.4.3
- znaitr_ at Base 3.4.3
- znapps_ at Base 3.4.3
- znaup2_ at Base 3.4.3
- znaupd_ at Base 3.4.3
- zneigh_ at Base 3.4.3
- zneupd_ at Base 3.4.3
- zngets_ at Base 3.4.3
  zrati_ at Base 3.4.3
  zrcrot1_ at Base 3.4.3
  zrcrot2_ at Base 3.4.3
@@ -487,8 +406,6 @@ libcruft.so.0 liboctave0 #MINVER#
  zs1s2_ at Base 3.4.3
  zseri_ at Base 3.4.3
  zshch_ at Base 3.4.3
- zsortc_ at Base 3.4.3
- zstatn_ at Base 3.4.3
  zuchk_ at Base 3.4.3
  zunhj_ at Base 3.4.3
  zuni1_ at Base 3.4.3
@@ -497,7 +414,6 @@ libcruft.so.0 liboctave0 #MINVER#
  zunk1_ at Base 3.4.3
  zunk2_ at Base 3.4.3
  zuoik_ at Base 3.4.3
- zvout_ at Base 3.4.3
  zwrsk_ at Base 3.4.3
 liboctave.so.0 liboctave0 #MINVER#
  _Z10bsxfun_addRK10intNDArrayI10octave_intIaEES4_ at Base 3.4.3
diff --git a/debian/patches/series b/debian/patches/series
index 0799947..604cb64 100644
--- a/debian/patches/series
+++ b/debian/patches/series
@@ -7,3 +7,4 @@ add_info_dir_categories
 correct_typos
 use_system_gl2ps
 drop_version_from_mkoctfile_function_call
+use_system_arpack
diff --git a/debian/patches/use_system_arpack b/debian/patches/use_system_arpack
new file mode 100644
index 0000000..0892d44
--- /dev/null
+++ b/debian/patches/use_system_arpack
@@ -0,0 +1,35061 @@
+Description: Use libarpack-dev as packaged in Debian
+ The patch removes arpack from the original sources, just to be sure that we
+ are really using the system library. 
+ . 
+ A better patch would use OCTAVE_CHECK_LIBRARY from m4/acinclude.m4, but this
+ one will do for now.
+Forwarded: not-needed
+Author: Sébastien Villemot <sebastien.villemot at ens.fr>
+--- a/libcruft/Makefile.am
++++ b/libcruft/Makefile.am
+@@ -53,7 +53,7 @@
+   ../libgnu/libgnu.la \
+   libranlib.la \
+   $(LAPACK_LIBS) $(BLAS_LIBS) \
+-  $(FLIBS)
++  $(FLIBS) $(ARPACK_LIBS)
+ 
+ libcruft_la_DEPENDENCIES = cruft.def libranlib.la
+ 
+@@ -68,7 +68,6 @@
+ EXTRA_DIST =
+ 
+ include amos/module.mk
+-include arpack/module.mk
+ include blas-xtra/module.mk
+ include daspk/module.mk
+ include dasrt/module.mk
+--- a/configure.ac
++++ b/configure.ac
+@@ -929,6 +929,12 @@
+ AC_SUBST(GL2PS_LDFLAGS)
+ AC_SUBST(GL2PS_LIBS)
+ 
++# System arpack
++save_LIBS="$LIBS"
++AC_CHECK_LIB([arpack], [cgetv0])
++ARPACK_LIBS="-larpack"
++AC_SUBST(ARPACK_LIBS)
++LIBS="$save_LIBS"
+ 
+ # ----------------------------------------------------------------------
+ 
+--- a/libcruft/arpack/src/cgetv0.f
++++ /dev/null
+@@ -1,414 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: cgetv0
+-c
+-c\Description: 
+-c  Generate a random initial residual vector for the Arnoldi process.
+-c  Force the residual vector to be in the range of the operator OP.  
+-c
+-c\Usage:
+-c  call cgetv0
+-c     ( IDO, BMAT, ITRY, INITV, N, J, V, LDV, RESID, RNORM, 
+-c       IPNTR, WORKD, IERR )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.  IDO must be zero on the first
+-c          call to cgetv0.
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    This is for the initialization phase to force the
+-c                    starting vector into the range of OP.
+-c          IDO =  2: compute  Y = B * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of the matrix B in the (generalized)
+-c          eigenvalue problem A*x = lambda*B*x.
+-c          B = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          B = 'G' -> generalized eigenvalue problem A*x = lambda*B*x
+-c
+-c  ITRY    Integer.  (INPUT)
+-c          ITRY counts the number of times that cgetv0 is called.  
+-c          It should be set to 1 on the initial call to cgetv0.
+-c
+-c  INITV   Logical variable.  (INPUT)
+-c          .TRUE.  => the initial residual vector is given in RESID.
+-c          .FALSE. => generate a random initial residual vector.
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the problem.
+-c
+-c  J       Integer.  (INPUT)
+-c          Index of the residual vector to be generated, with respect to
+-c          the Arnoldi process.  J > 1 in case of a "restart".
+-c
+-c  V       Complex N by J array.  (INPUT)
+-c          The first J-1 columns of V contain the current Arnoldi basis
+-c          if this is a "restart".
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling 
+-c          program.
+-c
+-c  RESID   Complex array of length N.  (INPUT/OUTPUT)
+-c          Initial residual vector to be generated.  If RESID is 
+-c          provided, force RESID into the range of the operator OP.
+-c
+-c  RNORM   Real scalar.  (OUTPUT)
+-c          B-norm of the generated residual.
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c
+-c  WORKD   Complex work array of length 2*N.  (REVERSE COMMUNICATION).
+-c          On exit, WORK(1:N) = B*RESID to be used in SSAITR.
+-c
+-c  IERR    Integer.  (OUTPUT)
+-c          =  0: Normal exit.
+-c          = -1: Cannot generate a nontrivial restarted residual vector
+-c                in the range of the operator OP.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  Complex
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c
+-c\Routines called:
+-c     arscnd  ARPACK utility routine for timing.
+-c     cvout   ARPACK utility routine that prints vectors.
+-c     clarnv  LAPACK routine for generating a random vector. 
+-c     cgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     ccopy   Level 1 BLAS that copies one vector to another.
+-c     cdotc   Level 1 BLAS that computes the scalar product of two vectors.
+-c     scnrm2  Level 1 BLAS that computes the norm of a vector. 
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\SCCS Information: @(#)
+-c FILE: getv0.F   SID: 2.3   DATE OF SID: 08/27/96   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine cgetv0 
+-     &   ( ido, bmat, itry, initv, n, j, v, ldv, resid, rnorm, 
+-     &     ipntr, workd, ierr )
+-c 
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1
+-      logical    initv
+-      integer    ido, ierr, itry, j, ldv, n
+-      Real
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(3)
+-      Complex
+-     &           resid(n), v(ldv,j), workd(2*n)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex
+-     &           one, zero
+-      Real
+-     &           rzero
+-      parameter  (one = (1.0E+0, 0.0E+0), zero = (0.0E+0, 0.0E+0),
+-     &            rzero = 0.0E+0)
+-c
+-c     %------------------------%
+-c     | Local Scalars & Arrays |
+-c     %------------------------%
+-c
+-      logical    first, inits, orth
+-      integer    idist, iseed(4), iter, msglvl, jj
+-      Real
+-     &           rnorm0
+-      Complex
+-     &           cnorm
+-      save       first, iseed, inits, iter, msglvl, orth, rnorm0
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   ccopy, cgemv, clarnv, cvout, arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real 
+-     &           scnrm2, slapy2
+-      Complex
+-     &           cdotc
+-      external   cdotc, scnrm2, slapy2
+-c
+-c     %-----------------%
+-c     | Data Statements |
+-c     %-----------------%
+-c
+-      data       inits /.true./
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-c
+-c     %-----------------------------------%
+-c     | Initialize the seed of the LAPACK |
+-c     | random number generator           |
+-c     %-----------------------------------%
+-c
+-      if (inits) then
+-          iseed(1) = 1
+-          iseed(2) = 3
+-          iseed(3) = 5
+-          iseed(4) = 7
+-          inits = .false.
+-      end if
+-c
+-      if (ido .eq.  0) then
+-c 
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call arscnd (t0)
+-         msglvl = mgetv0
+-c 
+-         ierr   = 0
+-         iter   = 0
+-         first  = .FALSE.
+-         orth   = .FALSE.
+-c
+-c        %-----------------------------------------------------%
+-c        | Possibly generate a random starting vector in RESID |
+-c        | Use a LAPACK random number generator used by the    |
+-c        | matrix generation routines.                         |
+-c        |    idist = 1: uniform (0,1)  distribution;          |
+-c        |    idist = 2: uniform (-1,1) distribution;          |
+-c        |    idist = 3: normal  (0,1)  distribution;          |
+-c        %-----------------------------------------------------%
+-c
+-         if (.not.initv) then
+-            idist = 2
+-            call clarnv (idist, iseed, n, resid)
+-         end if
+-c 
+-c        %----------------------------------------------------------%
+-c        | Force the starting vector into the range of OP to handle |
+-c        | the generalized problem when B is possibly (singular).   |
+-c        %----------------------------------------------------------%
+-c
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nopx = nopx + 1
+-            ipntr(1) = 1
+-            ipntr(2) = n + 1
+-            call ccopy (n, resid, 1, workd, 1)
+-            ido = -1
+-            go to 9000
+-         end if
+-      end if
+-c 
+-c     %----------------------------------------%
+-c     | Back from computing B*(initial-vector) |
+-c     %----------------------------------------%
+-c
+-      if (first) go to 20
+-c
+-c     %-----------------------------------------------%
+-c     | Back from computing B*(orthogonalized-vector) |
+-c     %-----------------------------------------------%
+-c
+-      if (orth)  go to 40
+-c 
+-      call arscnd (t3)
+-      tmvopx = tmvopx + (t3 - t2)
+-c 
+-c     %------------------------------------------------------%
+-c     | Starting vector is now in the range of OP; r = OP*r; |
+-c     | Compute B-norm of starting vector.                   |
+-c     %------------------------------------------------------%
+-c
+-      call arscnd (t2)
+-      first = .TRUE.
+-      if (bmat .eq. 'G') then
+-         nbx = nbx + 1
+-         call ccopy (n, workd(n+1), 1, resid, 1)
+-         ipntr(1) = n + 1
+-         ipntr(2) = 1
+-         ido = 2
+-         go to 9000
+-      else if (bmat .eq. 'I') then
+-         call ccopy (n, resid, 1, workd, 1)
+-      end if
+-c 
+-   20 continue
+-c
+-      if (bmat .eq. 'G') then
+-         call arscnd (t3)
+-         tmvbx = tmvbx + (t3 - t2)
+-      end if
+-c 
+-      first = .FALSE.
+-      if (bmat .eq. 'G') then
+-          cnorm  = cdotc (n, resid, 1, workd, 1)
+-          rnorm0 = sqrt(slapy2(real(cnorm),aimag(cnorm)))
+-      else if (bmat .eq. 'I') then
+-           rnorm0 = scnrm2(n, resid, 1)
+-      end if
+-      rnorm  = rnorm0
+-c
+-c     %---------------------------------------------%
+-c     | Exit if this is the very first Arnoldi step |
+-c     %---------------------------------------------%
+-c
+-      if (j .eq. 1) go to 50
+-c 
+-c     %----------------------------------------------------------------
+-c     | Otherwise need to B-orthogonalize the starting vector against |
+-c     | the current Arnoldi basis using Gram-Schmidt with iter. ref.  |
+-c     | This is the case where an invariant subspace is encountered   |
+-c     | in the middle of the Arnoldi factorization.                   |
+-c     |                                                               |
+-c     |       s = V^{T}*B*r;   r = r - V*s;                           |
+-c     |                                                               |
+-c     | Stopping criteria used for iter. ref. is discussed in         |
+-c     | Parlett's book, page 107 and in Gragg & Reichel TOMS paper.   |
+-c     %---------------------------------------------------------------%
+-c
+-      orth = .TRUE.
+-   30 continue
+-c
+-      call cgemv ('C', n, j-1, one, v, ldv, workd, 1, 
+-     &            zero, workd(n+1), 1)
+-      call cgemv ('N', n, j-1, -one, v, ldv, workd(n+1), 1, 
+-     &            one, resid, 1)
+-c 
+-c     %----------------------------------------------------------%
+-c     | Compute the B-norm of the orthogonalized starting vector |
+-c     %----------------------------------------------------------%
+-c
+-      call arscnd (t2)
+-      if (bmat .eq. 'G') then
+-         nbx = nbx + 1
+-         call ccopy (n, resid, 1, workd(n+1), 1)
+-         ipntr(1) = n + 1
+-         ipntr(2) = 1
+-         ido = 2
+-         go to 9000
+-      else if (bmat .eq. 'I') then
+-         call ccopy (n, resid, 1, workd, 1)
+-      end if
+-c 
+-   40 continue
+-c
+-      if (bmat .eq. 'G') then
+-         call arscnd (t3)
+-         tmvbx = tmvbx + (t3 - t2)
+-      end if
+-c 
+-      if (bmat .eq. 'G') then
+-         cnorm = cdotc (n, resid, 1, workd, 1)
+-         rnorm = sqrt(slapy2(real(cnorm),aimag(cnorm)))
+-      else if (bmat .eq. 'I') then
+-         rnorm = scnrm2(n, resid, 1)
+-      end if
+-c
+-c     %--------------------------------------%
+-c     | Check for further orthogonalization. |
+-c     %--------------------------------------%
+-c
+-      if (msglvl .gt. 2) then
+-          call svout (logfil, 1, rnorm0, ndigit, 
+-     &                '_getv0: re-orthonalization ; rnorm0 is')
+-          call svout (logfil, 1, rnorm, ndigit, 
+-     &                '_getv0: re-orthonalization ; rnorm is')
+-      end if
+-c
+-      if (rnorm .gt. 0.717*rnorm0) go to 50
+-c 
+-      iter = iter + 1
+-      if (iter .le. 1) then
+-c
+-c        %-----------------------------------%
+-c        | Perform iterative refinement step |
+-c        %-----------------------------------%
+-c
+-         rnorm0 = rnorm
+-         go to 30
+-      else
+-c
+-c        %------------------------------------%
+-c        | Iterative refinement step "failed" |
+-c        %------------------------------------%
+-c
+-         do 45 jj = 1, n
+-            resid(jj) = zero
+-   45    continue
+-         rnorm = rzero
+-         ierr = -1
+-      end if
+-c 
+-   50 continue
+-c
+-      if (msglvl .gt. 0) then
+-         call svout (logfil, 1, rnorm, ndigit,
+-     &        '_getv0: B-norm of initial / restarted starting vector')
+-      end if
+-      if (msglvl .gt. 2) then
+-         call cvout (logfil, n, resid, ndigit,
+-     &        '_getv0: initial / restarted starting vector')
+-      end if
+-      ido = 99
+-c 
+-      call arscnd (t1)
+-      tgetv0 = tgetv0 + (t1 - t0)
+-c 
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of cgetv0 |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/cnaitr.f
++++ /dev/null
+@@ -1,850 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: cnaitr
+-c
+-c\Description: 
+-c  Reverse communication interface for applying NP additional steps to 
+-c  a K step nonsymmetric Arnoldi factorization.
+-c
+-c  Input:  OP*V_{k}  -  V_{k}*H = r_{k}*e_{k}^T
+-c
+-c          with (V_{k}^T)*B*V_{k} = I, (V_{k}^T)*B*r_{k} = 0.
+-c
+-c  Output: OP*V_{k+p}  -  V_{k+p}*H = r_{k+p}*e_{k+p}^T
+-c
+-c          with (V_{k+p}^T)*B*V_{k+p} = I, (V_{k+p}^T)*B*r_{k+p} = 0.
+-c
+-c  where OP and B are as in cnaupd.  The B-norm of r_{k+p} is also
+-c  computed and returned.
+-c
+-c\Usage:
+-c  call cnaitr
+-c     ( IDO, BMAT, N, K, NP, NB, RESID, RNORM, V, LDV, H, LDH, 
+-c       IPNTR, WORKD, INFO )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y.
+-c                    This is for the restart phase to force the new
+-c                    starting vector into the range of OP.
+-c          IDO =  1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y,
+-c                    IPNTR(3) is the pointer into WORK for B * X.
+-c          IDO =  2: compute  Y = B * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c          When the routine is used in the "shift-and-invert" mode, the
+-c          vector B * Q is already available and do not need to be
+-c          recomputed in forming OP * Q.
+-c
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of the matrix B that defines the
+-c          semi-inner product for the operator OP.  See cnaupd.
+-c          B = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          B = 'G' -> generalized eigenvalue problem A*x = lambda*M**x
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the eigenproblem.
+-c
+-c  K       Integer.  (INPUT)
+-c          Current size of V and H.
+-c
+-c  NP      Integer.  (INPUT)
+-c          Number of additional Arnoldi steps to take.
+-c
+-c  NB      Integer.  (INPUT)
+-c          Blocksize to be used in the recurrence.          
+-c          Only work for NB = 1 right now.  The goal is to have a 
+-c          program that implement both the block and non-block method.
+-c
+-c  RESID   Complex array of length N.  (INPUT/OUTPUT)
+-c          On INPUT:  RESID contains the residual vector r_{k}.
+-c          On OUTPUT: RESID contains the residual vector r_{k+p}.
+-c
+-c  RNORM   Real scalar.  (INPUT/OUTPUT)
+-c          B-norm of the starting residual on input.
+-c          B-norm of the updated residual r_{k+p} on output.
+-c
+-c  V       Complex N by K+NP array.  (INPUT/OUTPUT)
+-c          On INPUT:  V contains the Arnoldi vectors in the first K 
+-c          columns.
+-c          On OUTPUT: V contains the new NP Arnoldi vectors in the next
+-c          NP columns.  The first K columns are unchanged.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling 
+-c          program.
+-c
+-c  H       Complex (K+NP) by (K+NP) array.  (INPUT/OUTPUT)
+-c          H is used to store the generated upper Hessenberg matrix.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling 
+-c          program.
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORK for 
+-c          vectors used by the Arnoldi iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X.
+-c          IPNTR(2): pointer to the current result vector Y.
+-c          IPNTR(3): pointer to the vector B * X when used in the 
+-c                    shift-and-invert mode.  X is the current operand.
+-c          -------------------------------------------------------------
+-c          
+-c  WORKD   Complex work array of length 3*N.  (REVERSE COMMUNICATION)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The calling program should not 
+-c          use WORKD as temporary workspace during the iteration !!!!!!
+-c          On input, WORKD(1:N) = B*RESID and is used to save some 
+-c          computation at the first step.
+-c
+-c  INFO    Integer.  (OUTPUT)
+-c          = 0: Normal exit.
+-c          > 0: Size of the spanning invariant subspace of OP found.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  Complex
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c
+-c\Routines called:
+-c     cgetv0  ARPACK routine to generate the initial vector.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     cmout   ARPACK utility routine that prints matrices
+-c     cvout   ARPACK utility routine that prints vectors.
+-c     clanhs  LAPACK routine that computes various norms of a matrix.
+-c     clascl  LAPACK routine for careful scaling of a matrix.
+-c     slabad  LAPACK routine for defining the underflow and overflow
+-c             limits.
+-c     slamch  LAPACK routine that determines machine constants.
+-c     slapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     cgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     caxpy   Level 1 BLAS that computes a vector triad.
+-c     ccopy   Level 1 BLAS that copies one vector to another .
+-c     cdotc   Level 1 BLAS that computes the scalar product of two vectors. 
+-c     cscal   Level 1 BLAS that scales a vector.
+-c     csscal  Level 1 BLAS that scales a complex vector by a real number. 
+-c     scnrm2  Level 1 BLAS that computes the norm of a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas 
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas 
+-c 
+-c\SCCS Information: @(#)
+-c FILE: naitr.F   SID: 2.3   DATE OF SID: 8/27/96   RELEASE: 2
+-c
+-c\Remarks
+-c  The algorithm implemented is:
+-c  
+-c  restart = .false.
+-c  Given V_{k} = [v_{1}, ..., v_{k}], r_{k}; 
+-c  r_{k} contains the initial residual vector even for k = 0;
+-c  Also assume that rnorm = || B*r_{k} || and B*r_{k} are already 
+-c  computed by the calling program.
+-c
+-c  betaj = rnorm ; p_{k+1} = B*r_{k} ;
+-c  For  j = k+1, ..., k+np  Do
+-c     1) if ( betaj < tol ) stop or restart depending on j.
+-c        ( At present tol is zero )
+-c        if ( restart ) generate a new starting vector.
+-c     2) v_{j} = r(j-1)/betaj;  V_{j} = [V_{j-1}, v_{j}];  
+-c        p_{j} = p_{j}/betaj
+-c     3) r_{j} = OP*v_{j} where OP is defined as in cnaupd
+-c        For shift-invert mode p_{j} = B*v_{j} is already available.
+-c        wnorm = || OP*v_{j} ||
+-c     4) Compute the j-th step residual vector.
+-c        w_{j} =  V_{j}^T * B * OP * v_{j}
+-c        r_{j} =  OP*v_{j} - V_{j} * w_{j}
+-c        H(:,j) = w_{j};
+-c        H(j,j-1) = rnorm
+-c        rnorm = || r_(j) ||
+-c        If (rnorm > 0.717*wnorm) accept step and go back to 1)
+-c     5) Re-orthogonalization step:
+-c        s = V_{j}'*B*r_{j}
+-c        r_{j} = r_{j} - V_{j}*s;  rnorm1 = || r_{j} ||
+-c        alphaj = alphaj + s_{j};   
+-c     6) Iterative refinement step:
+-c        If (rnorm1 > 0.717*rnorm) then
+-c           rnorm = rnorm1
+-c           accept step and go back to 1)
+-c        Else
+-c           rnorm = rnorm1
+-c           If this is the first time in step 6), go to 5)
+-c           Else r_{j} lies in the span of V_{j} numerically.
+-c              Set r_{j} = 0 and rnorm = 0; go to 1)
+-c        EndIf 
+-c  End Do
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine cnaitr
+-     &   (ido, bmat, n, k, np, nb, resid, rnorm, v, ldv, h, ldh, 
+-     &    ipntr, workd, info)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1
+-      integer    ido, info, k, ldh, ldv, n, nb, np
+-      Real
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(3)
+-      Complex
+-     &           h(ldh,k+np), resid(n), v(ldv,k+np), workd(3*n)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex
+-     &           one, zero
+-      Real
+-     &           rone, rzero
+-      parameter (one = (1.0E+0, 0.0E+0), zero = (0.0E+0, 0.0E+0), 
+-     &           rone = 1.0E+0, rzero = 0.0E+0)
+-c
+-c     %--------------%
+-c     | Local Arrays |
+-c     %--------------%
+-c
+-      Real
+-     &           rtemp(2)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      logical    first, orth1, orth2, rstart, step3, step4
+-      integer    ierr, i, infol, ipj, irj, ivj, iter, itry, j, msglvl,
+-     &           jj
+-      Real            
+-     &           ovfl, smlnum, tst1, ulp, unfl, betaj,
+-     &           temp1, rnorm1, wnorm
+-      Complex
+-     &           cnorm
+-c
+-      save       first, orth1, orth2, rstart, step3, step4,
+-     &           ierr, ipj, irj, ivj, iter, itry, j, msglvl, ovfl,
+-     &           betaj, rnorm1, smlnum, ulp, unfl, wnorm
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   caxpy, ccopy, cscal, csscal, cgemv, cgetv0, 
+-     &           slabad, cvout, cmout, ivout, arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Complex
+-     &           cdotc 
+-      Real            
+-     &           slamch,  scnrm2, clanhs, slapy2
+-      external   cdotc, scnrm2, clanhs, slamch, slapy2
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic  aimag, real, max, sqrt 
+-c
+-c     %-----------------%
+-c     | Data statements |
+-c     %-----------------%
+-c
+-      data       first / .true. /
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (first) then
+-c
+-c        %-----------------------------------------%
+-c        | Set machine-dependent constants for the |
+-c        | the splitting and deflation criterion.  |
+-c        | If norm(H) <= sqrt(OVFL),               |
+-c        | overflow should not occur.              |
+-c        | REFERENCE: LAPACK subroutine clahqr     |
+-c        %-----------------------------------------%
+-c
+-         unfl = slamch( 'safe minimum' )
+-         ovfl = real(one / unfl)
+-         call slabad( unfl, ovfl )
+-         ulp = slamch( 'precision' )
+-         smlnum = unfl*( n / ulp )
+-         first = .false.
+-      end if
+-c
+-      if (ido .eq. 0) then
+-c 
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call arscnd (t0)
+-         msglvl = mcaitr
+-c 
+-c        %------------------------------%
+-c        | Initial call to this routine |
+-c        %------------------------------%
+-c
+-         info   = 0
+-         step3  = .false.
+-         step4  = .false.
+-         rstart = .false.
+-         orth1  = .false.
+-         orth2  = .false.
+-         j      = k + 1
+-         ipj    = 1
+-         irj    = ipj   + n
+-         ivj    = irj   + n
+-      end if
+-c 
+-c     %-------------------------------------------------%
+-c     | When in reverse communication mode one of:      |
+-c     | STEP3, STEP4, ORTH1, ORTH2, RSTART              |
+-c     | will be .true. when ....                        |
+-c     | STEP3: return from computing OP*v_{j}.          |
+-c     | STEP4: return from computing B-norm of OP*v_{j} |
+-c     | ORTH1: return from computing B-norm of r_{j+1}  |
+-c     | ORTH2: return from computing B-norm of          |
+-c     |        correction to the residual vector.       |
+-c     | RSTART: return from OP computations needed by   |
+-c     |         cgetv0.                                 |
+-c     %-------------------------------------------------%
+-c
+-      if (step3)  go to 50
+-      if (step4)  go to 60
+-      if (orth1)  go to 70
+-      if (orth2)  go to 90
+-      if (rstart) go to 30
+-c
+-c     %-----------------------------%
+-c     | Else this is the first step |
+-c     %-----------------------------%
+-c
+-c     %--------------------------------------------------------------%
+-c     |                                                              |
+-c     |        A R N O L D I     I T E R A T I O N     L O O P       |
+-c     |                                                              |
+-c     | Note:  B*r_{j-1} is already in WORKD(1:N)=WORKD(IPJ:IPJ+N-1) |
+-c     %--------------------------------------------------------------%
+- 
+- 1000 continue
+-c
+-         if (msglvl .gt. 1) then
+-            call ivout (logfil, 1, j, ndigit, 
+-     &                  '_naitr: generating Arnoldi vector number')
+-            call svout (logfil, 1, rnorm, ndigit, 
+-     &                  '_naitr: B-norm of the current residual is')
+-         end if
+-c 
+-c        %---------------------------------------------------%
+-c        | STEP 1: Check if the B norm of j-th residual      |
+-c        | vector is zero. Equivalent to determine whether   |
+-c        | an exact j-step Arnoldi factorization is present. |
+-c        %---------------------------------------------------%
+-c
+-         betaj = rnorm
+-         if (rnorm .gt. rzero) go to 40
+-c
+-c           %---------------------------------------------------%
+-c           | Invariant subspace found, generate a new starting |
+-c           | vector which is orthogonal to the current Arnoldi |
+-c           | basis and continue the iteration.                 |
+-c           %---------------------------------------------------%
+-c
+-            if (msglvl .gt. 0) then
+-               call ivout (logfil, 1, j, ndigit,
+-     &                     '_naitr: ****** RESTART AT STEP ******')
+-            end if
+-c 
+-c           %---------------------------------------------%
+-c           | ITRY is the loop variable that controls the |
+-c           | maximum amount of times that a restart is   |
+-c           | attempted. NRSTRT is used by stat.h         |
+-c           %---------------------------------------------%
+-c 
+-            betaj  = rzero
+-            nrstrt = nrstrt + 1
+-            itry   = 1
+-   20       continue
+-            rstart = .true.
+-            ido    = 0
+-   30       continue
+-c
+-c           %--------------------------------------%
+-c           | If in reverse communication mode and |
+-c           | RSTART = .true. flow returns here.   |
+-c           %--------------------------------------%
+-c
+-            call cgetv0 (ido, bmat, itry, .false., n, j, v, ldv, 
+-     &                   resid, rnorm, ipntr, workd, ierr)
+-            if (ido .ne. 99) go to 9000
+-            if (ierr .lt. 0) then
+-               itry = itry + 1
+-               if (itry .le. 3) go to 20
+-c
+-c              %------------------------------------------------%
+-c              | Give up after several restart attempts.        |
+-c              | Set INFO to the size of the invariant subspace |
+-c              | which spans OP and exit.                       |
+-c              %------------------------------------------------%
+-c
+-               info = j - 1
+-               call arscnd (t1)
+-               tcaitr = tcaitr + (t1 - t0)
+-               ido = 99
+-               go to 9000
+-            end if
+-c 
+-   40    continue
+-c
+-c        %---------------------------------------------------------%
+-c        | STEP 2:  v_{j} = r_{j-1}/rnorm and p_{j} = p_{j}/rnorm  |
+-c        | Note that p_{j} = B*r_{j-1}. In order to avoid overflow |
+-c        | when reciprocating a small RNORM, test against lower    |
+-c        | machine bound.                                          |
+-c        %---------------------------------------------------------%
+-c
+-         call ccopy (n, resid, 1, v(1,j), 1)
+-         if ( rnorm .ge. unfl) then
+-             temp1 = rone / rnorm
+-             call csscal (n, temp1, v(1,j), 1)
+-             call csscal (n, temp1, workd(ipj), 1)
+-         else
+-c
+-c            %-----------------------------------------%
+-c            | To scale both v_{j} and p_{j} carefully |
+-c            | use LAPACK routine clascl               |
+-c            %-----------------------------------------%
+-c
+-             call clascl ('General', i, i, rnorm, rone,
+-     &                    n, 1, v(1,j), n, infol)
+-             call clascl ('General', i, i, rnorm, rone,  
+-     &                    n, 1, workd(ipj), n, infol)
+-         end if
+-c
+-c        %------------------------------------------------------%
+-c        | STEP 3:  r_{j} = OP*v_{j}; Note that p_{j} = B*v_{j} |
+-c        | Note that this is not quite yet r_{j}. See STEP 4    |
+-c        %------------------------------------------------------%
+-c
+-         step3 = .true.
+-         nopx  = nopx + 1
+-         call arscnd (t2)
+-         call ccopy (n, v(1,j), 1, workd(ivj), 1)
+-         ipntr(1) = ivj
+-         ipntr(2) = irj
+-         ipntr(3) = ipj
+-         ido = 1
+-c 
+-c        %-----------------------------------%
+-c        | Exit in order to compute OP*v_{j} |
+-c        %-----------------------------------%
+-c 
+-         go to 9000 
+-   50    continue
+-c 
+-c        %----------------------------------%
+-c        | Back from reverse communication; |
+-c        | WORKD(IRJ:IRJ+N-1) := OP*v_{j}   |
+-c        | if step3 = .true.                |
+-c        %----------------------------------%
+-c
+-         call arscnd (t3)
+-         tmvopx = tmvopx + (t3 - t2)
+- 
+-         step3 = .false.
+-c
+-c        %------------------------------------------%
+-c        | Put another copy of OP*v_{j} into RESID. |
+-c        %------------------------------------------%
+-c
+-         call ccopy (n, workd(irj), 1, resid, 1)
+-c 
+-c        %---------------------------------------%
+-c        | STEP 4:  Finish extending the Arnoldi |
+-c        |          factorization to length j.   |
+-c        %---------------------------------------%
+-c
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            step4 = .true.
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %-------------------------------------%
+-c           | Exit in order to compute B*OP*v_{j} |
+-c           %-------------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call ccopy (n, resid, 1, workd(ipj), 1)
+-         end if
+-   60    continue
+-c 
+-c        %----------------------------------%
+-c        | Back from reverse communication; |
+-c        | WORKD(IPJ:IPJ+N-1) := B*OP*v_{j} |
+-c        | if step4 = .true.                |
+-c        %----------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c 
+-         step4 = .false.
+-c
+-c        %-------------------------------------%
+-c        | The following is needed for STEP 5. |
+-c        | Compute the B-norm of OP*v_{j}.     |
+-c        %-------------------------------------%
+-c
+-         if (bmat .eq. 'G') then  
+-             cnorm = cdotc (n, resid, 1, workd(ipj), 1)
+-             wnorm = sqrt( slapy2(real(cnorm),aimag(cnorm)) )
+-         else if (bmat .eq. 'I') then
+-             wnorm = scnrm2(n, resid, 1)
+-         end if
+-c
+-c        %-----------------------------------------%
+-c        | Compute the j-th residual corresponding |
+-c        | to the j step factorization.            |
+-c        | Use Classical Gram Schmidt and compute: |
+-c        | w_{j} <-  V_{j}^T * B * OP * v_{j}      |
+-c        | r_{j} <-  OP*v_{j} - V_{j} * w_{j}      |
+-c        %-----------------------------------------%
+-c
+-c
+-c        %------------------------------------------%
+-c        | Compute the j Fourier coefficients w_{j} |
+-c        | WORKD(IPJ:IPJ+N-1) contains B*OP*v_{j}.  |
+-c        %------------------------------------------%
+-c 
+-         call cgemv ('C', n, j, one, v, ldv, workd(ipj), 1,
+-     &               zero, h(1,j), 1)
+-c
+-c        %--------------------------------------%
+-c        | Orthogonalize r_{j} against V_{j}.   |
+-c        | RESID contains OP*v_{j}. See STEP 3. | 
+-c        %--------------------------------------%
+-c
+-         call cgemv ('N', n, j, -one, v, ldv, h(1,j), 1,
+-     &               one, resid, 1)
+-c
+-         if (j .gt. 1) h(j,j-1) = cmplx(betaj, rzero)
+-c
+-         call arscnd (t4)
+-c 
+-         orth1 = .true.
+-c 
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call ccopy (n, resid, 1, workd(irj), 1)
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %----------------------------------%
+-c           | Exit in order to compute B*r_{j} |
+-c           %----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call ccopy (n, resid, 1, workd(ipj), 1)
+-         end if 
+-   70    continue
+-c 
+-c        %---------------------------------------------------%
+-c        | Back from reverse communication if ORTH1 = .true. |
+-c        | WORKD(IPJ:IPJ+N-1) := B*r_{j}.                    |
+-c        %---------------------------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c 
+-         orth1 = .false.
+-c
+-c        %------------------------------%
+-c        | Compute the B-norm of r_{j}. |
+-c        %------------------------------%
+-c
+-         if (bmat .eq. 'G') then         
+-            cnorm = cdotc (n, resid, 1, workd(ipj), 1)
+-            rnorm = sqrt( slapy2(real(cnorm),aimag(cnorm)) )
+-         else if (bmat .eq. 'I') then
+-            rnorm = scnrm2(n, resid, 1)
+-         end if
+-c 
+-c        %-----------------------------------------------------------%
+-c        | STEP 5: Re-orthogonalization / Iterative refinement phase |
+-c        | Maximum NITER_ITREF tries.                                |
+-c        |                                                           |
+-c        |          s      = V_{j}^T * B * r_{j}                     |
+-c        |          r_{j}  = r_{j} - V_{j}*s                         |
+-c        |          alphaj = alphaj + s_{j}                          |
+-c        |                                                           |
+-c        | The stopping criteria used for iterative refinement is    |
+-c        | discussed in Parlett's book SEP, page 107 and in Gragg &  |
+-c        | Reichel ACM TOMS paper; Algorithm 686, Dec. 1990.         |
+-c        | Determine if we need to correct the residual. The goal is |
+-c        | to enforce ||v(:,1:j)^T * r_{j}|| .le. eps * || r_{j} ||  |
+-c        | The following test determines whether the sine of the     |
+-c        | angle between  OP*x and the computed residual is less     |
+-c        | than or equal to 0.717.                                   |
+-c        %-----------------------------------------------------------%
+-c
+-         if ( rnorm .gt. 0.717*wnorm ) go to 100
+-c
+-         iter  = 0
+-         nrorth = nrorth + 1
+-c 
+-c        %---------------------------------------------------%
+-c        | Enter the Iterative refinement phase. If further  |
+-c        | refinement is necessary, loop back here. The loop |
+-c        | variable is ITER. Perform a step of Classical     |
+-c        | Gram-Schmidt using all the Arnoldi vectors V_{j}  |
+-c        %---------------------------------------------------%
+-c 
+-   80    continue
+-c
+-         if (msglvl .gt. 2) then
+-            rtemp(1) = wnorm
+-            rtemp(2) = rnorm
+-            call svout (logfil, 2, rtemp, ndigit, 
+-     &      '_naitr: re-orthogonalization; wnorm and rnorm are')
+-            call cvout (logfil, j, h(1,j), ndigit,
+-     &                  '_naitr: j-th column of H')
+-         end if
+-c
+-c        %----------------------------------------------------%
+-c        | Compute V_{j}^T * B * r_{j}.                       |
+-c        | WORKD(IRJ:IRJ+J-1) = v(:,1:J)'*WORKD(IPJ:IPJ+N-1). |
+-c        %----------------------------------------------------%
+-c
+-         call cgemv ('C', n, j, one, v, ldv, workd(ipj), 1, 
+-     &               zero, workd(irj), 1)
+-c
+-c        %---------------------------------------------%
+-c        | Compute the correction to the residual:     |
+-c        | r_{j} = r_{j} - V_{j} * WORKD(IRJ:IRJ+J-1). |
+-c        | The correction to H is v(:,1:J)*H(1:J,1:J)  |
+-c        | + v(:,1:J)*WORKD(IRJ:IRJ+J-1)*e'_j.         |
+-c        %---------------------------------------------%
+-c
+-         call cgemv ('N', n, j, -one, v, ldv, workd(irj), 1, 
+-     &               one, resid, 1)
+-         call caxpy (j, one, workd(irj), 1, h(1,j), 1)
+-c 
+-         orth2 = .true.
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call ccopy (n, resid, 1, workd(irj), 1)
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %-----------------------------------%
+-c           | Exit in order to compute B*r_{j}. |
+-c           | r_{j} is the corrected residual.  |
+-c           %-----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call ccopy (n, resid, 1, workd(ipj), 1)
+-         end if 
+-   90    continue
+-c
+-c        %---------------------------------------------------%
+-c        | Back from reverse communication if ORTH2 = .true. |
+-c        %---------------------------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if 
+-c
+-c        %-----------------------------------------------------%
+-c        | Compute the B-norm of the corrected residual r_{j}. |
+-c        %-----------------------------------------------------%
+-c 
+-         if (bmat .eq. 'G') then         
+-             cnorm  = cdotc (n, resid, 1, workd(ipj), 1)
+-             rnorm1 = sqrt( slapy2(real(cnorm),aimag(cnorm)) )
+-         else if (bmat .eq. 'I') then
+-             rnorm1 = scnrm2(n, resid, 1)
+-         end if
+-c 
+-         if (msglvl .gt. 0 .and. iter .gt. 0 ) then
+-            call ivout (logfil, 1, j, ndigit,
+-     &           '_naitr: Iterative refinement for Arnoldi residual')
+-            if (msglvl .gt. 2) then
+-                rtemp(1) = rnorm
+-                rtemp(2) = rnorm1
+-                call svout (logfil, 2, rtemp, ndigit,
+-     &           '_naitr: iterative refinement ; rnorm and rnorm1 are')
+-            end if
+-         end if
+-c
+-c        %-----------------------------------------%
+-c        | Determine if we need to perform another |
+-c        | step of re-orthogonalization.           |
+-c        %-----------------------------------------%
+-c
+-         if ( rnorm1 .gt. 0.717*rnorm ) then
+-c
+-c           %---------------------------------------%
+-c           | No need for further refinement.       |
+-c           | The cosine of the angle between the   |
+-c           | corrected residual vector and the old |
+-c           | residual vector is greater than 0.717 |
+-c           | In other words the corrected residual |
+-c           | and the old residual vector share an  |
+-c           | angle of less than arcCOS(0.717)      |
+-c           %---------------------------------------%
+-c
+-            rnorm = rnorm1
+-c 
+-         else
+-c
+-c           %-------------------------------------------%
+-c           | Another step of iterative refinement step |
+-c           | is required. NITREF is used by stat.h     |
+-c           %-------------------------------------------%
+-c
+-            nitref = nitref + 1
+-            rnorm  = rnorm1
+-            iter   = iter + 1
+-            if (iter .le. 1) go to 80
+-c
+-c           %-------------------------------------------------%
+-c           | Otherwise RESID is numerically in the span of V |
+-c           %-------------------------------------------------%
+-c
+-            do 95 jj = 1, n
+-               resid(jj) = zero
+-  95        continue 
+-            rnorm = rzero
+-         end if
+-c 
+-c        %----------------------------------------------%
+-c        | Branch here directly if iterative refinement |
+-c        | wasn't necessary or after at most NITER_REF  |
+-c        | steps of iterative refinement.               |
+-c        %----------------------------------------------%
+-c 
+-  100    continue
+-c 
+-         rstart = .false.
+-         orth2  = .false.
+-c 
+-         call arscnd (t5)
+-         titref = titref + (t5 - t4)
+-c 
+-c        %------------------------------------%
+-c        | STEP 6: Update  j = j+1;  Continue |
+-c        %------------------------------------%
+-c
+-         j = j + 1
+-         if (j .gt. k+np) then
+-            call arscnd (t1)
+-            tcaitr = tcaitr + (t1 - t0)
+-            ido = 99
+-            do 110 i = max(1,k), k+np-1
+-c     
+-c              %--------------------------------------------%
+-c              | Check for splitting and deflation.         |
+-c              | Use a standard test as in the QR algorithm |
+-c              | REFERENCE: LAPACK subroutine clahqr        |
+-c              %--------------------------------------------%
+-c     
+-               tst1 = slapy2(real(h(i,i)),aimag(h(i,i)))
+-     &              + slapy2(real(h(i+1,i+1)), aimag(h(i+1,i+1)))
+-               if( tst1.eq.real(zero) )
+-     &              tst1 = clanhs( '1', k+np, h, ldh, workd(n+1) )
+-               if( slapy2(real(h(i+1,i)),aimag(h(i+1,i))) .le. 
+-     &                    max( ulp*tst1, smlnum ) ) 
+-     &             h(i+1,i) = zero
+- 110        continue
+-c     
+-            if (msglvl .gt. 2) then
+-               call cmout (logfil, k+np, k+np, h, ldh, ndigit, 
+-     &          '_naitr: Final upper Hessenberg matrix H of order K+NP')
+-            end if
+-c     
+-            go to 9000
+-         end if
+-c
+-c        %--------------------------------------------------------%
+-c        | Loop back to extend the factorization by another step. |
+-c        %--------------------------------------------------------%
+-c
+-      go to 1000
+-c 
+-c     %---------------------------------------------------------------%
+-c     |                                                               |
+-c     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  |
+-c     |                                                               |
+-c     %---------------------------------------------------------------%
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of cnaitr |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/cnapps.f
++++ /dev/null
+@@ -1,507 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: cnapps
+-c
+-c\Description:
+-c  Given the Arnoldi factorization
+-c
+-c     A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T,
+-c
+-c  apply NP implicit shifts resulting in
+-c
+-c     A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q
+-c
+-c  where Q is an orthogonal matrix which is the product of rotations
+-c  and reflections resulting from the NP bulge change sweeps.
+-c  The updated Arnoldi factorization becomes:
+-c
+-c     A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T.
+-c
+-c\Usage:
+-c  call cnapps
+-c     ( N, KEV, NP, SHIFT, V, LDV, H, LDH, RESID, Q, LDQ, 
+-c       WORKL, WORKD )
+-c
+-c\Arguments
+-c  N       Integer.  (INPUT)
+-c          Problem size, i.e. size of matrix A.
+-c
+-c  KEV     Integer.  (INPUT/OUTPUT)
+-c          KEV+NP is the size of the input matrix H.
+-c          KEV is the size of the updated matrix HNEW. 
+-c
+-c  NP      Integer.  (INPUT)
+-c          Number of implicit shifts to be applied.
+-c
+-c  SHIFT   Complex array of length NP.  (INPUT)
+-c          The shifts to be applied.
+-c
+-c  V       Complex N by (KEV+NP) array.  (INPUT/OUTPUT)
+-c          On INPUT, V contains the current KEV+NP Arnoldi vectors.
+-c          On OUTPUT, V contains the updated KEV Arnoldi vectors
+-c          in the first KEV columns of V.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling
+-c          program.
+-c
+-c  H       Complex (KEV+NP) by (KEV+NP) array.  (INPUT/OUTPUT)
+-c          On INPUT, H contains the current KEV+NP by KEV+NP upper 
+-c          Hessenberg matrix of the Arnoldi factorization.
+-c          On OUTPUT, H contains the updated KEV by KEV upper Hessenberg
+-c          matrix in the KEV leading submatrix.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling
+-c          program.
+-c
+-c  RESID   Complex array of length N.  (INPUT/OUTPUT)
+-c          On INPUT, RESID contains the the residual vector r_{k+p}.
+-c          On OUTPUT, RESID is the update residual vector rnew_{k} 
+-c          in the first KEV locations.
+-c
+-c  Q       Complex KEV+NP by KEV+NP work array.  (WORKSPACE)
+-c          Work array used to accumulate the rotations and reflections
+-c          during the bulge chase sweep.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c
+-c  WORKL   Complex work array of length (KEV+NP).  (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.
+-c
+-c  WORKD   Complex work array of length 2*N.  (WORKSPACE)
+-c          Distributed array used in the application of the accumulated
+-c          orthogonal matrix Q.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  Complex
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c
+-c\Routines called:
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     cmout   ARPACK utility routine that prints matrices
+-c     cvout   ARPACK utility routine that prints vectors.
+-c     clacpy  LAPACK matrix copy routine.
+-c     clanhs  LAPACK routine that computes various norms of a matrix.
+-c     clartg  LAPACK Givens rotation construction routine.
+-c     claset  LAPACK matrix initialization routine.
+-c     slabad  LAPACK routine for defining the underflow and overflow
+-c             limits.
+-c     slamch  LAPACK routine that determines machine constants.
+-c     slapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     cgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     caxpy   Level 1 BLAS that computes a vector triad.
+-c     ccopy   Level 1 BLAS that copies one vector to another.
+-c     cscal   Level 1 BLAS that scales a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas 
+-c
+-c\SCCS Information: @(#)
+-c FILE: napps.F   SID: 2.3   DATE OF SID: 3/28/97   RELEASE: 2
+-c
+-c\Remarks
+-c  1. In this version, each shift is applied to all the sublocks of
+-c     the Hessenberg matrix H and not just to the submatrix that it
+-c     comes from. Deflation as in LAPACK routine clahqr (QR algorithm
+-c     for upper Hessenberg matrices ) is used.
+-c     Upon output, the subdiagonals of H are enforced to be non-negative
+-c     real numbers.
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine cnapps
+-     &   ( n, kev, np, shift, v, ldv, h, ldh, resid, q, ldq, 
+-     &     workl, workd )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    kev, ldh, ldq, ldv, n, np
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Complex
+-     &           h(ldh,kev+np), resid(n), shift(np), 
+-     &           v(ldv,kev+np), q(ldq,kev+np), workd(2*n), workl(kev+np)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex
+-     &           one, zero
+-      Real
+-     &           rzero
+-      parameter (one = (1.0E+0, 0.0E+0), zero = (0.0E+0, 0.0E+0),
+-     &           rzero = 0.0E+0)
+-c
+-c     %------------------------%
+-c     | Local Scalars & Arrays |
+-c     %------------------------%
+-c
+-      integer    i, iend, istart, j, jj, kplusp, msglvl
+-      logical    first
+-      Complex
+-     &           cdum, f, g, h11, h21, r, s, sigma, t
+-      Real             
+-     &           c,  ovfl, smlnum, ulp, unfl, tst1
+-      save       first, ovfl, smlnum, ulp, unfl 
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   caxpy, ccopy, cgemv, cscal, clacpy, clartg, 
+-     &           cvout, claset, slabad, cmout, arscnd, ivout
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real                 
+-     &           clanhs, slamch, slapy2
+-      external   clanhs, slamch, slapy2
+-c
+-c     %----------------------%
+-c     | Intrinsics Functions |
+-c     %----------------------%
+-c
+-      intrinsic  abs, aimag, conjg, cmplx, max, min, real
+-c
+-c     %---------------------%
+-c     | Statement Functions |
+-c     %---------------------%
+-c
+-      Real     
+-     &           cabs1
+-      cabs1( cdum ) = abs( real( cdum ) ) + abs( aimag( cdum ) )
+-c
+-c     %----------------%
+-c     | Data statments |
+-c     %----------------%
+-c
+-      data       first / .true. /
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (first) then
+-c
+-c        %-----------------------------------------------%
+-c        | Set machine-dependent constants for the       |
+-c        | stopping criterion. If norm(H) <= sqrt(OVFL), |
+-c        | overflow should not occur.                    |
+-c        | REFERENCE: LAPACK subroutine clahqr           |
+-c        %-----------------------------------------------%
+-c
+-         unfl = slamch( 'safe minimum' )
+-         ovfl = real(one / unfl)
+-         call slabad( unfl, ovfl )
+-         ulp = slamch( 'precision' )
+-         smlnum = unfl*( n / ulp )
+-         first = .false.
+-      end if
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c
+-      call arscnd (t0)
+-      msglvl = mcapps
+-c 
+-      kplusp = kev + np 
+-c 
+-c     %--------------------------------------------%
+-c     | Initialize Q to the identity to accumulate |
+-c     | the rotations and reflections              |
+-c     %--------------------------------------------%
+-c
+-      call claset ('All', kplusp, kplusp, zero, one, q, ldq)
+-c
+-c     %----------------------------------------------%
+-c     | Quick return if there are no shifts to apply |
+-c     %----------------------------------------------%
+-c
+-      if (np .eq. 0) go to 9000
+-c
+-c     %----------------------------------------------%
+-c     | Chase the bulge with the application of each |
+-c     | implicit shift. Each shift is applied to the |
+-c     | whole matrix including each block.           |
+-c     %----------------------------------------------%
+-c
+-      do 110 jj = 1, np
+-         sigma = shift(jj)
+-c
+-         if (msglvl .gt. 2 ) then
+-            call ivout (logfil, 1, jj, ndigit, 
+-     &               '_napps: shift number.')
+-            call cvout (logfil, 1, sigma, ndigit, 
+-     &               '_napps: Value of the shift ')
+-         end if
+-c
+-         istart = 1
+-   20    continue
+-c
+-         do 30 i = istart, kplusp-1
+-c
+-c           %----------------------------------------%
+-c           | Check for splitting and deflation. Use |
+-c           | a standard test as in the QR algorithm |
+-c           | REFERENCE: LAPACK subroutine clahqr    |
+-c           %----------------------------------------%
+-c
+-            tst1 = cabs1( h( i, i ) ) + cabs1( h( i+1, i+1 ) )
+-            if( tst1.eq.rzero )
+-     &         tst1 = clanhs( '1', kplusp-jj+1, h, ldh, workl )
+-            if ( abs(real(h(i+1,i))) 
+-     &           .le. max(ulp*tst1, smlnum) )  then
+-               if (msglvl .gt. 0) then
+-                  call ivout (logfil, 1, i, ndigit, 
+-     &                 '_napps: matrix splitting at row/column no.')
+-                  call ivout (logfil, 1, jj, ndigit, 
+-     &                 '_napps: matrix splitting with shift number.')
+-                  call cvout (logfil, 1, h(i+1,i), ndigit, 
+-     &                 '_napps: off diagonal element.')
+-               end if
+-               iend = i
+-               h(i+1,i) = zero
+-               go to 40
+-            end if
+-   30    continue
+-         iend = kplusp
+-   40    continue
+-c
+-         if (msglvl .gt. 2) then
+-             call ivout (logfil, 1, istart, ndigit, 
+-     &                   '_napps: Start of current block ')
+-             call ivout (logfil, 1, iend, ndigit, 
+-     &                   '_napps: End of current block ')
+-         end if
+-c
+-c        %------------------------------------------------%
+-c        | No reason to apply a shift to block of order 1 |
+-c        | or if the current block starts after the point |
+-c        | of compression since we'll discard this stuff  |
+-c        %------------------------------------------------%
+-c
+-         if ( istart .eq. iend .or. istart .gt. kev) go to 100
+-c
+-         h11 = h(istart,istart)
+-         h21 = h(istart+1,istart)
+-         f = h11 - sigma
+-         g = h21
+-c 
+-         do 80 i = istart, iend-1
+-c
+-c           %------------------------------------------------------%
+-c           | Construct the plane rotation G to zero out the bulge |
+-c           %------------------------------------------------------%
+-c
+-            call clartg (f, g, c, s, r)
+-            if (i .gt. istart) then
+-               h(i,i-1) = r
+-               h(i+1,i-1) = zero
+-            end if
+-c
+-c           %---------------------------------------------%
+-c           | Apply rotation to the left of H;  H <- G'*H |
+-c           %---------------------------------------------%
+-c
+-            do 50 j = i, kplusp
+-               t        =  c*h(i,j) + s*h(i+1,j)
+-               h(i+1,j) = -conjg(s)*h(i,j) + c*h(i+1,j)
+-               h(i,j)   = t   
+-   50       continue
+-c
+-c           %---------------------------------------------%
+-c           | Apply rotation to the right of H;  H <- H*G |
+-c           %---------------------------------------------%
+-c
+-            do 60 j = 1, min(i+2,iend)
+-               t        =  c*h(j,i) + conjg(s)*h(j,i+1)
+-               h(j,i+1) = -s*h(j,i) + c*h(j,i+1)
+-               h(j,i)   = t   
+-   60       continue
+-c
+-c           %-----------------------------------------------------%
+-c           | Accumulate the rotation in the matrix Q;  Q <- Q*G' |
+-c           %-----------------------------------------------------%
+-c
+-            do 70 j = 1, min(i+jj, kplusp)
+-               t        =   c*q(j,i) + conjg(s)*q(j,i+1)
+-               q(j,i+1) = - s*q(j,i) + c*q(j,i+1)
+-               q(j,i)   = t   
+-   70       continue
+-c
+-c           %---------------------------%
+-c           | Prepare for next rotation |
+-c           %---------------------------%
+-c
+-            if (i .lt. iend-1) then
+-               f = h(i+1,i)
+-               g = h(i+2,i)
+-            end if
+-   80    continue
+-c
+-c        %-------------------------------%
+-c        | Finished applying the shift.  |
+-c        %-------------------------------%
+-c 
+-  100    continue
+-c
+-c        %---------------------------------------------------------%
+-c        | Apply the same shift to the next block if there is any. |
+-c        %---------------------------------------------------------%
+-c
+-         istart = iend + 1
+-         if (iend .lt. kplusp) go to 20
+-c
+-c        %---------------------------------------------%
+-c        | Loop back to the top to get the next shift. |
+-c        %---------------------------------------------%
+-c
+-  110 continue
+-c
+-c     %---------------------------------------------------%
+-c     | Perform a similarity transformation that makes    |
+-c     | sure that the compressed H will have non-negative |
+-c     | real subdiagonal elements.                        |
+-c     %---------------------------------------------------%
+-c
+-      do 120 j=1,kev
+-         if ( real( h(j+1,j) ) .lt. rzero .or.
+-     &        aimag( h(j+1,j) ) .ne. rzero ) then
+-            t = h(j+1,j) / slapy2(real(h(j+1,j)),aimag(h(j+1,j)))
+-            call cscal( kplusp-j+1, conjg(t), h(j+1,j), ldh )
+-            call cscal( min(j+2, kplusp), t, h(1,j+1), 1 )
+-            call cscal( min(j+np+1,kplusp), t, q(1,j+1), 1 )
+-            h(j+1,j) = cmplx( real( h(j+1,j) ), rzero )
+-         end if
+-  120 continue
+-c
+-      do 130 i = 1, kev
+-c
+-c        %--------------------------------------------%
+-c        | Final check for splitting and deflation.   |
+-c        | Use a standard test as in the QR algorithm |
+-c        | REFERENCE: LAPACK subroutine clahqr.       |
+-c        | Note: Since the subdiagonals of the        |
+-c        | compressed H are nonnegative real numbers, |
+-c        | we take advantage of this.                 |
+-c        %--------------------------------------------%
+-c
+-         tst1 = cabs1( h( i, i ) ) + cabs1( h( i+1, i+1 ) )
+-         if( tst1 .eq. rzero )
+-     &       tst1 = clanhs( '1', kev, h, ldh, workl )
+-         if( real( h( i+1,i ) ) .le. max( ulp*tst1, smlnum ) ) 
+-     &       h(i+1,i) = zero
+- 130  continue
+-c
+-c     %-------------------------------------------------%
+-c     | Compute the (kev+1)-st column of (V*Q) and      |
+-c     | temporarily store the result in WORKD(N+1:2*N). |
+-c     | This is needed in the residual update since we  |
+-c     | cannot GUARANTEE that the corresponding entry   |
+-c     | of H would be zero as in exact arithmetic.      |
+-c     %-------------------------------------------------%
+-c
+-      if ( real( h(kev+1,kev) ) .gt. rzero )
+-     &   call cgemv ('N', n, kplusp, one, v, ldv, q(1,kev+1), 1, zero, 
+-     &                workd(n+1), 1)
+-c 
+-c     %----------------------------------------------------------%
+-c     | Compute column 1 to kev of (V*Q) in backward order       |
+-c     | taking advantage of the upper Hessenberg structure of Q. |
+-c     %----------------------------------------------------------%
+-c
+-      do 140 i = 1, kev
+-         call cgemv ('N', n, kplusp-i+1, one, v, ldv,
+-     &               q(1,kev-i+1), 1, zero, workd, 1)
+-         call ccopy (n, workd, 1, v(1,kplusp-i+1), 1)
+-  140 continue
+-c
+-c     %-------------------------------------------------%
+-c     |  Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). |
+-c     %-------------------------------------------------%
+-c
+-      call clacpy ('A', n, kev, v(1,kplusp-kev+1), ldv, v, ldv)
+-c 
+-c     %--------------------------------------------------------------%
+-c     | Copy the (kev+1)-st column of (V*Q) in the appropriate place |
+-c     %--------------------------------------------------------------%
+-c
+-      if ( real( h(kev+1,kev) ) .gt. rzero )
+-     &   call ccopy (n, workd(n+1), 1, v(1,kev+1), 1)
+-c 
+-c     %-------------------------------------%
+-c     | Update the residual vector:         |
+-c     |    r <- sigmak*r + betak*v(:,kev+1) |
+-c     | where                               |
+-c     |    sigmak = (e_{kev+p}'*Q)*e_{kev}  |
+-c     |    betak = e_{kev+1}'*H*e_{kev}     |
+-c     %-------------------------------------%
+-c
+-      call cscal (n, q(kplusp,kev), resid, 1)
+-      if ( real( h(kev+1,kev) ) .gt. rzero )
+-     &   call caxpy (n, h(kev+1,kev), v(1,kev+1), 1, resid, 1)
+-c
+-      if (msglvl .gt. 1) then
+-         call cvout (logfil, 1, q(kplusp,kev), ndigit,
+-     &        '_napps: sigmak = (e_{kev+p}^T*Q)*e_{kev}')
+-         call cvout (logfil, 1, h(kev+1,kev), ndigit,
+-     &        '_napps: betak = e_{kev+1}^T*H*e_{kev}')
+-         call ivout (logfil, 1, kev, ndigit, 
+-     &               '_napps: Order of the final Hessenberg matrix ')
+-         if (msglvl .gt. 2) then
+-            call cmout (logfil, kev, kev, h, ldh, ndigit,
+-     &      '_napps: updated Hessenberg matrix H for next iteration')
+-         end if
+-c
+-      end if
+-c
+- 9000 continue
+-      call arscnd (t1)
+-      tcapps = tcapps + (t1 - t0)
+-c 
+-      return
+-c
+-c     %---------------%
+-c     | End of cnapps |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/cnaup2.f
++++ /dev/null
+@@ -1,801 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: cnaup2
+-c
+-c\Description: 
+-c  Intermediate level interface called by cnaupd.
+-c
+-c\Usage:
+-c  call cnaup2
+-c     ( IDO, BMAT, N, WHICH, NEV, NP, TOL, RESID, MODE, IUPD,
+-c       ISHIFT, MXITER, V, LDV, H, LDH, RITZ, BOUNDS, 
+-c       Q, LDQ, WORKL, IPNTR, WORKD, RWORK, INFO )
+-c
+-c\Arguments
+-c
+-c  IDO, BMAT, N, WHICH, NEV, TOL, RESID: same as defined in cnaupd.
+-c  MODE, ISHIFT, MXITER: see the definition of IPARAM in cnaupd.
+-c
+-c  NP      Integer.  (INPUT/OUTPUT)
+-c          Contains the number of implicit shifts to apply during
+-c          each Arnoldi iteration.
+-c          If ISHIFT=1, NP is adjusted dynamically at each iteration
+-c          to accelerate convergence and prevent stagnation.
+-c          This is also roughly equal to the number of matrix-vector
+-c          products (involving the operator OP) per Arnoldi iteration.
+-c          The logic for adjusting is contained within the current
+-c          subroutine.
+-c          If ISHIFT=0, NP is the number of shifts the user needs
+-c          to provide via reverse comunication. 0 < NP < NCV-NEV.
+-c          NP may be less than NCV-NEV since a leading block of the current
+-c          upper Hessenberg matrix has split off and contains "unwanted"
+-c          Ritz values.
+-c          Upon termination of the IRA iteration, NP contains the number
+-c          of "converged" wanted Ritz values.
+-c
+-c  IUPD    Integer.  (INPUT)
+-c          IUPD .EQ. 0: use explicit restart instead implicit update.
+-c          IUPD .NE. 0: use implicit update.
+-c
+-c  V       Complex  N by (NEV+NP) array.  (INPUT/OUTPUT)
+-c          The Arnoldi basis vectors are returned in the first NEV 
+-c          columns of V.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling 
+-c          program.
+-c
+-c  H       Complex  (NEV+NP) by (NEV+NP) array.  (OUTPUT)
+-c          H is used to store the generated upper Hessenberg matrix
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling 
+-c          program.
+-c
+-c  RITZ    Complex  array of length NEV+NP.  (OUTPUT)
+-c          RITZ(1:NEV)  contains the computed Ritz values of OP.
+-c
+-c  BOUNDS  Complex  array of length NEV+NP.  (OUTPUT)
+-c          BOUNDS(1:NEV) contain the error bounds corresponding to 
+-c          the computed Ritz values.
+-c          
+-c  Q       Complex  (NEV+NP) by (NEV+NP) array.  (WORKSPACE)
+-c          Private (replicated) work array used to accumulate the
+-c          rotation in the shift application step.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c
+-c  WORKL   Complex  work array of length at least 
+-c          (NEV+NP)**2 + 3*(NEV+NP).  (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  It is used in shifts calculation, shifts
+-c          application and convergence checking.
+-c
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORKD for 
+-c          vectors used by the Arnoldi iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X.
+-c          IPNTR(2): pointer to the current result vector Y.
+-c          IPNTR(3): pointer to the vector B * X when used in the 
+-c                    shift-and-invert mode.  X is the current operand.
+-c          -------------------------------------------------------------
+-c          
+-c  WORKD   Complex  work array of length 3*N.  (WORKSPACE)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The user should not use WORKD
+-c          as temporary workspace during the iteration !!!!!!!!!!
+-c          See Data Distribution Note in CNAUPD.
+-c
+-c  RWORK   Real    work array of length  NEV+NP ( WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.
+-c
+-c  INFO    Integer.  (INPUT/OUTPUT)
+-c          If INFO .EQ. 0, a randomly initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          Error flag on output.
+-c          =     0: Normal return.
+-c          =     1: Maximum number of iterations taken.
+-c                   All possible eigenvalues of OP has been found.  
+-c                   NP returns the number of converged Ritz values.
+-c          =     2: No shifts could be applied.
+-c          =    -8: Error return from LAPACK eigenvalue calculation;
+-c                   This should never happen.
+-c          =    -9: Starting vector is zero.
+-c          = -9999: Could not build an Arnoldi factorization.
+-c                   Size that was built in returned in NP.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  Complex 
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c
+-c\Routines called:
+-c     cgetv0  ARPACK initial vector generation routine. 
+-c     cnaitr  ARPACK Arnoldi factorization routine.
+-c     cnapps  ARPACK application of implicit shifts routine.
+-c     cneigh  ARPACK compute Ritz values and error bounds routine. 
+-c     cngets  ARPACK reorder Ritz values and error bounds routine.
+-c     csortc  ARPACK sorting routine.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     cmout   ARPACK utility routine that prints matrices
+-c     cvout   ARPACK utility routine that prints vectors.
+-c     svout   ARPACK utility routine that prints vectors.
+-c     slamch  LAPACK routine that determines machine constants.
+-c     slapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     ccopy   Level 1 BLAS that copies one vector to another .
+-c     cdotc   Level 1 BLAS that computes the scalar product of two vectors. 
+-c     cswap   Level 1 BLAS that swaps two vectors.
+-c     scnrm2  Level 1 BLAS that computes the norm of a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice Universitya
+-c     Chao Yang                    Houston, Texas
+-c     Dept. of Computational &
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas 
+-c 
+-c\SCCS Information: @(#)
+-c FILE: naup2.F   SID: 2.6   DATE OF SID: 06/01/00   RELEASE: 2
+-c
+-c\Remarks
+-c     1. None
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine cnaup2
+-     &   ( ido, bmat, n, which, nev, np, tol, resid, mode, iupd, 
+-     &     ishift, mxiter, v, ldv, h, ldh, ritz, bounds, 
+-     &     q, ldq, workl, ipntr, workd, rwork, info )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1, which*2
+-      integer    ido, info, ishift, iupd, mode, ldh, ldq, ldv, mxiter,
+-     &           n, nev, np
+-      Real   
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(13)
+-      Complex 
+-     &           bounds(nev+np), h(ldh,nev+np), q(ldq,nev+np), 
+-     &           resid(n), ritz(nev+np),  v(ldv,nev+np), 
+-     &           workd(3*n), workl( (nev+np)*(nev+np+3) )
+-       Real   
+-     &           rwork(nev+np)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex 
+-     &           one, zero
+-      Real 
+-     &           rzero
+-      parameter (one = (1.0E+0, 0.0E+0) , zero = (0.0E+0, 0.0E+0) ,
+-     &           rzero = 0.0E+0 )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      logical    cnorm , getv0, initv , update, ushift
+-      integer    ierr  , iter , kplusp, msglvl, nconv, 
+-     &           nevbef, nev0 , np0   , nptemp, i    ,
+-     &           j    
+-      Complex 
+-     &           cmpnorm
+-      Real 
+-     &           rnorm , eps23, rtemp
+-      character  wprime*2
+-c
+-      save       cnorm,  getv0, initv , update, ushift, 
+-     &           rnorm,  iter , kplusp, msglvl, nconv ,
+-     &           nevbef, nev0 , np0   , eps23
+-c
+-c
+-c     %-----------------------%
+-c     | Local array arguments |
+-c     %-----------------------%
+-c
+-      integer    kp(3)
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   ccopy, cgetv0, cnaitr, cneigh, cngets, cnapps,
+-     &           csortc, cswap, cmout, cvout, ivout, arscnd
+-c
+-c     %--------------------%
+-c     | External functions |
+-c     %--------------------%
+-c
+-      Complex 
+-     &           cdotc
+-      Real   
+-     &           scnrm2, slamch, slapy2
+-      external   cdotc, scnrm2, slamch, slapy2
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic  aimag, real , min, max
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (ido .eq. 0) then
+-c 
+-         call arscnd (t0)
+-c 
+-         msglvl = mcaup2
+-c 
+-         nev0   = nev
+-         np0    = np
+-c
+-c        %-------------------------------------%
+-c        | kplusp is the bound on the largest  |
+-c        |        Lanczos factorization built. |
+-c        | nconv is the current number of      |
+-c        |        "converged" eigenvalues.     |
+-c        | iter is the counter on the current  |
+-c        |      iteration step.                |
+-c        %-------------------------------------%
+-c
+-         kplusp = nev + np
+-         nconv  = 0
+-         iter   = 0
+-c 
+-c        %---------------------------------%
+-c        | Get machine dependent constant. |
+-c        %---------------------------------%
+-c
+-         eps23 = slamch('Epsilon-Machine')
+-         eps23 = eps23**(2.0E+0  / 3.0E+0 )
+-c
+-c        %---------------------------------------%
+-c        | Set flags for computing the first NEV |
+-c        | steps of the Arnoldi factorization.   |
+-c        %---------------------------------------%
+-c
+-         getv0    = .true.
+-         update   = .false.
+-         ushift   = .false.
+-         cnorm    = .false.
+-c
+-         if (info .ne. 0) then
+-c
+-c           %--------------------------------------------%
+-c           | User provides the initial residual vector. |
+-c           %--------------------------------------------%
+-c
+-            initv = .true.
+-            info  = 0
+-         else
+-            initv = .false.
+-         end if
+-      end if
+-c 
+-c     %---------------------------------------------%
+-c     | Get a possibly random starting vector and   |
+-c     | force it into the range of the operator OP. |
+-c     %---------------------------------------------%
+-c
+-   10 continue
+-c
+-      if (getv0) then
+-         call cgetv0 (ido, bmat, 1, initv, n, 1, v, ldv, resid, rnorm,
+-     &                ipntr, workd, info)
+-c
+-         if (ido .ne. 99) go to 9000
+-c
+-         if (rnorm .eq. rzero) then
+-c
+-c           %-----------------------------------------%
+-c           | The initial vector is zero. Error exit. | 
+-c           %-----------------------------------------%
+-c
+-            info = -9
+-            go to 1100
+-         end if
+-         getv0 = .false.
+-         ido  = 0
+-      end if
+-c 
+-c     %-----------------------------------%
+-c     | Back from reverse communication : |
+-c     | continue with update step         |
+-c     %-----------------------------------%
+-c
+-      if (update) go to 20
+-c
+-c     %-------------------------------------------%
+-c     | Back from computing user specified shifts |
+-c     %-------------------------------------------%
+-c
+-      if (ushift) go to 50
+-c
+-c     %-------------------------------------%
+-c     | Back from computing residual norm   |
+-c     | at the end of the current iteration |
+-c     %-------------------------------------%
+-c
+-      if (cnorm)  go to 100
+-c 
+-c     %----------------------------------------------------------%
+-c     | Compute the first NEV steps of the Arnoldi factorization |
+-c     %----------------------------------------------------------%
+-c
+-      call cnaitr (ido, bmat, n, 0, nev, mode, resid, rnorm, v, ldv, 
+-     &             h, ldh, ipntr, workd, info)
+-c
+-      if (ido .ne. 99) go to 9000
+-c
+-      if (info .gt. 0) then
+-         np   = info
+-         mxiter = iter
+-         info = -9999
+-         go to 1200
+-      end if
+-c 
+-c     %--------------------------------------------------------------%
+-c     |                                                              |
+-c     |           M A I N  ARNOLDI  I T E R A T I O N  L O O P       |
+-c     |           Each iteration implicitly restarts the Arnoldi     |
+-c     |           factorization in place.                            |
+-c     |                                                              |
+-c     %--------------------------------------------------------------%
+-c 
+- 1000 continue
+-c
+-         iter = iter + 1
+-c
+-         if (msglvl .gt. 0) then
+-            call ivout (logfil, 1, iter, ndigit, 
+-     &           '_naup2: **** Start of major iteration number ****')
+-         end if
+-c 
+-c        %-----------------------------------------------------------%
+-c        | Compute NP additional steps of the Arnoldi factorization. |
+-c        | Adjust NP since NEV might have been updated by last call  |
+-c        | to the shift application routine cnapps.                  |
+-c        %-----------------------------------------------------------%
+-c
+-         np  = kplusp - nev
+-c
+-         if (msglvl .gt. 1) then
+-            call ivout (logfil, 1, nev, ndigit, 
+-     &     '_naup2: The length of the current Arnoldi factorization')
+-            call ivout (logfil, 1, np, ndigit, 
+-     &           '_naup2: Extend the Arnoldi factorization by')
+-         end if
+-c
+-c        %-----------------------------------------------------------%
+-c        | Compute NP additional steps of the Arnoldi factorization. |
+-c        %-----------------------------------------------------------%
+-c
+-         ido = 0
+-   20    continue
+-         update = .true.
+-c
+-         call cnaitr(ido, bmat, n, nev, np,    mode,  resid, rnorm,
+-     &               v  , ldv , h, ldh, ipntr, workd, info)
+-c
+-         if (ido .ne. 99) go to 9000
+-c
+-         if (info .gt. 0) then
+-            np = info
+-            mxiter = iter
+-            info = -9999
+-            go to 1200
+-         end if
+-         update = .false.
+-c
+-         if (msglvl .gt. 1) then
+-            call svout (logfil, 1, rnorm, ndigit, 
+-     &           '_naup2: Corresponding B-norm of the residual')
+-         end if
+-c 
+-c        %--------------------------------------------------------%
+-c        | Compute the eigenvalues and corresponding error bounds |
+-c        | of the current upper Hessenberg matrix.                |
+-c        %--------------------------------------------------------%
+-c
+-         call cneigh (rnorm, kplusp, h, ldh, ritz, bounds,
+-     &                q, ldq, workl, rwork,  ierr)
+-c
+-         if (ierr .ne. 0) then
+-            info = -8
+-            go to 1200
+-         end if
+-c
+-c        %---------------------------------------------------%
+-c        | Select the wanted Ritz values and their bounds    |
+-c        | to be used in the convergence test.               |
+-c        | The wanted part of the spectrum and corresponding |
+-c        | error bounds are in the last NEV loc. of RITZ,    |
+-c        | and BOUNDS respectively.                          | 
+-c        %---------------------------------------------------%
+-c
+-         nev = nev0
+-         np = np0
+-c
+-c        %--------------------------------------------------%
+-c        | Make a copy of Ritz values and the corresponding |
+-c        | Ritz estimates obtained from cneigh.             |
+-c        %--------------------------------------------------%
+-c
+-         call ccopy(kplusp,ritz,1,workl(kplusp**2+1),1)
+-         call ccopy(kplusp,bounds,1,workl(kplusp**2+kplusp+1),1)
+-c
+-c        %---------------------------------------------------%
+-c        | Select the wanted Ritz values and their bounds    |
+-c        | to be used in the convergence test.               |
+-c        | The wanted part of the spectrum and corresponding |
+-c        | bounds are in the last NEV loc. of RITZ           |
+-c        | BOUNDS respectively.                              |
+-c        %---------------------------------------------------%
+-c
+-         call cngets (ishift, which, nev, np, ritz, bounds)
+-c 
+-c        %------------------------------------------------------------%
+-c        | Convergence test: currently we use the following criteria. |
+-c        | The relative accuracy of a Ritz value is considered        |
+-c        | acceptable if:                                             |
+-c        |                                                            |
+-c        | error_bounds(i) .le. tol*max(eps23, magnitude_of_ritz(i)). |
+-c        |                                                            |
+-c        %------------------------------------------------------------%
+-c
+-         nconv  = 0
+-c
+-         do 25 i = 1, nev
+-            rtemp = max( eps23, slapy2( real (ritz(np+i)),
+-     &                                  aimag(ritz(np+i)) ) ) 
+-            if ( slapy2(real (bounds(np+i)),aimag(bounds(np+i))) 
+-     &                 .le. tol*rtemp ) then
+-               nconv = nconv + 1
+-            end if
+-   25    continue
+-c 
+-         if (msglvl .gt. 2) then
+-            kp(1) = nev
+-            kp(2) = np
+-            kp(3) = nconv
+-            call ivout (logfil, 3, kp, ndigit, 
+-     &                  '_naup2: NEV, NP, NCONV are')
+-            call cvout (logfil, kplusp, ritz, ndigit,
+-     &           '_naup2: The eigenvalues of H')
+-            call cvout (logfil, kplusp, bounds, ndigit, 
+-     &          '_naup2: Ritz estimates of the current NCV Ritz values')
+-         end if
+-c
+-c        %---------------------------------------------------------%
+-c        | Count the number of unwanted Ritz values that have zero |
+-c        | Ritz estimates. If any Ritz estimates are equal to zero |
+-c        | then a leading block of H of order equal to at least    |
+-c        | the number of Ritz values with zero Ritz estimates has  |
+-c        | split off. None of these Ritz values may be removed by  |
+-c        | shifting. Decrease NP the number of shifts to apply. If |
+-c        | no shifts may be applied, then prepare to exit          |
+-c        %---------------------------------------------------------%
+-c
+-         nptemp = np
+-         do 30 j=1, nptemp
+-            if (bounds(j) .eq. zero) then
+-               np = np - 1
+-               nev = nev + 1
+-            end if
+- 30      continue
+-c     
+-         if ( (nconv .ge. nev0) .or. 
+-     &        (iter .gt. mxiter) .or.
+-     &        (np .eq. 0) ) then
+-c
+-            if (msglvl .gt. 4) then
+-               call cvout(logfil, kplusp, workl(kplusp**2+1), ndigit,
+-     &             '_naup2: Eigenvalues computed by _neigh:')
+-               call cvout(logfil, kplusp, workl(kplusp**2+kplusp+1),
+-     &                     ndigit,
+-     &             '_naup2: Ritz estimates computed by _neigh:')
+-            end if
+-c     
+-c           %------------------------------------------------%
+-c           | Prepare to exit. Put the converged Ritz values |
+-c           | and corresponding bounds in RITZ(1:NCONV) and  |
+-c           | BOUNDS(1:NCONV) respectively. Then sort. Be    |
+-c           | careful when NCONV > NP                        |
+-c           %------------------------------------------------%
+-c
+-c           %------------------------------------------%
+-c           |  Use h( 3,1 ) as storage to communicate  |
+-c           |  rnorm to cneupd if needed               |
+-c           %------------------------------------------%
+-
+-            h(3,1) = cmplx(rnorm,rzero)
+-c
+-c           %----------------------------------------------%
+-c           | Sort Ritz values so that converged Ritz      |
+-c           | values appear within the first NEV locations |
+-c           | of ritz and bounds, and the most desired one |
+-c           | appears at the front.                        |
+-c           %----------------------------------------------%
+-c
+-            if (which .eq. 'LM') wprime = 'SM'
+-            if (which .eq. 'SM') wprime = 'LM'
+-            if (which .eq. 'LR') wprime = 'SR'
+-            if (which .eq. 'SR') wprime = 'LR'
+-            if (which .eq. 'LI') wprime = 'SI'
+-            if (which .eq. 'SI') wprime = 'LI'
+-c
+-            call csortc(wprime, .true., kplusp, ritz, bounds)
+-c
+-c           %--------------------------------------------------%
+-c           | Scale the Ritz estimate of each Ritz value       |
+-c           | by 1 / max(eps23, magnitude of the Ritz value).  |
+-c           %--------------------------------------------------%
+-c
+-            do 35 j = 1, nev0 
+-                rtemp = max( eps23, slapy2( real (ritz(j)),
+-     &                                       aimag(ritz(j)) ) )
+-                bounds(j) = bounds(j)/rtemp
+- 35         continue
+-c
+-c           %---------------------------------------------------%
+-c           | Sort the Ritz values according to the scaled Ritz |
+-c           | estimates.  This will push all the converged ones |
+-c           | towards the front of ritz, bounds (in the case    |
+-c           | when NCONV < NEV.)                                |
+-c           %---------------------------------------------------%
+-c
+-            wprime = 'LM'
+-            call csortc(wprime, .true., nev0, bounds, ritz)
+-c
+-c           %----------------------------------------------%
+-c           | Scale the Ritz estimate back to its original |
+-c           | value.                                       |
+-c           %----------------------------------------------%
+-c
+-            do 40 j = 1, nev0
+-                rtemp = max( eps23, slapy2( real (ritz(j)),
+-     &                                       aimag(ritz(j)) ) )
+-                bounds(j) = bounds(j)*rtemp
+- 40         continue
+-c
+-c           %-----------------------------------------------%
+-c           | Sort the converged Ritz values again so that  |
+-c           | the "threshold" value appears at the front of |
+-c           | ritz and bound.                               |
+-c           %-----------------------------------------------%
+-c
+-            call csortc(which, .true., nconv, ritz, bounds)
+-c
+-            if (msglvl .gt. 1) then
+-               call cvout (logfil, kplusp, ritz, ndigit,
+-     &            '_naup2: Sorted eigenvalues')
+-               call cvout (logfil, kplusp, bounds, ndigit,
+-     &            '_naup2: Sorted ritz estimates.')
+-            end if
+-c
+-c           %------------------------------------%
+-c           | Max iterations have been exceeded. | 
+-c           %------------------------------------%
+-c
+-            if (iter .gt. mxiter .and. nconv .lt. nev0) info = 1
+-c
+-c           %---------------------%
+-c           | No shifts to apply. | 
+-c           %---------------------%
+-c
+-            if (np .eq. 0 .and. nconv .lt. nev0)  info = 2
+-c
+-            np = nconv
+-            go to 1100
+-c
+-         else if ( (nconv .lt. nev0) .and. (ishift .eq. 1) ) then
+-c     
+-c           %-------------------------------------------------%
+-c           | Do not have all the requested eigenvalues yet.  |
+-c           | To prevent possible stagnation, adjust the size |
+-c           | of NEV.                                         |
+-c           %-------------------------------------------------%
+-c
+-            nevbef = nev
+-            nev = nev + min(nconv, np/2)
+-            if (nev .eq. 1 .and. kplusp .ge. 6) then
+-               nev = kplusp / 2
+-            else if (nev .eq. 1 .and. kplusp .gt. 3) then
+-               nev = 2
+-            end if
+-            np = kplusp - nev
+-c     
+-c           %---------------------------------------%
+-c           | If the size of NEV was just increased |
+-c           | resort the eigenvalues.               |
+-c           %---------------------------------------%
+-c     
+-            if (nevbef .lt. nev) 
+-     &         call cngets (ishift, which, nev, np, ritz, bounds)
+-c
+-         end if              
+-c     
+-         if (msglvl .gt. 0) then
+-            call ivout (logfil, 1, nconv, ndigit, 
+-     &           '_naup2: no. of "converged" Ritz values at this iter.')
+-            if (msglvl .gt. 1) then
+-               kp(1) = nev
+-               kp(2) = np
+-               call ivout (logfil, 2, kp, ndigit, 
+-     &              '_naup2: NEV and NP are')
+-               call cvout (logfil, nev, ritz(np+1), ndigit,
+-     &              '_naup2: "wanted" Ritz values ')
+-               call cvout (logfil, nev, bounds(np+1), ndigit,
+-     &              '_naup2: Ritz estimates of the "wanted" values ')
+-            end if
+-         end if
+-c
+-         if (ishift .eq. 0) then
+-c
+-c           %-------------------------------------------------------%
+-c           | User specified shifts: pop back out to get the shifts |
+-c           | and return them in the first 2*NP locations of WORKL. |
+-c           %-------------------------------------------------------%
+-c
+-            ushift = .true.
+-            ido = 3
+-            go to 9000
+-         end if
+-   50    continue
+-         ushift = .false.
+-c
+-         if ( ishift .ne. 1 ) then
+-c 
+-c            %----------------------------------%
+-c            | Move the NP shifts from WORKL to |
+-c            | RITZ, to free up WORKL           |
+-c            | for non-exact shift case.        |
+-c            %----------------------------------%
+-c
+-             call ccopy (np, workl, 1, ritz, 1)
+-         end if
+-c
+-         if (msglvl .gt. 2) then 
+-            call ivout (logfil, 1, np, ndigit, 
+-     &                  '_naup2: The number of shifts to apply ')
+-            call cvout (logfil, np, ritz, ndigit,
+-     &                  '_naup2: values of the shifts')
+-            if ( ishift .eq. 1 ) 
+-     &          call cvout (logfil, np, bounds, ndigit,
+-     &                  '_naup2: Ritz estimates of the shifts')
+-         end if
+-c
+-c        %---------------------------------------------------------%
+-c        | Apply the NP implicit shifts by QR bulge chasing.       |
+-c        | Each shift is applied to the whole upper Hessenberg     |
+-c        | matrix H.                                               |
+-c        | The first 2*N locations of WORKD are used as workspace. |
+-c        %---------------------------------------------------------%
+-c
+-         call cnapps (n, nev, np, ritz, v, ldv, 
+-     &                h, ldh, resid, q, ldq, workl, workd)
+-c
+-c        %---------------------------------------------%
+-c        | Compute the B-norm of the updated residual. |
+-c        | Keep B*RESID in WORKD(1:N) to be used in    |
+-c        | the first step of the next call to cnaitr.  |
+-c        %---------------------------------------------%
+-c
+-         cnorm = .true.
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call ccopy (n, resid, 1, workd(n+1), 1)
+-            ipntr(1) = n + 1
+-            ipntr(2) = 1
+-            ido = 2
+-c 
+-c           %----------------------------------%
+-c           | Exit in order to compute B*RESID |
+-c           %----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call ccopy (n, resid, 1, workd, 1)
+-         end if
+-c 
+-  100    continue
+-c 
+-c        %----------------------------------%
+-c        | Back from reverse communication; |
+-c        | WORKD(1:N) := B*RESID            |
+-c        %----------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c 
+-         if (bmat .eq. 'G') then         
+-            cmpnorm = cdotc (n, resid, 1, workd, 1)
+-            rnorm = sqrt(slapy2(real (cmpnorm),aimag(cmpnorm)))
+-         else if (bmat .eq. 'I') then
+-            rnorm = scnrm2(n, resid, 1)
+-         end if
+-         cnorm = .false.
+-c
+-         if (msglvl .gt. 2) then
+-            call svout (logfil, 1, rnorm, ndigit, 
+-     &      '_naup2: B-norm of residual for compressed factorization')
+-            call cmout (logfil, nev, nev, h, ldh, ndigit,
+-     &        '_naup2: Compressed upper Hessenberg matrix H')
+-         end if
+-c 
+-      go to 1000
+-c
+-c     %---------------------------------------------------------------%
+-c     |                                                               |
+-c     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  |
+-c     |                                                               |
+-c     %---------------------------------------------------------------%
+-c
+- 1100 continue
+-c
+-      mxiter = iter
+-      nev = nconv
+-c     
+- 1200 continue
+-      ido = 99
+-c
+-c     %------------%
+-c     | Error Exit |
+-c     %------------%
+-c
+-      call arscnd (t1)
+-      tcaup2 = t1 - t0
+-c     
+- 9000 continue
+-c
+-c     %---------------%
+-c     | End of cnaup2 |
+-c     %---------------%
+-c
+-      return
+-      end
+--- a/libcruft/arpack/src/cnaupd.f
++++ /dev/null
+@@ -1,664 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: cnaupd
+-c
+-c\Description: 
+-c  Reverse communication interface for the Implicitly Restarted Arnoldi
+-c  iteration. This is intended to be used to find a few eigenpairs of a 
+-c  complex linear operator OP with respect to a semi-inner product defined 
+-c  by a hermitian positive semi-definite real matrix B. B may be the identity 
+-c  matrix.  NOTE: if both OP and B are real, then ssaupd or snaupd should
+-c  be used.
+-c
+-c
+-c  The computed approximate eigenvalues are called Ritz values and
+-c  the corresponding approximate eigenvectors are called Ritz vectors.
+-c
+-c  cnaupd is usually called iteratively to solve one of the 
+-c  following problems:
+-c
+-c  Mode 1:  A*x = lambda*x.
+-c           ===> OP = A  and  B = I.
+-c
+-c  Mode 2:  A*x = lambda*M*x, M hermitian positive definite
+-c           ===> OP = inv[M]*A  and  B = M.
+-c           ===> (If M can be factored see remark 3 below)
+-c
+-c  Mode 3:  A*x = lambda*M*x, M hermitian semi-definite
+-c           ===> OP =  inv[A - sigma*M]*M   and  B = M. 
+-c           ===> shift-and-invert mode 
+-c           If OP*x = amu*x, then lambda = sigma + 1/amu.
+-c  
+-c
+-c  NOTE: The action of w <- inv[A - sigma*M]*v or w <- inv[M]*v
+-c        should be accomplished either by a direct method
+-c        using a sparse matrix factorization and solving
+-c
+-c           [A - sigma*M]*w = v  or M*w = v,
+-c
+-c        or through an iterative method for solving these
+-c        systems.  If an iterative method is used, the
+-c        convergence test must be more stringent than
+-c        the accuracy requirements for the eigenvalue
+-c        approximations.
+-c
+-c\Usage:
+-c  call cnaupd
+-c     ( IDO, BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM,
+-c       IPNTR, WORKD, WORKL, LWORKL, RWORK, INFO )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.  IDO must be zero on the first 
+-c          call to cnaupd.  IDO will be set internally to
+-c          indicate the type of operation to be performed.  Control is
+-c          then given back to the calling routine which has the
+-c          responsibility to carry out the requested operation and call
+-c          cnaupd with the result.  The operand is given in
+-c          WORKD(IPNTR(1)), the result must be put in WORKD(IPNTR(2)).
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    This is for the initialization phase to force the
+-c                    starting vector into the range of OP.
+-c          IDO =  1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    In mode 3, the vector B * X is already
+-c                    available in WORKD(ipntr(3)).  It does not
+-c                    need to be recomputed in forming OP * X.
+-c          IDO =  2: compute  Y = M * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c          IDO =  3: compute and return the shifts in the first 
+-c                    NP locations of WORKL.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c          After the initialization phase, when the routine is used in 
+-c          the "shift-and-invert" mode, the vector M * X is already 
+-c          available and does not need to be recomputed in forming OP*X.
+-c             
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of the matrix B that defines the
+-c          semi-inner product for the operator OP.
+-c          BMAT = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          BMAT = 'G' -> generalized eigenvalue problem A*x = lambda*M*x
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the eigenproblem.
+-c
+-c  WHICH   Character*2.  (INPUT)
+-c          'LM' -> want the NEV eigenvalues of largest magnitude.
+-c          'SM' -> want the NEV eigenvalues of smallest magnitude.
+-c          'LR' -> want the NEV eigenvalues of largest real part.
+-c          'SR' -> want the NEV eigenvalues of smallest real part.
+-c          'LI' -> want the NEV eigenvalues of largest imaginary part.
+-c          'SI' -> want the NEV eigenvalues of smallest imaginary part.
+-c
+-c  NEV     Integer.  (INPUT)
+-c          Number of eigenvalues of OP to be computed. 0 < NEV < N-1.
+-c
+-c  TOL     Real   scalar.  (INPUT)
+-c          Stopping criteria: the relative accuracy of the Ritz value 
+-c          is considered acceptable if BOUNDS(I) .LE. TOL*ABS(RITZ(I))
+-c          where ABS(RITZ(I)) is the magnitude when RITZ(I) is complex.
+-c          DEFAULT = slamch('EPS')  (machine precision as computed
+-c                    by the LAPACK auxiliary subroutine slamch).
+-c
+-c  RESID   Complex  array of length N.  (INPUT/OUTPUT)
+-c          On INPUT: 
+-c          If INFO .EQ. 0, a random initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          On OUTPUT:
+-c          RESID contains the final residual vector.
+-c
+-c  NCV     Integer.  (INPUT)
+-c          Number of columns of the matrix V. NCV must satisfy the two
+-c          inequalities 1 <= NCV-NEV and NCV <= N.
+-c          This will indicate how many Arnoldi vectors are generated 
+-c          at each iteration.  After the startup phase in which NEV 
+-c          Arnoldi vectors are generated, the algorithm generates 
+-c          approximately NCV-NEV Arnoldi vectors at each subsequent update 
+-c          iteration. Most of the cost in generating each Arnoldi vector is 
+-c          in the matrix-vector operation OP*x. (See remark 4 below.)
+-c
+-c  V       Complex  array N by NCV.  (OUTPUT)
+-c          Contains the final set of Arnoldi basis vectors. 
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling program.
+-c
+-c  IPARAM  Integer array of length 11.  (INPUT/OUTPUT)
+-c          IPARAM(1) = ISHIFT: method for selecting the implicit shifts.
+-c          The shifts selected at each iteration are used to filter out
+-c          the components of the unwanted eigenvector.
+-c          -------------------------------------------------------------
+-c          ISHIFT = 0: the shifts are to be provided by the user via
+-c                      reverse communication.  The NCV eigenvalues of 
+-c                      the Hessenberg matrix H are returned in the part
+-c                      of WORKL array corresponding to RITZ.
+-c          ISHIFT = 1: exact shifts with respect to the current
+-c                      Hessenberg matrix H.  This is equivalent to 
+-c                      restarting the iteration from the beginning 
+-c                      after updating the starting vector with a linear
+-c                      combination of Ritz vectors associated with the 
+-c                      "wanted" eigenvalues.
+-c          ISHIFT = 2: other choice of internal shift to be defined.
+-c          -------------------------------------------------------------
+-c
+-c          IPARAM(2) = No longer referenced 
+-c
+-c          IPARAM(3) = MXITER
+-c          On INPUT:  maximum number of Arnoldi update iterations allowed. 
+-c          On OUTPUT: actual number of Arnoldi update iterations taken. 
+-c
+-c          IPARAM(4) = NB: blocksize to be used in the recurrence.
+-c          The code currently works only for NB = 1.
+-c
+-c          IPARAM(5) = NCONV: number of "converged" Ritz values.
+-c          This represents the number of Ritz values that satisfy
+-c          the convergence criterion.
+-c
+-c          IPARAM(6) = IUPD
+-c          No longer referenced. Implicit restarting is ALWAYS used.  
+-c
+-c          IPARAM(7) = MODE
+-c          On INPUT determines what type of eigenproblem is being solved.
+-c          Must be 1,2,3; See under \Description of cnaupd for the 
+-c          four modes available.
+-c
+-c          IPARAM(8) = NP
+-c          When ido = 3 and the user provides shifts through reverse
+-c          communication (IPARAM(1)=0), _naupd returns NP, the number
+-c          of shifts the user is to provide. 0 < NP < NCV-NEV.
+-c
+-c          IPARAM(9) = NUMOP, IPARAM(10) = NUMOPB, IPARAM(11) = NUMREO,
+-c          OUTPUT: NUMOP  = total number of OP*x operations,
+-c                  NUMOPB = total number of B*x operations if BMAT='G',
+-c                  NUMREO = total number of steps of re-orthogonalization.
+-c
+-c  IPNTR   Integer array of length 14.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORKD and WORKL
+-c          arrays for matrices/vectors used by the Arnoldi iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X in WORKD.
+-c          IPNTR(2): pointer to the current result vector Y in WORKD.
+-c          IPNTR(3): pointer to the vector B * X in WORKD when used in 
+-c                    the shift-and-invert mode.
+-c          IPNTR(4): pointer to the next available location in WORKL
+-c                    that is untouched by the program.
+-c          IPNTR(5): pointer to the NCV by NCV upper Hessenberg
+-c                    matrix H in WORKL.
+-c          IPNTR(6): pointer to the  ritz value array  RITZ
+-c          IPNTR(7): pointer to the (projected) ritz vector array Q
+-c          IPNTR(8): pointer to the error BOUNDS array in WORKL.
+-c          IPNTR(14): pointer to the NP shifts in WORKL. See Remark 5 below.
+-c
+-c          Note: IPNTR(9:13) is only referenced by cneupd. See Remark 2 below.
+-c
+-c          IPNTR(9): pointer to the NCV RITZ values of the 
+-c                    original system.
+-c          IPNTR(10): Not Used
+-c          IPNTR(11): pointer to the NCV corresponding error bounds.
+-c          IPNTR(12): pointer to the NCV by NCV upper triangular
+-c                     Schur matrix for H.
+-c          IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors
+-c                     of the upper Hessenberg matrix H. Only referenced by
+-c                     cneupd if RVEC = .TRUE. See Remark 2 below.
+-c
+-c          -------------------------------------------------------------
+-c          
+-c  WORKD   Complex  work array of length 3*N.  (REVERSE COMMUNICATION)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The user should not use WORKD 
+-c          as temporary workspace during the iteration !!!!!!!!!!
+-c          See Data Distribution Note below.  
+-c
+-c  WORKL   Complex  work array of length LWORKL.  (OUTPUT/WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  See Data Distribution Note below.
+-c
+-c  LWORKL  Integer.  (INPUT)
+-c          LWORKL must be at least 3*NCV**2 + 5*NCV.
+-c
+-c  RWORK   Real   work array of length NCV (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.
+-c
+-c
+-c  INFO    Integer.  (INPUT/OUTPUT)
+-c          If INFO .EQ. 0, a randomly initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          Error flag on output.
+-c          =  0: Normal exit.
+-c          =  1: Maximum number of iterations taken.
+-c                All possible eigenvalues of OP has been found. IPARAM(5)  
+-c                returns the number of wanted converged Ritz values.
+-c          =  2: No longer an informational error. Deprecated starting
+-c                with release 2 of ARPACK.
+-c          =  3: No shifts could be applied during a cycle of the 
+-c                Implicitly restarted Arnoldi iteration. One possibility 
+-c                is to increase the size of NCV relative to NEV. 
+-c                See remark 4 below.
+-c          = -1: N must be positive.
+-c          = -2: NEV must be positive.
+-c          = -3: NCV-NEV >= 2 and less than or equal to N.
+-c          = -4: The maximum number of Arnoldi update iteration 
+-c                must be greater than zero.
+-c          = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'
+-c          = -6: BMAT must be one of 'I' or 'G'.
+-c          = -7: Length of private work array is not sufficient.
+-c          = -8: Error return from LAPACK eigenvalue calculation;
+-c          = -9: Starting vector is zero.
+-c          = -10: IPARAM(7) must be 1,2,3.
+-c          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
+-c          = -12: IPARAM(1) must be equal to 0 or 1.
+-c          = -9999: Could not build an Arnoldi factorization.
+-c                   User input error highly likely.  Please
+-c                   check actual array dimensions and layout.
+-c                   IPARAM(5) returns the size of the current Arnoldi
+-c                   factorization.
+-c
+-c\Remarks
+-c  1. The computed Ritz values are approximate eigenvalues of OP. The
+-c     selection of WHICH should be made with this in mind when using
+-c     Mode = 3.  When operating in Mode = 3 setting WHICH = 'LM' will
+-c     compute the NEV eigenvalues of the original problem that are
+-c     closest to the shift SIGMA . After convergence, approximate eigenvalues 
+-c     of the original problem may be obtained with the ARPACK subroutine cneupd.
+-c
+-c  2. If a basis for the invariant subspace corresponding to the converged Ritz 
+-c     values is needed, the user must call cneupd immediately following 
+-c     completion of cnaupd. This is new starting with release 2 of ARPACK.
+-c
+-c  3. If M can be factored into a Cholesky factorization M = LL`
+-c     then Mode = 2 should not be selected.  Instead one should use
+-c     Mode = 1 with  OP = inv(L)*A*inv(L`).  Appropriate triangular 
+-c     linear systems should be solved with L and L` rather
+-c     than computing inverses.  After convergence, an approximate
+-c     eigenvector z of the original problem is recovered by solving
+-c     L`z = x  where x is a Ritz vector of OP.
+-c
+-c  4. At present there is no a-priori analysis to guide the selection
+-c     of NCV relative to NEV.  The only formal requirement is that NCV > NEV + 1.
+-c     However, it is recommended that NCV .ge. 2*NEV.  If many problems of
+-c     the same type are to be solved, one should experiment with increasing
+-c     NCV while keeping NEV fixed for a given test problem.  This will 
+-c     usually decrease the required number of OP*x operations but it
+-c     also increases the work and storage required to maintain the orthogonal
+-c     basis vectors.  The optimal "cross-over" with respect to CPU time
+-c     is problem dependent and must be determined empirically. 
+-c     See Chapter 8 of Reference 2 for further information.
+-c
+-c  5. When IPARAM(1) = 0, and IDO = 3, the user needs to provide the
+-c     NP = IPARAM(8) complex shifts in locations
+-c     WORKL(IPNTR(14)), WORKL(IPNTR(14)+1), ... , WORKL(IPNTR(14)+NP).
+-c     Eigenvalues of the current upper Hessenberg matrix are located in
+-c     WORKL(IPNTR(6)) through WORKL(IPNTR(6)+NCV-1). They are ordered
+-c     according to the order defined by WHICH.  The associated Ritz estimates
+-c     are located in WORKL(IPNTR(8)), WORKL(IPNTR(8)+1), ... ,
+-c     WORKL(IPNTR(8)+NCV-1).
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\Data Distribution Note: 
+-c
+-c  Fortran-D syntax:
+-c  ================
+-c  Complex  resid(n), v(ldv,ncv), workd(3*n), workl(lworkl)
+-c  decompose  d1(n), d2(n,ncv)
+-c  align      resid(i) with d1(i)
+-c  align      v(i,j)   with d2(i,j)
+-c  align      workd(i) with d1(i)     range (1:n)
+-c  align      workd(i) with d1(i-n)   range (n+1:2*n)
+-c  align      workd(i) with d1(i-2*n) range (2*n+1:3*n)
+-c  distribute d1(block), d2(block,:)
+-c  replicated workl(lworkl)
+-c
+-c  Cray MPP syntax:
+-c  ===============
+-c  Complex  resid(n), v(ldv,ncv), workd(n,3), workl(lworkl)
+-c  shared     resid(block), v(block,:), workd(block,:)
+-c  replicated workl(lworkl)
+-c  
+-c  CM2/CM5 syntax:
+-c  ==============
+-c  
+-c-----------------------------------------------------------------------
+-c
+-c     include   'ex-nonsym.doc'
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  Complex 
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c  3. B.N. Parlett & Y. Saad, "_Complex_ Shift and Invert Strategies for
+-c     _Real_ Matrices", Linear Algebra and its Applications, vol 88/89,
+-c     pp 575-595, (1987).
+-c
+-c\Routines called:
+-c     cnaup2  ARPACK routine that implements the Implicitly Restarted
+-c             Arnoldi Iteration.
+-c     cstatn  ARPACK routine that initializes the timing variables.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     cvout   ARPACK utility routine that prints vectors.
+-c     arscnd  ARPACK utility routine for timing.
+-c     slamch  LAPACK routine that determines machine constants.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas 
+-c 
+-c\SCCS Information: @(#)
+-c FILE: naupd.F   SID: 2.8   DATE OF SID: 04/10/01   RELEASE: 2
+-c
+-c\Remarks
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine cnaupd
+-     &   ( ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, 
+-     &     ipntr, workd, workl, lworkl, rwork, info )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1, which*2
+-      integer    ido, info, ldv, lworkl, n, ncv, nev
+-      Real  
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    iparam(11), ipntr(14)
+-      Complex 
+-     &           resid(n), v(ldv,ncv), workd(3*n), workl(lworkl)
+-      Real   
+-     &           rwork(ncv)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex 
+-     &           one, zero
+-      parameter (one = (1.0E+0, 0.0E+0) , zero = (0.0E+0, 0.0E+0) )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    bounds, ierr, ih, iq, ishift, iupd, iw, 
+-     &           ldh, ldq, levec, mode, msglvl, mxiter, nb,
+-     &           nev0, next, np, ritz, j
+-      save       bounds, ih, iq, ishift, iupd, iw,
+-     &           ldh, ldq, levec, mode, msglvl, mxiter, nb,
+-     &           nev0, next, np, ritz
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   cnaup2, cvout, ivout, arscnd, cstatn
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real  
+-     &           slamch
+-      external   slamch
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c 
+-      if (ido .eq. 0) then
+-c 
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call cstatn
+-         call arscnd (t0)
+-         msglvl = mcaupd
+-c
+-c        %----------------%
+-c        | Error checking |
+-c        %----------------%
+-c
+-         ierr   = 0
+-         ishift = iparam(1)
+-c         levec  = iparam(2)
+-         mxiter = iparam(3)
+-c         nb     = iparam(4)
+-         nb     = 1
+-c
+-c        %--------------------------------------------%
+-c        | Revision 2 performs only implicit restart. |
+-c        %--------------------------------------------%
+-c
+-         iupd   = 1
+-         mode   = iparam(7)
+-c
+-         if (n .le. 0) then
+-             ierr = -1
+-         else if (nev .le. 0) then
+-             ierr = -2
+-         else if (ncv .le. nev .or.  ncv .gt. n) then
+-             ierr = -3
+-         else if (mxiter .le. 0) then
+-             ierr = -4
+-         else if (which .ne. 'LM' .and.
+-     &       which .ne. 'SM' .and.
+-     &       which .ne. 'LR' .and.
+-     &       which .ne. 'SR' .and.
+-     &       which .ne. 'LI' .and.
+-     &       which .ne. 'SI') then
+-            ierr = -5
+-         else if (bmat .ne. 'I' .and. bmat .ne. 'G') then
+-            ierr = -6
+-         else if (lworkl .lt. 3*ncv**2 + 5*ncv) then
+-            ierr = -7
+-         else if (mode .lt. 1 .or. mode .gt. 3) then
+-                                                ierr = -10
+-         else if (mode .eq. 1 .and. bmat .eq. 'G') then
+-                                                ierr = -11
+-         end if
+-c 
+-c        %------------%
+-c        | Error Exit |
+-c        %------------%
+-c
+-         if (ierr .ne. 0) then
+-            info = ierr
+-            ido  = 99
+-            go to 9000
+-         end if
+-c 
+-c        %------------------------%
+-c        | Set default parameters |
+-c        %------------------------%
+-c
+-         if (nb .le. 0)				nb = 1
+-         if (tol .le. 0.0E+0  )			tol = slamch('EpsMach')
+-         if (ishift .ne. 0  .and.  
+-     &       ishift .ne. 1  .and.
+-     &       ishift .ne. 2) 			ishift = 1
+-c
+-c        %----------------------------------------------%
+-c        | NP is the number of additional steps to      |
+-c        | extend the length NEV Lanczos factorization. |
+-c        | NEV0 is the local variable designating the   |
+-c        | size of the invariant subspace desired.      |
+-c        %----------------------------------------------%
+-c
+-         np     = ncv - nev
+-         nev0   = nev 
+-c 
+-c        %-----------------------------%
+-c        | Zero out internal workspace |
+-c        %-----------------------------%
+-c
+-         do 10 j = 1, 3*ncv**2 + 5*ncv
+-            workl(j) = zero
+-  10     continue
+-c 
+-c        %-------------------------------------------------------------%
+-c        | Pointer into WORKL for address of H, RITZ, BOUNDS, Q        |
+-c        | etc... and the remaining workspace.                         |
+-c        | Also update pointer to be used on output.                   |
+-c        | Memory is laid out as follows:                              |
+-c        | workl(1:ncv*ncv) := generated Hessenberg matrix             |
+-c        | workl(ncv*ncv+1:ncv*ncv+ncv) := the ritz values             |
+-c        | workl(ncv*ncv+ncv+1:ncv*ncv+2*ncv)   := error bounds        |
+-c        | workl(ncv*ncv+2*ncv+1:2*ncv*ncv+2*ncv) := rotation matrix Q |
+-c        | workl(2*ncv*ncv+2*ncv+1:3*ncv*ncv+5*ncv) := workspace       |
+-c        | The final workspace is needed by subroutine cneigh called   |
+-c        | by cnaup2. Subroutine cneigh calls LAPACK routines for      |
+-c        | calculating eigenvalues and the last row of the eigenvector |
+-c        | matrix.                                                     |
+-c        %-------------------------------------------------------------%
+-c
+-         ldh    = ncv
+-         ldq    = ncv
+-         ih     = 1
+-         ritz   = ih     + ldh*ncv
+-         bounds = ritz   + ncv
+-         iq     = bounds + ncv
+-         iw     = iq     + ldq*ncv
+-         next   = iw     + ncv**2 + 3*ncv
+-c
+-         ipntr(4) = next
+-         ipntr(5) = ih
+-         ipntr(6) = ritz
+-         ipntr(7) = iq
+-         ipntr(8) = bounds
+-         ipntr(14) = iw
+-      end if
+-c
+-c     %-------------------------------------------------------%
+-c     | Carry out the Implicitly restarted Arnoldi Iteration. |
+-c     %-------------------------------------------------------%
+-c
+-      call cnaup2 
+-     &   ( ido, bmat, n, which, nev0, np, tol, resid, mode, iupd,
+-     &     ishift, mxiter, v, ldv, workl(ih), ldh, workl(ritz), 
+-     &     workl(bounds), workl(iq), ldq, workl(iw), 
+-     &     ipntr, workd, rwork, info )
+-c 
+-c     %--------------------------------------------------%
+-c     | ido .ne. 99 implies use of reverse communication |
+-c     | to compute operations involving OP.              |
+-c     %--------------------------------------------------%
+-c
+-      if (ido .eq. 3) iparam(8) = np
+-      if (ido .ne. 99) go to 9000
+-c 
+-      iparam(3) = mxiter
+-      iparam(5) = np
+-      iparam(9) = nopx
+-      iparam(10) = nbx
+-      iparam(11) = nrorth
+-c
+-c     %------------------------------------%
+-c     | Exit if there was an informational |
+-c     | error within cnaup2.               |
+-c     %------------------------------------%
+-c
+-      if (info .lt. 0) go to 9000
+-      if (info .eq. 2) info = 3
+-c
+-      if (msglvl .gt. 0) then
+-         call ivout (logfil, 1, mxiter, ndigit,
+-     &               '_naupd: Number of update iterations taken')
+-         call ivout (logfil, 1, np, ndigit,
+-     &               '_naupd: Number of wanted "converged" Ritz values')
+-         call cvout (logfil, np, workl(ritz), ndigit, 
+-     &               '_naupd: The final Ritz values')
+-         call cvout (logfil, np, workl(bounds), ndigit, 
+-     &               '_naupd: Associated Ritz estimates')
+-      end if
+-c
+-      call arscnd (t1)
+-      tcaupd = t1 - t0
+-c
+-      if (msglvl .gt. 0) then
+-c
+-c        %--------------------------------------------------------%
+-c        | Version Number & Version Date are defined in version.h |
+-c        %--------------------------------------------------------%
+-c
+-         write (6,1000)
+-         write (6,1100) mxiter, nopx, nbx, nrorth, nitref, nrstrt,
+-     &                  tmvopx, tmvbx, tcaupd, tcaup2, tcaitr, titref,
+-     &                  tgetv0, tceigh, tcgets, tcapps, tcconv, trvec
+- 1000    format (//,
+-     &      5x, '=============================================',/
+-     &      5x, '= Complex implicit Arnoldi update code      =',/
+-     &      5x, '= Version Number: ', ' 2.3' , 21x, ' =',/
+-     &      5x, '= Version Date:   ', ' 07/31/96' , 16x,   ' =',/
+-     &      5x, '=============================================',/
+-     &      5x, '= Summary of timing statistics              =',/
+-     &      5x, '=============================================',//)
+- 1100    format (
+-     &      5x, 'Total number update iterations             = ', i5,/
+-     &      5x, 'Total number of OP*x operations            = ', i5,/
+-     &      5x, 'Total number of B*x operations             = ', i5,/
+-     &      5x, 'Total number of reorthogonalization steps  = ', i5,/
+-     &      5x, 'Total number of iterative refinement steps = ', i5,/
+-     &      5x, 'Total number of restart steps              = ', i5,/
+-     &      5x, 'Total time in user OP*x operation          = ', f12.6,/
+-     &      5x, 'Total time in user B*x operation           = ', f12.6,/
+-     &      5x, 'Total time in Arnoldi update routine       = ', f12.6,/
+-     &      5x, 'Total time in naup2 routine                = ', f12.6,/
+-     &      5x, 'Total time in basic Arnoldi iteration loop = ', f12.6,/
+-     &      5x, 'Total time in reorthogonalization phase    = ', f12.6,/
+-     &      5x, 'Total time in (re)start vector generation  = ', f12.6,/
+-     &      5x, 'Total time in Hessenberg eig. subproblem   = ', f12.6,/
+-     &      5x, 'Total time in getting the shifts           = ', f12.6,/
+-     &      5x, 'Total time in applying the shifts          = ', f12.6,/
+-     &      5x, 'Total time in convergence testing          = ', f12.6,/
+-     &      5x, 'Total time in computing final Ritz vectors = ', f12.6/)
+-      end if
+-c
+- 9000 continue
+-c
+-      return
+-c
+-c     %---------------%
+-c     | End of cnaupd |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/cneigh.f
++++ /dev/null
+@@ -1,257 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: cneigh
+-c
+-c\Description:
+-c  Compute the eigenvalues of the current upper Hessenberg matrix
+-c  and the corresponding Ritz estimates given the current residual norm.
+-c
+-c\Usage:
+-c  call cneigh
+-c     ( RNORM, N, H, LDH, RITZ, BOUNDS, Q, LDQ, WORKL, RWORK, IERR )
+-c
+-c\Arguments
+-c  RNORM   Real scalar.  (INPUT)
+-c          Residual norm corresponding to the current upper Hessenberg 
+-c          matrix H.
+-c
+-c  N       Integer.  (INPUT)
+-c          Size of the matrix H.
+-c
+-c  H       Complex N by N array.  (INPUT)
+-c          H contains the current upper Hessenberg matrix.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling
+-c          program.
+-c
+-c  RITZ    Complex array of length N.  (OUTPUT)
+-c          On output, RITZ(1:N) contains the eigenvalues of H.
+-c
+-c  BOUNDS  Complex array of length N.  (OUTPUT)
+-c          On output, BOUNDS contains the Ritz estimates associated with
+-c          the eigenvalues held in RITZ.  This is equal to RNORM 
+-c          times the last components of the eigenvectors corresponding 
+-c          to the eigenvalues in RITZ.
+-c
+-c  Q       Complex N by N array.  (WORKSPACE)
+-c          Workspace needed to store the eigenvectors of H.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c
+-c  WORKL   Complex work array of length N**2 + 3*N.  (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  This is needed to keep the full Schur form
+-c          of H and also in the calculation of the eigenvectors of H.
+-c
+-c  RWORK   Real  work array of length N (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end. 
+-c
+-c  IERR    Integer.  (OUTPUT)
+-c          Error exit flag from clahqr or ctrevc.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  Complex
+-c
+-c\Routines called:
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     cmout   ARPACK utility routine that prints matrices
+-c     cvout   ARPACK utility routine that prints vectors.
+-c     svout   ARPACK utility routine that prints vectors.
+-c     clacpy  LAPACK matrix copy routine.
+-c     clahqr  LAPACK routine to compute the Schur form of an
+-c             upper Hessenberg matrix.
+-c     claset  LAPACK matrix initialization routine.
+-c     ctrevc  LAPACK routine to compute the eigenvectors of a matrix
+-c             in upper triangular form
+-c     ccopy   Level 1 BLAS that copies one vector to another. 
+-c     csscal  Level 1 BLAS that scales a complex vector by a real number.
+-c     scnrm2  Level 1 BLAS that computes the norm of a vector.
+-c     
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas 
+-c
+-c\SCCS Information: @(#)
+-c FILE: neigh.F   SID: 2.2   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c\Remarks
+-c     None
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine cneigh (rnorm, n, h, ldh, ritz, bounds, 
+-     &                   q, ldq, workl, rwork, ierr)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    ierr, n, ldh, ldq
+-      Real     
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Complex     
+-     &           bounds(n), h(ldh,n), q(ldq,n), ritz(n),
+-     &           workl(n*(n+3)) 
+-      Real 
+-     &           rwork(n)
+-c 
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex     
+-     &           one, zero
+-      Real
+-     &           rone
+-      parameter  (one = (1.0E+0, 0.0E+0), zero = (0.0E+0, 0.0E+0),
+-     &           rone = 1.0E+0)
+-c 
+-c     %------------------------%
+-c     | Local Scalars & Arrays |
+-c     %------------------------%
+-c
+-      logical    select(1)
+-      integer    j,  msglvl
+-      Complex     
+-     &           vl(1)
+-      Real
+-     &           temp
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   clacpy, clahqr, ctrevc, ccopy, 
+-     &           csscal, cmout, cvout, arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real 
+-     &           scnrm2
+-      external   scnrm2
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c
+-      call arscnd (t0)
+-      msglvl = mceigh
+-c 
+-      if (msglvl .gt. 2) then
+-          call cmout (logfil, n, n, h, ldh, ndigit, 
+-     &         '_neigh: Entering upper Hessenberg matrix H ')
+-      end if
+-c 
+-c     %----------------------------------------------------------%
+-c     | 1. Compute the eigenvalues, the last components of the   |
+-c     |    corresponding Schur vectors and the full Schur form T |
+-c     |    of the current upper Hessenberg matrix H.             |
+-c     |    clahqr returns the full Schur form of H               | 
+-c     |    in WORKL(1:N**2), and the Schur vectors in q.         |
+-c     %----------------------------------------------------------%
+-c
+-      call clacpy ('All', n, n, h, ldh, workl, n)
+-      call claset ('All', n, n, zero, one, q, ldq)
+-      call clahqr (.true., .true., n, 1, n, workl, ldh, ritz,
+-     &             1, n, q, ldq, ierr)
+-      if (ierr .ne. 0) go to 9000
+-c
+-      call ccopy (n, q(n-1,1), ldq, bounds, 1)
+-      if (msglvl .gt. 1) then
+-         call cvout (logfil, n, bounds, ndigit,
+-     &              '_neigh: last row of the Schur matrix for H')
+-      end if
+-c
+-c     %----------------------------------------------------------%
+-c     | 2. Compute the eigenvectors of the full Schur form T and |
+-c     |    apply the Schur vectors to get the corresponding      |
+-c     |    eigenvectors.                                         |
+-c     %----------------------------------------------------------%
+-c
+-      call ctrevc ('Right', 'Back', select, n, workl, n, vl, n, q, 
+-     &             ldq, n, n, workl(n*n+1), rwork, ierr)
+-c
+-      if (ierr .ne. 0) go to 9000
+-c
+-c     %------------------------------------------------%
+-c     | Scale the returning eigenvectors so that their |
+-c     | Euclidean norms are all one. LAPACK subroutine |
+-c     | ctrevc returns each eigenvector normalized so  |
+-c     | that the element of largest magnitude has      |
+-c     | magnitude 1; here the magnitude of a complex   |
+-c     | number (x,y) is taken to be |x| + |y|.         |
+-c     %------------------------------------------------%
+-c
+-      do 10 j=1, n
+-            temp = scnrm2( n, q(1,j), 1 )
+-            call csscal ( n, rone / temp, q(1,j), 1 )
+-   10 continue
+-c
+-      if (msglvl .gt. 1) then
+-         call ccopy(n, q(n,1), ldq, workl, 1)
+-         call cvout (logfil, n, workl, ndigit,
+-     &              '_neigh: Last row of the eigenvector matrix for H')
+-      end if
+-c
+-c     %----------------------------%
+-c     | Compute the Ritz estimates |
+-c     %----------------------------%
+-c
+-      call ccopy(n, q(n,1), n, bounds, 1)
+-      call csscal(n, rnorm, bounds, 1)
+-c
+-      if (msglvl .gt. 2) then
+-         call cvout (logfil, n, ritz, ndigit,
+-     &              '_neigh: The eigenvalues of H')
+-         call cvout (logfil, n, bounds, ndigit,
+-     &              '_neigh: Ritz estimates for the eigenvalues of H')
+-      end if
+-c
+-      call arscnd(t1)
+-      tceigh = tceigh + (t1 - t0)
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of cneigh |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/cneupd.f
++++ /dev/null
+@@ -1,876 +0,0 @@
+-c\BeginDoc
+-c 
+-c\Name: cneupd 
+-c 
+-c\Description: 
+-c  This subroutine returns the converged approximations to eigenvalues 
+-c  of A*z = lambda*B*z and (optionally): 
+-c 
+-c      (1) The corresponding approximate eigenvectors; 
+-c 
+-c      (2) An orthonormal basis for the associated approximate 
+-c          invariant subspace; 
+-c 
+-c      (3) Both.  
+-c
+-c  There is negligible additional cost to obtain eigenvectors.  An orthonormal 
+-c  basis is always computed.  There is an additional storage cost of n*nev
+-c  if both are requested (in this case a separate array Z must be supplied). 
+-c
+-c  The approximate eigenvalues and eigenvectors of  A*z = lambda*B*z
+-c  are derived from approximate eigenvalues and eigenvectors of
+-c  of the linear operator OP prescribed by the MODE selection in the
+-c  call to CNAUPD.  CNAUPD must be called before this routine is called.
+-c  These approximate eigenvalues and vectors are commonly called Ritz
+-c  values and Ritz vectors respectively.  They are referred to as such 
+-c  in the comments that follow.   The computed orthonormal basis for the 
+-c  invariant subspace corresponding to these Ritz values is referred to as a 
+-c  Schur basis. 
+-c 
+-c  The definition of OP as well as other terms and the relation of computed
+-c  Ritz values and vectors of OP with respect to the given problem
+-c  A*z = lambda*B*z may be found in the header of CNAUPD.  For a brief 
+-c  description, see definitions of IPARAM(7), MODE and WHICH in the
+-c  documentation of CNAUPD.
+-c
+-c\Usage:
+-c  call cneupd 
+-c     ( RVEC, HOWMNY, SELECT, D, Z, LDZ, SIGMA, WORKEV, BMAT, 
+-c       N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD, 
+-c       WORKL, LWORKL, RWORK, INFO )
+-c
+-c\Arguments:
+-c  RVEC    LOGICAL  (INPUT)
+-c          Specifies whether a basis for the invariant subspace corresponding
+-c          to the converged Ritz value approximations for the eigenproblem 
+-c          A*z = lambda*B*z is computed.
+-c
+-c             RVEC = .FALSE.     Compute Ritz values only.
+-c
+-c             RVEC = .TRUE.      Compute Ritz vectors or Schur vectors.
+-c                                See Remarks below.
+-c
+-c  HOWMNY  Character*1  (INPUT)
+-c          Specifies the form of the basis for the invariant subspace 
+-c          corresponding to the converged Ritz values that is to be computed.
+-c
+-c          = 'A': Compute NEV Ritz vectors;
+-c          = 'P': Compute NEV Schur vectors;
+-c          = 'S': compute some of the Ritz vectors, specified
+-c                 by the logical array SELECT.
+-c
+-c  SELECT  Logical array of dimension NCV.  (INPUT)
+-c          If HOWMNY = 'S', SELECT specifies the Ritz vectors to be
+-c          computed. To select the  Ritz vector corresponding to a
+-c          Ritz value D(j), SELECT(j) must be set to .TRUE.. 
+-c          If HOWMNY = 'A' or 'P', SELECT need not be initialized 
+-c          but it is used as internal workspace.
+-c
+-c  D       Complex  array of dimension NEV+1.  (OUTPUT)
+-c          On exit, D contains the  Ritz  approximations 
+-c          to the eigenvalues lambda for A*z = lambda*B*z.
+-c
+-c  Z       Complex  N by NEV array    (OUTPUT)
+-c          On exit, if RVEC = .TRUE. and HOWMNY = 'A', then the columns of 
+-c          Z represents approximate eigenvectors (Ritz vectors) corresponding 
+-c          to the NCONV=IPARAM(5) Ritz values for eigensystem
+-c          A*z = lambda*B*z.
+-c
+-c          If RVEC = .FALSE. or HOWMNY = 'P', then Z is NOT REFERENCED.
+-c
+-c          NOTE: If if RVEC = .TRUE. and a Schur basis is not required, 
+-c          the array Z may be set equal to first NEV+1 columns of the Arnoldi 
+-c          basis array V computed by CNAUPD.  In this case the Arnoldi basis 
+-c          will be destroyed and overwritten with the eigenvector basis.
+-c
+-c  LDZ     Integer.  (INPUT)
+-c          The leading dimension of the array Z.  If Ritz vectors are
+-c          desired, then  LDZ .ge.  max( 1, N ) is required.  
+-c          In any case,  LDZ .ge. 1 is required.
+-c
+-c  SIGMA   Complex   (INPUT)
+-c          If IPARAM(7) = 3 then SIGMA represents the shift. 
+-c          Not referenced if IPARAM(7) = 1 or 2.
+-c
+-c  WORKEV  Complex  work array of dimension 2*NCV.  (WORKSPACE)
+-c
+-c  **** The remaining arguments MUST be the same as for the   ****
+-c  **** call to CNAUPD that was just completed.               ****
+-c
+-c  NOTE: The remaining arguments 
+-c
+-c           BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, 
+-c           WORKD, WORKL, LWORKL, RWORK, INFO 
+-c
+-c         must be passed directly to CNEUPD following the last call 
+-c         to CNAUPD.  These arguments MUST NOT BE MODIFIED between
+-c         the the last call to CNAUPD and the call to CNEUPD.
+-c
+-c  Three of these parameters (V, WORKL and INFO) are also output parameters:
+-c
+-c  V       Complex  N by NCV array.  (INPUT/OUTPUT)
+-c
+-c          Upon INPUT: the NCV columns of V contain the Arnoldi basis
+-c                      vectors for OP as constructed by CNAUPD .
+-c
+-c          Upon OUTPUT: If RVEC = .TRUE. the first NCONV=IPARAM(5) columns
+-c                       contain approximate Schur vectors that span the
+-c                       desired invariant subspace.
+-c
+-c          NOTE: If the array Z has been set equal to first NEV+1 columns
+-c          of the array V and RVEC=.TRUE. and HOWMNY= 'A', then the
+-c          Arnoldi basis held by V has been overwritten by the desired
+-c          Ritz vectors.  If a separate array Z has been passed then
+-c          the first NCONV=IPARAM(5) columns of V will contain approximate
+-c          Schur vectors that span the desired invariant subspace.
+-c
+-c  WORKL   Real  work array of length LWORKL.  (OUTPUT/WORKSPACE)
+-c          WORKL(1:ncv*ncv+2*ncv) contains information obtained in
+-c          cnaupd.  They are not changed by cneupd.
+-c          WORKL(ncv*ncv+2*ncv+1:3*ncv*ncv+4*ncv) holds the
+-c          untransformed Ritz values, the untransformed error estimates of 
+-c          the Ritz values, the upper triangular matrix for H, and the
+-c          associated matrix representation of the invariant subspace for H.
+-c
+-c          Note: IPNTR(9:13) contains the pointer into WORKL for addresses
+-c          of the above information computed by cneupd.
+-c          -------------------------------------------------------------
+-c          IPNTR(9):  pointer to the NCV RITZ values of the
+-c                     original system.
+-c          IPNTR(10): Not used
+-c          IPNTR(11): pointer to the NCV corresponding error estimates.
+-c          IPNTR(12): pointer to the NCV by NCV upper triangular
+-c                     Schur matrix for H.
+-c          IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors
+-c                     of the upper Hessenberg matrix H. Only referenced by
+-c                     cneupd if RVEC = .TRUE. See Remark 2 below.
+-c          -------------------------------------------------------------
+-c
+-c  INFO    Integer.  (OUTPUT)
+-c          Error flag on output.
+-c          =  0: Normal exit.
+-c
+-c          =  1: The Schur form computed by LAPACK routine csheqr
+-c                could not be reordered by LAPACK routine ctrsen.
+-c                Re-enter subroutine cneupd with IPARAM(5)=NCV and
+-c                increase the size of the array D to have
+-c                dimension at least dimension NCV and allocate at least NCV
+-c                columns for Z. NOTE: Not necessary if Z and V share
+-c                the same space. Please notify the authors if this error
+-c                occurs.
+-c
+-c          = -1: N must be positive.
+-c          = -2: NEV must be positive.
+-c          = -3: NCV-NEV >= 2 and less than or equal to N.
+-c          = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'
+-c          = -6: BMAT must be one of 'I' or 'G'.
+-c          = -7: Length of private work WORKL array is not sufficient.
+-c          = -8: Error return from LAPACK eigenvalue calculation.
+-c                This should never happened.
+-c          = -9: Error return from calculation of eigenvectors.
+-c                Informational error from LAPACK routine ctrevc.
+-c          = -10: IPARAM(7) must be 1,2,3
+-c          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
+-c          = -12: HOWMNY = 'S' not yet implemented
+-c          = -13: HOWMNY must be one of 'A' or 'P' if RVEC = .true.
+-c          = -14: CNAUPD did not find any eigenvalues to sufficient
+-c                 accuracy.
+-c          = -15: CNEUPD got a different count of the number of converged
+-c                 Ritz values than CNAUPD got.  This indicates the user
+-c                 probably made an error in passing data from CNAUPD to
+-c                 CNEUPD or that the data was modified before entering
+-c                 CNEUPD
+-c
+-c\BeginLib
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c  3. B. Nour-Omid, B. N. Parlett, T. Ericsson and P. S. Jensen,
+-c     "How to Implement the Spectral Transformation", Math Comp.,
+-c     Vol. 48, No. 178, April, 1987 pp. 664-673. 
+-c
+-c\Routines called:
+-c     ivout   ARPACK utility routine that prints integers.
+-c     cmout   ARPACK utility routine that prints matrices
+-c     cvout   ARPACK utility routine that prints vectors.
+-c     cgeqr2  LAPACK routine that computes the QR factorization of 
+-c             a matrix.
+-c     clacpy  LAPACK matrix copy routine.
+-c     clahqr  LAPACK routine that computes the Schur form of a
+-c             upper Hessenberg matrix.
+-c     claset  LAPACK matrix initialization routine.
+-c     ctrevc  LAPACK routine to compute the eigenvectors of a matrix
+-c             in upper triangular form.
+-c     ctrsen  LAPACK routine that re-orders the Schur form.
+-c     cunm2r  LAPACK routine that applies an orthogonal matrix in 
+-c             factored form.
+-c     slamch  LAPACK routine that determines machine constants.
+-c     ctrmm   Level 3 BLAS matrix times an upper triangular matrix.
+-c     cgeru   Level 2 BLAS rank one update to a matrix.
+-c     ccopy   Level 1 BLAS that copies one vector to another .
+-c     cscal   Level 1 BLAS that scales a vector.
+-c     csscal  Level 1 BLAS that scales a complex vector by a real number.
+-c     scnrm2  Level 1 BLAS that computes the norm of a complex vector.
+-c
+-c\Remarks
+-c
+-c  1. Currently only HOWMNY = 'A' and 'P' are implemented. 
+-c
+-c  2. Schur vectors are an orthogonal representation for the basis of
+-c     Ritz vectors. Thus, their numerical properties are often superior.
+-c     If RVEC = .true. then the relationship
+-c             A * V(:,1:IPARAM(5)) = V(:,1:IPARAM(5)) * T, and
+-c       transpose( V(:,1:IPARAM(5)) ) * V(:,1:IPARAM(5)) = I
+-c     are approximately satisfied.
+-c     Here T is the leading submatrix of order IPARAM(5) of the 
+-c     upper triangular matrix stored workl(ipntr(12)). 
+-c
+-c\Authors
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Chao Yang                    Houston, Texas 
+-c     Dept. of Computational & 
+-c     Applied Mathematics 
+-c     Rice University 
+-c     Houston, Texas
+-c
+-c\SCCS Information: @(#)
+-c FILE: neupd.F   SID: 2.7   DATE OF SID: 09/20/00   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-      subroutine cneupd(rvec , howmny, select, d     ,
+-     &                   z    , ldz   , sigma , workev,
+-     &                   bmat , n     , which , nev   ,
+-     &                   tol  , resid , ncv   , v     ,
+-     &                   ldv  , iparam, ipntr , workd ,
+-     &                   workl, lworkl, rwork , info  )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat, howmny, which*2
+-      logical    rvec
+-      integer    info, ldz, ldv, lworkl, n, ncv, nev
+-      Complex      
+-     &           sigma
+-      Real  
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    iparam(11), ipntr(14)
+-      logical    select(ncv)
+-      Real 
+-     &           rwork(ncv)
+-      Complex 
+-     &           d(nev)     , resid(n)     , v(ldv,ncv),
+-     &           z(ldz, nev), 
+-     &           workd(3*n) , workl(lworkl), workev(2*ncv)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex 
+-     &           one, zero
+-      parameter  (one = (1.0E+0, 0.0E+0) , zero = (0.0E+0, 0.0E+0) )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      character  type*6
+-      integer    bounds, ierr  , ih    , ihbds, iheig , nconv ,
+-     &           invsub, iuptri, iwev  , j    , ldh   , ldq   ,
+-     &           mode  , msglvl, ritz  , wr   , k     , irz   ,
+-     &           ibd   , outncv, iq    , np   , numcnv, jj    ,
+-     &           ishift, nconv2
+-      Complex 
+-     &           rnorm, temp, vl(1)
+-      Real 
+-     &           conds, sep, rtemp, eps23
+-      logical    reord
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   ccopy , cgeru, cgeqr2, clacpy, cmout,
+-     &           cunm2r, ctrmm, cvout, ivout,
+-     &           clahqr
+-c  
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real 
+-     &           scnrm2, slamch, slapy2
+-      external   scnrm2, slamch, slapy2
+-c
+-      Complex 
+-     &           cdotc
+-      external   cdotc
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c 
+-c     %------------------------%
+-c     | Set default parameters |
+-c     %------------------------%
+-c
+-      msglvl = mceupd
+-      mode = iparam(7)
+-      nconv = iparam(5)
+-      info = 0
+-c
+-c
+-c     %---------------------------------%
+-c     | Get machine dependent constant. |
+-c     %---------------------------------%
+-c
+-      eps23 = slamch('Epsilon-Machine')
+-      eps23 = eps23**(2.0E+0  / 3.0E+0 )
+-c
+-c     %-------------------------------%
+-c     | Quick return                  |
+-c     | Check for incompatible input  |
+-c     %-------------------------------%
+-c
+-      ierr = 0
+-c
+-      if (nconv .le. 0) then
+-         ierr = -14
+-      else if (n .le. 0) then
+-         ierr = -1
+-      else if (nev .le. 0) then
+-         ierr = -2
+-      else if (ncv .le. nev+1 .or.  ncv .gt. n) then
+-         ierr = -3
+-      else if (which .ne. 'LM' .and.
+-     &        which .ne. 'SM' .and.
+-     &        which .ne. 'LR' .and.
+-     &        which .ne. 'SR' .and.
+-     &        which .ne. 'LI' .and.
+-     &        which .ne. 'SI') then
+-         ierr = -5
+-      else if (bmat .ne. 'I' .and. bmat .ne. 'G') then
+-         ierr = -6
+-      else if (lworkl .lt. 3*ncv**2 + 4*ncv) then
+-         ierr = -7
+-      else if ( (howmny .ne. 'A' .and.
+-     &           howmny .ne. 'P' .and.
+-     &           howmny .ne. 'S') .and. rvec ) then
+-         ierr = -13
+-      else if (howmny .eq. 'S' ) then
+-         ierr = -12
+-      end if
+-c     
+-      if (mode .eq. 1 .or. mode .eq. 2) then
+-         type = 'REGULR'
+-      else if (mode .eq. 3 ) then
+-         type = 'SHIFTI'
+-      else 
+-                                              ierr = -10
+-      end if
+-      if (mode .eq. 1 .and. bmat .eq. 'G')    ierr = -11
+-c
+-c     %------------%
+-c     | Error Exit |
+-c     %------------%
+-c
+-      if (ierr .ne. 0) then
+-         info = ierr
+-         go to 9000
+-      end if
+-c 
+-c     %--------------------------------------------------------%
+-c     | Pointer into WORKL for address of H, RITZ, WORKEV, Q   |
+-c     | etc... and the remaining workspace.                    |
+-c     | Also update pointer to be used on output.              |
+-c     | Memory is laid out as follows:                         |
+-c     | workl(1:ncv*ncv) := generated Hessenberg matrix        |
+-c     | workl(ncv*ncv+1:ncv*ncv+ncv) := ritz values            |
+-c     | workl(ncv*ncv+ncv+1:ncv*ncv+2*ncv) := error bounds     |
+-c     %--------------------------------------------------------%
+-c
+-c     %-----------------------------------------------------------%
+-c     | The following is used and set by CNEUPD.                 |
+-c     | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := The untransformed |
+-c     |                                      Ritz values.         |
+-c     | workl(ncv*ncv+3*ncv+1:ncv*ncv+4*ncv) := The untransformed |
+-c     |                                      error bounds of      |
+-c     |                                      the Ritz values      |
+-c     | workl(ncv*ncv+4*ncv+1:2*ncv*ncv+4*ncv) := Holds the upper |
+-c     |                                      triangular matrix    |
+-c     |                                      for H.               |
+-c     | workl(2*ncv*ncv+4*ncv+1: 3*ncv*ncv+4*ncv) := Holds the    |
+-c     |                                      associated matrix    |
+-c     |                                      representation of    |
+-c     |                                      the invariant        |
+-c     |                                      subspace for H.      |
+-c     | GRAND total of NCV * ( 3 * NCV + 4 ) locations.           |
+-c     %-----------------------------------------------------------%
+-c     
+-      ih     = ipntr(5)
+-      ritz   = ipntr(6)
+-      iq     = ipntr(7)
+-      bounds = ipntr(8)
+-      ldh    = ncv
+-      ldq    = ncv
+-      iheig  = bounds + ldh
+-      ihbds  = iheig  + ldh
+-      iuptri = ihbds  + ldh
+-      invsub = iuptri + ldh*ncv
+-      ipntr(9)  = iheig
+-      ipntr(11) = ihbds
+-      ipntr(12) = iuptri
+-      ipntr(13) = invsub
+-      wr = 1
+-      iwev = wr + ncv
+-c
+-c     %-----------------------------------------%
+-c     | irz points to the Ritz values computed  |
+-c     |     by _neigh before exiting _naup2.    |
+-c     | ibd points to the Ritz estimates        |
+-c     |     computed by _neigh before exiting   |
+-c     |     _naup2.                             |
+-c     %-----------------------------------------%
+-c
+-      irz = ipntr(14) + ncv*ncv
+-      ibd = irz + ncv
+-c
+-c     %------------------------------------%
+-c     | RNORM is B-norm of the RESID(1:N). |
+-c     %------------------------------------%
+-c
+-      rnorm = workl(ih+2)
+-      workl(ih+2) = zero
+-c
+-      if (msglvl .gt. 2) then
+-         call cvout(logfil, ncv, workl(irz), ndigit,
+-     &   '_neupd: Ritz values passed in from _NAUPD.')
+-         call cvout(logfil, ncv, workl(ibd), ndigit,
+-     &   '_neupd: Ritz estimates passed in from _NAUPD.')
+-      end if
+-c
+-      if (rvec) then
+-c
+-         reord = .false.
+-c
+-c        %---------------------------------------------------%
+-c        | Use the temporary bounds array to store indices   |
+-c        | These will be used to mark the select array later |
+-c        %---------------------------------------------------%
+-c
+-         do 10 j = 1,ncv
+-            workl(bounds+j-1) = j
+-            select(j) = .false.
+-   10    continue
+-c
+-c        %-------------------------------------%
+-c        | Select the wanted Ritz values.      |
+-c        | Sort the Ritz values so that the    |
+-c        | wanted ones appear at the tailing   |
+-c        | NEV positions of workl(irr) and     |
+-c        | workl(iri).  Move the corresponding |
+-c        | error estimates in workl(ibd)       |
+-c        | accordingly.                        |
+-c        %-------------------------------------%
+-c
+-         np     = ncv - nev
+-         ishift = 0
+-         call cngets(ishift, which     , nev          ,
+-     &                np    , workl(irz), workl(bounds))
+-c
+-         if (msglvl .gt. 2) then
+-            call cvout (logfil, ncv, workl(irz), ndigit,
+-     &      '_neupd: Ritz values after calling _NGETS.')
+-            call cvout (logfil, ncv, workl(bounds), ndigit,
+-     &      '_neupd: Ritz value indices after calling _NGETS.')
+-         end if
+-c
+-c        %-----------------------------------------------------%
+-c        | Record indices of the converged wanted Ritz values  |
+-c        | Mark the select array for possible reordering       |
+-c        %-----------------------------------------------------%
+-c
+-         numcnv = 0
+-         do 11 j = 1,ncv
+-            rtemp = max(eps23,
+-     &                 slapy2 ( real (workl(irz+ncv-j)),
+-     &                          aimag(workl(irz+ncv-j)) ))
+-            jj = workl(bounds + ncv - j)
+-            if (numcnv .lt. nconv .and.
+-     &          slapy2( real (workl(ibd+jj-1)),
+-     &          aimag(workl(ibd+jj-1)) )
+-     &          .le. tol*rtemp) then
+-               select(jj) = .true.
+-               numcnv = numcnv + 1
+-               if (jj .gt. nev) reord = .true.
+-            endif
+-   11    continue
+-c
+-c        %-----------------------------------------------------------%
+-c        | Check the count (numcnv) of converged Ritz values with    |
+-c        | the number (nconv) reported by dnaupd.  If these two      |
+-c        | are different then there has probably been an error       |
+-c        | caused by incorrect passing of the dnaupd data.           |
+-c        %-----------------------------------------------------------%
+-c
+-         if (msglvl .gt. 2) then
+-             call ivout(logfil, 1, numcnv, ndigit,
+-     &            '_neupd: Number of specified eigenvalues')
+-             call ivout(logfil, 1, nconv, ndigit,
+-     &            '_neupd: Number of "converged" eigenvalues')
+-         end if
+-c
+-         if (numcnv .ne. nconv) then
+-            info = -15
+-            go to 9000
+-         end if
+-c
+-c        %-------------------------------------------------------%
+-c        | Call LAPACK routine clahqr to compute the Schur form |
+-c        | of the upper Hessenberg matrix returned by CNAUPD.   |
+-c        | Make a copy of the upper Hessenberg matrix.           |
+-c        | Initialize the Schur vector matrix Q to the identity. |
+-c        %-------------------------------------------------------%
+-c
+-         call ccopy(ldh*ncv, workl(ih), 1, workl(iuptri), 1)
+-         call claset('All', ncv, ncv          , 
+-     &                zero , one, workl(invsub),
+-     &                ldq)
+-         call clahqr(.true., .true.       , ncv          , 
+-     &                1     , ncv          , workl(iuptri),
+-     &                ldh   , workl(iheig) , 1            ,
+-     &                ncv   , workl(invsub), ldq          ,
+-     &                ierr)
+-         call ccopy(ncv         , workl(invsub+ncv-1), ldq,
+-     &               workl(ihbds), 1)
+-c
+-         if (ierr .ne. 0) then
+-            info = -8
+-            go to 9000
+-         end if
+-c
+-         if (msglvl .gt. 1) then
+-            call cvout (logfil, ncv, workl(iheig), ndigit,
+-     &           '_neupd: Eigenvalues of H')
+-            call cvout (logfil, ncv, workl(ihbds), ndigit,
+-     &           '_neupd: Last row of the Schur vector matrix')
+-            if (msglvl .gt. 3) then
+-               call cmout (logfil       , ncv, ncv   , 
+-     &                     workl(iuptri), ldh, ndigit,
+-     &              '_neupd: The upper triangular matrix ')
+-            end if
+-         end if
+-c
+-         if (reord) then
+-c
+-c           %-----------------------------------------------%
+-c           | Reorder the computed upper triangular matrix. |
+-c           %-----------------------------------------------%
+-c
+-            call ctrsen('None'       , 'V'          , select      ,
+-     &                   ncv          , workl(iuptri), ldh         ,
+-     &                   workl(invsub), ldq          , workl(iheig),
+-     &                   nconv2       , conds        , sep         , 
+-     &                   workev       , ncv          , ierr)
+-c
+-            if (nconv2 .lt. nconv) then
+-               nconv = nconv2
+-            end if
+-
+-            if (ierr .eq. 1) then
+-               info = 1
+-               go to 9000
+-            end if
+-c
+-            if (msglvl .gt. 2) then
+-                call cvout (logfil, ncv, workl(iheig), ndigit,
+-     &           '_neupd: Eigenvalues of H--reordered')
+-                if (msglvl .gt. 3) then
+-                   call cmout(logfil       , ncv, ncv   ,
+-     &                         workl(iuptri), ldq, ndigit,
+-     &              '_neupd: Triangular matrix after re-ordering')
+-                end if
+-            end if
+-c
+-         end if
+-c
+-c        %---------------------------------------------%
+-c        | Copy the last row of the Schur basis matrix |
+-c        | to workl(ihbds).  This vector will be used  |
+-c        | to compute the Ritz estimates of converged  |
+-c        | Ritz values.                                |
+-c        %---------------------------------------------%
+-c
+-         call ccopy(ncv         , workl(invsub+ncv-1), ldq,
+-     &               workl(ihbds), 1)
+-c 
+-c        %--------------------------------------------%
+-c        | Place the computed eigenvalues of H into D |
+-c        | if a spectral transformation was not used. |
+-c        %--------------------------------------------%
+-c
+-         if (type .eq. 'REGULR') then
+-            call ccopy(nconv, workl(iheig), 1, d, 1)
+-         end if
+-c
+-c        %----------------------------------------------------------%
+-c        | Compute the QR factorization of the matrix representing  |
+-c        | the wanted invariant subspace located in the first NCONV |
+-c        | columns of workl(invsub,ldq).                            |
+-c        %----------------------------------------------------------%
+-c
+-         call cgeqr2(ncv , nconv , workl(invsub),
+-     &                ldq , workev, workev(ncv+1),
+-     &                ierr)
+-c
+-c        %--------------------------------------------------------%
+-c        | * Postmultiply V by Q using cunm2r.                    |
+-c        | * Copy the first NCONV columns of VQ into Z.           |
+-c        | * Postmultiply Z by R.                                 |
+-c        | The N by NCONV matrix Z is now a matrix representation |
+-c        | of the approximate invariant subspace associated with  |
+-c        | the Ritz values in workl(iheig). The first NCONV       | 
+-c        | columns of V are now approximate Schur vectors         |
+-c        | associated with the upper triangular matrix of order   |
+-c        | NCONV in workl(iuptri).                                |
+-c        %--------------------------------------------------------%
+-c
+-         call cunm2r('Right', 'Notranspose', n            ,
+-     &                ncv    , nconv        , workl(invsub),
+-     &                ldq    , workev       , v            ,
+-     &                ldv    , workd(n+1)   , ierr)
+-         call clacpy('All', n, nconv, v, ldv, z, ldz)
+-c
+-         do 20 j=1, nconv
+-c
+-c           %---------------------------------------------------%
+-c           | Perform both a column and row scaling if the      |
+-c           | diagonal element of workl(invsub,ldq) is negative |
+-c           | I'm lazy and don't take advantage of the upper    |
+-c           | triangular form of workl(iuptri,ldq).             |
+-c           | Note that since Q is orthogonal, R is a diagonal  |
+-c           | matrix consisting of plus or minus ones.          |
+-c           %---------------------------------------------------%
+-c
+-            if ( real ( workl(invsub+(j-1)*ldq+j-1) ) .lt. 
+-     &                  real (zero) ) then
+-               call cscal(nconv, -one, workl(iuptri+j-1), ldq)
+-               call cscal(nconv, -one, workl(iuptri+(j-1)*ldq), 1)
+-            end if
+-c
+- 20      continue
+-c
+-         if (howmny .eq. 'A') then
+-c
+-c           %--------------------------------------------%
+-c           | Compute the NCONV wanted eigenvectors of T |
+-c           | located in workl(iuptri,ldq).              |
+-c           %--------------------------------------------%
+-c
+-            do 30 j=1, ncv
+-               if (j .le. nconv) then
+-                  select(j) = .true.
+-               else
+-                  select(j) = .false.
+-               end if
+- 30         continue
+-c
+-            call ctrevc('Right', 'Select'     , select       ,
+-     &                   ncv    , workl(iuptri), ldq          ,
+-     &                   vl     , 1            , workl(invsub),
+-     &                   ldq    , ncv          , outncv       ,
+-     &                   workev , rwork        , ierr)
+-c
+-            if (ierr .ne. 0) then
+-                info = -9
+-                go to 9000
+-            end if
+-c
+-c           %------------------------------------------------%
+-c           | Scale the returning eigenvectors so that their |
+-c           | Euclidean norms are all one. LAPACK subroutine |
+-c           | ctrevc returns each eigenvector normalized so  |
+-c           | that the element of largest magnitude has      |
+-c           | magnitude 1.                                   |
+-c           %------------------------------------------------%
+-c
+-            do 40 j=1, nconv
+-                  rtemp = scnrm2(ncv, workl(invsub+(j-1)*ldq), 1)
+-                  rtemp = real (one) / rtemp
+-                  call csscal ( ncv, rtemp,
+-     &                 workl(invsub+(j-1)*ldq), 1 )
+-c
+-c                 %------------------------------------------%
+-c                 | Ritz estimates can be obtained by taking |
+-c                 | the inner product of the last row of the |
+-c                 | Schur basis of H with eigenvectors of T. |
+-c                 | Note that the eigenvector matrix of T is |
+-c                 | upper triangular, thus the length of the |
+-c                 | inner product can be set to j.           |
+-c                 %------------------------------------------%
+-c 
+-                  workev(j) = cdotc(j, workl(ihbds), 1,
+-     &                        workl(invsub+(j-1)*ldq), 1)
+- 40         continue
+-c
+-            if (msglvl .gt. 2) then
+-               call ccopy(nconv, workl(invsub+ncv-1), ldq,
+-     &                    workl(ihbds), 1)
+-               call cvout (logfil, nconv, workl(ihbds), ndigit,
+-     &            '_neupd: Last row of the eigenvector matrix for T')
+-               if (msglvl .gt. 3) then
+-                  call cmout(logfil       , ncv, ncv   ,
+-     &                        workl(invsub), ldq, ndigit,
+-     &               '_neupd: The eigenvector matrix for T')
+-               end if
+-            end if
+-c
+-c           %---------------------------------------%
+-c           | Copy Ritz estimates into workl(ihbds) |
+-c           %---------------------------------------%
+-c 
+-            call ccopy(nconv, workev, 1, workl(ihbds), 1)
+-c
+-c           %----------------------------------------------%
+-c           | The eigenvector matrix Q of T is triangular. |
+-c           | Form Z*Q.                                    |
+-c           %----------------------------------------------%
+-c
+-            call ctrmm('Right'   , 'Upper'      , 'No transpose',
+-     &                  'Non-unit', n            , nconv         ,
+-     &                  one       , workl(invsub), ldq           ,
+-     &                  z         , ldz)
+-         end if 
+-c
+-      else
+-c
+-c        %--------------------------------------------------%
+-c        | An approximate invariant subspace is not needed. |
+-c        | Place the Ritz values computed CNAUPD into D.    |
+-c        %--------------------------------------------------%
+-c
+-         call ccopy(nconv, workl(ritz), 1, d, 1)
+-         call ccopy(nconv, workl(ritz), 1, workl(iheig), 1)
+-         call ccopy(nconv, workl(bounds), 1, workl(ihbds), 1)
+-c
+-      end if
+-c
+-c     %------------------------------------------------%
+-c     | Transform the Ritz values and possibly vectors |
+-c     | and corresponding error bounds of OP to those  |
+-c     | of A*x = lambda*B*x.                           |
+-c     %------------------------------------------------%
+-c
+-      if (type .eq. 'REGULR') then
+-c
+-         if (rvec) 
+-     &      call cscal(ncv, rnorm, workl(ihbds), 1)
+-c      
+-      else
+-c     
+-c        %---------------------------------------%
+-c        |   A spectral transformation was used. |
+-c        | * Determine the Ritz estimates of the |
+-c        |   Ritz values in the original system. |
+-c        %---------------------------------------%
+-c
+-         if (rvec) 
+-     &      call cscal(ncv, rnorm, workl(ihbds), 1)
+-c    
+-         do 50 k=1, ncv
+-            temp = workl(iheig+k-1)
+-            workl(ihbds+k-1) = workl(ihbds+k-1) / temp / temp
+-  50     continue
+-c  
+-      end if
+-c
+-c     %-----------------------------------------------------------%
+-c     | *  Transform the Ritz values back to the original system. |
+-c     |    For TYPE = 'SHIFTI' the transformation is              |
+-c     |             lambda = 1/theta + sigma                      |
+-c     | NOTES:                                                    |
+-c     | *The Ritz vectors are not affected by the transformation. |
+-c     %-----------------------------------------------------------%
+-c    
+-      if (type .eq. 'SHIFTI') then
+-         do 60 k=1, nconv
+-            d(k) = one / workl(iheig+k-1) + sigma
+-  60     continue
+-      end if
+-c
+-      if (type .ne. 'REGULR' .and. msglvl .gt. 1) then
+-         call cvout (logfil, nconv, d, ndigit,
+-     &     '_neupd: Untransformed Ritz values.')
+-         call cvout (logfil, nconv, workl(ihbds), ndigit,
+-     &     '_neupd: Ritz estimates of the untransformed Ritz values.')
+-      else if ( msglvl .gt. 1) then
+-         call cvout (logfil, nconv, d, ndigit,
+-     &     '_neupd: Converged Ritz values.')
+-         call cvout (logfil, nconv, workl(ihbds), ndigit,
+-     &     '_neupd: Associated Ritz estimates.')
+-      end if
+-c
+-c     %-------------------------------------------------%
+-c     | Eigenvector Purification step. Formally perform |
+-c     | one of inverse subspace iteration. Only used    |
+-c     | for MODE = 3. See reference 3.                  |
+-c     %-------------------------------------------------%
+-c
+-      if (rvec .and. howmny .eq. 'A' .and. type .eq. 'SHIFTI') then
+-c
+-c        %------------------------------------------------%
+-c        | Purify the computed Ritz vectors by adding a   |
+-c        | little bit of the residual vector:             |
+-c        |                      T                         |
+-c        |          resid(:)*( e    s ) / theta           |
+-c        |                      NCV                       |
+-c        | where H s = s theta.                           |
+-c        %------------------------------------------------%
+-c
+-         do 100 j=1, nconv
+-            if (workl(iheig+j-1) .ne. zero) then
+-               workev(j) =  workl(invsub+(j-1)*ldq+ncv-1) /
+-     &                      workl(iheig+j-1)
+-            endif
+- 100     continue
+-
+-c        %---------------------------------------%
+-c        | Perform a rank one update to Z and    |
+-c        | purify all the Ritz vectors together. |
+-c        %---------------------------------------%
+-c
+-         call cgeru (n, nconv, one, resid, 1, workev, 1, z, ldz)
+-c
+-      end if
+-c
+- 9000 continue
+-c
+-      return
+-c     
+-c     %---------------%
+-c     | End of cneupd|
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/cngets.f
++++ /dev/null
+@@ -1,178 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: cngets
+-c
+-c\Description: 
+-c  Given the eigenvalues of the upper Hessenberg matrix H,
+-c  computes the NP shifts AMU that are zeros of the polynomial of 
+-c  degree NP which filters out components of the unwanted eigenvectors
+-c  corresponding to the AMU's based on some given criteria.
+-c
+-c  NOTE: call this even in the case of user specified shifts in order
+-c  to sort the eigenvalues, and error bounds of H for later use.
+-c
+-c\Usage:
+-c  call cngets
+-c      ( ISHIFT, WHICH, KEV, NP, RITZ, BOUNDS )
+-c
+-c\Arguments
+-c  ISHIFT  Integer.  (INPUT)
+-c          Method for selecting the implicit shifts at each iteration.
+-c          ISHIFT = 0: user specified shifts
+-c          ISHIFT = 1: exact shift with respect to the matrix H.
+-c
+-c  WHICH   Character*2.  (INPUT)
+-c          Shift selection criteria.
+-c          'LM' -> want the KEV eigenvalues of largest magnitude.
+-c          'SM' -> want the KEV eigenvalues of smallest magnitude.
+-c          'LR' -> want the KEV eigenvalues of largest REAL part.
+-c          'SR' -> want the KEV eigenvalues of smallest REAL part.
+-c          'LI' -> want the KEV eigenvalues of largest imaginary part.
+-c          'SI' -> want the KEV eigenvalues of smallest imaginary part.
+-c
+-c  KEV     Integer.  (INPUT)
+-c          The number of desired eigenvalues.
+-c
+-c  NP      Integer.  (INPUT)
+-c          The number of shifts to compute.
+-c
+-c  RITZ    Complex array of length KEV+NP.  (INPUT/OUTPUT)
+-c          On INPUT, RITZ contains the the eigenvalues of H.
+-c          On OUTPUT, RITZ are sorted so that the unwanted
+-c          eigenvalues are in the first NP locations and the wanted
+-c          portion is in the last KEV locations.  When exact shifts are 
+-c          selected, the unwanted part corresponds to the shifts to 
+-c          be applied. Also, if ISHIFT .eq. 1, the unwanted eigenvalues
+-c          are further sorted so that the ones with largest Ritz values
+-c          are first.
+-c
+-c  BOUNDS  Complex array of length KEV+NP.  (INPUT/OUTPUT)
+-c          Error bounds corresponding to the ordering in RITZ.
+-c
+-c  
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  Complex
+-c
+-c\Routines called:
+-c     csortc  ARPACK sorting routine.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     cvout   ARPACK utility routine that prints vectors.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas 
+-c
+-c\SCCS Information: @(#)
+-c FILE: ngets.F   SID: 2.2   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c\Remarks
+-c     1. This routine does not keep complex conjugate pairs of
+-c        eigenvalues together.
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine cngets ( ishift, which, kev, np, ritz, bounds)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character*2 which
+-      integer    ishift, kev, np
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Complex
+-     &           bounds(kev+np), ritz(kev+np)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex
+-     &           one, zero
+-      parameter (one = (1.0E+0, 0.0E+0), zero = (0.0E+0, 0.0E+0))
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    msglvl
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   cvout,  csortc, arscnd
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c 
+-      call arscnd (t0)
+-      msglvl = mcgets
+-c 
+-      call csortc (which, .true., kev+np, ritz, bounds)
+-c     
+-      if ( ishift .eq. 1 ) then
+-c     
+-c        %-------------------------------------------------------%
+-c        | Sort the unwanted Ritz values used as shifts so that  |
+-c        | the ones with largest Ritz estimates are first        |
+-c        | This will tend to minimize the effects of the         |
+-c        | forward instability of the iteration when the shifts  |
+-c        | are applied in subroutine cnapps.                     |
+-c        | Be careful and use 'SM' since we want to sort BOUNDS! |
+-c        %-------------------------------------------------------%
+-c     
+-         call csortc ( 'SM', .true., np, bounds, ritz )
+-c
+-      end if
+-c     
+-      call arscnd (t1)
+-      tcgets = tcgets + (t1 - t0)
+-c
+-      if (msglvl .gt. 0) then
+-         call ivout (logfil, 1, kev, ndigit, '_ngets: KEV is')
+-         call ivout (logfil, 1, np, ndigit, '_ngets: NP is')
+-         call cvout (logfil, kev+np, ritz, ndigit,
+-     &        '_ngets: Eigenvalues of current H matrix ')
+-         call cvout (logfil, kev+np, bounds, ndigit, 
+-     &      '_ngets: Ritz estimates of the current KEV+NP Ritz values')
+-      end if
+-c     
+-      return
+-c     
+-c     %---------------%
+-c     | End of cngets |
+-c     %---------------%
+-c     
+-      end
+--- a/libcruft/arpack/src/csortc.f
++++ /dev/null
+@@ -1,322 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: csortc
+-c
+-c\Description:
+-c  Sorts the Complex array in X into the order 
+-c  specified by WHICH and optionally applies the permutation to the
+-c  Real  array Y. 
+-c
+-c\Usage:
+-c  call csortc
+-c     ( WHICH, APPLY, N, X, Y )
+-c
+-c\Arguments
+-c  WHICH   Character*2.  (Input)
+-c          'LM' -> sort X into increasing order of magnitude.
+-c          'SM' -> sort X into decreasing order of magnitude.
+-c          'LR' -> sort X with real(X) in increasing algebraic order 
+-c          'SR' -> sort X with real(X) in decreasing algebraic order
+-c          'LI' -> sort X with imag(X) in increasing algebraic order
+-c          'SI' -> sort X with imag(X) in decreasing algebraic order
+-c
+-c  APPLY   Logical.  (Input)
+-c          APPLY = .TRUE.  -> apply the sorted order to array Y.
+-c          APPLY = .FALSE. -> do not apply the sorted order to array Y.
+-c
+-c  N       Integer.  (INPUT)
+-c          Size of the arrays.
+-c
+-c  X       Complex array of length N.  (INPUT/OUTPUT)
+-c          This is the array to be sorted.
+-c
+-c  Y       Complex array of length N.  (INPUT/OUTPUT)
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Routines called:
+-c     slapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas 
+-c
+-c     Adapted from the sort routine in LANSO.
+-c
+-c\SCCS Information: @(#)
+-c FILE: sortc.F   SID: 2.2   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine csortc (which, apply, n, x, y)
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character*2 which
+-      logical    apply
+-      integer    n
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Complex     
+-     &           x(0:n-1), y(0:n-1)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i, igap, j
+-      Complex     
+-     &           temp
+-      Real 
+-     &           temp1, temp2
+-c
+-c     %--------------------%
+-c     | External functions |
+-c     %--------------------%
+-c
+-      Real
+-     &           slapy2
+-c
+-c     %--------------------%
+-c     | Intrinsic Functions |
+-c     %--------------------%
+-       Intrinsic
+-     &           real, aimag
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      igap = n / 2
+-c 
+-      if (which .eq. 'LM') then
+-c
+-c        %--------------------------------------------%
+-c        | Sort X into increasing order of magnitude. |
+-c        %--------------------------------------------%
+-c
+-   10    continue
+-         if (igap .eq. 0) go to 9000
+-c
+-         do 30 i = igap, n-1
+-            j = i-igap
+-   20       continue
+-c
+-            if (j.lt.0) go to 30
+-c
+-            temp1 = slapy2(real(x(j)),aimag(x(j)))
+-            temp2 = slapy2(real(x(j+igap)),aimag(x(j+igap)))
+-c
+-            if (temp1.gt.temp2) then
+-                temp = x(j)
+-                x(j) = x(j+igap)
+-                x(j+igap) = temp
+-c
+-                if (apply) then
+-                    temp = y(j)
+-                    y(j) = y(j+igap)
+-                    y(j+igap) = temp
+-                end if
+-            else
+-                go to 30
+-            end if
+-            j = j-igap
+-            go to 20
+-   30    continue
+-         igap = igap / 2
+-         go to 10
+-c
+-      else if (which .eq. 'SM') then
+-c
+-c        %--------------------------------------------%
+-c        | Sort X into decreasing order of magnitude. |
+-c        %--------------------------------------------%
+-c
+-   40    continue
+-         if (igap .eq. 0) go to 9000
+-c
+-         do 60 i = igap, n-1
+-            j = i-igap
+-   50       continue
+-c
+-            if (j .lt. 0) go to 60
+-c
+-            temp1 = slapy2(real(x(j)),aimag(x(j)))
+-            temp2 = slapy2(real(x(j+igap)),aimag(x(j+igap)))
+-c
+-            if (temp1.lt.temp2) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 60
+-            endif
+-            j = j-igap
+-            go to 50
+-   60    continue
+-         igap = igap / 2
+-         go to 40
+-c 
+-      else if (which .eq. 'LR') then
+-c
+-c        %------------------------------------------------%
+-c        | Sort XREAL into increasing order of algebraic. |
+-c        %------------------------------------------------%
+-c
+-   70    continue
+-         if (igap .eq. 0) go to 9000
+-c
+-         do 90 i = igap, n-1
+-            j = i-igap
+-   80       continue
+-c
+-            if (j.lt.0) go to 90
+-c
+-            if (real(x(j)).gt.real(x(j+igap))) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 90
+-            endif
+-            j = j-igap
+-            go to 80
+-   90    continue
+-         igap = igap / 2
+-         go to 70
+-c 
+-      else if (which .eq. 'SR') then
+-c
+-c        %------------------------------------------------%
+-c        | Sort XREAL into decreasing order of algebraic. |
+-c        %------------------------------------------------%
+-c
+-  100    continue
+-         if (igap .eq. 0) go to 9000
+-         do 120 i = igap, n-1
+-            j = i-igap
+-  110       continue
+-c
+-            if (j.lt.0) go to 120
+-c
+-            if (real(x(j)).lt.real(x(j+igap))) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 120
+-            endif
+-            j = j-igap
+-            go to 110
+-  120    continue
+-         igap = igap / 2
+-         go to 100
+-c 
+-      else if (which .eq. 'LI') then
+-c
+-c        %--------------------------------------------%
+-c        | Sort XIMAG into increasing algebraic order |
+-c        %--------------------------------------------%
+-c
+-  130    continue
+-         if (igap .eq. 0) go to 9000
+-         do 150 i = igap, n-1
+-            j = i-igap
+-  140       continue
+-c
+-            if (j.lt.0) go to 150
+-c
+-            if (aimag(x(j)).gt.aimag(x(j+igap))) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-c
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 150
+-            endif
+-            j = j-igap
+-            go to 140
+-  150    continue
+-         igap = igap / 2
+-         go to 130
+-c 
+-      else if (which .eq. 'SI') then
+-c
+-c        %---------------------------------------------%
+-c        | Sort XIMAG into decreasing algebraic order  |
+-c        %---------------------------------------------%
+-c
+-  160    continue
+-         if (igap .eq. 0) go to 9000
+-         do 180 i = igap, n-1
+-            j = i-igap
+-  170       continue
+-c
+-            if (j.lt.0) go to 180
+-c
+-            if (aimag(x(j)).lt.aimag(x(j+igap))) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 180
+-            endif
+-            j = j-igap
+-            go to 170
+-  180    continue
+-         igap = igap / 2
+-         go to 160
+-      end if
+-c 
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of csortc |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/cstatn.f
++++ /dev/null
+@@ -1,51 +0,0 @@
+-c
+-c\SCCS Information: @(#)
+-c FILE: statn.F   SID: 2.2   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c     %---------------------------------------------%
+-c     | Initialize statistic and timing information |
+-c     | for complex nonsymmetric Arnoldi code.      |
+-c     %---------------------------------------------%
+-
+-      subroutine cstatn
+-c
+-c     %--------------------------------%
+-c     | See stat.doc for documentation |
+-c     %--------------------------------%
+-c
+-      include   'stat.h'
+- 
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-
+-      nopx   = 0
+-      nbx    = 0
+-      nrorth = 0
+-      nitref = 0
+-      nrstrt = 0
+- 
+-      tcaupd = 0.0E+0
+-      tcaup2 = 0.0E+0
+-      tcaitr = 0.0E+0
+-      tceigh = 0.0E+0
+-      tcgets = 0.0E+0
+-      tcapps = 0.0E+0
+-      tcconv = 0.0E+0
+-      titref = 0.0E+0
+-      tgetv0 = 0.0E+0
+-      trvec  = 0.0E+0
+- 
+-c     %----------------------------------------------------%
+-c     | User time including reverse communication overhead |
+-c     %----------------------------------------------------%
+-      tmvopx = 0.0E+0
+-      tmvbx  = 0.0E+0
+- 
+-      return
+-c
+-c     %---------------%
+-c     | End of cstatn |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dgetv0.f
++++ /dev/null
+@@ -1,419 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dgetv0
+-c
+-c\Description: 
+-c  Generate a random initial residual vector for the Arnoldi process.
+-c  Force the residual vector to be in the range of the operator OP.  
+-c
+-c\Usage:
+-c  call dgetv0
+-c     ( IDO, BMAT, ITRY, INITV, N, J, V, LDV, RESID, RNORM, 
+-c       IPNTR, WORKD, IERR )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.  IDO must be zero on the first
+-c          call to dgetv0.
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    This is for the initialization phase to force the
+-c                    starting vector into the range of OP.
+-c          IDO =  2: compute  Y = B * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of the matrix B in the (generalized)
+-c          eigenvalue problem A*x = lambda*B*x.
+-c          B = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          B = 'G' -> generalized eigenvalue problem A*x = lambda*B*x
+-c
+-c  ITRY    Integer.  (INPUT)
+-c          ITRY counts the number of times that dgetv0 is called.  
+-c          It should be set to 1 on the initial call to dgetv0.
+-c
+-c  INITV   Logical variable.  (INPUT)
+-c          .TRUE.  => the initial residual vector is given in RESID.
+-c          .FALSE. => generate a random initial residual vector.
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the problem.
+-c
+-c  J       Integer.  (INPUT)
+-c          Index of the residual vector to be generated, with respect to
+-c          the Arnoldi process.  J > 1 in case of a "restart".
+-c
+-c  V       Double precision N by J array.  (INPUT)
+-c          The first J-1 columns of V contain the current Arnoldi basis
+-c          if this is a "restart".
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling 
+-c          program.
+-c
+-c  RESID   Double precision array of length N.  (INPUT/OUTPUT)
+-c          Initial residual vector to be generated.  If RESID is 
+-c          provided, force RESID into the range of the operator OP.
+-c
+-c  RNORM   Double precision scalar.  (OUTPUT)
+-c          B-norm of the generated residual.
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c
+-c  WORKD   Double precision work array of length 2*N.  (REVERSE COMMUNICATION).
+-c          On exit, WORK(1:N) = B*RESID to be used in SSAITR.
+-c
+-c  IERR    Integer.  (OUTPUT)
+-c          =  0: Normal exit.
+-c          = -1: Cannot generate a nontrivial restarted residual vector
+-c                in the range of the operator OP.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c
+-c\Routines called:
+-c     arscnd  ARPACK utility routine for timing.
+-c     dvout   ARPACK utility routine for vector output.
+-c     dlarnv  LAPACK routine for generating a random vector.
+-c     dgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     dcopy   Level 1 BLAS that copies one vector to another.
+-c     ddot    Level 1 BLAS that computes the scalar product of two vectors. 
+-c     dnrm2   Level 1 BLAS that computes the norm of a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\SCCS Information: @(#) 
+-c FILE: getv0.F   SID: 2.7   DATE OF SID: 04/07/99   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dgetv0 
+-     &   ( ido, bmat, itry, initv, n, j, v, ldv, resid, rnorm, 
+-     &     ipntr, workd, ierr )
+-c 
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1
+-      logical    initv
+-      integer    ido, ierr, itry, j, ldv, n
+-      Double precision
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(3)
+-      Double precision
+-     &           resid(n), v(ldv,j), workd(2*n)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision
+-     &           one, zero
+-      parameter (one = 1.0D+0, zero = 0.0D+0)
+-c
+-c     %------------------------%
+-c     | Local Scalars & Arrays |
+-c     %------------------------%
+-c
+-      logical    first, inits, orth
+-      integer    idist, iseed(4), iter, msglvl, jj
+-      Double precision
+-     &           rnorm0
+-      save       first, iseed, inits, iter, msglvl, orth, rnorm0
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   dlarnv, dvout, dcopy, dgemv, arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision
+-     &           ddot, dnrm2
+-      external   ddot, dnrm2
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    abs, sqrt
+-c
+-c     %-----------------%
+-c     | Data Statements |
+-c     %-----------------%
+-c
+-      data       inits /.true./
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-c
+-c     %-----------------------------------%
+-c     | Initialize the seed of the LAPACK |
+-c     | random number generator           |
+-c     %-----------------------------------%
+-c
+-      if (inits) then
+-          iseed(1) = 1
+-          iseed(2) = 3
+-          iseed(3) = 5
+-          iseed(4) = 7
+-          inits = .false.
+-      end if
+-c
+-      if (ido .eq.  0) then
+-c 
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call arscnd (t0)
+-         msglvl = mgetv0
+-c 
+-         ierr   = 0
+-         iter   = 0
+-         first  = .FALSE.
+-         orth   = .FALSE.
+-c
+-c        %-----------------------------------------------------%
+-c        | Possibly generate a random starting vector in RESID |
+-c        | Use a LAPACK random number generator used by the    |
+-c        | matrix generation routines.                         |
+-c        |    idist = 1: uniform (0,1)  distribution;          |
+-c        |    idist = 2: uniform (-1,1) distribution;          |
+-c        |    idist = 3: normal  (0,1)  distribution;          |
+-c        %-----------------------------------------------------%
+-c
+-         if (.not.initv) then
+-            idist = 2
+-            call dlarnv (idist, iseed, n, resid)
+-         end if
+-c 
+-c        %----------------------------------------------------------%
+-c        | Force the starting vector into the range of OP to handle |
+-c        | the generalized problem when B is possibly (singular).   |
+-c        %----------------------------------------------------------%
+-c
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nopx = nopx + 1
+-            ipntr(1) = 1
+-            ipntr(2) = n + 1
+-            call dcopy (n, resid, 1, workd, 1)
+-            ido = -1
+-            go to 9000
+-         end if
+-      end if
+-c 
+-c     %-----------------------------------------%
+-c     | Back from computing OP*(initial-vector) |
+-c     %-----------------------------------------%
+-c
+-      if (first) go to 20
+-c
+-c     %-----------------------------------------------%
+-c     | Back from computing B*(orthogonalized-vector) |
+-c     %-----------------------------------------------%
+-c
+-      if (orth)  go to 40
+-c 
+-      if (bmat .eq. 'G') then
+-         call arscnd (t3)
+-         tmvopx = tmvopx + (t3 - t2)
+-      end if
+-c 
+-c     %------------------------------------------------------%
+-c     | Starting vector is now in the range of OP; r = OP*r; |
+-c     | Compute B-norm of starting vector.                   |
+-c     %------------------------------------------------------%
+-c
+-      call arscnd (t2)
+-      first = .TRUE.
+-      if (bmat .eq. 'G') then
+-         nbx = nbx + 1
+-         call dcopy (n, workd(n+1), 1, resid, 1)
+-         ipntr(1) = n + 1
+-         ipntr(2) = 1
+-         ido = 2
+-         go to 9000
+-      else if (bmat .eq. 'I') then
+-         call dcopy (n, resid, 1, workd, 1)
+-      end if
+-c 
+-   20 continue
+-c
+-      if (bmat .eq. 'G') then
+-         call arscnd (t3)
+-         tmvbx = tmvbx + (t3 - t2)
+-      end if
+-c 
+-      first = .FALSE.
+-      if (bmat .eq. 'G') then
+-          rnorm0 = ddot (n, resid, 1, workd, 1)
+-          rnorm0 = sqrt(abs(rnorm0))
+-      else if (bmat .eq. 'I') then
+-           rnorm0 = dnrm2(n, resid, 1)
+-      end if
+-      rnorm  = rnorm0
+-c
+-c     %---------------------------------------------%
+-c     | Exit if this is the very first Arnoldi step |
+-c     %---------------------------------------------%
+-c
+-      if (j .eq. 1) go to 50
+-c 
+-c     %----------------------------------------------------------------
+-c     | Otherwise need to B-orthogonalize the starting vector against |
+-c     | the current Arnoldi basis using Gram-Schmidt with iter. ref.  |
+-c     | This is the case where an invariant subspace is encountered   |
+-c     | in the middle of the Arnoldi factorization.                   |
+-c     |                                                               |
+-c     |       s = V^{T}*B*r;   r = r - V*s;                           |
+-c     |                                                               |
+-c     | Stopping criteria used for iter. ref. is discussed in         |
+-c     | Parlett's book, page 107 and in Gragg & Reichel TOMS paper.   |
+-c     %---------------------------------------------------------------%
+-c
+-      orth = .TRUE.
+-   30 continue
+-c
+-      call dgemv ('T', n, j-1, one, v, ldv, workd, 1, 
+-     &            zero, workd(n+1), 1)
+-      call dgemv ('N', n, j-1, -one, v, ldv, workd(n+1), 1, 
+-     &            one, resid, 1)
+-c 
+-c     %----------------------------------------------------------%
+-c     | Compute the B-norm of the orthogonalized starting vector |
+-c     %----------------------------------------------------------%
+-c
+-      call arscnd (t2)
+-      if (bmat .eq. 'G') then
+-         nbx = nbx + 1
+-         call dcopy (n, resid, 1, workd(n+1), 1)
+-         ipntr(1) = n + 1
+-         ipntr(2) = 1
+-         ido = 2
+-         go to 9000
+-      else if (bmat .eq. 'I') then
+-         call dcopy (n, resid, 1, workd, 1)
+-      end if
+-c 
+-   40 continue
+-c
+-      if (bmat .eq. 'G') then
+-         call arscnd (t3)
+-         tmvbx = tmvbx + (t3 - t2)
+-      end if
+-c 
+-      if (bmat .eq. 'G') then
+-         rnorm = ddot (n, resid, 1, workd, 1)
+-         rnorm = sqrt(abs(rnorm))
+-      else if (bmat .eq. 'I') then
+-         rnorm = dnrm2(n, resid, 1)
+-      end if
+-c
+-c     %--------------------------------------%
+-c     | Check for further orthogonalization. |
+-c     %--------------------------------------%
+-c
+-      if (msglvl .gt. 2) then
+-          call dvout (logfil, 1, rnorm0, ndigit, 
+-     &                '_getv0: re-orthonalization ; rnorm0 is')
+-          call dvout (logfil, 1, rnorm, ndigit, 
+-     &                '_getv0: re-orthonalization ; rnorm is')
+-      end if
+-c
+-      if (rnorm .gt. 0.717*rnorm0) go to 50
+-c 
+-      iter = iter + 1
+-      if (iter .le. 5) then
+-c
+-c        %-----------------------------------%
+-c        | Perform iterative refinement step |
+-c        %-----------------------------------%
+-c
+-         rnorm0 = rnorm
+-         go to 30
+-      else
+-c
+-c        %------------------------------------%
+-c        | Iterative refinement step "failed" |
+-c        %------------------------------------%
+-c
+-         do 45 jj = 1, n
+-            resid(jj) = zero
+-   45    continue
+-         rnorm = zero
+-         ierr = -1
+-      end if
+-c 
+-   50 continue
+-c
+-      if (msglvl .gt. 0) then
+-         call dvout (logfil, 1, rnorm, ndigit,
+-     &        '_getv0: B-norm of initial / restarted starting vector')
+-      end if
+-      if (msglvl .gt. 3) then
+-         call dvout (logfil, n, resid, ndigit,
+-     &        '_getv0: initial / restarted starting vector')
+-      end if
+-      ido = 99
+-c 
+-      call arscnd (t1)
+-      tgetv0 = tgetv0 + (t1 - t0)
+-c 
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of dgetv0 |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dlaqrb.f
++++ /dev/null
+@@ -1,521 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dlaqrb
+-c
+-c\Description:
+-c  Compute the eigenvalues and the Schur decomposition of an upper 
+-c  Hessenberg submatrix in rows and columns ILO to IHI.  Only the
+-c  last component of the Schur vectors are computed.
+-c
+-c  This is mostly a modification of the LAPACK routine dlahqr.
+-c  
+-c\Usage:
+-c  call dlaqrb
+-c     ( WANTT, N, ILO, IHI, H, LDH, WR, WI,  Z, INFO )
+-c
+-c\Arguments
+-c  WANTT   Logical variable.  (INPUT)
+-c          = .TRUE. : the full Schur form T is required;
+-c          = .FALSE.: only eigenvalues are required.
+-c
+-c  N       Integer.  (INPUT)
+-c          The order of the matrix H.  N >= 0.
+-c
+-c  ILO     Integer.  (INPUT)
+-c  IHI     Integer.  (INPUT)
+-c          It is assumed that H is already upper quasi-triangular in
+-c          rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
+-c          ILO = 1). SLAQRB works primarily with the Hessenberg
+-c          submatrix in rows and columns ILO to IHI, but applies
+-c          transformations to all of H if WANTT is .TRUE..
+-c          1 <= ILO <= max(1,IHI); IHI <= N.
+-c
+-c  H       Double precision array, dimension (LDH,N).  (INPUT/OUTPUT)
+-c          On entry, the upper Hessenberg matrix H.
+-c          On exit, if WANTT is .TRUE., H is upper quasi-triangular in
+-c          rows and columns ILO:IHI, with any 2-by-2 diagonal blocks in
+-c          standard form. If WANTT is .FALSE., the contents of H are
+-c          unspecified on exit.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          The leading dimension of the array H. LDH >= max(1,N).
+-c
+-c  WR      Double precision array, dimension (N).  (OUTPUT)
+-c  WI      Double precision array, dimension (N).  (OUTPUT)
+-c          The real and imaginary parts, respectively, of the computed
+-c          eigenvalues ILO to IHI are stored in the corresponding
+-c          elements of WR and WI. If two eigenvalues are computed as a
+-c          complex conjugate pair, they are stored in consecutive
+-c          elements of WR and WI, say the i-th and (i+1)th, with
+-c          WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
+-c          eigenvalues are stored in the same order as on the diagonal
+-c          of the Schur form returned in H, with WR(i) = H(i,i), and, if
+-c          H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
+-c          WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
+-c
+-c  Z       Double precision array, dimension (N).  (OUTPUT)
+-c          On exit Z contains the last components of the Schur vectors.
+-c
+-c  INFO    Integer.  (OUPUT)
+-c          = 0: successful exit
+-c          > 0: SLAQRB failed to compute all the eigenvalues ILO to IHI
+-c               in a total of 30*(IHI-ILO+1) iterations; if INFO = i,
+-c               elements i+1:ihi of WR and WI contain those eigenvalues
+-c               which have been successfully computed.
+-c
+-c\Remarks
+-c  1. None.
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     dlabad  LAPACK routine that computes machine constants.
+-c     dlamch  LAPACK routine that determines machine constants.
+-c     dlanhs  LAPACK routine that computes various norms of a matrix.
+-c     dlanv2  LAPACK routine that computes the Schur factorization of
+-c             2 by 2 nonsymmetric matrix in standard form.
+-c     dlarfg  LAPACK Householder reflection construction routine.
+-c     dcopy   Level 1 BLAS that copies one vector to another.
+-c     drot    Level 1 BLAS that applies a rotation to a 2 by 2 matrix.
+-
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas 
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.4'
+-c               Modified from the LAPACK routine dlahqr so that only the
+-c               last component of the Schur vectors are computed.
+-c
+-c\SCCS Information: @(#) 
+-c FILE: laqrb.F   SID: 2.2   DATE OF SID: 8/27/96   RELEASE: 2
+-c
+-c\Remarks
+-c     1. None
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dlaqrb ( wantt, n, ilo, ihi, h, ldh, wr, wi,
+-     &                    z, info )
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      logical    wantt
+-      integer    ihi, ilo, info, ldh, n
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Double precision
+-     &           h( ldh, * ), wi( * ), wr( * ), z( * )
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision
+-     &           zero, one, dat1, dat2
+-      parameter (zero = 0.0D+0, one = 1.0D+0, dat1 = 7.5D-1, 
+-     &           dat2 = -4.375D-1)
+-c
+-c     %------------------------%
+-c     | Local Scalars & Arrays |
+-c     %------------------------%
+-c
+-      integer    i, i1, i2, itn, its, j, k, l, m, nh, nr
+-      Double precision
+-     &           cs, h00, h10, h11, h12, h21, h22, h33, h33s,
+-     &           h43h34, h44, h44s, ovfl, s, smlnum, sn, sum,
+-     &           t1, t2, t3, tst1, ulp, unfl, v1, v2, v3
+-      Double precision
+-     &           v( 3 ), work( 1 )
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision
+-     &           dlamch, dlanhs
+-      external   dlamch, dlanhs
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   dcopy, dlabad, dlanv2, dlarfg, drot
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      info = 0
+-c
+-c     %--------------------------%
+-c     | Quick return if possible |
+-c     %--------------------------%
+-c
+-      if( n.eq.0 )
+-     &   return
+-      if( ilo.eq.ihi ) then
+-         wr( ilo ) = h( ilo, ilo )
+-         wi( ilo ) = zero
+-         return
+-      end if
+-c 
+-c     %---------------------------------------------%
+-c     | Initialize the vector of last components of |
+-c     | the Schur vectors for accumulation.         |
+-c     %---------------------------------------------%
+-c
+-      do 5 j = 1, n-1
+-         z(j) = zero
+-  5   continue 
+-      z(n) = one
+-c 
+-      nh = ihi - ilo + 1
+-c
+-c     %-------------------------------------------------------------%
+-c     | Set machine-dependent constants for the stopping criterion. |
+-c     | If norm(H) <= sqrt(OVFL), overflow should not occur.        |
+-c     %-------------------------------------------------------------%
+-c
+-      unfl = dlamch( 'safe minimum' )
+-      ovfl = one / unfl
+-      call dlabad( unfl, ovfl )
+-      ulp = dlamch( 'precision' )
+-      smlnum = unfl*( nh / ulp )
+-c
+-c     %---------------------------------------------------------------%
+-c     | I1 and I2 are the indices of the first row and last column    |
+-c     | of H to which transformations must be applied. If eigenvalues |
+-c     | only are computed, I1 and I2 are set inside the main loop.    |
+-c     | Zero out H(J+2,J) = ZERO for J=1:N if WANTT = .TRUE.          |
+-c     | else H(J+2,J) for J=ILO:IHI-ILO-1 if WANTT = .FALSE.          |
+-c     %---------------------------------------------------------------%
+-c
+-      if( wantt ) then
+-         i1 = 1
+-         i2 = n
+-         do 8 i=1,i2-2
+-            h(i1+i+1,i) = zero
+- 8       continue
+-      else
+-         do 9 i=1, ihi-ilo-1
+-            h(ilo+i+1,ilo+i-1) = zero
+- 9       continue
+-      end if
+-c 
+-c     %---------------------------------------------------%
+-c     | ITN is the total number of QR iterations allowed. |
+-c     %---------------------------------------------------%
+-c
+-      itn = 30*nh
+-c 
+-c     ------------------------------------------------------------------
+-c     The main loop begins here. I is the loop index and decreases from
+-c     IHI to ILO in steps of 1 or 2. Each iteration of the loop works
+-c     with the active submatrix in rows and columns L to I.
+-c     Eigenvalues I+1 to IHI have already converged. Either L = ILO or
+-c     H(L,L-1) is negligible so that the matrix splits.
+-c     ------------------------------------------------------------------
+-c 
+-      i = ihi
+-   10 continue
+-      l = ilo
+-      if( i.lt.ilo )
+-     &   go to 150
+- 
+-c     %--------------------------------------------------------------%
+-c     | Perform QR iterations on rows and columns ILO to I until a   |
+-c     | submatrix of order 1 or 2 splits off at the bottom because a |
+-c     | subdiagonal element has become negligible.                   |
+-c     %--------------------------------------------------------------%
+- 
+-      do 130 its = 0, itn
+-c
+-c        %----------------------------------------------%
+-c        | Look for a single small subdiagonal element. |
+-c        %----------------------------------------------%
+-c
+-         do 20 k = i, l + 1, -1
+-            tst1 = abs( h( k-1, k-1 ) ) + abs( h( k, k ) )
+-            if( tst1.eq.zero )
+-     &         tst1 = dlanhs( '1', i-l+1, h( l, l ), ldh, work )
+-            if( abs( h( k, k-1 ) ).le.max( ulp*tst1, smlnum ) )
+-     &         go to 30
+-   20    continue
+-   30    continue
+-         l = k
+-         if( l.gt.ilo ) then
+-c
+-c           %------------------------%
+-c           | H(L,L-1) is negligible |
+-c           %------------------------%
+-c
+-            h( l, l-1 ) = zero
+-         end if
+-c
+-c        %-------------------------------------------------------------%
+-c        | Exit from loop if a submatrix of order 1 or 2 has split off |
+-c        %-------------------------------------------------------------%
+-c
+-         if( l.ge.i-1 )
+-     &      go to 140
+-c
+-c        %---------------------------------------------------------%
+-c        | Now the active submatrix is in rows and columns L to I. |
+-c        | If eigenvalues only are being computed, only the active |
+-c        | submatrix need be transformed.                          |
+-c        %---------------------------------------------------------%
+-c
+-         if( .not.wantt ) then
+-            i1 = l
+-            i2 = i
+-         end if
+-c 
+-         if( its.eq.10 .or. its.eq.20 ) then
+-c
+-c           %-------------------%
+-c           | Exceptional shift |
+-c           %-------------------%
+-c
+-            s = abs( h( i, i-1 ) ) + abs( h( i-1, i-2 ) )
+-            h44 = dat1*s
+-            h33 = h44
+-            h43h34 = dat2*s*s
+-c
+-         else
+-c
+-c           %-----------------------------------------%
+-c           | Prepare to use Wilkinson's double shift |
+-c           %-----------------------------------------%
+-c
+-            h44 = h( i, i )
+-            h33 = h( i-1, i-1 )
+-            h43h34 = h( i, i-1 )*h( i-1, i )
+-         end if
+-c
+-c        %-----------------------------------------------------%
+-c        | Look for two consecutive small subdiagonal elements |
+-c        %-----------------------------------------------------%
+-c
+-         do 40 m = i - 2, l, -1
+-c
+-c           %---------------------------------------------------------%
+-c           | Determine the effect of starting the double-shift QR    |
+-c           | iteration at row M, and see if this would make H(M,M-1) |
+-c           | negligible.                                             |
+-c           %---------------------------------------------------------%
+-c
+-            h11 = h( m, m )
+-            h22 = h( m+1, m+1 )
+-            h21 = h( m+1, m )
+-            h12 = h( m, m+1 )
+-            h44s = h44 - h11
+-            h33s = h33 - h11
+-            v1 = ( h33s*h44s-h43h34 ) / h21 + h12
+-            v2 = h22 - h11 - h33s - h44s
+-            v3 = h( m+2, m+1 )
+-            s = abs( v1 ) + abs( v2 ) + abs( v3 )
+-            v1 = v1 / s
+-            v2 = v2 / s
+-            v3 = v3 / s
+-            v( 1 ) = v1
+-            v( 2 ) = v2
+-            v( 3 ) = v3
+-            if( m.eq.l )
+-     &         go to 50
+-            h00 = h( m-1, m-1 )
+-            h10 = h( m, m-1 )
+-            tst1 = abs( v1 )*( abs( h00 )+abs( h11 )+abs( h22 ) )
+-            if( abs( h10 )*( abs( v2 )+abs( v3 ) ).le.ulp*tst1 )
+-     &         go to 50
+-   40    continue
+-   50    continue
+-c
+-c        %----------------------%
+-c        | Double-shift QR step |
+-c        %----------------------%
+-c
+-         do 120 k = m, i - 1
+-c 
+-c           ------------------------------------------------------------
+-c           The first iteration of this loop determines a reflection G
+-c           from the vector V and applies it from left and right to H,
+-c           thus creating a nonzero bulge below the subdiagonal.
+-c
+-c           Each subsequent iteration determines a reflection G to
+-c           restore the Hessenberg form in the (K-1)th column, and thus
+-c           chases the bulge one step toward the bottom of the active
+-c           submatrix. NR is the order of G.
+-c           ------------------------------------------------------------
+-c 
+-            nr = min( 3, i-k+1 )
+-            if( k.gt.m )
+-     &         call dcopy( nr, h( k, k-1 ), 1, v, 1 )
+-            call dlarfg( nr, v( 1 ), v( 2 ), 1, t1 )
+-            if( k.gt.m ) then
+-               h( k, k-1 ) = v( 1 )
+-               h( k+1, k-1 ) = zero
+-               if( k.lt.i-1 )
+-     &            h( k+2, k-1 ) = zero
+-            else if( m.gt.l ) then
+-               h( k, k-1 ) = -h( k, k-1 )
+-            end if
+-            v2 = v( 2 )
+-            t2 = t1*v2
+-            if( nr.eq.3 ) then
+-               v3 = v( 3 )
+-               t3 = t1*v3
+-c
+-c              %------------------------------------------------%
+-c              | Apply G from the left to transform the rows of |
+-c              | the matrix in columns K to I2.                 |
+-c              %------------------------------------------------%
+-c
+-               do 60 j = k, i2
+-                  sum = h( k, j ) + v2*h( k+1, j ) + v3*h( k+2, j )
+-                  h( k, j ) = h( k, j ) - sum*t1
+-                  h( k+1, j ) = h( k+1, j ) - sum*t2
+-                  h( k+2, j ) = h( k+2, j ) - sum*t3
+-   60          continue
+-c
+-c              %----------------------------------------------------%
+-c              | Apply G from the right to transform the columns of |
+-c              | the matrix in rows I1 to min(K+3,I).               |
+-c              %----------------------------------------------------%
+-c
+-               do 70 j = i1, min( k+3, i )
+-                  sum = h( j, k ) + v2*h( j, k+1 ) + v3*h( j, k+2 )
+-                  h( j, k ) = h( j, k ) - sum*t1
+-                  h( j, k+1 ) = h( j, k+1 ) - sum*t2
+-                  h( j, k+2 ) = h( j, k+2 ) - sum*t3
+-   70          continue
+-c
+-c              %----------------------------------%
+-c              | Accumulate transformations for Z |
+-c              %----------------------------------%
+-c
+-               sum      = z( k ) + v2*z( k+1 ) + v3*z( k+2 )
+-               z( k )   = z( k ) - sum*t1
+-               z( k+1 ) = z( k+1 ) - sum*t2
+-               z( k+2 ) = z( k+2 ) - sum*t3
+- 
+-            else if( nr.eq.2 ) then
+-c
+-c              %------------------------------------------------%
+-c              | Apply G from the left to transform the rows of |
+-c              | the matrix in columns K to I2.                 |
+-c              %------------------------------------------------%
+-c
+-               do 90 j = k, i2
+-                  sum = h( k, j ) + v2*h( k+1, j )
+-                  h( k, j ) = h( k, j ) - sum*t1
+-                  h( k+1, j ) = h( k+1, j ) - sum*t2
+-   90          continue
+-c
+-c              %----------------------------------------------------%
+-c              | Apply G from the right to transform the columns of |
+-c              | the matrix in rows I1 to min(K+3,I).               |
+-c              %----------------------------------------------------%
+-c
+-               do 100 j = i1, i
+-                  sum = h( j, k ) + v2*h( j, k+1 )
+-                  h( j, k ) = h( j, k ) - sum*t1
+-                  h( j, k+1 ) = h( j, k+1 ) - sum*t2
+-  100          continue
+-c
+-c              %----------------------------------%
+-c              | Accumulate transformations for Z |
+-c              %----------------------------------%
+-c
+-               sum      = z( k ) + v2*z( k+1 )
+-               z( k )   = z( k ) - sum*t1
+-               z( k+1 ) = z( k+1 ) - sum*t2
+-            end if
+-  120    continue
+- 
+-  130 continue
+-c
+-c     %-------------------------------------------------------%
+-c     | Failure to converge in remaining number of iterations |
+-c     %-------------------------------------------------------%
+-c
+-      info = i
+-      return
+- 
+-  140 continue
+- 
+-      if( l.eq.i ) then
+-c
+-c        %------------------------------------------------------%
+-c        | H(I,I-1) is negligible: one eigenvalue has converged |
+-c        %------------------------------------------------------%
+-c
+-         wr( i ) = h( i, i )
+-         wi( i ) = zero
+-
+-      else if( l.eq.i-1 ) then
+-c
+-c        %--------------------------------------------------------%
+-c        | H(I-1,I-2) is negligible;                              |
+-c        | a pair of eigenvalues have converged.                  |
+-c        |                                                        |
+-c        | Transform the 2-by-2 submatrix to standard Schur form, |
+-c        | and compute and store the eigenvalues.                 |
+-c        %--------------------------------------------------------%
+-c
+-         call dlanv2( h( i-1, i-1 ), h( i-1, i ), h( i, i-1 ),
+-     &                h( i, i ), wr( i-1 ), wi( i-1 ), wr( i ), wi( i ),
+-     &                cs, sn )
+- 
+-         if( wantt ) then
+-c
+-c           %-----------------------------------------------------%
+-c           | Apply the transformation to the rest of H and to Z, |
+-c           | as required.                                        |
+-c           %-----------------------------------------------------%
+-c
+-            if( i2.gt.i )
+-     &         call drot( i2-i, h( i-1, i+1 ), ldh, h( i, i+1 ), ldh,
+-     &                    cs, sn )
+-            call drot( i-i1-1, h( i1, i-1 ), 1, h( i1, i ), 1, cs, sn )
+-            sum      = cs*z( i-1 ) + sn*z( i )
+-            z( i )   = cs*z( i )   - sn*z( i-1 )
+-            z( i-1 ) = sum
+-         end if
+-      end if
+-c
+-c     %---------------------------------------------------------%
+-c     | Decrement number of remaining iterations, and return to |
+-c     | start of the main loop with new value of I.             |
+-c     %---------------------------------------------------------%
+-c
+-      itn = itn - its
+-      i = l - 1
+-      go to 10
+- 
+-  150 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of dlaqrb |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dnaitr.f
++++ /dev/null
+@@ -1,840 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dnaitr
+-c
+-c\Description: 
+-c  Reverse communication interface for applying NP additional steps to 
+-c  a K step nonsymmetric Arnoldi factorization.
+-c
+-c  Input:  OP*V_{k}  -  V_{k}*H = r_{k}*e_{k}^T
+-c
+-c          with (V_{k}^T)*B*V_{k} = I, (V_{k}^T)*B*r_{k} = 0.
+-c
+-c  Output: OP*V_{k+p}  -  V_{k+p}*H = r_{k+p}*e_{k+p}^T
+-c
+-c          with (V_{k+p}^T)*B*V_{k+p} = I, (V_{k+p}^T)*B*r_{k+p} = 0.
+-c
+-c  where OP and B are as in dnaupd.  The B-norm of r_{k+p} is also
+-c  computed and returned.
+-c
+-c\Usage:
+-c  call dnaitr
+-c     ( IDO, BMAT, N, K, NP, NB, RESID, RNORM, V, LDV, H, LDH, 
+-c       IPNTR, WORKD, INFO )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y.
+-c                    This is for the restart phase to force the new
+-c                    starting vector into the range of OP.
+-c          IDO =  1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y,
+-c                    IPNTR(3) is the pointer into WORK for B * X.
+-c          IDO =  2: compute  Y = B * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c          When the routine is used in the "shift-and-invert" mode, the
+-c          vector B * Q is already available and do not need to be
+-c          recompute in forming OP * Q.
+-c
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of the matrix B that defines the
+-c          semi-inner product for the operator OP.  See dnaupd.
+-c          B = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          B = 'G' -> generalized eigenvalue problem A*x = lambda*M**x
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the eigenproblem.
+-c
+-c  K       Integer.  (INPUT)
+-c          Current size of V and H.
+-c
+-c  NP      Integer.  (INPUT)
+-c          Number of additional Arnoldi steps to take.
+-c
+-c  NB      Integer.  (INPUT)
+-c          Blocksize to be used in the recurrence.          
+-c          Only work for NB = 1 right now.  The goal is to have a 
+-c          program that implement both the block and non-block method.
+-c
+-c  RESID   Double precision array of length N.  (INPUT/OUTPUT)
+-c          On INPUT:  RESID contains the residual vector r_{k}.
+-c          On OUTPUT: RESID contains the residual vector r_{k+p}.
+-c
+-c  RNORM   Double precision scalar.  (INPUT/OUTPUT)
+-c          B-norm of the starting residual on input.
+-c          B-norm of the updated residual r_{k+p} on output.
+-c
+-c  V       Double precision N by K+NP array.  (INPUT/OUTPUT)
+-c          On INPUT:  V contains the Arnoldi vectors in the first K 
+-c          columns.
+-c          On OUTPUT: V contains the new NP Arnoldi vectors in the next
+-c          NP columns.  The first K columns are unchanged.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling 
+-c          program.
+-c
+-c  H       Double precision (K+NP) by (K+NP) array.  (INPUT/OUTPUT)
+-c          H is used to store the generated upper Hessenberg matrix.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling 
+-c          program.
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORK for 
+-c          vectors used by the Arnoldi iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X.
+-c          IPNTR(2): pointer to the current result vector Y.
+-c          IPNTR(3): pointer to the vector B * X when used in the 
+-c                    shift-and-invert mode.  X is the current operand.
+-c          -------------------------------------------------------------
+-c          
+-c  WORKD   Double precision work array of length 3*N.  (REVERSE COMMUNICATION)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The calling program should not 
+-c          use WORKD as temporary workspace during the iteration !!!!!!
+-c          On input, WORKD(1:N) = B*RESID and is used to save some 
+-c          computation at the first step.
+-c
+-c  INFO    Integer.  (OUTPUT)
+-c          = 0: Normal exit.
+-c          > 0: Size of the spanning invariant subspace of OP found.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c
+-c\Routines called:
+-c     dgetv0  ARPACK routine to generate the initial vector.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     dmout   ARPACK utility routine that prints matrices
+-c     dvout   ARPACK utility routine that prints vectors.
+-c     dlabad  LAPACK routine that computes machine constants.
+-c     dlamch  LAPACK routine that determines machine constants.
+-c     dlascl  LAPACK routine for careful scaling of a matrix.
+-c     dlanhs  LAPACK routine that computes various norms of a matrix.
+-c     dgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     daxpy   Level 1 BLAS that computes a vector triad.
+-c     dscal   Level 1 BLAS that scales a vector.
+-c     dcopy   Level 1 BLAS that copies one vector to another .
+-c     ddot    Level 1 BLAS that computes the scalar product of two vectors. 
+-c     dnrm2   Level 1 BLAS that computes the norm of a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas    
+-c 
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.4'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: naitr.F   SID: 2.4   DATE OF SID: 8/27/96   RELEASE: 2
+-c
+-c\Remarks
+-c  The algorithm implemented is:
+-c  
+-c  restart = .false.
+-c  Given V_{k} = [v_{1}, ..., v_{k}], r_{k}; 
+-c  r_{k} contains the initial residual vector even for k = 0;
+-c  Also assume that rnorm = || B*r_{k} || and B*r_{k} are already 
+-c  computed by the calling program.
+-c
+-c  betaj = rnorm ; p_{k+1} = B*r_{k} ;
+-c  For  j = k+1, ..., k+np  Do
+-c     1) if ( betaj < tol ) stop or restart depending on j.
+-c        ( At present tol is zero )
+-c        if ( restart ) generate a new starting vector.
+-c     2) v_{j} = r(j-1)/betaj;  V_{j} = [V_{j-1}, v_{j}];  
+-c        p_{j} = p_{j}/betaj
+-c     3) r_{j} = OP*v_{j} where OP is defined as in dnaupd
+-c        For shift-invert mode p_{j} = B*v_{j} is already available.
+-c        wnorm = || OP*v_{j} ||
+-c     4) Compute the j-th step residual vector.
+-c        w_{j} =  V_{j}^T * B * OP * v_{j}
+-c        r_{j} =  OP*v_{j} - V_{j} * w_{j}
+-c        H(:,j) = w_{j};
+-c        H(j,j-1) = rnorm
+-c        rnorm = || r_(j) ||
+-c        If (rnorm > 0.717*wnorm) accept step and go back to 1)
+-c     5) Re-orthogonalization step:
+-c        s = V_{j}'*B*r_{j}
+-c        r_{j} = r_{j} - V_{j}*s;  rnorm1 = || r_{j} ||
+-c        alphaj = alphaj + s_{j};   
+-c     6) Iterative refinement step:
+-c        If (rnorm1 > 0.717*rnorm) then
+-c           rnorm = rnorm1
+-c           accept step and go back to 1)
+-c        Else
+-c           rnorm = rnorm1
+-c           If this is the first time in step 6), go to 5)
+-c           Else r_{j} lies in the span of V_{j} numerically.
+-c              Set r_{j} = 0 and rnorm = 0; go to 1)
+-c        EndIf 
+-c  End Do
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dnaitr
+-     &   (ido, bmat, n, k, np, nb, resid, rnorm, v, ldv, h, ldh, 
+-     &    ipntr, workd, info)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1
+-      integer    ido, info, k, ldh, ldv, n, nb, np
+-      Double precision
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(3)
+-      Double precision
+-     &           h(ldh,k+np), resid(n), v(ldv,k+np), workd(3*n)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision
+-     &           one, zero
+-      parameter (one = 1.0D+0, zero = 0.0D+0)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      logical    first, orth1, orth2, rstart, step3, step4
+-      integer    ierr, i, infol, ipj, irj, ivj, iter, itry, j, msglvl,
+-     &           jj
+-      Double precision
+-     &           betaj, ovfl, temp1, rnorm1, smlnum, tst1, ulp, unfl, 
+-     &           wnorm
+-      save       first, orth1, orth2, rstart, step3, step4,
+-     &           ierr, ipj, irj, ivj, iter, itry, j, msglvl, ovfl,
+-     &           betaj, rnorm1, smlnum, ulp, unfl, wnorm
+-c
+-c     %-----------------------%
+-c     | Local Array Arguments | 
+-c     %-----------------------%
+-c
+-      Double precision
+-     &           xtemp(2)
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   daxpy, dcopy, dscal, dgemv, dgetv0, dlabad, 
+-     &           dvout, dmout, ivout, arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision
+-     &           ddot, dnrm2, dlanhs, dlamch
+-      external   ddot, dnrm2, dlanhs, dlamch
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    abs, sqrt
+-c
+-c     %-----------------%
+-c     | Data statements |
+-c     %-----------------%
+-c
+-      data      first / .true. /
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (first) then
+-c
+-c        %-----------------------------------------%
+-c        | Set machine-dependent constants for the |
+-c        | the splitting and deflation criterion.  |
+-c        | If norm(H) <= sqrt(OVFL),               |
+-c        | overflow should not occur.              |
+-c        | REFERENCE: LAPACK subroutine dlahqr     |
+-c        %-----------------------------------------%
+-c
+-         unfl = dlamch( 'safe minimum' )
+-         ovfl = one / unfl
+-         call dlabad( unfl, ovfl )
+-         ulp = dlamch( 'precision' )
+-         smlnum = unfl*( n / ulp )
+-         first = .false.
+-      end if
+-c
+-      if (ido .eq. 0) then
+-c 
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call arscnd (t0)
+-         msglvl = mnaitr
+-c 
+-c        %------------------------------%
+-c        | Initial call to this routine |
+-c        %------------------------------%
+-c
+-         info   = 0
+-         step3  = .false.
+-         step4  = .false.
+-         rstart = .false.
+-         orth1  = .false.
+-         orth2  = .false.
+-         j      = k + 1
+-         ipj    = 1
+-         irj    = ipj   + n
+-         ivj    = irj   + n
+-      end if
+-c 
+-c     %-------------------------------------------------%
+-c     | When in reverse communication mode one of:      |
+-c     | STEP3, STEP4, ORTH1, ORTH2, RSTART              |
+-c     | will be .true. when ....                        |
+-c     | STEP3: return from computing OP*v_{j}.          |
+-c     | STEP4: return from computing B-norm of OP*v_{j} |
+-c     | ORTH1: return from computing B-norm of r_{j+1}  |
+-c     | ORTH2: return from computing B-norm of          |
+-c     |        correction to the residual vector.       |
+-c     | RSTART: return from OP computations needed by   |
+-c     |         dgetv0.                                 |
+-c     %-------------------------------------------------%
+-c
+-      if (step3)  go to 50
+-      if (step4)  go to 60
+-      if (orth1)  go to 70
+-      if (orth2)  go to 90
+-      if (rstart) go to 30
+-c
+-c     %-----------------------------%
+-c     | Else this is the first step |
+-c     %-----------------------------%
+-c
+-c     %--------------------------------------------------------------%
+-c     |                                                              |
+-c     |        A R N O L D I     I T E R A T I O N     L O O P       |
+-c     |                                                              |
+-c     | Note:  B*r_{j-1} is already in WORKD(1:N)=WORKD(IPJ:IPJ+N-1) |
+-c     %--------------------------------------------------------------%
+- 
+- 1000 continue
+-c
+-         if (msglvl .gt. 1) then
+-            call ivout (logfil, 1, j, ndigit, 
+-     &                  '_naitr: generating Arnoldi vector number')
+-            call dvout (logfil, 1, rnorm, ndigit, 
+-     &                  '_naitr: B-norm of the current residual is')
+-         end if
+-c 
+-c        %---------------------------------------------------%
+-c        | STEP 1: Check if the B norm of j-th residual      |
+-c        | vector is zero. Equivalent to determing whether   |
+-c        | an exact j-step Arnoldi factorization is present. |
+-c        %---------------------------------------------------%
+-c
+-         betaj = rnorm
+-         if (rnorm .gt. zero) go to 40
+-c
+-c           %---------------------------------------------------%
+-c           | Invariant subspace found, generate a new starting |
+-c           | vector which is orthogonal to the current Arnoldi |
+-c           | basis and continue the iteration.                 |
+-c           %---------------------------------------------------%
+-c
+-            if (msglvl .gt. 0) then
+-               call ivout (logfil, 1, j, ndigit,
+-     &                     '_naitr: ****** RESTART AT STEP ******')
+-            end if
+-c 
+-c           %---------------------------------------------%
+-c           | ITRY is the loop variable that controls the |
+-c           | maximum amount of times that a restart is   |
+-c           | attempted. NRSTRT is used by stat.h         |
+-c           %---------------------------------------------%
+-c 
+-            betaj  = zero
+-            nrstrt = nrstrt + 1
+-            itry   = 1
+-   20       continue
+-            rstart = .true.
+-            ido    = 0
+-   30       continue
+-c
+-c           %--------------------------------------%
+-c           | If in reverse communication mode and |
+-c           | RSTART = .true. flow returns here.   |
+-c           %--------------------------------------%
+-c
+-            call dgetv0 (ido, bmat, itry, .false., n, j, v, ldv, 
+-     &                   resid, rnorm, ipntr, workd, ierr)
+-            if (ido .ne. 99) go to 9000
+-            if (ierr .lt. 0) then
+-               itry = itry + 1
+-               if (itry .le. 3) go to 20
+-c
+-c              %------------------------------------------------%
+-c              | Give up after several restart attempts.        |
+-c              | Set INFO to the size of the invariant subspace |
+-c              | which spans OP and exit.                       |
+-c              %------------------------------------------------%
+-c
+-               info = j - 1
+-               call arscnd (t1)
+-               tnaitr = tnaitr + (t1 - t0)
+-               ido = 99
+-               go to 9000
+-            end if
+-c 
+-   40    continue
+-c
+-c        %---------------------------------------------------------%
+-c        | STEP 2:  v_{j} = r_{j-1}/rnorm and p_{j} = p_{j}/rnorm  |
+-c        | Note that p_{j} = B*r_{j-1}. In order to avoid overflow |
+-c        | when reciprocating a small RNORM, test against lower    |
+-c        | machine bound.                                          |
+-c        %---------------------------------------------------------%
+-c
+-         call dcopy (n, resid, 1, v(1,j), 1)
+-         if (rnorm .ge. unfl) then
+-             temp1 = one / rnorm
+-             call dscal (n, temp1, v(1,j), 1)
+-             call dscal (n, temp1, workd(ipj), 1)
+-         else
+-c
+-c            %-----------------------------------------%
+-c            | To scale both v_{j} and p_{j} carefully |
+-c            | use LAPACK routine SLASCL               |
+-c            %-----------------------------------------%
+-c
+-             call dlascl ('General', i, i, rnorm, one, n, 1, 
+-     &                    v(1,j), n, infol)
+-             call dlascl ('General', i, i, rnorm, one, n, 1, 
+-     &                    workd(ipj), n, infol)
+-         end if
+-c
+-c        %------------------------------------------------------%
+-c        | STEP 3:  r_{j} = OP*v_{j}; Note that p_{j} = B*v_{j} |
+-c        | Note that this is not quite yet r_{j}. See STEP 4    |
+-c        %------------------------------------------------------%
+-c
+-         step3 = .true.
+-         nopx  = nopx + 1
+-         call arscnd (t2)
+-         call dcopy (n, v(1,j), 1, workd(ivj), 1)
+-         ipntr(1) = ivj
+-         ipntr(2) = irj
+-         ipntr(3) = ipj
+-         ido = 1
+-c 
+-c        %-----------------------------------%
+-c        | Exit in order to compute OP*v_{j} |
+-c        %-----------------------------------%
+-c 
+-         go to 9000 
+-   50    continue
+-c 
+-c        %----------------------------------%
+-c        | Back from reverse communication; |
+-c        | WORKD(IRJ:IRJ+N-1) := OP*v_{j}   |
+-c        | if step3 = .true.                |
+-c        %----------------------------------%
+-c
+-         call arscnd (t3)
+-         tmvopx = tmvopx + (t3 - t2)
+- 
+-         step3 = .false.
+-c
+-c        %------------------------------------------%
+-c        | Put another copy of OP*v_{j} into RESID. |
+-c        %------------------------------------------%
+-c
+-         call dcopy (n, workd(irj), 1, resid, 1)
+-c 
+-c        %---------------------------------------%
+-c        | STEP 4:  Finish extending the Arnoldi |
+-c        |          factorization to length j.   |
+-c        %---------------------------------------%
+-c
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            step4 = .true.
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %-------------------------------------%
+-c           | Exit in order to compute B*OP*v_{j} |
+-c           %-------------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call dcopy (n, resid, 1, workd(ipj), 1)
+-         end if
+-   60    continue
+-c 
+-c        %----------------------------------%
+-c        | Back from reverse communication; |
+-c        | WORKD(IPJ:IPJ+N-1) := B*OP*v_{j} |
+-c        | if step4 = .true.                |
+-c        %----------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c 
+-         step4 = .false.
+-c
+-c        %-------------------------------------%
+-c        | The following is needed for STEP 5. |
+-c        | Compute the B-norm of OP*v_{j}.     |
+-c        %-------------------------------------%
+-c
+-         if (bmat .eq. 'G') then  
+-             wnorm = ddot (n, resid, 1, workd(ipj), 1)
+-             wnorm = sqrt(abs(wnorm))
+-         else if (bmat .eq. 'I') then
+-            wnorm = dnrm2(n, resid, 1)
+-         end if
+-c
+-c        %-----------------------------------------%
+-c        | Compute the j-th residual corresponding |
+-c        | to the j step factorization.            |
+-c        | Use Classical Gram Schmidt and compute: |
+-c        | w_{j} <-  V_{j}^T * B * OP * v_{j}      |
+-c        | r_{j} <-  OP*v_{j} - V_{j} * w_{j}      |
+-c        %-----------------------------------------%
+-c
+-c
+-c        %------------------------------------------%
+-c        | Compute the j Fourier coefficients w_{j} |
+-c        | WORKD(IPJ:IPJ+N-1) contains B*OP*v_{j}.  |
+-c        %------------------------------------------%
+-c 
+-         call dgemv ('T', n, j, one, v, ldv, workd(ipj), 1,
+-     &               zero, h(1,j), 1)
+-c
+-c        %--------------------------------------%
+-c        | Orthogonalize r_{j} against V_{j}.   |
+-c        | RESID contains OP*v_{j}. See STEP 3. | 
+-c        %--------------------------------------%
+-c
+-         call dgemv ('N', n, j, -one, v, ldv, h(1,j), 1,
+-     &               one, resid, 1)
+-c
+-         if (j .gt. 1) h(j,j-1) = betaj
+-c
+-         call arscnd (t4)
+-c 
+-         orth1 = .true.
+-c
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call dcopy (n, resid, 1, workd(irj), 1)
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %----------------------------------%
+-c           | Exit in order to compute B*r_{j} |
+-c           %----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call dcopy (n, resid, 1, workd(ipj), 1)
+-         end if 
+-   70    continue
+-c 
+-c        %---------------------------------------------------%
+-c        | Back from reverse communication if ORTH1 = .true. |
+-c        | WORKD(IPJ:IPJ+N-1) := B*r_{j}.                    |
+-c        %---------------------------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c 
+-         orth1 = .false.
+-c
+-c        %------------------------------%
+-c        | Compute the B-norm of r_{j}. |
+-c        %------------------------------%
+-c
+-         if (bmat .eq. 'G') then         
+-            rnorm = ddot (n, resid, 1, workd(ipj), 1)
+-            rnorm = sqrt(abs(rnorm))
+-         else if (bmat .eq. 'I') then
+-            rnorm = dnrm2(n, resid, 1)
+-         end if
+-c 
+-c        %-----------------------------------------------------------%
+-c        | STEP 5: Re-orthogonalization / Iterative refinement phase |
+-c        | Maximum NITER_ITREF tries.                                |
+-c        |                                                           |
+-c        |          s      = V_{j}^T * B * r_{j}                     |
+-c        |          r_{j}  = r_{j} - V_{j}*s                         |
+-c        |          alphaj = alphaj + s_{j}                          |
+-c        |                                                           |
+-c        | The stopping criteria used for iterative refinement is    |
+-c        | discussed in Parlett's book SEP, page 107 and in Gragg &  |
+-c        | Reichel ACM TOMS paper; Algorithm 686, Dec. 1990.         |
+-c        | Determine if we need to correct the residual. The goal is |
+-c        | to enforce ||v(:,1:j)^T * r_{j}|| .le. eps * || r_{j} ||  |
+-c        | The following test determines whether the sine of the     |
+-c        | angle between  OP*x and the computed residual is less     |
+-c        | than or equal to 0.717.                                   |
+-c        %-----------------------------------------------------------%
+-c
+-         if (rnorm .gt. 0.717*wnorm) go to 100
+-         iter  = 0
+-         nrorth = nrorth + 1
+-c 
+-c        %---------------------------------------------------%
+-c        | Enter the Iterative refinement phase. If further  |
+-c        | refinement is necessary, loop back here. The loop |
+-c        | variable is ITER. Perform a step of Classical     |
+-c        | Gram-Schmidt using all the Arnoldi vectors V_{j}  |
+-c        %---------------------------------------------------%
+-c 
+-   80    continue
+-c
+-         if (msglvl .gt. 2) then
+-            xtemp(1) = wnorm
+-            xtemp(2) = rnorm
+-            call dvout (logfil, 2, xtemp, ndigit, 
+-     &           '_naitr: re-orthonalization; wnorm and rnorm are')
+-            call dvout (logfil, j, h(1,j), ndigit,
+-     &                  '_naitr: j-th column of H')
+-         end if
+-c
+-c        %----------------------------------------------------%
+-c        | Compute V_{j}^T * B * r_{j}.                       |
+-c        | WORKD(IRJ:IRJ+J-1) = v(:,1:J)'*WORKD(IPJ:IPJ+N-1). |
+-c        %----------------------------------------------------%
+-c
+-         call dgemv ('T', n, j, one, v, ldv, workd(ipj), 1, 
+-     &               zero, workd(irj), 1)
+-c
+-c        %---------------------------------------------%
+-c        | Compute the correction to the residual:     |
+-c        | r_{j} = r_{j} - V_{j} * WORKD(IRJ:IRJ+J-1). |
+-c        | The correction to H is v(:,1:J)*H(1:J,1:J)  |
+-c        | + v(:,1:J)*WORKD(IRJ:IRJ+J-1)*e'_j.         |
+-c        %---------------------------------------------%
+-c
+-         call dgemv ('N', n, j, -one, v, ldv, workd(irj), 1, 
+-     &               one, resid, 1)
+-         call daxpy (j, one, workd(irj), 1, h(1,j), 1)
+-c 
+-         orth2 = .true.
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call dcopy (n, resid, 1, workd(irj), 1)
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %-----------------------------------%
+-c           | Exit in order to compute B*r_{j}. |
+-c           | r_{j} is the corrected residual.  |
+-c           %-----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call dcopy (n, resid, 1, workd(ipj), 1)
+-         end if 
+-   90    continue
+-c
+-c        %---------------------------------------------------%
+-c        | Back from reverse communication if ORTH2 = .true. |
+-c        %---------------------------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c
+-c        %-----------------------------------------------------%
+-c        | Compute the B-norm of the corrected residual r_{j}. |
+-c        %-----------------------------------------------------%
+-c 
+-         if (bmat .eq. 'G') then         
+-             rnorm1 = ddot (n, resid, 1, workd(ipj), 1)
+-             rnorm1 = sqrt(abs(rnorm1))
+-         else if (bmat .eq. 'I') then
+-             rnorm1 = dnrm2(n, resid, 1)
+-         end if
+-c
+-         if (msglvl .gt. 0 .and. iter .gt. 0) then
+-            call ivout (logfil, 1, j, ndigit,
+-     &           '_naitr: Iterative refinement for Arnoldi residual')
+-            if (msglvl .gt. 2) then
+-                xtemp(1) = rnorm
+-                xtemp(2) = rnorm1
+-                call dvout (logfil, 2, xtemp, ndigit,
+-     &           '_naitr: iterative refinement ; rnorm and rnorm1 are')
+-            end if
+-         end if
+-c
+-c        %-----------------------------------------%
+-c        | Determine if we need to perform another |
+-c        | step of re-orthogonalization.           |
+-c        %-----------------------------------------%
+-c
+-         if (rnorm1 .gt. 0.717*rnorm) then
+-c
+-c           %---------------------------------------%
+-c           | No need for further refinement.       |
+-c           | The cosine of the angle between the   |
+-c           | corrected residual vector and the old |
+-c           | residual vector is greater than 0.717 |
+-c           | In other words the corrected residual |
+-c           | and the old residual vector share an  |
+-c           | angle of less than arcCOS(0.717)      |
+-c           %---------------------------------------%
+-c
+-            rnorm = rnorm1
+-c 
+-         else
+-c
+-c           %-------------------------------------------%
+-c           | Another step of iterative refinement step |
+-c           | is required. NITREF is used by stat.h     |
+-c           %-------------------------------------------%
+-c
+-            nitref = nitref + 1
+-            rnorm  = rnorm1
+-            iter   = iter + 1
+-            if (iter .le. 1) go to 80
+-c
+-c           %-------------------------------------------------%
+-c           | Otherwise RESID is numerically in the span of V |
+-c           %-------------------------------------------------%
+-c
+-            do 95 jj = 1, n
+-               resid(jj) = zero
+-  95        continue
+-            rnorm = zero
+-         end if
+-c 
+-c        %----------------------------------------------%
+-c        | Branch here directly if iterative refinement |
+-c        | wasn't necessary or after at most NITER_REF  |
+-c        | steps of iterative refinement.               |
+-c        %----------------------------------------------%
+-c 
+-  100    continue
+-c 
+-         rstart = .false.
+-         orth2  = .false.
+-c 
+-         call arscnd (t5)
+-         titref = titref + (t5 - t4)
+-c 
+-c        %------------------------------------%
+-c        | STEP 6: Update  j = j+1;  Continue |
+-c        %------------------------------------%
+-c
+-         j = j + 1
+-         if (j .gt. k+np) then
+-            call arscnd (t1)
+-            tnaitr = tnaitr + (t1 - t0)
+-            ido = 99
+-            do 110 i = max(1,k), k+np-1
+-c     
+-c              %--------------------------------------------%
+-c              | Check for splitting and deflation.         |
+-c              | Use a standard test as in the QR algorithm |
+-c              | REFERENCE: LAPACK subroutine dlahqr        |
+-c              %--------------------------------------------%
+-c     
+-               tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) )
+-               if( tst1.eq.zero )
+-     &              tst1 = dlanhs( '1', k+np, h, ldh, workd(n+1) )
+-               if( abs( h( i+1,i ) ).le.max( ulp*tst1, smlnum ) ) 
+-     &              h(i+1,i) = zero
+- 110        continue
+-c     
+-            if (msglvl .gt. 2) then
+-               call dmout (logfil, k+np, k+np, h, ldh, ndigit, 
+-     &          '_naitr: Final upper Hessenberg matrix H of order K+NP')
+-            end if
+-c     
+-            go to 9000
+-         end if
+-c
+-c        %--------------------------------------------------------%
+-c        | Loop back to extend the factorization by another step. |
+-c        %--------------------------------------------------------%
+-c
+-      go to 1000
+-c 
+-c     %---------------------------------------------------------------%
+-c     |                                                               |
+-c     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  |
+-c     |                                                               |
+-c     %---------------------------------------------------------------%
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of dnaitr |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dnapps.f
++++ /dev/null
+@@ -1,647 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dnapps
+-c
+-c\Description:
+-c  Given the Arnoldi factorization
+-c
+-c     A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T,
+-c
+-c  apply NP implicit shifts resulting in
+-c
+-c     A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q
+-c
+-c  where Q is an orthogonal matrix which is the product of rotations
+-c  and reflections resulting from the NP bulge chage sweeps.
+-c  The updated Arnoldi factorization becomes:
+-c
+-c     A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T.
+-c
+-c\Usage:
+-c  call dnapps
+-c     ( N, KEV, NP, SHIFTR, SHIFTI, V, LDV, H, LDH, RESID, Q, LDQ, 
+-c       WORKL, WORKD )
+-c
+-c\Arguments
+-c  N       Integer.  (INPUT)
+-c          Problem size, i.e. size of matrix A.
+-c
+-c  KEV     Integer.  (INPUT/OUTPUT)
+-c          KEV+NP is the size of the input matrix H.
+-c          KEV is the size of the updated matrix HNEW.  KEV is only 
+-c          updated on ouput when fewer than NP shifts are applied in
+-c          order to keep the conjugate pair together.
+-c
+-c  NP      Integer.  (INPUT)
+-c          Number of implicit shifts to be applied.
+-c
+-c  SHIFTR, Double precision array of length NP.  (INPUT)
+-c  SHIFTI  Real and imaginary part of the shifts to be applied.
+-c          Upon, entry to dnapps, the shifts must be sorted so that the 
+-c          conjugate pairs are in consecutive locations.
+-c
+-c  V       Double precision N by (KEV+NP) array.  (INPUT/OUTPUT)
+-c          On INPUT, V contains the current KEV+NP Arnoldi vectors.
+-c          On OUTPUT, V contains the updated KEV Arnoldi vectors
+-c          in the first KEV columns of V.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling
+-c          program.
+-c
+-c  H       Double precision (KEV+NP) by (KEV+NP) array.  (INPUT/OUTPUT)
+-c          On INPUT, H contains the current KEV+NP by KEV+NP upper 
+-c          Hessenber matrix of the Arnoldi factorization.
+-c          On OUTPUT, H contains the updated KEV by KEV upper Hessenberg
+-c          matrix in the KEV leading submatrix.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling
+-c          program.
+-c
+-c  RESID   Double precision array of length N.  (INPUT/OUTPUT)
+-c          On INPUT, RESID contains the the residual vector r_{k+p}.
+-c          On OUTPUT, RESID is the update residual vector rnew_{k} 
+-c          in the first KEV locations.
+-c
+-c  Q       Double precision KEV+NP by KEV+NP work array.  (WORKSPACE)
+-c          Work array used to accumulate the rotations and reflections
+-c          during the bulge chase sweep.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c
+-c  WORKL   Double precision work array of length (KEV+NP).  (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.
+-c
+-c  WORKD   Double precision work array of length 2*N.  (WORKSPACE)
+-c          Distributed array used in the application of the accumulated
+-c          orthogonal matrix Q.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c
+-c\Routines called:
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     dmout   ARPACK utility routine that prints matrices.
+-c     dvout   ARPACK utility routine that prints vectors.
+-c     dlabad  LAPACK routine that computes machine constants.
+-c     dlacpy  LAPACK matrix copy routine.
+-c     dlamch  LAPACK routine that determines machine constants. 
+-c     dlanhs  LAPACK routine that computes various norms of a matrix.
+-c     dlapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     dlarf   LAPACK routine that applies Householder reflection to
+-c             a matrix.
+-c     dlarfg  LAPACK Householder reflection construction routine.
+-c     dlartg  LAPACK Givens rotation construction routine.
+-c     dlaset  LAPACK matrix initialization routine.
+-c     dgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     daxpy   Level 1 BLAS that computes a vector triad.
+-c     dcopy   Level 1 BLAS that copies one vector to another .
+-c     dscal   Level 1 BLAS that scales a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas    
+-c
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.4'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: napps.F   SID: 2.4   DATE OF SID: 3/28/97   RELEASE: 2
+-c
+-c\Remarks
+-c  1. In this version, each shift is applied to all the sublocks of
+-c     the Hessenberg matrix H and not just to the submatrix that it
+-c     comes from. Deflation as in LAPACK routine dlahqr (QR algorithm
+-c     for upper Hessenberg matrices ) is used.
+-c     The subdiagonals of H are enforced to be non-negative.
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dnapps
+-     &   ( n, kev, np, shiftr, shifti, v, ldv, h, ldh, resid, q, ldq, 
+-     &     workl, workd )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    kev, ldh, ldq, ldv, n, np
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Double precision
+-     &           h(ldh,kev+np), resid(n), shifti(np), shiftr(np), 
+-     &           v(ldv,kev+np), q(ldq,kev+np), workd(2*n), workl(kev+np)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision
+-     &           one, zero
+-      parameter (one = 1.0D+0, zero = 0.0D+0)
+-c
+-c     %------------------------%
+-c     | Local Scalars & Arrays |
+-c     %------------------------%
+-c
+-      integer    i, iend, ir, istart, j, jj, kplusp, msglvl, nr
+-      logical    cconj, first
+-      Double precision
+-     &           c, f, g, h11, h12, h21, h22, h32, ovfl, r, s, sigmai, 
+-     &           sigmar, smlnum, ulp, unfl, u(3), t, tau, tst1
+-      save       first, ovfl, smlnum, ulp, unfl 
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   daxpy, dcopy, dscal, dlacpy, dlarfg, dlarf,
+-     &           dlaset, dlabad, arscnd, dlartg
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision
+-     &           dlamch, dlanhs, dlapy2
+-      external   dlamch, dlanhs, dlapy2
+-c
+-c     %----------------------%
+-c     | Intrinsics Functions |
+-c     %----------------------%
+-c
+-      intrinsic  abs, max, min
+-c
+-c     %----------------%
+-c     | Data statments |
+-c     %----------------%
+-c
+-      data       first / .true. /
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (first) then
+-c
+-c        %-----------------------------------------------%
+-c        | Set machine-dependent constants for the       |
+-c        | stopping criterion. If norm(H) <= sqrt(OVFL), |
+-c        | overflow should not occur.                    |
+-c        | REFERENCE: LAPACK subroutine dlahqr           |
+-c        %-----------------------------------------------%
+-c
+-         unfl = dlamch( 'safe minimum' )
+-         ovfl = one / unfl
+-         call dlabad( unfl, ovfl )
+-         ulp = dlamch( 'precision' )
+-         smlnum = unfl*( n / ulp )
+-         first = .false.
+-      end if
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c
+-      call arscnd (t0)
+-      msglvl = mnapps
+-      kplusp = kev + np 
+-c 
+-c     %--------------------------------------------%
+-c     | Initialize Q to the identity to accumulate |
+-c     | the rotations and reflections              |
+-c     %--------------------------------------------%
+-c
+-      call dlaset ('All', kplusp, kplusp, zero, one, q, ldq)
+-c
+-c     %----------------------------------------------%
+-c     | Quick return if there are no shifts to apply |
+-c     %----------------------------------------------%
+-c
+-      if (np .eq. 0) go to 9000
+-c
+-c     %----------------------------------------------%
+-c     | Chase the bulge with the application of each |
+-c     | implicit shift. Each shift is applied to the |
+-c     | whole matrix including each block.           |
+-c     %----------------------------------------------%
+-c
+-      cconj = .false.
+-      do 110 jj = 1, np
+-         sigmar = shiftr(jj)
+-         sigmai = shifti(jj)
+-c
+-         if (msglvl .gt. 2 ) then
+-            call ivout (logfil, 1, jj, ndigit, 
+-     &               '_napps: shift number.')
+-            call dvout (logfil, 1, sigmar, ndigit, 
+-     &               '_napps: The real part of the shift ')
+-            call dvout (logfil, 1, sigmai, ndigit, 
+-     &               '_napps: The imaginary part of the shift ')
+-         end if
+-c
+-c        %-------------------------------------------------%
+-c        | The following set of conditionals is necessary  |
+-c        | in order that complex conjugate pairs of shifts |
+-c        | are applied together or not at all.             |
+-c        %-------------------------------------------------%
+-c
+-         if ( cconj ) then
+-c
+-c           %-----------------------------------------%
+-c           | cconj = .true. means the previous shift |
+-c           | had non-zero imaginary part.            |
+-c           %-----------------------------------------%
+-c
+-            cconj = .false.
+-            go to 110
+-         else if ( jj .lt. np .and. abs( sigmai ) .gt. zero ) then
+-c
+-c           %------------------------------------%
+-c           | Start of a complex conjugate pair. |
+-c           %------------------------------------%
+-c
+-            cconj = .true.
+-         else if ( jj .eq. np .and. abs( sigmai ) .gt. zero ) then
+-c
+-c           %----------------------------------------------%
+-c           | The last shift has a nonzero imaginary part. |
+-c           | Don't apply it; thus the order of the        |
+-c           | compressed H is order KEV+1 since only np-1  |
+-c           | were applied.                                |
+-c           %----------------------------------------------%
+-c
+-            kev = kev + 1
+-            go to 110
+-         end if
+-         istart = 1
+-   20    continue
+-c
+-c        %--------------------------------------------------%
+-c        | if sigmai = 0 then                               |
+-c        |    Apply the jj-th shift ...                     |
+-c        | else                                             |
+-c        |    Apply the jj-th and (jj+1)-th together ...    |
+-c        |    (Note that jj < np at this point in the code) |
+-c        | end                                              |
+-c        | to the current block of H. The next do loop      |
+-c        | determines the current block ;                   |
+-c        %--------------------------------------------------%
+-c
+-         do 30 i = istart, kplusp-1
+-c
+-c           %----------------------------------------%
+-c           | Check for splitting and deflation. Use |
+-c           | a standard test as in the QR algorithm |
+-c           | REFERENCE: LAPACK subroutine dlahqr    |
+-c           %----------------------------------------%
+-c
+-            tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) )
+-            if( tst1.eq.zero )
+-     &         tst1 = dlanhs( '1', kplusp-jj+1, h, ldh, workl )
+-            if( abs( h( i+1,i ) ).le.max( ulp*tst1, smlnum ) ) then
+-               if (msglvl .gt. 0) then
+-                  call ivout (logfil, 1, i, ndigit, 
+-     &                 '_napps: matrix splitting at row/column no.')
+-                  call ivout (logfil, 1, jj, ndigit, 
+-     &                 '_napps: matrix splitting with shift number.')
+-                  call dvout (logfil, 1, h(i+1,i), ndigit, 
+-     &                 '_napps: off diagonal element.')
+-               end if
+-               iend = i
+-               h(i+1,i) = zero
+-               go to 40
+-            end if
+-   30    continue
+-         iend = kplusp
+-   40    continue
+-c
+-         if (msglvl .gt. 2) then
+-             call ivout (logfil, 1, istart, ndigit, 
+-     &                   '_napps: Start of current block ')
+-             call ivout (logfil, 1, iend, ndigit, 
+-     &                   '_napps: End of current block ')
+-         end if
+-c
+-c        %------------------------------------------------%
+-c        | No reason to apply a shift to block of order 1 |
+-c        %------------------------------------------------%
+-c
+-         if ( istart .eq. iend ) go to 100
+-c
+-c        %------------------------------------------------------%
+-c        | If istart + 1 = iend then no reason to apply a       |
+-c        | complex conjugate pair of shifts on a 2 by 2 matrix. |
+-c        %------------------------------------------------------%
+-c
+-         if ( istart + 1 .eq. iend .and. abs( sigmai ) .gt. zero ) 
+-     &      go to 100
+-c
+-         h11 = h(istart,istart)
+-         h21 = h(istart+1,istart)
+-         if ( abs( sigmai ) .le. zero ) then
+-c
+-c           %---------------------------------------------%
+-c           | Real-valued shift ==> apply single shift QR |
+-c           %---------------------------------------------%
+-c
+-            f = h11 - sigmar
+-            g = h21
+-c 
+-            do 80 i = istart, iend-1
+-c
+-c              %-----------------------------------------------------%
+-c              | Contruct the plane rotation G to zero out the bulge |
+-c              %-----------------------------------------------------%
+-c
+-               call dlartg (f, g, c, s, r)
+-               if (i .gt. istart) then
+-c
+-c                 %-------------------------------------------%
+-c                 | The following ensures that h(1:iend-1,1), |
+-c                 | the first iend-2 off diagonal of elements |
+-c                 | H, remain non negative.                   |
+-c                 %-------------------------------------------%
+-c
+-                  if (r .lt. zero) then
+-                     r = -r
+-                     c = -c
+-                     s = -s
+-                  end if
+-                  h(i,i-1) = r
+-                  h(i+1,i-1) = zero
+-               end if
+-c
+-c              %---------------------------------------------%
+-c              | Apply rotation to the left of H;  H <- G'*H |
+-c              %---------------------------------------------%
+-c
+-               do 50 j = i, kplusp
+-                  t        =  c*h(i,j) + s*h(i+1,j)
+-                  h(i+1,j) = -s*h(i,j) + c*h(i+1,j)
+-                  h(i,j)   = t   
+-   50          continue
+-c
+-c              %---------------------------------------------%
+-c              | Apply rotation to the right of H;  H <- H*G |
+-c              %---------------------------------------------%
+-c
+-               do 60 j = 1, min(i+2,iend)
+-                  t        =  c*h(j,i) + s*h(j,i+1)
+-                  h(j,i+1) = -s*h(j,i) + c*h(j,i+1)
+-                  h(j,i)   = t   
+-   60          continue
+-c
+-c              %----------------------------------------------------%
+-c              | Accumulate the rotation in the matrix Q;  Q <- Q*G |
+-c              %----------------------------------------------------%
+-c
+-               do 70 j = 1, min( i+jj, kplusp ) 
+-                  t        =   c*q(j,i) + s*q(j,i+1)
+-                  q(j,i+1) = - s*q(j,i) + c*q(j,i+1)
+-                  q(j,i)   = t   
+-   70          continue
+-c
+-c              %---------------------------%
+-c              | Prepare for next rotation |
+-c              %---------------------------%
+-c
+-               if (i .lt. iend-1) then
+-                  f = h(i+1,i)
+-                  g = h(i+2,i)
+-               end if
+-   80       continue
+-c
+-c           %-----------------------------------%
+-c           | Finished applying the real shift. |
+-c           %-----------------------------------%
+-c 
+-         else
+-c
+-c           %----------------------------------------------------%
+-c           | Complex conjugate shifts ==> apply double shift QR |
+-c           %----------------------------------------------------%
+-c
+-            h12 = h(istart,istart+1)
+-            h22 = h(istart+1,istart+1)
+-            h32 = h(istart+2,istart+1)
+-c
+-c           %---------------------------------------------------------%
+-c           | Compute 1st column of (H - shift*I)*(H - conj(shift)*I) |
+-c           %---------------------------------------------------------%
+-c
+-            s    = 2.0*sigmar
+-            t = dlapy2 ( sigmar, sigmai ) 
+-            u(1) = ( h11 * (h11 - s) + t * t ) / h21 + h12
+-            u(2) = h11 + h22 - s 
+-            u(3) = h32
+-c
+-            do 90 i = istart, iend-1
+-c
+-               nr = min ( 3, iend-i+1 )
+-c
+-c              %-----------------------------------------------------%
+-c              | Construct Householder reflector G to zero out u(1). |
+-c              | G is of the form I - tau*( 1 u )' * ( 1 u' ).       |
+-c              %-----------------------------------------------------%
+-c
+-               call dlarfg ( nr, u(1), u(2), 1, tau )
+-c
+-               if (i .gt. istart) then
+-                  h(i,i-1)   = u(1)
+-                  h(i+1,i-1) = zero
+-                  if (i .lt. iend-1) h(i+2,i-1) = zero
+-               end if
+-               u(1) = one
+-c
+-c              %--------------------------------------%
+-c              | Apply the reflector to the left of H |
+-c              %--------------------------------------%
+-c
+-               call dlarf ('Left', nr, kplusp-i+1, u, 1, tau,
+-     &                     h(i,i), ldh, workl)
+-c
+-c              %---------------------------------------%
+-c              | Apply the reflector to the right of H |
+-c              %---------------------------------------%
+-c
+-               ir = min ( i+3, iend )
+-               call dlarf ('Right', ir, nr, u, 1, tau,
+-     &                     h(1,i), ldh, workl)
+-c
+-c              %-----------------------------------------------------%
+-c              | Accumulate the reflector in the matrix Q;  Q <- Q*G |
+-c              %-----------------------------------------------------%
+-c
+-               call dlarf ('Right', kplusp, nr, u, 1, tau, 
+-     &                     q(1,i), ldq, workl)
+-c
+-c              %----------------------------%
+-c              | Prepare for next reflector |
+-c              %----------------------------%
+-c
+-               if (i .lt. iend-1) then
+-                  u(1) = h(i+1,i)
+-                  u(2) = h(i+2,i)
+-                  if (i .lt. iend-2) u(3) = h(i+3,i)
+-               end if
+-c
+-   90       continue
+-c
+-c           %--------------------------------------------%
+-c           | Finished applying a complex pair of shifts |
+-c           | to the current block                       |
+-c           %--------------------------------------------%
+-c 
+-         end if
+-c
+-  100    continue
+-c
+-c        %---------------------------------------------------------%
+-c        | Apply the same shift to the next block if there is any. |
+-c        %---------------------------------------------------------%
+-c
+-         istart = iend + 1
+-         if (iend .lt. kplusp) go to 20
+-c
+-c        %---------------------------------------------%
+-c        | Loop back to the top to get the next shift. |
+-c        %---------------------------------------------%
+-c
+-  110 continue
+-c
+-c     %--------------------------------------------------%
+-c     | Perform a similarity transformation that makes   |
+-c     | sure that H will have non negative sub diagonals |
+-c     %--------------------------------------------------%
+-c
+-      do 120 j=1,kev
+-         if ( h(j+1,j) .lt. zero ) then
+-              call dscal( kplusp-j+1, -one, h(j+1,j), ldh )
+-              call dscal( min(j+2, kplusp), -one, h(1,j+1), 1 )
+-              call dscal( min(j+np+1,kplusp), -one, q(1,j+1), 1 )
+-         end if
+- 120  continue
+-c
+-      do 130 i = 1, kev
+-c
+-c        %--------------------------------------------%
+-c        | Final check for splitting and deflation.   |
+-c        | Use a standard test as in the QR algorithm |
+-c        | REFERENCE: LAPACK subroutine dlahqr        |
+-c        %--------------------------------------------%
+-c
+-         tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) )
+-         if( tst1.eq.zero )
+-     &       tst1 = dlanhs( '1', kev, h, ldh, workl )
+-         if( h( i+1,i ) .le. max( ulp*tst1, smlnum ) ) 
+-     &       h(i+1,i) = zero
+- 130  continue
+-c
+-c     %-------------------------------------------------%
+-c     | Compute the (kev+1)-st column of (V*Q) and      |
+-c     | temporarily store the result in WORKD(N+1:2*N). |
+-c     | This is needed in the residual update since we  |
+-c     | cannot GUARANTEE that the corresponding entry   |
+-c     | of H would be zero as in exact arithmetic.      |
+-c     %-------------------------------------------------%
+-c
+-      if (h(kev+1,kev) .gt. zero)
+-     &    call dgemv ('N', n, kplusp, one, v, ldv, q(1,kev+1), 1, zero, 
+-     &                workd(n+1), 1)
+-c 
+-c     %----------------------------------------------------------%
+-c     | Compute column 1 to kev of (V*Q) in backward order       |
+-c     | taking advantage of the upper Hessenberg structure of Q. |
+-c     %----------------------------------------------------------%
+-c
+-      do 140 i = 1, kev
+-         call dgemv ('N', n, kplusp-i+1, one, v, ldv,
+-     &               q(1,kev-i+1), 1, zero, workd, 1)
+-         call dcopy (n, workd, 1, v(1,kplusp-i+1), 1)
+-  140 continue
+-c
+-c     %-------------------------------------------------%
+-c     |  Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). |
+-c     %-------------------------------------------------%
+-c
+-      call dlacpy ('A', n, kev, v(1,kplusp-kev+1), ldv, v, ldv)
+-c 
+-c     %--------------------------------------------------------------%
+-c     | Copy the (kev+1)-st column of (V*Q) in the appropriate place |
+-c     %--------------------------------------------------------------%
+-c
+-      if (h(kev+1,kev) .gt. zero)
+-     &   call dcopy (n, workd(n+1), 1, v(1,kev+1), 1)
+-c 
+-c     %-------------------------------------%
+-c     | Update the residual vector:         |
+-c     |    r <- sigmak*r + betak*v(:,kev+1) |
+-c     | where                               |
+-c     |    sigmak = (e_{kplusp}'*Q)*e_{kev} |
+-c     |    betak = e_{kev+1}'*H*e_{kev}     |
+-c     %-------------------------------------%
+-c
+-      call dscal (n, q(kplusp,kev), resid, 1)
+-      if (h(kev+1,kev) .gt. zero)
+-     &   call daxpy (n, h(kev+1,kev), v(1,kev+1), 1, resid, 1)
+-c
+-      if (msglvl .gt. 1) then
+-         call dvout (logfil, 1, q(kplusp,kev), ndigit,
+-     &        '_napps: sigmak = (e_{kev+p}^T*Q)*e_{kev}')
+-         call dvout (logfil, 1, h(kev+1,kev), ndigit,
+-     &        '_napps: betak = e_{kev+1}^T*H*e_{kev}')
+-         call ivout (logfil, 1, kev, ndigit, 
+-     &               '_napps: Order of the final Hessenberg matrix ')
+-         if (msglvl .gt. 2) then
+-            call dmout (logfil, kev, kev, h, ldh, ndigit,
+-     &      '_napps: updated Hessenberg matrix H for next iteration')
+-         end if
+-c
+-      end if
+-c 
+- 9000 continue
+-      call arscnd (t1)
+-      tnapps = tnapps + (t1 - t0)
+-c 
+-      return
+-c
+-c     %---------------%
+-c     | End of dnapps |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dnaup2.f
++++ /dev/null
+@@ -1,835 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: dnaup2
+-c
+-c\Description:
+-c  Intermediate level interface called by dnaupd .
+-c
+-c\Usage:
+-c  call dnaup2
+-c     ( IDO, BMAT, N, WHICH, NEV, NP, TOL, RESID, MODE, IUPD,
+-c       ISHIFT, MXITER, V, LDV, H, LDH, RITZR, RITZI, BOUNDS,
+-c       Q, LDQ, WORKL, IPNTR, WORKD, INFO )
+-c
+-c\Arguments
+-c
+-c  IDO, BMAT, N, WHICH, NEV, TOL, RESID: same as defined in dnaupd .
+-c  MODE, ISHIFT, MXITER: see the definition of IPARAM in dnaupd .
+-c
+-c  NP      Integer.  (INPUT/OUTPUT)
+-c          Contains the number of implicit shifts to apply during
+-c          each Arnoldi iteration.
+-c          If ISHIFT=1, NP is adjusted dynamically at each iteration
+-c          to accelerate convergence and prevent stagnation.
+-c          This is also roughly equal to the number of matrix-vector
+-c          products (involving the operator OP) per Arnoldi iteration.
+-c          The logic for adjusting is contained within the current
+-c          subroutine.
+-c          If ISHIFT=0, NP is the number of shifts the user needs
+-c          to provide via reverse comunication. 0 < NP < NCV-NEV.
+-c          NP may be less than NCV-NEV for two reasons. The first, is
+-c          to keep complex conjugate pairs of "wanted" Ritz values
+-c          together. The second, is that a leading block of the current
+-c          upper Hessenberg matrix has split off and contains "unwanted"
+-c          Ritz values.
+-c          Upon termination of the IRA iteration, NP contains the number
+-c          of "converged" wanted Ritz values.
+-c
+-c  IUPD    Integer.  (INPUT)
+-c          IUPD .EQ. 0: use explicit restart instead implicit update.
+-c          IUPD .NE. 0: use implicit update.
+-c
+-c  V       Double precision  N by (NEV+NP) array.  (INPUT/OUTPUT)
+-c          The Arnoldi basis vectors are returned in the first NEV
+-c          columns of V.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling
+-c          program.
+-c
+-c  H       Double precision  (NEV+NP) by (NEV+NP) array.  (OUTPUT)
+-c          H is used to store the generated upper Hessenberg matrix
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling
+-c          program.
+-c
+-c  RITZR,  Double precision  arrays of length NEV+NP.  (OUTPUT)
+-c  RITZI   RITZR(1:NEV) (resp. RITZI(1:NEV)) contains the real (resp.
+-c          imaginary) part of the computed Ritz values of OP.
+-c
+-c  BOUNDS  Double precision  array of length NEV+NP.  (OUTPUT)
+-c          BOUNDS(1:NEV) contain the error bounds corresponding to
+-c          the computed Ritz values.
+-c
+-c  Q       Double precision  (NEV+NP) by (NEV+NP) array.  (WORKSPACE)
+-c          Private (replicated) work array used to accumulate the
+-c          rotation in the shift application step.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c
+-c  WORKL   Double precision  work array of length at least
+-c          (NEV+NP)**2 + 3*(NEV+NP).  (INPUT/WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  It is used in shifts calculation, shifts
+-c          application and convergence checking.
+-c
+-c          On exit, the last 3*(NEV+NP) locations of WORKL contain
+-c          the Ritz values (real,imaginary) and associated Ritz
+-c          estimates of the current Hessenberg matrix.  They are
+-c          listed in the same order as returned from dneigh .
+-c
+-c          If ISHIFT .EQ. O and IDO .EQ. 3, the first 2*NP locations
+-c          of WORKL are used in reverse communication to hold the user
+-c          supplied shifts.
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORKD for
+-c          vectors used by the Arnoldi iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X.
+-c          IPNTR(2): pointer to the current result vector Y.
+-c          IPNTR(3): pointer to the vector B * X when used in the
+-c                    shift-and-invert mode.  X is the current operand.
+-c          -------------------------------------------------------------
+-c
+-c  WORKD   Double precision  work array of length 3*N.  (WORKSPACE)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The user should not use WORKD
+-c          as temporary workspace during the iteration !!!!!!!!!!
+-c          See Data Distribution Note in DNAUPD.
+-c
+-c  INFO    Integer.  (INPUT/OUTPUT)
+-c          If INFO .EQ. 0, a randomly initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          Error flag on output.
+-c          =     0: Normal return.
+-c          =     1: Maximum number of iterations taken.
+-c                   All possible eigenvalues of OP has been found.
+-c                   NP returns the number of converged Ritz values.
+-c          =     2: No shifts could be applied.
+-c          =    -8: Error return from LAPACK eigenvalue calculation;
+-c                   This should never happen.
+-c          =    -9: Starting vector is zero.
+-c          = -9999: Could not build an Arnoldi factorization.
+-c                   Size that was built in returned in NP.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c
+-c\Routines called:
+-c     dgetv0   ARPACK initial vector generation routine.
+-c     dnaitr   ARPACK Arnoldi factorization routine.
+-c     dnapps   ARPACK application of implicit shifts routine.
+-c     dnconv   ARPACK convergence of Ritz values routine.
+-c     dneigh   ARPACK compute Ritz values and error bounds routine.
+-c     dngets   ARPACK reorder Ritz values and error bounds routine.
+-c     dsortc   ARPACK sorting routine.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     dmout    ARPACK utility routine that prints matrices
+-c     dvout    ARPACK utility routine that prints vectors.
+-c     dlamch   LAPACK routine that determines machine constants.
+-c     dlapy2   LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     dcopy    Level 1 BLAS that copies one vector to another .
+-c     ddot     Level 1 BLAS that computes the scalar product of two vectors.
+-c     dnrm2    Level 1 BLAS that computes the norm of a vector.
+-c     dswap    Level 1 BLAS that swaps two vectors.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University
+-c     Houston, Texas
+-c
+-c\SCCS Information: @(#)
+-c FILE: naup2.F   SID: 2.8   DATE OF SID: 10/17/00   RELEASE: 2
+-c
+-c\Remarks
+-c     1. None
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dnaup2
+-     &   ( ido, bmat, n, which, nev, np, tol, resid, mode, iupd,
+-     &     ishift, mxiter, v, ldv, h, ldh, ritzr, ritzi, bounds,
+-     &     q, ldq, workl, ipntr, workd, info )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1, which*2
+-      integer    ido, info, ishift, iupd, mode, ldh, ldq, ldv, mxiter,
+-     &           n, nev, np
+-      Double precision
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(13)
+-      Double precision
+-     &           bounds(nev+np), h(ldh,nev+np), q(ldq,nev+np), resid(n),
+-     &           ritzi(nev+np), ritzr(nev+np), v(ldv,nev+np),
+-     &           workd(3*n), workl( (nev+np)*(nev+np+3) )
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision
+-     &           one, zero
+-      parameter (one = 1.0D+0 , zero = 0.0D+0 )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      character  wprime*2
+-      logical    cnorm , getv0, initv, update, ushift
+-      integer    ierr  , iter , j    , kplusp, msglvl, nconv,
+-     &           nevbef, nev0 , np0  , nptemp, numcnv
+-      Double precision
+-     &           rnorm , temp , eps23
+-      save       cnorm , getv0, initv, update, ushift,
+-     &           rnorm , iter , eps23, kplusp, msglvl, nconv ,
+-     &           nevbef, nev0 , np0  , numcnv
+-c
+-c     %-----------------------%
+-c     | Local array arguments |
+-c     %-----------------------%
+-c
+-      integer    kp(4)
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   dcopy  , dgetv0 , dnaitr , dnconv , dneigh ,
+-     &           dngets , dnapps , dvout  , ivout , arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision
+-     &           ddot , dnrm2 , dlapy2 , dlamch
+-      external   ddot , dnrm2 , dlapy2 , dlamch
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    min, max, abs, sqrt
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (ido .eq. 0) then
+-c
+-         call arscnd (t0)
+-c
+-         msglvl = mnaup2
+-c
+-c        %-------------------------------------%
+-c        | Get the machine dependent constant. |
+-c        %-------------------------------------%
+-c
+-         eps23 = dlamch ('Epsilon-Machine')
+-         eps23 = eps23**(2.0D+0  / 3.0D+0 )
+-c
+-         nev0   = nev
+-         np0    = np
+-c
+-c        %-------------------------------------%
+-c        | kplusp is the bound on the largest  |
+-c        |        Lanczos factorization built. |
+-c        | nconv is the current number of      |
+-c        |        "converged" eigenvlues.      |
+-c        | iter is the counter on the current  |
+-c        |      iteration step.                |
+-c        %-------------------------------------%
+-c
+-         kplusp = nev + np
+-         nconv  = 0
+-         iter   = 0
+-c
+-c        %---------------------------------------%
+-c        | Set flags for computing the first NEV |
+-c        | steps of the Arnoldi factorization.   |
+-c        %---------------------------------------%
+-c
+-         getv0    = .true.
+-         update   = .false.
+-         ushift   = .false.
+-         cnorm    = .false.
+-c
+-         if (info .ne. 0) then
+-c
+-c           %--------------------------------------------%
+-c           | User provides the initial residual vector. |
+-c           %--------------------------------------------%
+-c
+-            initv = .true.
+-            info  = 0
+-         else
+-            initv = .false.
+-         end if
+-      end if
+-c
+-c     %---------------------------------------------%
+-c     | Get a possibly random starting vector and   |
+-c     | force it into the range of the operator OP. |
+-c     %---------------------------------------------%
+-c
+-   10 continue
+-c
+-      if (getv0) then
+-         call dgetv0  (ido, bmat, 1, initv, n, 1, v, ldv, resid, rnorm,
+-     &                ipntr, workd, info)
+-c
+-         if (ido .ne. 99) go to 9000
+-c
+-         if (rnorm .eq. zero) then
+-c
+-c           %-----------------------------------------%
+-c           | The initial vector is zero. Error exit. |
+-c           %-----------------------------------------%
+-c
+-            info = -9
+-            go to 1100
+-         end if
+-         getv0 = .false.
+-         ido  = 0
+-      end if
+-c
+-c     %-----------------------------------%
+-c     | Back from reverse communication : |
+-c     | continue with update step         |
+-c     %-----------------------------------%
+-c
+-      if (update) go to 20
+-c
+-c     %-------------------------------------------%
+-c     | Back from computing user specified shifts |
+-c     %-------------------------------------------%
+-c
+-      if (ushift) go to 50
+-c
+-c     %-------------------------------------%
+-c     | Back from computing residual norm   |
+-c     | at the end of the current iteration |
+-c     %-------------------------------------%
+-c
+-      if (cnorm)  go to 100
+-c
+-c     %----------------------------------------------------------%
+-c     | Compute the first NEV steps of the Arnoldi factorization |
+-c     %----------------------------------------------------------%
+-c
+-      call dnaitr  (ido, bmat, n, 0, nev, mode, resid, rnorm, v, ldv,
+-     &             h, ldh, ipntr, workd, info)
+-c
+-c     %---------------------------------------------------%
+-c     | ido .ne. 99 implies use of reverse communication  |
+-c     | to compute operations involving OP and possibly B |
+-c     %---------------------------------------------------%
+-c
+-      if (ido .ne. 99) go to 9000
+-c
+-      if (info .gt. 0) then
+-         np   = info
+-         mxiter = iter
+-         info = -9999
+-         go to 1200
+-      end if
+-c
+-c     %--------------------------------------------------------------%
+-c     |                                                              |
+-c     |           M A I N  ARNOLDI  I T E R A T I O N  L O O P       |
+-c     |           Each iteration implicitly restarts the Arnoldi     |
+-c     |           factorization in place.                            |
+-c     |                                                              |
+-c     %--------------------------------------------------------------%
+-c
+- 1000 continue
+-c
+-         iter = iter + 1
+-c
+-         if (msglvl .gt. 0) then
+-            call ivout (logfil, 1, iter, ndigit,
+-     &           '_naup2: **** Start of major iteration number ****')
+-         end if
+-c
+-c        %-----------------------------------------------------------%
+-c        | Compute NP additional steps of the Arnoldi factorization. |
+-c        | Adjust NP since NEV might have been updated by last call  |
+-c        | to the shift application routine dnapps .                  |
+-c        %-----------------------------------------------------------%
+-c
+-         np  = kplusp - nev
+-c
+-         if (msglvl .gt. 1) then
+-            call ivout (logfil, 1, nev, ndigit,
+-     &     '_naup2: The length of the current Arnoldi factorization')
+-            call ivout (logfil, 1, np, ndigit,
+-     &           '_naup2: Extend the Arnoldi factorization by')
+-         end if
+-c
+-c        %-----------------------------------------------------------%
+-c        | Compute NP additional steps of the Arnoldi factorization. |
+-c        %-----------------------------------------------------------%
+-c
+-         ido = 0
+-   20    continue
+-         update = .true.
+-c
+-         call dnaitr  (ido  , bmat, n  , nev, np , mode , resid,
+-     &                rnorm, v   , ldv, h  , ldh, ipntr, workd,
+-     &                info)
+-c
+-c        %---------------------------------------------------%
+-c        | ido .ne. 99 implies use of reverse communication  |
+-c        | to compute operations involving OP and possibly B |
+-c        %---------------------------------------------------%
+-c
+-         if (ido .ne. 99) go to 9000
+-c
+-         if (info .gt. 0) then
+-            np = info
+-            mxiter = iter
+-            info = -9999
+-            go to 1200
+-         end if
+-         update = .false.
+-c
+-         if (msglvl .gt. 1) then
+-            call dvout  (logfil, 1, rnorm, ndigit,
+-     &           '_naup2: Corresponding B-norm of the residual')
+-         end if
+-c
+-c        %--------------------------------------------------------%
+-c        | Compute the eigenvalues and corresponding error bounds |
+-c        | of the current upper Hessenberg matrix.                |
+-c        %--------------------------------------------------------%
+-c
+-         call dneigh  (rnorm, kplusp, h, ldh, ritzr, ritzi, bounds,
+-     &                q, ldq, workl, ierr)
+-c
+-         if (ierr .ne. 0) then
+-            info = -8
+-            go to 1200
+-         end if
+-c
+-c        %----------------------------------------------------%
+-c        | Make a copy of eigenvalues and corresponding error |
+-c        | bounds obtained from dneigh .                       |
+-c        %----------------------------------------------------%
+-c
+-         call dcopy (kplusp, ritzr, 1, workl(kplusp**2+1), 1)
+-         call dcopy (kplusp, ritzi, 1, workl(kplusp**2+kplusp+1), 1)
+-         call dcopy (kplusp, bounds, 1, workl(kplusp**2+2*kplusp+1), 1)
+-c
+-c        %---------------------------------------------------%
+-c        | Select the wanted Ritz values and their bounds    |
+-c        | to be used in the convergence test.               |
+-c        | The wanted part of the spectrum and corresponding |
+-c        | error bounds are in the last NEV loc. of RITZR,   |
+-c        | RITZI and BOUNDS respectively. The variables NEV  |
+-c        | and NP may be updated if the NEV-th wanted Ritz   |
+-c        | value has a non zero imaginary part. In this case |
+-c        | NEV is increased by one and NP decreased by one.  |
+-c        | NOTE: The last two arguments of dngets  are no     |
+-c        | longer used as of version 2.1.                    |
+-c        %---------------------------------------------------%
+-c
+-         nev = nev0
+-         np = np0
+-         numcnv = nev
+-         call dngets  (ishift, which, nev, np, ritzr, ritzi,
+-     &                bounds, workl, workl(np+1))
+-         if (nev .eq. nev0+1) numcnv = nev0+1
+-c
+-c        %-------------------%
+-c        | Convergence test. |
+-c        %-------------------%
+-c
+-         call dcopy  (nev, bounds(np+1), 1, workl(2*np+1), 1)
+-         call dnconv  (nev, ritzr(np+1), ritzi(np+1), workl(2*np+1),
+-     &        tol, nconv)
+-c
+-         if (msglvl .gt. 2) then
+-            kp(1) = nev
+-            kp(2) = np
+-            kp(3) = numcnv
+-            kp(4) = nconv
+-            call ivout (logfil, 4, kp, ndigit,
+-     &                  '_naup2: NEV, NP, NUMCNV, NCONV are')
+-            call dvout  (logfil, kplusp, ritzr, ndigit,
+-     &           '_naup2: Real part of the eigenvalues of H')
+-            call dvout  (logfil, kplusp, ritzi, ndigit,
+-     &           '_naup2: Imaginary part of the eigenvalues of H')
+-            call dvout  (logfil, kplusp, bounds, ndigit,
+-     &          '_naup2: Ritz estimates of the current NCV Ritz values')
+-         end if
+-c
+-c        %---------------------------------------------------------%
+-c        | Count the number of unwanted Ritz values that have zero |
+-c        | Ritz estimates. If any Ritz estimates are equal to zero |
+-c        | then a leading block of H of order equal to at least    |
+-c        | the number of Ritz values with zero Ritz estimates has  |
+-c        | split off. None of these Ritz values may be removed by  |
+-c        | shifting. Decrease NP the number of shifts to apply. If |
+-c        | no shifts may be applied, then prepare to exit          |
+-c        %---------------------------------------------------------%
+-c
+-         nptemp = np
+-         do 30 j=1, nptemp
+-            if (bounds(j) .eq. zero) then
+-               np = np - 1
+-               nev = nev + 1
+-            end if
+- 30      continue
+-c
+-         if ( (nconv .ge. numcnv) .or.
+-     &        (iter .gt. mxiter) .or.
+-     &        (np .eq. 0) ) then
+-c
+-            if (msglvl .gt. 4) then
+-               call dvout (logfil, kplusp, workl(kplusp**2+1), ndigit,
+-     &             '_naup2: Real part of the eig computed by _neigh:')
+-               call dvout (logfil, kplusp, workl(kplusp**2+kplusp+1),
+-     &                     ndigit,
+-     &             '_naup2: Imag part of the eig computed by _neigh:')
+-               call dvout (logfil, kplusp, workl(kplusp**2+kplusp*2+1),
+-     &                     ndigit,
+-     &             '_naup2: Ritz eistmates computed by _neigh:')
+-            end if
+-c
+-c           %------------------------------------------------%
+-c           | Prepare to exit. Put the converged Ritz values |
+-c           | and corresponding bounds in RITZ(1:NCONV) and  |
+-c           | BOUNDS(1:NCONV) respectively. Then sort. Be    |
+-c           | careful when NCONV > NP                        |
+-c           %------------------------------------------------%
+-c
+-c           %------------------------------------------%
+-c           |  Use h( 3,1 ) as storage to communicate  |
+-c           |  rnorm to _neupd if needed               |
+-c           %------------------------------------------%
+-
+-            h(3,1) = rnorm
+-c
+-c           %----------------------------------------------%
+-c           | To be consistent with dngets , we first do a  |
+-c           | pre-processing sort in order to keep complex |
+-c           | conjugate pairs together.  This is similar   |
+-c           | to the pre-processing sort used in dngets     |
+-c           | except that the sort is done in the opposite |
+-c           | order.                                       |
+-c           %----------------------------------------------%
+-c
+-            if (which .eq. 'LM') wprime = 'SR'
+-            if (which .eq. 'SM') wprime = 'LR'
+-            if (which .eq. 'LR') wprime = 'SM'
+-            if (which .eq. 'SR') wprime = 'LM'
+-            if (which .eq. 'LI') wprime = 'SM'
+-            if (which .eq. 'SI') wprime = 'LM'
+-c
+-            call dsortc  (wprime, .true., kplusp, ritzr, ritzi, bounds)
+-c
+-c           %----------------------------------------------%
+-c           | Now sort Ritz values so that converged Ritz  |
+-c           | values appear within the first NEV locations |
+-c           | of ritzr, ritzi and bounds, and the most     |
+-c           | desired one appears at the front.            |
+-c           %----------------------------------------------%
+-c
+-            if (which .eq. 'LM') wprime = 'SM'
+-            if (which .eq. 'SM') wprime = 'LM'
+-            if (which .eq. 'LR') wprime = 'SR'
+-            if (which .eq. 'SR') wprime = 'LR'
+-            if (which .eq. 'LI') wprime = 'SI'
+-            if (which .eq. 'SI') wprime = 'LI'
+-c
+-            call dsortc (wprime, .true., kplusp, ritzr, ritzi, bounds)
+-c
+-c           %--------------------------------------------------%
+-c           | Scale the Ritz estimate of each Ritz value       |
+-c           | by 1 / max(eps23,magnitude of the Ritz value).   |
+-c           %--------------------------------------------------%
+-c
+-            do 35 j = 1, numcnv
+-                temp = max(eps23,dlapy2 (ritzr(j),
+-     &                                   ritzi(j)))
+-                bounds(j) = bounds(j)/temp
+- 35         continue
+-c
+-c           %----------------------------------------------------%
+-c           | Sort the Ritz values according to the scaled Ritz  |
+-c           | esitmates.  This will push all the converged ones  |
+-c           | towards the front of ritzr, ritzi, bounds          |
+-c           | (in the case when NCONV < NEV.)                    |
+-c           %----------------------------------------------------%
+-c
+-            wprime = 'LR'
+-            call dsortc (wprime, .true., numcnv, bounds, ritzr, ritzi)
+-c
+-c           %----------------------------------------------%
+-c           | Scale the Ritz estimate back to its original |
+-c           | value.                                       |
+-c           %----------------------------------------------%
+-c
+-            do 40 j = 1, numcnv
+-                temp = max(eps23, dlapy2 (ritzr(j),
+-     &                                   ritzi(j)))
+-                bounds(j) = bounds(j)*temp
+- 40         continue
+-c
+-c           %------------------------------------------------%
+-c           | Sort the converged Ritz values again so that   |
+-c           | the "threshold" value appears at the front of  |
+-c           | ritzr, ritzi and bound.                        |
+-c           %------------------------------------------------%
+-c
+-            call dsortc (which, .true., nconv, ritzr, ritzi, bounds)
+-c
+-            if (msglvl .gt. 1) then
+-               call dvout  (logfil, kplusp, ritzr, ndigit,
+-     &            '_naup2: Sorted real part of the eigenvalues')
+-               call dvout  (logfil, kplusp, ritzi, ndigit,
+-     &            '_naup2: Sorted imaginary part of the eigenvalues')
+-               call dvout  (logfil, kplusp, bounds, ndigit,
+-     &            '_naup2: Sorted ritz estimates.')
+-            end if
+-c
+-c           %------------------------------------%
+-c           | Max iterations have been exceeded. |
+-c           %------------------------------------%
+-c
+-            if (iter .gt. mxiter .and. nconv .lt. numcnv) info = 1
+-c
+-c           %---------------------%
+-c           | No shifts to apply. |
+-c           %---------------------%
+-c
+-            if (np .eq. 0 .and. nconv .lt. numcnv) info = 2
+-c
+-            np = nconv
+-            go to 1100
+-c
+-         else if ( (nconv .lt. numcnv) .and. (ishift .eq. 1) ) then
+-c
+-c           %-------------------------------------------------%
+-c           | Do not have all the requested eigenvalues yet.  |
+-c           | To prevent possible stagnation, adjust the size |
+-c           | of NEV.                                         |
+-c           %-------------------------------------------------%
+-c
+-            nevbef = nev
+-            nev = nev + min(nconv, np/2)
+-            if (nev .eq. 1 .and. kplusp .ge. 6) then
+-               nev = kplusp / 2
+-            else if (nev .eq. 1 .and. kplusp .gt. 3) then
+-               nev = 2
+-            end if
+-            np = kplusp - nev
+-c
+-c           %---------------------------------------%
+-c           | If the size of NEV was just increased |
+-c           | resort the eigenvalues.               |
+-c           %---------------------------------------%
+-c
+-            if (nevbef .lt. nev)
+-     &         call dngets  (ishift, which, nev, np, ritzr, ritzi,
+-     &              bounds, workl, workl(np+1))
+-c
+-         end if
+-c
+-         if (msglvl .gt. 0) then
+-            call ivout (logfil, 1, nconv, ndigit,
+-     &           '_naup2: no. of "converged" Ritz values at this iter.')
+-            if (msglvl .gt. 1) then
+-               kp(1) = nev
+-               kp(2) = np
+-               call ivout (logfil, 2, kp, ndigit,
+-     &              '_naup2: NEV and NP are')
+-               call dvout  (logfil, nev, ritzr(np+1), ndigit,
+-     &              '_naup2: "wanted" Ritz values -- real part')
+-               call dvout  (logfil, nev, ritzi(np+1), ndigit,
+-     &              '_naup2: "wanted" Ritz values -- imag part')
+-               call dvout  (logfil, nev, bounds(np+1), ndigit,
+-     &              '_naup2: Ritz estimates of the "wanted" values ')
+-            end if
+-         end if
+-c
+-         if (ishift .eq. 0) then
+-c
+-c           %-------------------------------------------------------%
+-c           | User specified shifts: reverse comminucation to       |
+-c           | compute the shifts. They are returned in the first    |
+-c           | 2*NP locations of WORKL.                              |
+-c           %-------------------------------------------------------%
+-c
+-            ushift = .true.
+-            ido = 3
+-            go to 9000
+-         end if
+-c
+-   50    continue
+-c
+-c        %------------------------------------%
+-c        | Back from reverse communication;   |
+-c        | User specified shifts are returned |
+-c        | in WORKL(1:2*NP)                   |
+-c        %------------------------------------%
+-c
+-         ushift = .false.
+-c
+-         if ( ishift .eq. 0 ) then
+-c
+-c            %----------------------------------%
+-c            | Move the NP shifts from WORKL to |
+-c            | RITZR, RITZI to free up WORKL    |
+-c            | for non-exact shift case.        |
+-c            %----------------------------------%
+-c
+-             call dcopy  (np, workl,       1, ritzr, 1)
+-             call dcopy  (np, workl(np+1), 1, ritzi, 1)
+-         end if
+-c
+-         if (msglvl .gt. 2) then
+-            call ivout (logfil, 1, np, ndigit,
+-     &                  '_naup2: The number of shifts to apply ')
+-            call dvout  (logfil, np, ritzr, ndigit,
+-     &                  '_naup2: Real part of the shifts')
+-            call dvout  (logfil, np, ritzi, ndigit,
+-     &                  '_naup2: Imaginary part of the shifts')
+-            if ( ishift .eq. 1 )
+-     &          call dvout  (logfil, np, bounds, ndigit,
+-     &                  '_naup2: Ritz estimates of the shifts')
+-         end if
+-c
+-c        %---------------------------------------------------------%
+-c        | Apply the NP implicit shifts by QR bulge chasing.       |
+-c        | Each shift is applied to the whole upper Hessenberg     |
+-c        | matrix H.                                               |
+-c        | The first 2*N locations of WORKD are used as workspace. |
+-c        %---------------------------------------------------------%
+-c
+-         call dnapps  (n, nev, np, ritzr, ritzi, v, ldv,
+-     &                h, ldh, resid, q, ldq, workl, workd)
+-c
+-c        %---------------------------------------------%
+-c        | Compute the B-norm of the updated residual. |
+-c        | Keep B*RESID in WORKD(1:N) to be used in    |
+-c        | the first step of the next call to dnaitr .  |
+-c        %---------------------------------------------%
+-c
+-         cnorm = .true.
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call dcopy  (n, resid, 1, workd(n+1), 1)
+-            ipntr(1) = n + 1
+-            ipntr(2) = 1
+-            ido = 2
+-c
+-c           %----------------------------------%
+-c           | Exit in order to compute B*RESID |
+-c           %----------------------------------%
+-c
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call dcopy  (n, resid, 1, workd, 1)
+-         end if
+-c
+-  100    continue
+-c
+-c        %----------------------------------%
+-c        | Back from reverse communication; |
+-c        | WORKD(1:N) := B*RESID            |
+-c        %----------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c
+-         if (bmat .eq. 'G') then
+-            rnorm = ddot  (n, resid, 1, workd, 1)
+-            rnorm = sqrt(abs(rnorm))
+-         else if (bmat .eq. 'I') then
+-            rnorm = dnrm2 (n, resid, 1)
+-         end if
+-         cnorm = .false.
+-c
+-         if (msglvl .gt. 2) then
+-            call dvout  (logfil, 1, rnorm, ndigit,
+-     &      '_naup2: B-norm of residual for compressed factorization')
+-            call dmout  (logfil, nev, nev, h, ldh, ndigit,
+-     &        '_naup2: Compressed upper Hessenberg matrix H')
+-         end if
+-c
+-      go to 1000
+-c
+-c     %---------------------------------------------------------------%
+-c     |                                                               |
+-c     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  |
+-c     |                                                               |
+-c     %---------------------------------------------------------------%
+-c
+- 1100 continue
+-c
+-      mxiter = iter
+-      nev = numcnv
+-c
+- 1200 continue
+-      ido = 99
+-c
+-c     %------------%
+-c     | Error Exit |
+-c     %------------%
+-c
+-      call arscnd (t1)
+-      tnaup2 = t1 - t0
+-c
+- 9000 continue
+-c
+-c     %---------------%
+-c     | End of dnaup2  |
+-c     %---------------%
+-c
+-      return
+-      end
+--- a/libcruft/arpack/src/dnaupd.f
++++ /dev/null
+@@ -1,693 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: dnaupd
+-c
+-c\Description:
+-c  Reverse communication interface for the Implicitly Restarted Arnoldi
+-c  iteration. This subroutine computes approximations to a few eigenpairs
+-c  of a linear operator "OP" with respect to a semi-inner product defined by
+-c  a symmetric positive semi-definite real matrix B. B may be the identity
+-c  matrix. NOTE: If the linear operator "OP" is real and symmetric
+-c  with respect to the real positive semi-definite symmetric matrix B,
+-c  i.e. B*OP = (OP`)*B, then subroutine dsaupd  should be used instead.
+-c
+-c  The computed approximate eigenvalues are called Ritz values and
+-c  the corresponding approximate eigenvectors are called Ritz vectors.
+-c
+-c  dnaupd  is usually called iteratively to solve one of the
+-c  following problems:
+-c
+-c  Mode 1:  A*x = lambda*x.
+-c           ===> OP = A  and  B = I.
+-c
+-c  Mode 2:  A*x = lambda*M*x, M symmetric positive definite
+-c           ===> OP = inv[M]*A  and  B = M.
+-c           ===> (If M can be factored see remark 3 below)
+-c
+-c  Mode 3:  A*x = lambda*M*x, M symmetric semi-definite
+-c           ===> OP = Real_Part{ inv[A - sigma*M]*M }  and  B = M.
+-c           ===> shift-and-invert mode (in real arithmetic)
+-c           If OP*x = amu*x, then
+-c           amu = 1/2 * [ 1/(lambda-sigma) + 1/(lambda-conjg(sigma)) ].
+-c           Note: If sigma is real, i.e. imaginary part of sigma is zero;
+-c                 Real_Part{ inv[A - sigma*M]*M } == inv[A - sigma*M]*M
+-c                 amu == 1/(lambda-sigma).
+-c
+-c  Mode 4:  A*x = lambda*M*x, M symmetric semi-definite
+-c           ===> OP = Imaginary_Part{ inv[A - sigma*M]*M }  and  B = M.
+-c           ===> shift-and-invert mode (in real arithmetic)
+-c           If OP*x = amu*x, then
+-c           amu = 1/2i * [ 1/(lambda-sigma) - 1/(lambda-conjg(sigma)) ].
+-c
+-c  Both mode 3 and 4 give the same enhancement to eigenvalues close to
+-c  the (complex) shift sigma.  However, as lambda goes to infinity,
+-c  the operator OP in mode 4 dampens the eigenvalues more strongly than
+-c  does OP defined in mode 3.
+-c
+-c  NOTE: The action of w <- inv[A - sigma*M]*v or w <- inv[M]*v
+-c        should be accomplished either by a direct method
+-c        using a sparse matrix factorization and solving
+-c
+-c           [A - sigma*M]*w = v  or M*w = v,
+-c
+-c        or through an iterative method for solving these
+-c        systems.  If an iterative method is used, the
+-c        convergence test must be more stringent than
+-c        the accuracy requirements for the eigenvalue
+-c        approximations.
+-c
+-c\Usage:
+-c  call dnaupd
+-c     ( IDO, BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM,
+-c       IPNTR, WORKD, WORKL, LWORKL, INFO )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.  IDO must be zero on the first
+-c          call to dnaupd .  IDO will be set internally to
+-c          indicate the type of operation to be performed.  Control is
+-c          then given back to the calling routine which has the
+-c          responsibility to carry out the requested operation and call
+-c          dnaupd  with the result.  The operand is given in
+-c          WORKD(IPNTR(1)), the result must be put in WORKD(IPNTR(2)).
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    This is for the initialization phase to force the
+-c                    starting vector into the range of OP.
+-c          IDO =  1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    In mode 3 and 4, the vector B * X is already
+-c                    available in WORKD(ipntr(3)).  It does not
+-c                    need to be recomputed in forming OP * X.
+-c          IDO =  2: compute  Y = B * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c          IDO =  3: compute the IPARAM(8) real and imaginary parts
+-c                    of the shifts where INPTR(14) is the pointer
+-c                    into WORKL for placing the shifts. See Remark
+-c                    5 below.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of the matrix B that defines the
+-c          semi-inner product for the operator OP.
+-c          BMAT = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          BMAT = 'G' -> generalized eigenvalue problem A*x = lambda*B*x
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the eigenproblem.
+-c
+-c  WHICH   Character*2.  (INPUT)
+-c          'LM' -> want the NEV eigenvalues of largest magnitude.
+-c          'SM' -> want the NEV eigenvalues of smallest magnitude.
+-c          'LR' -> want the NEV eigenvalues of largest real part.
+-c          'SR' -> want the NEV eigenvalues of smallest real part.
+-c          'LI' -> want the NEV eigenvalues of largest imaginary part.
+-c          'SI' -> want the NEV eigenvalues of smallest imaginary part.
+-c
+-c  NEV     Integer.  (INPUT)
+-c          Number of eigenvalues of OP to be computed. 0 < NEV < N-1.
+-c
+-c  TOL     Double precision  scalar.  (INPUT)
+-c          Stopping criterion: the relative accuracy of the Ritz value
+-c          is considered acceptable if BOUNDS(I) .LE. TOL*ABS(RITZ(I))
+-c          where ABS(RITZ(I)) is the magnitude when RITZ(I) is complex.
+-c          DEFAULT = DLAMCH ('EPS')  (machine precision as computed
+-c                    by the LAPACK auxiliary subroutine DLAMCH ).
+-c
+-c  RESID   Double precision  array of length N.  (INPUT/OUTPUT)
+-c          On INPUT:
+-c          If INFO .EQ. 0, a random initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          On OUTPUT:
+-c          RESID contains the final residual vector.
+-c
+-c  NCV     Integer.  (INPUT)
+-c          Number of columns of the matrix V. NCV must satisfy the two
+-c          inequalities 2 <= NCV-NEV and NCV <= N.
+-c          This will indicate how many Arnoldi vectors are generated
+-c          at each iteration.  After the startup phase in which NEV
+-c          Arnoldi vectors are generated, the algorithm generates
+-c          approximately NCV-NEV Arnoldi vectors at each subsequent update
+-c          iteration. Most of the cost in generating each Arnoldi vector is
+-c          in the matrix-vector operation OP*x.
+-c          NOTE: 2 <= NCV-NEV in order that complex conjugate pairs of Ritz
+-c          values are kept together. (See remark 4 below)
+-c
+-c  V       Double precision  array N by NCV.  (OUTPUT)
+-c          Contains the final set of Arnoldi basis vectors.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling program.
+-c
+-c  IPARAM  Integer array of length 11.  (INPUT/OUTPUT)
+-c          IPARAM(1) = ISHIFT: method for selecting the implicit shifts.
+-c          The shifts selected at each iteration are used to restart
+-c          the Arnoldi iteration in an implicit fashion.
+-c          -------------------------------------------------------------
+-c          ISHIFT = 0: the shifts are provided by the user via
+-c                      reverse communication.  The real and imaginary
+-c                      parts of the NCV eigenvalues of the Hessenberg
+-c                      matrix H are returned in the part of the WORKL
+-c                      array corresponding to RITZR and RITZI. See remark
+-c                      5 below.
+-c          ISHIFT = 1: exact shifts with respect to the current
+-c                      Hessenberg matrix H.  This is equivalent to
+-c                      restarting the iteration with a starting vector
+-c                      that is a linear combination of approximate Schur
+-c                      vectors associated with the "wanted" Ritz values.
+-c          -------------------------------------------------------------
+-c
+-c          IPARAM(2) = No longer referenced.
+-c
+-c          IPARAM(3) = MXITER
+-c          On INPUT:  maximum number of Arnoldi update iterations allowed.
+-c          On OUTPUT: actual number of Arnoldi update iterations taken.
+-c
+-c          IPARAM(4) = NB: blocksize to be used in the recurrence.
+-c          The code currently works only for NB = 1.
+-c
+-c          IPARAM(5) = NCONV: number of "converged" Ritz values.
+-c          This represents the number of Ritz values that satisfy
+-c          the convergence criterion.
+-c
+-c          IPARAM(6) = IUPD
+-c          No longer referenced. Implicit restarting is ALWAYS used.
+-c
+-c          IPARAM(7) = MODE
+-c          On INPUT determines what type of eigenproblem is being solved.
+-c          Must be 1,2,3,4; See under \Description of dnaupd  for the
+-c          four modes available.
+-c
+-c          IPARAM(8) = NP
+-c          When ido = 3 and the user provides shifts through reverse
+-c          communication (IPARAM(1)=0), dnaupd  returns NP, the number
+-c          of shifts the user is to provide. 0 < NP <=NCV-NEV. See Remark
+-c          5 below.
+-c
+-c          IPARAM(9) = NUMOP, IPARAM(10) = NUMOPB, IPARAM(11) = NUMREO,
+-c          OUTPUT: NUMOP  = total number of OP*x operations,
+-c                  NUMOPB = total number of B*x operations if BMAT='G',
+-c                  NUMREO = total number of steps of re-orthogonalization.
+-c
+-c  IPNTR   Integer array of length 14.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORKD and WORKL
+-c          arrays for matrices/vectors used by the Arnoldi iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X in WORKD.
+-c          IPNTR(2): pointer to the current result vector Y in WORKD.
+-c          IPNTR(3): pointer to the vector B * X in WORKD when used in
+-c                    the shift-and-invert mode.
+-c          IPNTR(4): pointer to the next available location in WORKL
+-c                    that is untouched by the program.
+-c          IPNTR(5): pointer to the NCV by NCV upper Hessenberg matrix
+-c                    H in WORKL.
+-c          IPNTR(6): pointer to the real part of the ritz value array
+-c                    RITZR in WORKL.
+-c          IPNTR(7): pointer to the imaginary part of the ritz value array
+-c                    RITZI in WORKL.
+-c          IPNTR(8): pointer to the Ritz estimates in array WORKL associated
+-c                    with the Ritz values located in RITZR and RITZI in WORKL.
+-c
+-c          IPNTR(14): pointer to the NP shifts in WORKL. See Remark 5 below.
+-c
+-c          Note: IPNTR(9:13) is only referenced by dneupd . See Remark 2 below.
+-c
+-c          IPNTR(9):  pointer to the real part of the NCV RITZ values of the
+-c                     original system.
+-c          IPNTR(10): pointer to the imaginary part of the NCV RITZ values of
+-c                     the original system.
+-c          IPNTR(11): pointer to the NCV corresponding error bounds.
+-c          IPNTR(12): pointer to the NCV by NCV upper quasi-triangular
+-c                     Schur matrix for H.
+-c          IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors
+-c                     of the upper Hessenberg matrix H. Only referenced by
+-c                     dneupd  if RVEC = .TRUE. See Remark 2 below.
+-c          -------------------------------------------------------------
+-c
+-c  WORKD   Double precision  work array of length 3*N.  (REVERSE COMMUNICATION)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The user should not use WORKD
+-c          as temporary workspace during the iteration. Upon termination
+-c          WORKD(1:N) contains B*RESID(1:N). If an invariant subspace
+-c          associated with the converged Ritz values is desired, see remark
+-c          2 below, subroutine dneupd  uses this output.
+-c          See Data Distribution Note below.
+-c
+-c  WORKL   Double precision  work array of length LWORKL.  (OUTPUT/WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  See Data Distribution Note below.
+-c
+-c  LWORKL  Integer.  (INPUT)
+-c          LWORKL must be at least 3*NCV**2 + 6*NCV.
+-c
+-c  INFO    Integer.  (INPUT/OUTPUT)
+-c          If INFO .EQ. 0, a randomly initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          Error flag on output.
+-c          =  0: Normal exit.
+-c          =  1: Maximum number of iterations taken.
+-c                All possible eigenvalues of OP has been found. IPARAM(5)
+-c                returns the number of wanted converged Ritz values.
+-c          =  2: No longer an informational error. Deprecated starting
+-c                with release 2 of ARPACK.
+-c          =  3: No shifts could be applied during a cycle of the
+-c                Implicitly restarted Arnoldi iteration. One possibility
+-c                is to increase the size of NCV relative to NEV.
+-c                See remark 4 below.
+-c          = -1: N must be positive.
+-c          = -2: NEV must be positive.
+-c          = -3: NCV-NEV >= 2 and less than or equal to N.
+-c          = -4: The maximum number of Arnoldi update iteration
+-c                must be greater than zero.
+-c          = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'
+-c          = -6: BMAT must be one of 'I' or 'G'.
+-c          = -7: Length of private work array is not sufficient.
+-c          = -8: Error return from LAPACK eigenvalue calculation;
+-c          = -9: Starting vector is zero.
+-c          = -10: IPARAM(7) must be 1,2,3,4.
+-c          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatable.
+-c          = -12: IPARAM(1) must be equal to 0 or 1.
+-c          = -9999: Could not build an Arnoldi factorization.
+-c                   IPARAM(5) returns the size of the current Arnoldi
+-c                   factorization.
+-c
+-c\Remarks
+-c  1. The computed Ritz values are approximate eigenvalues of OP. The
+-c     selection of WHICH should be made with this in mind when
+-c     Mode = 3 and 4.  After convergence, approximate eigenvalues of the
+-c     original problem may be obtained with the ARPACK subroutine dneupd .
+-c
+-c  2. If a basis for the invariant subspace corresponding to the converged Ritz
+-c     values is needed, the user must call dneupd  immediately following
+-c     completion of dnaupd . This is new starting with release 2 of ARPACK.
+-c
+-c  3. If M can be factored into a Cholesky factorization M = LL`
+-c     then Mode = 2 should not be selected.  Instead one should use
+-c     Mode = 1 with  OP = inv(L)*A*inv(L`).  Appropriate triangular
+-c     linear systems should be solved with L and L` rather
+-c     than computing inverses.  After convergence, an approximate
+-c     eigenvector z of the original problem is recovered by solving
+-c     L`z = x  where x is a Ritz vector of OP.
+-c
+-c  4. At present there is no a-priori analysis to guide the selection
+-c     of NCV relative to NEV.  The only formal requrement is that NCV > NEV + 2.
+-c     However, it is recommended that NCV .ge. 2*NEV+1.  If many problems of
+-c     the same type are to be solved, one should experiment with increasing
+-c     NCV while keeping NEV fixed for a given test problem.  This will
+-c     usually decrease the required number of OP*x operations but it
+-c     also increases the work and storage required to maintain the orthogonal
+-c     basis vectors.  The optimal "cross-over" with respect to CPU time
+-c     is problem dependent and must be determined empirically.
+-c     See Chapter 8 of Reference 2 for further information.
+-c
+-c  5. When IPARAM(1) = 0, and IDO = 3, the user needs to provide the
+-c     NP = IPARAM(8) real and imaginary parts of the shifts in locations
+-c         real part                  imaginary part
+-c         -----------------------    --------------
+-c     1   WORKL(IPNTR(14))           WORKL(IPNTR(14)+NP)
+-c     2   WORKL(IPNTR(14)+1)         WORKL(IPNTR(14)+NP+1)
+-c                        .                          .
+-c                        .                          .
+-c                        .                          .
+-c     NP  WORKL(IPNTR(14)+NP-1)      WORKL(IPNTR(14)+2*NP-1).
+-c
+-c     Only complex conjugate pairs of shifts may be applied and the pairs
+-c     must be placed in consecutive locations. The real part of the
+-c     eigenvalues of the current upper Hessenberg matrix are located in
+-c     WORKL(IPNTR(6)) through WORKL(IPNTR(6)+NCV-1) and the imaginary part
+-c     in WORKL(IPNTR(7)) through WORKL(IPNTR(7)+NCV-1). They are ordered
+-c     according to the order defined by WHICH. The complex conjugate
+-c     pairs are kept together and the associated Ritz estimates are located in
+-c     WORKL(IPNTR(8)), WORKL(IPNTR(8)+1), ... , WORKL(IPNTR(8)+NCV-1).
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\Data Distribution Note:
+-c
+-c  Fortran-D syntax:
+-c  ================
+-c  Double precision  resid(n), v(ldv,ncv), workd(3*n), workl(lworkl)
+-c  decompose  d1(n), d2(n,ncv)
+-c  align      resid(i) with d1(i)
+-c  align      v(i,j)   with d2(i,j)
+-c  align      workd(i) with d1(i)     range (1:n)
+-c  align      workd(i) with d1(i-n)   range (n+1:2*n)
+-c  align      workd(i) with d1(i-2*n) range (2*n+1:3*n)
+-c  distribute d1(block), d2(block,:)
+-c  replicated workl(lworkl)
+-c
+-c  Cray MPP syntax:
+-c  ===============
+-c  Double precision   resid(n), v(ldv,ncv), workd(n,3), workl(lworkl)
+-c  shared     resid(block), v(block,:), workd(block,:)
+-c  replicated workl(lworkl)
+-c
+-c  CM2/CM5 syntax:
+-c  ==============
+-c
+-c-----------------------------------------------------------------------
+-c
+-c     include   'ex-nonsym.doc'
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c  3. B.N. Parlett & Y. Saad, "Complex Shift and Invert Strategies for
+-c     Real Matrices", Linear Algebra and its Applications, vol 88/89,
+-c     pp 575-595, (1987).
+-c
+-c\Routines called:
+-c     dnaup2   ARPACK routine that implements the Implicitly Restarted
+-c             Arnoldi Iteration.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     dvout    ARPACK utility routine that prints vectors.
+-c     dlamch   LAPACK routine that determines machine constants.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University
+-c     Houston, Texas
+-c
+-c\Revision history:
+-c     12/16/93: Version '1.1'
+-c
+-c\SCCS Information: @(#)
+-c FILE: naupd.F   SID: 2.8   DATE OF SID: 04/10/01   RELEASE: 2
+-c
+-c\Remarks
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dnaupd
+-     &   ( ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam,
+-     &     ipntr, workd, workl, lworkl, info )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1, which*2
+-      integer    ido, info, ldv, lworkl, n, ncv, nev
+-      Double precision
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    iparam(11), ipntr(14)
+-      Double precision
+-     &           resid(n), v(ldv,ncv), workd(3*n), workl(lworkl)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision
+-     &           one, zero
+-      parameter (one = 1.0D+0 , zero = 0.0D+0 )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    bounds, ierr, ih, iq, ishift, iupd, iw,
+-     &           ldh, ldq, levec, mode, msglvl, mxiter, nb,
+-     &           nev0, next, np, ritzi, ritzr, j
+-      save       bounds, ih, iq, ishift, iupd, iw, ldh, ldq,
+-     &           levec, mode, msglvl, mxiter, nb, nev0, next,
+-     &           np, ritzi, ritzr
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   dnaup2 , dvout , ivout, arscnd, dstatn
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision
+-     &           dlamch
+-      external   dlamch
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (ido .eq. 0) then
+-c
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call dstatn
+-         call arscnd (t0)
+-         msglvl = mnaupd
+-c
+-c        %----------------%
+-c        | Error checking |
+-c        %----------------%
+-c
+-         ierr   = 0
+-         ishift = iparam(1)
+-c         levec  = iparam(2)
+-         mxiter = iparam(3)
+-c         nb     = iparam(4)
+-         nb     = 1
+-c
+-c        %--------------------------------------------%
+-c        | Revision 2 performs only implicit restart. |
+-c        %--------------------------------------------%
+-c
+-         iupd   = 1
+-         mode   = iparam(7)
+-c
+-         if (n .le. 0) then
+-             ierr = -1
+-         else if (nev .le. 0) then
+-             ierr = -2
+-         else if (ncv .le. nev+1 .or.  ncv .gt. n) then
+-             ierr = -3
+-         else if (mxiter .le. 0) then
+-             ierr = -4
+-         else if (which .ne. 'LM' .and.
+-     &       which .ne. 'SM' .and.
+-     &       which .ne. 'LR' .and.
+-     &       which .ne. 'SR' .and.
+-     &       which .ne. 'LI' .and.
+-     &       which .ne. 'SI') then
+-            ierr = -5
+-         else if (bmat .ne. 'I' .and. bmat .ne. 'G') then
+-            ierr = -6
+-         else if (lworkl .lt. 3*ncv**2 + 6*ncv) then
+-            ierr = -7
+-         else if (mode .lt. 1 .or. mode .gt. 4) then
+-                                                ierr = -10
+-         else if (mode .eq. 1 .and. bmat .eq. 'G') then
+-                                                ierr = -11
+-         else if (ishift .lt. 0 .or. ishift .gt. 1) then
+-                                                ierr = -12
+-         end if
+-c
+-c        %------------%
+-c        | Error Exit |
+-c        %------------%
+-c
+-         if (ierr .ne. 0) then
+-            info = ierr
+-            ido  = 99
+-            go to 9000
+-         end if
+-c
+-c        %------------------------%
+-c        | Set default parameters |
+-c        %------------------------%
+-c
+-         if (nb .le. 0)				nb = 1
+-         if (tol .le. zero)			tol = dlamch ('EpsMach')
+-c
+-c        %----------------------------------------------%
+-c        | NP is the number of additional steps to      |
+-c        | extend the length NEV Lanczos factorization. |
+-c        | NEV0 is the local variable designating the   |
+-c        | size of the invariant subspace desired.      |
+-c        %----------------------------------------------%
+-c
+-         np     = ncv - nev
+-         nev0   = nev
+-c
+-c        %-----------------------------%
+-c        | Zero out internal workspace |
+-c        %-----------------------------%
+-c
+-         do 10 j = 1, 3*ncv**2 + 6*ncv
+-            workl(j) = zero
+-  10     continue
+-c
+-c        %-------------------------------------------------------------%
+-c        | Pointer into WORKL for address of H, RITZ, BOUNDS, Q        |
+-c        | etc... and the remaining workspace.                         |
+-c        | Also update pointer to be used on output.                   |
+-c        | Memory is laid out as follows:                              |
+-c        | workl(1:ncv*ncv) := generated Hessenberg matrix             |
+-c        | workl(ncv*ncv+1:ncv*ncv+2*ncv) := real and imaginary        |
+-c        |                                   parts of ritz values      |
+-c        | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := error bounds        |
+-c        | workl(ncv*ncv+3*ncv+1:2*ncv*ncv+3*ncv) := rotation matrix Q |
+-c        | workl(2*ncv*ncv+3*ncv+1:3*ncv*ncv+6*ncv) := workspace       |
+-c        | The final workspace is needed by subroutine dneigh  called   |
+-c        | by dnaup2 . Subroutine dneigh  calls LAPACK routines for      |
+-c        | calculating eigenvalues and the last row of the eigenvector |
+-c        | matrix.                                                     |
+-c        %-------------------------------------------------------------%
+-c
+-         ldh    = ncv
+-         ldq    = ncv
+-         ih     = 1
+-         ritzr  = ih     + ldh*ncv
+-         ritzi  = ritzr  + ncv
+-         bounds = ritzi  + ncv
+-         iq     = bounds + ncv
+-         iw     = iq     + ldq*ncv
+-         next   = iw     + ncv**2 + 3*ncv
+-c
+-         ipntr(4) = next
+-         ipntr(5) = ih
+-         ipntr(6) = ritzr
+-         ipntr(7) = ritzi
+-         ipntr(8) = bounds
+-         ipntr(14) = iw
+-c
+-      end if
+-c
+-c     %-------------------------------------------------------%
+-c     | Carry out the Implicitly restarted Arnoldi Iteration. |
+-c     %-------------------------------------------------------%
+-c
+-      call dnaup2
+-     &   ( ido, bmat, n, which, nev0, np, tol, resid, mode, iupd,
+-     &     ishift, mxiter, v, ldv, workl(ih), ldh, workl(ritzr),
+-     &     workl(ritzi), workl(bounds), workl(iq), ldq, workl(iw),
+-     &     ipntr, workd, info )
+-c
+-c     %--------------------------------------------------%
+-c     | ido .ne. 99 implies use of reverse communication |
+-c     | to compute operations involving OP or shifts.    |
+-c     %--------------------------------------------------%
+-c
+-      if (ido .eq. 3) iparam(8) = np
+-      if (ido .ne. 99) go to 9000
+-c
+-      iparam(3) = mxiter
+-      iparam(5) = np
+-      iparam(9) = nopx
+-      iparam(10) = nbx
+-      iparam(11) = nrorth
+-c
+-c     %------------------------------------%
+-c     | Exit if there was an informational |
+-c     | error within dnaup2 .               |
+-c     %------------------------------------%
+-c
+-      if (info .lt. 0) go to 9000
+-      if (info .eq. 2) info = 3
+-c
+-      if (msglvl .gt. 0) then
+-         call ivout (logfil, 1, mxiter, ndigit,
+-     &               '_naupd: Number of update iterations taken')
+-         call ivout (logfil, 1, np, ndigit,
+-     &               '_naupd: Number of wanted "converged" Ritz values')
+-         call dvout  (logfil, np, workl(ritzr), ndigit,
+-     &               '_naupd: Real part of the final Ritz values')
+-         call dvout  (logfil, np, workl(ritzi), ndigit,
+-     &               '_naupd: Imaginary part of the final Ritz values')
+-         call dvout  (logfil, np, workl(bounds), ndigit,
+-     &               '_naupd: Associated Ritz estimates')
+-      end if
+-c
+-      call arscnd (t1)
+-      tnaupd = t1 - t0
+-c
+-      if (msglvl .gt. 0) then
+-c
+-c        %--------------------------------------------------------%
+-c        | Version Number & Version Date are defined in version.h |
+-c        %--------------------------------------------------------%
+-c
+-         write (6,1000)
+-         write (6,1100) mxiter, nopx, nbx, nrorth, nitref, nrstrt,
+-     &                  tmvopx, tmvbx, tnaupd, tnaup2, tnaitr, titref,
+-     &                  tgetv0, tneigh, tngets, tnapps, tnconv, trvec
+- 1000    format (//,
+-     &      5x, '=============================================',/
+-     &      5x, '= Nonsymmetric implicit Arnoldi update code =',/
+-     &      5x, '= Version Number: ', ' 2.4' , 21x, ' =',/
+-     &      5x, '= Version Date:   ', ' 07/31/96' , 16x,   ' =',/
+-     &      5x, '=============================================',/
+-     &      5x, '= Summary of timing statistics              =',/
+-     &      5x, '=============================================',//)
+- 1100    format (
+-     &      5x, 'Total number update iterations             = ', i5,/
+-     &      5x, 'Total number of OP*x operations            = ', i5,/
+-     &      5x, 'Total number of B*x operations             = ', i5,/
+-     &      5x, 'Total number of reorthogonalization steps  = ', i5,/
+-     &      5x, 'Total number of iterative refinement steps = ', i5,/
+-     &      5x, 'Total number of restart steps              = ', i5,/
+-     &      5x, 'Total time in user OP*x operation          = ', f12.6,/
+-     &      5x, 'Total time in user B*x operation           = ', f12.6,/
+-     &      5x, 'Total time in Arnoldi update routine       = ', f12.6,/
+-     &      5x, 'Total time in naup2 routine                = ', f12.6,/
+-     &      5x, 'Total time in basic Arnoldi iteration loop = ', f12.6,/
+-     &      5x, 'Total time in reorthogonalization phase    = ', f12.6,/
+-     &      5x, 'Total time in (re)start vector generation  = ', f12.6,/
+-     &      5x, 'Total time in Hessenberg eig. subproblem   = ', f12.6,/
+-     &      5x, 'Total time in getting the shifts           = ', f12.6,/
+-     &      5x, 'Total time in applying the shifts          = ', f12.6,/
+-     &      5x, 'Total time in convergence testing          = ', f12.6,/
+-     &      5x, 'Total time in computing final Ritz vectors = ', f12.6/)
+-      end if
+-c
+- 9000 continue
+-c
+-      return
+-c
+-c     %---------------%
+-c     | End of dnaupd  |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dnconv.f
++++ /dev/null
+@@ -1,146 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dnconv
+-c
+-c\Description: 
+-c  Convergence testing for the nonsymmetric Arnoldi eigenvalue routine.
+-c
+-c\Usage:
+-c  call dnconv
+-c     ( N, RITZR, RITZI, BOUNDS, TOL, NCONV )
+-c
+-c\Arguments
+-c  N       Integer.  (INPUT)
+-c          Number of Ritz values to check for convergence.
+-c
+-c  RITZR,  Double precision arrays of length N.  (INPUT)
+-c  RITZI   Real and imaginary parts of the Ritz values to be checked
+-c          for convergence.
+-
+-c  BOUNDS  Double precision array of length N.  (INPUT)
+-c          Ritz estimates for the Ritz values in RITZR and RITZI.
+-c
+-c  TOL     Double precision scalar.  (INPUT)
+-c          Desired backward error for a Ritz value to be considered
+-c          "converged".
+-c
+-c  NCONV   Integer scalar.  (OUTPUT)
+-c          Number of "converged" Ritz values.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     arscnd  ARPACK utility routine for timing.
+-c     dlamch  LAPACK routine that determines machine constants.
+-c     dlapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University 
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas    
+-c
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.1'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: nconv.F   SID: 2.3   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c\Remarks
+-c     1. xxxx
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dnconv (n, ritzr, ritzi, bounds, tol, nconv)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    n, nconv
+-      Double precision
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-
+-      Double precision
+-     &           ritzr(n), ritzi(n), bounds(n)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i
+-      Double precision
+-     &           temp, eps23
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision
+-     &           dlapy2, dlamch
+-      external   dlapy2, dlamch
+-
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c 
+-c     %-------------------------------------------------------------%
+-c     | Convergence test: unlike in the symmetric code, I am not    |
+-c     | using things like refined error bounds and gap condition    |
+-c     | because I don't know the exact equivalent concept.          |
+-c     |                                                             |
+-c     | Instead the i-th Ritz value is considered "converged" when: |
+-c     |                                                             |
+-c     |     bounds(i) .le. ( TOL * | ritz | )                       |
+-c     |                                                             |
+-c     | for some appropriate choice of norm.                        |
+-c     %-------------------------------------------------------------%
+-c
+-      call arscnd (t0)
+-c
+-c     %---------------------------------%
+-c     | Get machine dependent constant. |
+-c     %---------------------------------%
+-c
+-      eps23 = dlamch('Epsilon-Machine')
+-      eps23 = eps23**(2.0D+0 / 3.0D+0)
+-c
+-      nconv  = 0
+-      do 20 i = 1, n
+-         temp = max( eps23, dlapy2( ritzr(i), ritzi(i) ) )
+-         if (bounds(i) .le. tol*temp)   nconv = nconv + 1
+-   20 continue
+-c 
+-      call arscnd (t1)
+-      tnconv = tnconv + (t1 - t0)
+-c 
+-      return
+-c
+-c     %---------------%
+-c     | End of dnconv |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dneigh.f
++++ /dev/null
+@@ -1,314 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dneigh
+-c
+-c\Description:
+-c  Compute the eigenvalues of the current upper Hessenberg matrix
+-c  and the corresponding Ritz estimates given the current residual norm.
+-c
+-c\Usage:
+-c  call dneigh
+-c     ( RNORM, N, H, LDH, RITZR, RITZI, BOUNDS, Q, LDQ, WORKL, IERR )
+-c
+-c\Arguments
+-c  RNORM   Double precision scalar.  (INPUT)
+-c          Residual norm corresponding to the current upper Hessenberg 
+-c          matrix H.
+-c
+-c  N       Integer.  (INPUT)
+-c          Size of the matrix H.
+-c
+-c  H       Double precision N by N array.  (INPUT)
+-c          H contains the current upper Hessenberg matrix.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling
+-c          program.
+-c
+-c  RITZR,  Double precision arrays of length N.  (OUTPUT)
+-c  RITZI   On output, RITZR(1:N) (resp. RITZI(1:N)) contains the real 
+-c          (respectively imaginary) parts of the eigenvalues of H.
+-c
+-c  BOUNDS  Double precision array of length N.  (OUTPUT)
+-c          On output, BOUNDS contains the Ritz estimates associated with
+-c          the eigenvalues RITZR and RITZI.  This is equal to RNORM 
+-c          times the last components of the eigenvectors corresponding 
+-c          to the eigenvalues in RITZR and RITZI.
+-c
+-c  Q       Double precision N by N array.  (WORKSPACE)
+-c          Workspace needed to store the eigenvectors of H.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c
+-c  WORKL   Double precision work array of length N**2 + 3*N.  (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  This is needed to keep the full Schur form
+-c          of H and also in the calculation of the eigenvectors of H.
+-c
+-c  IERR    Integer.  (OUTPUT)
+-c          Error exit flag from dlaqrb or dtrevc.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     dlaqrb  ARPACK routine to compute the real Schur form of an
+-c             upper Hessenberg matrix and last row of the Schur vectors.
+-c     arscnd  ARPACK utility routine for timing.
+-c     dmout   ARPACK utility routine that prints matrices
+-c     dvout   ARPACK utility routine that prints vectors.
+-c     dlacpy  LAPACK matrix copy routine.
+-c     dlapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     dtrevc  LAPACK routine to compute the eigenvectors of a matrix
+-c             in upper quasi-triangular form
+-c     dgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     dcopy   Level 1 BLAS that copies one vector to another .
+-c     dnrm2   Level 1 BLAS that computes the norm of a vector.
+-c     dscal   Level 1 BLAS that scales a vector.
+-c     
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas    
+-c
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.1'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: neigh.F   SID: 2.3   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c\Remarks
+-c     None
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dneigh (rnorm, n, h, ldh, ritzr, ritzi, bounds, 
+-     &                   q, ldq, workl, ierr)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    ierr, n, ldh, ldq
+-      Double precision     
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Double precision     
+-     &           bounds(n), h(ldh,n), q(ldq,n), ritzi(n), ritzr(n),
+-     &           workl(n*(n+3))
+-c 
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision     
+-     &           one, zero
+-      parameter (one = 1.0D+0, zero = 0.0D+0)
+-c 
+-c     %------------------------%
+-c     | Local Scalars & Arrays |
+-c     %------------------------%
+-c
+-      logical    select(1)
+-      integer    i, iconj, msglvl
+-      Double precision     
+-     &           temp, vl(1)
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   dcopy, dlacpy, dlaqrb, dtrevc, dvout, arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision
+-     &           dlapy2, dnrm2
+-      external   dlapy2, dnrm2
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic  abs
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c
+-      call arscnd (t0)
+-      msglvl = mneigh
+-c 
+-      if (msglvl .gt. 2) then
+-          call dmout (logfil, n, n, h, ldh, ndigit, 
+-     &         '_neigh: Entering upper Hessenberg matrix H ')
+-      end if
+-c 
+-c     %-----------------------------------------------------------%
+-c     | 1. Compute the eigenvalues, the last components of the    |
+-c     |    corresponding Schur vectors and the full Schur form T  |
+-c     |    of the current upper Hessenberg matrix H.              |
+-c     | dlaqrb returns the full Schur form of H in WORKL(1:N**2)  |
+-c     | and the last components of the Schur vectors in BOUNDS.   |
+-c     %-----------------------------------------------------------%
+-c
+-      call dlacpy ('All', n, n, h, ldh, workl, n)
+-      call dlaqrb (.true., n, 1, n, workl, n, ritzr, ritzi, bounds,
+-     &             ierr)
+-      if (ierr .ne. 0) go to 9000
+-c
+-      if (msglvl .gt. 1) then
+-         call dvout (logfil, n, bounds, ndigit,
+-     &              '_neigh: last row of the Schur matrix for H')
+-      end if
+-c
+-c     %-----------------------------------------------------------%
+-c     | 2. Compute the eigenvectors of the full Schur form T and  |
+-c     |    apply the last components of the Schur vectors to get  |
+-c     |    the last components of the corresponding eigenvectors. |
+-c     | Remember that if the i-th and (i+1)-st eigenvalues are    |
+-c     | complex conjugate pairs, then the real & imaginary part   |
+-c     | of the eigenvector components are split across adjacent   |
+-c     | columns of Q.                                             |
+-c     %-----------------------------------------------------------%
+-c
+-      call dtrevc ('R', 'A', select, n, workl, n, vl, n, q, ldq,
+-     &             n, n, workl(n*n+1), ierr)
+-c
+-      if (ierr .ne. 0) go to 9000
+-c
+-c     %------------------------------------------------%
+-c     | Scale the returning eigenvectors so that their |
+-c     | euclidean norms are all one. LAPACK subroutine |
+-c     | dtrevc returns each eigenvector normalized so  |
+-c     | that the element of largest magnitude has      |
+-c     | magnitude 1; here the magnitude of a complex   |
+-c     | number (x,y) is taken to be |x| + |y|.         |
+-c     %------------------------------------------------%
+-c
+-      iconj = 0
+-      do 10 i=1, n
+-         if ( abs( ritzi(i) ) .le. zero ) then
+-c
+-c           %----------------------%
+-c           | Real eigenvalue case |
+-c           %----------------------%
+-c    
+-            temp = dnrm2( n, q(1,i), 1 )
+-            call dscal ( n, one / temp, q(1,i), 1 )
+-         else
+-c
+-c           %-------------------------------------------%
+-c           | Complex conjugate pair case. Note that    |
+-c           | since the real and imaginary part of      |
+-c           | the eigenvector are stored in consecutive |
+-c           | columns, we further normalize by the      |
+-c           | square root of two.                       |
+-c           %-------------------------------------------%
+-c
+-            if (iconj .eq. 0) then
+-               temp = dlapy2( dnrm2( n, q(1,i), 1 ), 
+-     &                        dnrm2( n, q(1,i+1), 1 ) )
+-               call dscal ( n, one / temp, q(1,i), 1 )
+-               call dscal ( n, one / temp, q(1,i+1), 1 )
+-               iconj = 1
+-            else
+-               iconj = 0
+-            end if
+-         end if         
+-   10 continue
+-c
+-      call dgemv ('T', n, n, one, q, ldq, bounds, 1, zero, workl, 1)
+-c
+-      if (msglvl .gt. 1) then
+-         call dvout (logfil, n, workl, ndigit,
+-     &              '_neigh: Last row of the eigenvector matrix for H')
+-      end if
+-c
+-c     %----------------------------%
+-c     | Compute the Ritz estimates |
+-c     %----------------------------%
+-c
+-      iconj = 0
+-      do 20 i = 1, n
+-         if ( abs( ritzi(i) ) .le. zero ) then
+-c
+-c           %----------------------%
+-c           | Real eigenvalue case |
+-c           %----------------------%
+-c    
+-            bounds(i) = rnorm * abs( workl(i) )
+-         else
+-c
+-c           %-------------------------------------------%
+-c           | Complex conjugate pair case. Note that    |
+-c           | since the real and imaginary part of      |
+-c           | the eigenvector are stored in consecutive |
+-c           | columns, we need to take the magnitude    |
+-c           | of the last components of the two vectors |
+-c           %-------------------------------------------%
+-c
+-            if (iconj .eq. 0) then
+-               bounds(i) = rnorm * dlapy2( workl(i), workl(i+1) )
+-               bounds(i+1) = bounds(i)
+-               iconj = 1
+-            else
+-               iconj = 0
+-            end if
+-         end if
+-   20 continue
+-c
+-      if (msglvl .gt. 2) then
+-         call dvout (logfil, n, ritzr, ndigit,
+-     &              '_neigh: Real part of the eigenvalues of H')
+-         call dvout (logfil, n, ritzi, ndigit,
+-     &              '_neigh: Imaginary part of the eigenvalues of H')
+-         call dvout (logfil, n, bounds, ndigit,
+-     &              '_neigh: Ritz estimates for the eigenvalues of H')
+-      end if
+-c
+-      call arscnd (t1)
+-      tneigh = tneigh + (t1 - t0)
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of dneigh |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dneupd.f
++++ /dev/null
+@@ -1,1068 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: dneupd 
+-c
+-c\Description: 
+-c
+-c  This subroutine returns the converged approximations to eigenvalues
+-c  of A*z = lambda*B*z and (optionally):
+-c
+-c      (1) The corresponding approximate eigenvectors;
+-c
+-c      (2) An orthonormal basis for the associated approximate
+-c          invariant subspace;
+-c
+-c      (3) Both.
+-c
+-c  There is negligible additional cost to obtain eigenvectors.  An orthonormal
+-c  basis is always computed.  There is an additional storage cost of n*nev
+-c  if both are requested (in this case a separate array Z must be supplied).
+-c
+-c  The approximate eigenvalues and eigenvectors of  A*z = lambda*B*z
+-c  are derived from approximate eigenvalues and eigenvectors of
+-c  of the linear operator OP prescribed by the MODE selection in the
+-c  call to DNAUPD .  DNAUPD  must be called before this routine is called.
+-c  These approximate eigenvalues and vectors are commonly called Ritz
+-c  values and Ritz vectors respectively.  They are referred to as such
+-c  in the comments that follow.  The computed orthonormal basis for the
+-c  invariant subspace corresponding to these Ritz values is referred to as a
+-c  Schur basis.
+-c
+-c  See documentation in the header of the subroutine DNAUPD  for 
+-c  definition of OP as well as other terms and the relation of computed
+-c  Ritz values and Ritz vectors of OP with respect to the given problem
+-c  A*z = lambda*B*z.  For a brief description, see definitions of 
+-c  IPARAM(7), MODE and WHICH in the documentation of DNAUPD .
+-c
+-c\Usage:
+-c  call dneupd  
+-c     ( RVEC, HOWMNY, SELECT, DR, DI, Z, LDZ, SIGMAR, SIGMAI, WORKEV, BMAT, 
+-c       N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD, WORKL, 
+-c       LWORKL, INFO )
+-c
+-c\Arguments:
+-c  RVEC    LOGICAL  (INPUT) 
+-c          Specifies whether a basis for the invariant subspace corresponding 
+-c          to the converged Ritz value approximations for the eigenproblem 
+-c          A*z = lambda*B*z is computed.
+-c
+-c             RVEC = .FALSE.     Compute Ritz values only.
+-c
+-c             RVEC = .TRUE.      Compute the Ritz vectors or Schur vectors.
+-c                                See Remarks below. 
+-c 
+-c  HOWMNY  Character*1  (INPUT) 
+-c          Specifies the form of the basis for the invariant subspace 
+-c          corresponding to the converged Ritz values that is to be computed.
+-c
+-c          = 'A': Compute NEV Ritz vectors; 
+-c          = 'P': Compute NEV Schur vectors;
+-c          = 'S': compute some of the Ritz vectors, specified
+-c                 by the logical array SELECT.
+-c
+-c  SELECT  Logical array of dimension NCV.  (INPUT)
+-c          If HOWMNY = 'S', SELECT specifies the Ritz vectors to be
+-c          computed. To select the Ritz vector corresponding to a
+-c          Ritz value (DR(j), DI(j)), SELECT(j) must be set to .TRUE.. 
+-c          If HOWMNY = 'A' or 'P', SELECT is used as internal workspace.
+-c
+-c  DR      Double precision  array of dimension NEV+1.  (OUTPUT)
+-c          If IPARAM(7) = 1,2 or 3 and SIGMAI=0.0  then on exit: DR contains 
+-c          the real part of the Ritz  approximations to the eigenvalues of 
+-c          A*z = lambda*B*z. 
+-c          If IPARAM(7) = 3, 4 and SIGMAI is not equal to zero, then on exit:
+-c          DR contains the real part of the Ritz values of OP computed by 
+-c          DNAUPD . A further computation must be performed by the user
+-c          to transform the Ritz values computed for OP by DNAUPD  to those
+-c          of the original system A*z = lambda*B*z. See remark 3 below.
+-c
+-c  DI      Double precision  array of dimension NEV+1.  (OUTPUT)
+-c          On exit, DI contains the imaginary part of the Ritz value 
+-c          approximations to the eigenvalues of A*z = lambda*B*z associated
+-c          with DR.
+-c
+-c          NOTE: When Ritz values are complex, they will come in complex 
+-c                conjugate pairs.  If eigenvectors are requested, the 
+-c                corresponding Ritz vectors will also come in conjugate 
+-c                pairs and the real and imaginary parts of these are 
+-c                represented in two consecutive columns of the array Z 
+-c                (see below).
+-c
+-c  Z       Double precision  N by NEV+1 array if RVEC = .TRUE. and HOWMNY = 'A'. (OUTPUT)
+-c          On exit, if RVEC = .TRUE. and HOWMNY = 'A', then the columns of 
+-c          Z represent approximate eigenvectors (Ritz vectors) corresponding 
+-c          to the NCONV=IPARAM(5) Ritz values for eigensystem 
+-c          A*z = lambda*B*z. 
+-c 
+-c          The complex Ritz vector associated with the Ritz value 
+-c          with positive imaginary part is stored in two consecutive 
+-c          columns.  The first column holds the real part of the Ritz 
+-c          vector and the second column holds the imaginary part.  The 
+-c          Ritz vector associated with the Ritz value with negative 
+-c          imaginary part is simply the complex conjugate of the Ritz vector 
+-c          associated with the positive imaginary part.
+-c
+-c          If  RVEC = .FALSE. or HOWMNY = 'P', then Z is not referenced.
+-c
+-c          NOTE: If if RVEC = .TRUE. and a Schur basis is not required,
+-c          the array Z may be set equal to first NEV+1 columns of the Arnoldi
+-c          basis array V computed by DNAUPD .  In this case the Arnoldi basis
+-c          will be destroyed and overwritten with the eigenvector basis.
+-c
+-c  LDZ     Integer.  (INPUT)
+-c          The leading dimension of the array Z.  If Ritz vectors are
+-c          desired, then  LDZ >= max( 1, N ).  In any case,  LDZ >= 1.
+-c
+-c  SIGMAR  Double precision   (INPUT)
+-c          If IPARAM(7) = 3 or 4, represents the real part of the shift. 
+-c          Not referenced if IPARAM(7) = 1 or 2.
+-c
+-c  SIGMAI  Double precision   (INPUT)
+-c          If IPARAM(7) = 3 or 4, represents the imaginary part of the shift. 
+-c          Not referenced if IPARAM(7) = 1 or 2. See remark 3 below.
+-c
+-c  WORKEV  Double precision  work array of dimension 3*NCV.  (WORKSPACE)
+-c
+-c  **** The remaining arguments MUST be the same as for the   ****
+-c  **** call to DNAUPD  that was just completed.               ****
+-c
+-c  NOTE: The remaining arguments
+-c
+-c           BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR,
+-c           WORKD, WORKL, LWORKL, INFO
+-c
+-c         must be passed directly to DNEUPD  following the last call
+-c         to DNAUPD .  These arguments MUST NOT BE MODIFIED between
+-c         the the last call to DNAUPD  and the call to DNEUPD .
+-c
+-c  Three of these parameters (V, WORKL, INFO) are also output parameters:
+-c
+-c  V       Double precision  N by NCV array.  (INPUT/OUTPUT)
+-c
+-c          Upon INPUT: the NCV columns of V contain the Arnoldi basis
+-c                      vectors for OP as constructed by DNAUPD  .
+-c
+-c          Upon OUTPUT: If RVEC = .TRUE. the first NCONV=IPARAM(5) columns
+-c                       contain approximate Schur vectors that span the
+-c                       desired invariant subspace.  See Remark 2 below.
+-c
+-c          NOTE: If the array Z has been set equal to first NEV+1 columns
+-c          of the array V and RVEC=.TRUE. and HOWMNY= 'A', then the
+-c          Arnoldi basis held by V has been overwritten by the desired
+-c          Ritz vectors.  If a separate array Z has been passed then
+-c          the first NCONV=IPARAM(5) columns of V will contain approximate
+-c          Schur vectors that span the desired invariant subspace.
+-c
+-c  WORKL   Double precision  work array of length LWORKL.  (OUTPUT/WORKSPACE)
+-c          WORKL(1:ncv*ncv+3*ncv) contains information obtained in
+-c          dnaupd .  They are not changed by dneupd .
+-c          WORKL(ncv*ncv+3*ncv+1:3*ncv*ncv+6*ncv) holds the
+-c          real and imaginary part of the untransformed Ritz values,
+-c          the upper quasi-triangular matrix for H, and the
+-c          associated matrix representation of the invariant subspace for H.
+-c
+-c          Note: IPNTR(9:13) contains the pointer into WORKL for addresses
+-c          of the above information computed by dneupd .
+-c          -------------------------------------------------------------
+-c          IPNTR(9):  pointer to the real part of the NCV RITZ values of the
+-c                     original system.
+-c          IPNTR(10): pointer to the imaginary part of the NCV RITZ values of
+-c                     the original system.
+-c          IPNTR(11): pointer to the NCV corresponding error bounds.
+-c          IPNTR(12): pointer to the NCV by NCV upper quasi-triangular
+-c                     Schur matrix for H.
+-c          IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors
+-c                     of the upper Hessenberg matrix H. Only referenced by
+-c                     dneupd  if RVEC = .TRUE. See Remark 2 below.
+-c          -------------------------------------------------------------
+-c
+-c  INFO    Integer.  (OUTPUT)
+-c          Error flag on output.
+-c
+-c          =  0: Normal exit.
+-c
+-c          =  1: The Schur form computed by LAPACK routine dlahqr 
+-c                could not be reordered by LAPACK routine dtrsen .
+-c                Re-enter subroutine dneupd  with IPARAM(5)=NCV and 
+-c                increase the size of the arrays DR and DI to have 
+-c                dimension at least dimension NCV and allocate at least NCV 
+-c                columns for Z. NOTE: Not necessary if Z and V share 
+-c                the same space. Please notify the authors if this error
+-c                occurs.
+-c
+-c          = -1: N must be positive.
+-c          = -2: NEV must be positive.
+-c          = -3: NCV-NEV >= 2 and less than or equal to N.
+-c          = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'
+-c          = -6: BMAT must be one of 'I' or 'G'.
+-c          = -7: Length of private work WORKL array is not sufficient.
+-c          = -8: Error return from calculation of a real Schur form.
+-c                Informational error from LAPACK routine dlahqr .
+-c          = -9: Error return from calculation of eigenvectors.
+-c                Informational error from LAPACK routine dtrevc .
+-c          = -10: IPARAM(7) must be 1,2,3,4.
+-c          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
+-c          = -12: HOWMNY = 'S' not yet implemented
+-c          = -13: HOWMNY must be one of 'A' or 'P' if RVEC = .true.
+-c          = -14: DNAUPD  did not find any eigenvalues to sufficient
+-c                 accuracy.
+-c          = -15: DNEUPD got a different count of the number of converged
+-c                 Ritz values than DNAUPD got.  This indicates the user
+-c                 probably made an error in passing data from DNAUPD to
+-c                 DNEUPD or that the data was modified before entering
+-c                 DNEUPD
+-c
+-c\BeginLib
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c  3. B.N. Parlett & Y. Saad, "Complex Shift and Invert Strategies for
+-c     Real Matrices", Linear Algebra and its Applications, vol 88/89,
+-c     pp 575-595, (1987).
+-c
+-c\Routines called:
+-c     ivout   ARPACK utility routine that prints integers.
+-c     dmout    ARPACK utility routine that prints matrices
+-c     dvout    ARPACK utility routine that prints vectors.
+-c     dgeqr2   LAPACK routine that computes the QR factorization of 
+-c             a matrix.
+-c     dlacpy   LAPACK matrix copy routine.
+-c     dlahqr   LAPACK routine to compute the real Schur form of an
+-c             upper Hessenberg matrix.
+-c     dlamch   LAPACK routine that determines machine constants.
+-c     dlapy2   LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     dlaset   LAPACK matrix initialization routine.
+-c     dorm2r   LAPACK routine that applies an orthogonal matrix in 
+-c             factored form.
+-c     dtrevc   LAPACK routine to compute the eigenvectors of a matrix
+-c             in upper quasi-triangular form.
+-c     dtrsen   LAPACK routine that re-orders the Schur form.
+-c     dtrmm    Level 3 BLAS matrix times an upper triangular matrix.
+-c     dger     Level 2 BLAS rank one update to a matrix.
+-c     dcopy    Level 1 BLAS that copies one vector to another .
+-c     ddot     Level 1 BLAS that computes the scalar product of two vectors.
+-c     dnrm2    Level 1 BLAS that computes the norm of a vector.
+-c     dscal    Level 1 BLAS that scales a vector.
+-c
+-c\Remarks
+-c
+-c  1. Currently only HOWMNY = 'A' and 'P' are implemented.
+-c
+-c     Let trans(X) denote the transpose of X.
+-c
+-c  2. Schur vectors are an orthogonal representation for the basis of
+-c     Ritz vectors. Thus, their numerical properties are often superior.
+-c     If RVEC = .TRUE. then the relationship
+-c             A * V(:,1:IPARAM(5)) = V(:,1:IPARAM(5)) * T, and
+-c     trans(V(:,1:IPARAM(5))) * V(:,1:IPARAM(5)) = I are approximately 
+-c     satisfied. Here T is the leading submatrix of order IPARAM(5) of the 
+-c     real upper quasi-triangular matrix stored workl(ipntr(12)). That is,
+-c     T is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; 
+-c     each 2-by-2 diagonal block has its diagonal elements equal and its
+-c     off-diagonal elements of opposite sign.  Corresponding to each 2-by-2
+-c     diagonal block is a complex conjugate pair of Ritz values. The real
+-c     Ritz values are stored on the diagonal of T.
+-c
+-c  3. If IPARAM(7) = 3 or 4 and SIGMAI is not equal zero, then the user must
+-c     form the IPARAM(5) Rayleigh quotients in order to transform the Ritz
+-c     values computed by DNAUPD  for OP to those of A*z = lambda*B*z. 
+-c     Set RVEC = .true. and HOWMNY = 'A', and
+-c     compute 
+-c           trans(Z(:,I)) * A * Z(:,I) if DI(I) = 0.
+-c     If DI(I) is not equal to zero and DI(I+1) = - D(I), 
+-c     then the desired real and imaginary parts of the Ritz value are
+-c           trans(Z(:,I)) * A * Z(:,I) +  trans(Z(:,I+1)) * A * Z(:,I+1),
+-c           trans(Z(:,I)) * A * Z(:,I+1) -  trans(Z(:,I+1)) * A * Z(:,I), 
+-c     respectively.
+-c     Another possibility is to set RVEC = .true. and HOWMNY = 'P' and
+-c     compute trans(V(:,1:IPARAM(5))) * A * V(:,1:IPARAM(5)) and then an upper
+-c     quasi-triangular matrix of order IPARAM(5) is computed. See remark
+-c     2 above.
+-c
+-c\Authors
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University 
+-c     Chao Yang                    Houston, Texas
+-c     Dept. of Computational &
+-c     Applied Mathematics          
+-c     Rice University           
+-c     Houston, Texas            
+-c 
+-c\SCCS Information: @(#) 
+-c FILE: neupd.F   SID: 2.7   DATE OF SID: 09/20/00   RELEASE: 2 
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-      subroutine dneupd (rvec , howmny, select, dr    , di,    
+-     &                   z    , ldz   , sigmar, sigmai, workev,
+-     &                   bmat , n     , which , nev   , tol,
+-     &                   resid, ncv   , v     , ldv   , iparam,
+-     &                   ipntr, workd , workl , lworkl, info)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat, howmny, which*2
+-      logical    rvec
+-      integer    info, ldz, ldv, lworkl, n, ncv, nev
+-      Double precision      
+-     &           sigmar, sigmai, tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    iparam(11), ipntr(14)
+-      logical    select(ncv)
+-      Double precision 
+-     &           dr(nev+1)    , di(nev+1), resid(n)  , 
+-     &           v(ldv,ncv)   , z(ldz,*) , workd(3*n), 
+-     &           workl(lworkl), workev(3*ncv)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision 
+-     &           one, zero
+-      parameter (one = 1.0D+0 , zero = 0.0D+0 )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      character  type*6
+-      integer    bounds, ierr  , ih    , ihbds   , 
+-     &           iheigr, iheigi, iconj , nconv   , 
+-     &           invsub, iuptri, iwev  , iwork(1),
+-     &           j     , k     , ldh   , ldq     ,
+-     &           mode  , msglvl, outncv, ritzr   ,
+-     &           ritzi , wri   , wrr   , irr     ,
+-     &           iri   , ibd   , ishift, numcnv  ,
+-     &           np    , jj    , nconv2
+-      logical    reord
+-      Double precision 
+-     &           conds  , rnorm, sep  , temp,
+-     &           vl(1,1), temp1, eps23
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   dcopy  , dger   , dgeqr2 , dlacpy , 
+-     &           dlahqr , dlaset , dmout  , dorm2r , 
+-     &           dtrevc , dtrmm  , dtrsen , dscal  , 
+-     &           dvout  , ivout
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision 
+-     &           dlapy2 , dnrm2 , dlamch , ddot 
+-      external   dlapy2 , dnrm2 , dlamch , ddot 
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    abs, min, sqrt
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c 
+-c     %------------------------%
+-c     | Set default parameters |
+-c     %------------------------%
+-c
+-      msglvl = mneupd
+-      mode = iparam(7)
+-      nconv = iparam(5)
+-      info = 0
+-c
+-c     %---------------------------------%
+-c     | Get machine dependent constant. |
+-c     %---------------------------------%
+-c
+-      eps23 = dlamch ('Epsilon-Machine')
+-      eps23 = eps23**(2.0D+0  / 3.0D+0 )
+-c
+-c     %--------------%
+-c     | Quick return |
+-c     %--------------%
+-c
+-      ierr = 0
+-c
+-      if (nconv .le. 0) then
+-         ierr = -14
+-      else if (n .le. 0) then
+-         ierr = -1
+-      else if (nev .le. 0) then
+-         ierr = -2
+-      else if (ncv .le. nev+1 .or.  ncv .gt. n) then
+-         ierr = -3
+-      else if (which .ne. 'LM' .and.
+-     &        which .ne. 'SM' .and.
+-     &        which .ne. 'LR' .and.
+-     &        which .ne. 'SR' .and.
+-     &        which .ne. 'LI' .and.
+-     &        which .ne. 'SI') then
+-         ierr = -5
+-      else if (bmat .ne. 'I' .and. bmat .ne. 'G') then
+-         ierr = -6
+-      else if (lworkl .lt. 3*ncv**2 + 6*ncv) then
+-         ierr = -7
+-      else if ( (howmny .ne. 'A' .and.
+-     &           howmny .ne. 'P' .and.
+-     &           howmny .ne. 'S') .and. rvec ) then
+-         ierr = -13
+-      else if (howmny .eq. 'S' ) then
+-         ierr = -12
+-      end if
+-c     
+-      if (mode .eq. 1 .or. mode .eq. 2) then
+-         type = 'REGULR'
+-      else if (mode .eq. 3 .and. sigmai .eq. zero) then
+-         type = 'SHIFTI'
+-      else if (mode .eq. 3 ) then
+-         type = 'REALPT'
+-      else if (mode .eq. 4 ) then
+-         type = 'IMAGPT'
+-      else 
+-                                              ierr = -10
+-      end if
+-      if (mode .eq. 1 .and. bmat .eq. 'G')    ierr = -11
+-c
+-c     %------------%
+-c     | Error Exit |
+-c     %------------%
+-c
+-      if (ierr .ne. 0) then
+-         info = ierr
+-         go to 9000
+-      end if
+-c 
+-c     %--------------------------------------------------------%
+-c     | Pointer into WORKL for address of H, RITZ, BOUNDS, Q   |
+-c     | etc... and the remaining workspace.                    |
+-c     | Also update pointer to be used on output.              |
+-c     | Memory is laid out as follows:                         |
+-c     | workl(1:ncv*ncv) := generated Hessenberg matrix        |
+-c     | workl(ncv*ncv+1:ncv*ncv+2*ncv) := real and imaginary   |
+-c     |                                   parts of ritz values |
+-c     | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := error bounds   |
+-c     %--------------------------------------------------------%
+-c
+-c     %-----------------------------------------------------------%
+-c     | The following is used and set by DNEUPD .                  |
+-c     | workl(ncv*ncv+3*ncv+1:ncv*ncv+4*ncv) := The untransformed |
+-c     |                             real part of the Ritz values. |
+-c     | workl(ncv*ncv+4*ncv+1:ncv*ncv+5*ncv) := The untransformed |
+-c     |                        imaginary part of the Ritz values. |
+-c     | workl(ncv*ncv+5*ncv+1:ncv*ncv+6*ncv) := The untransformed |
+-c     |                           error bounds of the Ritz values |
+-c     | workl(ncv*ncv+6*ncv+1:2*ncv*ncv+6*ncv) := Holds the upper |
+-c     |                             quasi-triangular matrix for H |
+-c     | workl(2*ncv*ncv+6*ncv+1: 3*ncv*ncv+6*ncv) := Holds the    |
+-c     |       associated matrix representation of the invariant   |
+-c     |       subspace for H.                                     |
+-c     | GRAND total of NCV * ( 3 * NCV + 6 ) locations.           |
+-c     %-----------------------------------------------------------%
+-c     
+-      ih     = ipntr(5)
+-      ritzr  = ipntr(6)
+-      ritzi  = ipntr(7)
+-      bounds = ipntr(8)
+-      ldh    = ncv
+-      ldq    = ncv
+-      iheigr = bounds + ldh
+-      iheigi = iheigr + ldh
+-      ihbds  = iheigi + ldh
+-      iuptri = ihbds  + ldh
+-      invsub = iuptri + ldh*ncv
+-      ipntr(9)  = iheigr
+-      ipntr(10) = iheigi
+-      ipntr(11) = ihbds
+-      ipntr(12) = iuptri
+-      ipntr(13) = invsub
+-      wrr = 1
+-      wri = ncv + 1
+-      iwev = wri + ncv
+-c
+-c     %-----------------------------------------%
+-c     | irr points to the REAL part of the Ritz |
+-c     |     values computed by _neigh before    |
+-c     |     exiting _naup2.                     |
+-c     | iri points to the IMAGINARY part of the |
+-c     |     Ritz values computed by _neigh      |
+-c     |     before exiting _naup2.              |
+-c     | ibd points to the Ritz estimates        |
+-c     |     computed by _neigh before exiting   |
+-c     |     _naup2.                             |
+-c     %-----------------------------------------%
+-c
+-      irr = ipntr(14)+ncv*ncv
+-      iri = irr+ncv
+-      ibd = iri+ncv
+-c
+-c     %------------------------------------%
+-c     | RNORM is B-norm of the RESID(1:N). |
+-c     %------------------------------------%
+-c
+-      rnorm = workl(ih+2)
+-      workl(ih+2) = zero
+-c
+-      if (msglvl .gt. 2) then
+-         call dvout (logfil, ncv, workl(irr), ndigit,
+-     &   '_neupd: Real part of Ritz values passed in from _NAUPD.')
+-         call dvout (logfil, ncv, workl(iri), ndigit,
+-     &   '_neupd: Imag part of Ritz values passed in from _NAUPD.')
+-         call dvout (logfil, ncv, workl(ibd), ndigit,
+-     &   '_neupd: Ritz estimates passed in from _NAUPD.')
+-      end if
+-c
+-      if (rvec) then
+-c     
+-         reord = .false.
+-c
+-c        %---------------------------------------------------%
+-c        | Use the temporary bounds array to store indices   |
+-c        | These will be used to mark the select array later |
+-c        %---------------------------------------------------%
+-c
+-         do 10 j = 1,ncv
+-            workl(bounds+j-1) = j
+-            select(j) = .false.
+-   10    continue
+-c
+-c        %-------------------------------------%
+-c        | Select the wanted Ritz values.      |
+-c        | Sort the Ritz values so that the    |
+-c        | wanted ones appear at the tailing   |
+-c        | NEV positions of workl(irr) and     |
+-c        | workl(iri).  Move the corresponding |
+-c        | error estimates in workl(bound)     |
+-c        | accordingly.                        |
+-c        %-------------------------------------%
+-c
+-         np     = ncv - nev
+-         ishift = 0
+-         call dngets (ishift       , which     , nev       , 
+-     &                np           , workl(irr), workl(iri),
+-     &                workl(bounds), workl     , workl(np+1))
+-c
+-         if (msglvl .gt. 2) then
+-            call dvout (logfil, ncv, workl(irr), ndigit,
+-     &      '_neupd: Real part of Ritz values after calling _NGETS.')
+-            call dvout (logfil, ncv, workl(iri), ndigit,
+-     &      '_neupd: Imag part of Ritz values after calling _NGETS.')
+-            call dvout (logfil, ncv, workl(bounds), ndigit,
+-     &      '_neupd: Ritz value indices after calling _NGETS.')
+-         end if
+-c
+-c        %-----------------------------------------------------%
+-c        | Record indices of the converged wanted Ritz values  |
+-c        | Mark the select array for possible reordering       |
+-c        %-----------------------------------------------------%
+-c
+-         numcnv = 0
+-         do 11 j = 1,ncv
+-            temp1 = max(eps23,
+-     &                 dlapy2 ( workl(irr+ncv-j), workl(iri+ncv-j) ))
+-            jj = workl(bounds + ncv - j)
+-            if (numcnv .lt. nconv .and.
+-     &          workl(ibd+jj-1) .le. tol*temp1) then
+-               select(jj) = .true.
+-               numcnv = numcnv + 1
+-               if (jj .gt. nev) reord = .true.
+-            endif
+-   11    continue
+-c
+-c        %-----------------------------------------------------------%
+-c        | Check the count (numcnv) of converged Ritz values with    |
+-c        | the number (nconv) reported by dnaupd.  If these two      |
+-c        | are different then there has probably been an error       |
+-c        | caused by incorrect passing of the dnaupd data.           |
+-c        %-----------------------------------------------------------%
+-c
+-         if (msglvl .gt. 2) then
+-             call ivout(logfil, 1, numcnv, ndigit,
+-     &            '_neupd: Number of specified eigenvalues')
+-             call ivout(logfil, 1, nconv, ndigit,
+-     &            '_neupd: Number of "converged" eigenvalues')
+-         end if
+-c
+-         if (numcnv .ne. nconv) then
+-            info = -15
+-            go to 9000
+-         end if
+-c
+-c        %-----------------------------------------------------------%
+-c        | Call LAPACK routine dlahqr  to compute the real Schur form |
+-c        | of the upper Hessenberg matrix returned by DNAUPD .        |
+-c        | Make a copy of the upper Hessenberg matrix.               |
+-c        | Initialize the Schur vector matrix Q to the identity.     |
+-c        %-----------------------------------------------------------%
+-c     
+-         call dcopy (ldh*ncv, workl(ih), 1, workl(iuptri), 1)
+-         call dlaset ('All', ncv, ncv, 
+-     &                zero , one, workl(invsub),
+-     &                ldq)
+-         call dlahqr (.true., .true.       , ncv, 
+-     &                1     , ncv          , workl(iuptri), 
+-     &                ldh   , workl(iheigr), workl(iheigi),
+-     &                1     , ncv          , workl(invsub), 
+-     &                ldq   , ierr)
+-         call dcopy (ncv         , workl(invsub+ncv-1), ldq, 
+-     &               workl(ihbds), 1)
+-c     
+-         if (ierr .ne. 0) then
+-            info = -8
+-            go to 9000
+-         end if
+-c     
+-         if (msglvl .gt. 1) then
+-            call dvout (logfil, ncv, workl(iheigr), ndigit,
+-     &           '_neupd: Real part of the eigenvalues of H')
+-            call dvout (logfil, ncv, workl(iheigi), ndigit,
+-     &           '_neupd: Imaginary part of the Eigenvalues of H')
+-            call dvout (logfil, ncv, workl(ihbds), ndigit,
+-     &           '_neupd: Last row of the Schur vector matrix')
+-            if (msglvl .gt. 3) then
+-               call dmout (logfil       , ncv, ncv   , 
+-     &                     workl(iuptri), ldh, ndigit,
+-     &              '_neupd: The upper quasi-triangular matrix ')
+-            end if
+-         end if 
+-c
+-         if (reord) then
+-c     
+-c           %-----------------------------------------------------%
+-c           | Reorder the computed upper quasi-triangular matrix. | 
+-c           %-----------------------------------------------------%
+-c     
+-            call dtrsen ('None'       , 'V'          , 
+-     &                   select       , ncv          ,
+-     &                   workl(iuptri), ldh          , 
+-     &                   workl(invsub), ldq          , 
+-     &                   workl(iheigr), workl(iheigi), 
+-     &                   nconv2       , conds        ,
+-     &                   sep          , workl(ihbds) , 
+-     &                   ncv          , iwork        ,
+-     &                   1            , ierr)
+-c
+-            if (nconv2 .lt. nconv) then
+-               nconv = nconv2
+-            end if
+-
+-            if (ierr .eq. 1) then
+-               info = 1
+-               go to 9000
+-            end if
+-c
+-
+-            if (msglvl .gt. 2) then
+-                call dvout (logfil, ncv, workl(iheigr), ndigit,
+-     &           '_neupd: Real part of the eigenvalues of H--reordered')
+-                call dvout (logfil, ncv, workl(iheigi), ndigit,
+-     &           '_neupd: Imag part of the eigenvalues of H--reordered')
+-                if (msglvl .gt. 3) then
+-                   call dmout (logfil       , ncv, ncv   , 
+-     &                         workl(iuptri), ldq, ndigit,
+-     &             '_neupd: Quasi-triangular matrix after re-ordering')
+-                end if
+-            end if
+-c     
+-         end if
+-c
+-c        %---------------------------------------%
+-c        | Copy the last row of the Schur vector |
+-c        | into workl(ihbds).  This will be used |
+-c        | to compute the Ritz estimates of      |
+-c        | converged Ritz values.                |
+-c        %---------------------------------------%
+-c
+-         call dcopy (ncv, workl(invsub+ncv-1), ldq, workl(ihbds), 1)
+-c
+-c        %----------------------------------------------------%
+-c        | Place the computed eigenvalues of H into DR and DI |
+-c        | if a spectral transformation was not used.         |
+-c        %----------------------------------------------------%
+-c
+-         if (type .eq. 'REGULR') then 
+-            call dcopy (nconv, workl(iheigr), 1, dr, 1)
+-            call dcopy (nconv, workl(iheigi), 1, di, 1)
+-         end if
+-c     
+-c        %----------------------------------------------------------%
+-c        | Compute the QR factorization of the matrix representing  |
+-c        | the wanted invariant subspace located in the first NCONV |
+-c        | columns of workl(invsub,ldq).                            |
+-c        %----------------------------------------------------------%
+-c     
+-         call dgeqr2 (ncv, nconv , workl(invsub), 
+-     &               ldq, workev, workev(ncv+1),
+-     &               ierr)
+-c
+-c        %---------------------------------------------------------%
+-c        | * Postmultiply V by Q using dorm2r .                     |   
+-c        | * Copy the first NCONV columns of VQ into Z.            |
+-c        | * Postmultiply Z by R.                                  |
+-c        | The N by NCONV matrix Z is now a matrix representation  |
+-c        | of the approximate invariant subspace associated with   |
+-c        | the Ritz values in workl(iheigr) and workl(iheigi)      |
+-c        | The first NCONV columns of V are now approximate Schur  |
+-c        | vectors associated with the real upper quasi-triangular |
+-c        | matrix of order NCONV in workl(iuptri)                  |
+-c        %---------------------------------------------------------%
+-c     
+-         call dorm2r ('Right', 'Notranspose', n            , 
+-     &                ncv   , nconv        , workl(invsub),
+-     &                ldq   , workev       , v            , 
+-     &                ldv   , workd(n+1)   , ierr)
+-         call dlacpy ('All', n, nconv, v, ldv, z, ldz)
+-c
+-         do 20 j=1, nconv
+-c     
+-c           %---------------------------------------------------%
+-c           | Perform both a column and row scaling if the      |
+-c           | diagonal element of workl(invsub,ldq) is negative |
+-c           | I'm lazy and don't take advantage of the upper    |
+-c           | quasi-triangular form of workl(iuptri,ldq)        |
+-c           | Note that since Q is orthogonal, R is a diagonal  |
+-c           | matrix consisting of plus or minus ones           |
+-c           %---------------------------------------------------%
+-c     
+-            if (workl(invsub+(j-1)*ldq+j-1) .lt. zero) then
+-               call dscal (nconv, -one, workl(iuptri+j-1), ldq)
+-               call dscal (nconv, -one, workl(iuptri+(j-1)*ldq), 1)
+-            end if
+-c     
+- 20      continue
+-c     
+-         if (howmny .eq. 'A') then
+-c     
+-c           %--------------------------------------------%
+-c           | Compute the NCONV wanted eigenvectors of T | 
+-c           | located in workl(iuptri,ldq).              |
+-c           %--------------------------------------------%
+-c     
+-            do 30 j=1, ncv
+-               if (j .le. nconv) then
+-                  select(j) = .true.
+-               else
+-                  select(j) = .false.
+-               end if
+- 30         continue
+-c
+-            call dtrevc ('Right', 'Select'     , select       , 
+-     &                   ncv    , workl(iuptri), ldq          , 
+-     &                   vl     , 1            , workl(invsub),
+-     &                   ldq    , ncv          , outncv       ,
+-     &                   workev , ierr)
+-c
+-            if (ierr .ne. 0) then
+-                info = -9
+-                go to 9000
+-            end if
+-c     
+-c           %------------------------------------------------%
+-c           | Scale the returning eigenvectors so that their |
+-c           | Euclidean norms are all one. LAPACK subroutine |
+-c           | dtrevc  returns each eigenvector normalized so  |
+-c           | that the element of largest magnitude has      |
+-c           | magnitude 1;                                   |
+-c           %------------------------------------------------%
+-c     
+-            iconj = 0
+-            do 40 j=1, nconv
+-c
+-               if ( workl(iheigi+j-1) .eq. zero ) then
+-c     
+-c                 %----------------------%
+-c                 | real eigenvalue case |
+-c                 %----------------------%
+-c     
+-                  temp = dnrm2 ( ncv, workl(invsub+(j-1)*ldq), 1 )
+-                  call dscal ( ncv, one / temp, 
+-     &                 workl(invsub+(j-1)*ldq), 1 )
+-c
+-               else
+-c     
+-c                 %-------------------------------------------%
+-c                 | Complex conjugate pair case. Note that    |
+-c                 | since the real and imaginary part of      |
+-c                 | the eigenvector are stored in consecutive |
+-c                 | columns, we further normalize by the      |
+-c                 | square root of two.                       |
+-c                 %-------------------------------------------%
+-c
+-                  if (iconj .eq. 0) then
+-                     temp = dlapy2 (dnrm2 (ncv, 
+-     &                                   workl(invsub+(j-1)*ldq), 
+-     &                                   1),
+-     &                             dnrm2 (ncv, 
+-     &                                   workl(invsub+j*ldq),
+-     &                                   1))  
+-                     call dscal (ncv, one/temp, 
+-     &                           workl(invsub+(j-1)*ldq), 1 )
+-                     call dscal (ncv, one/temp, 
+-     &                           workl(invsub+j*ldq), 1 )
+-                     iconj = 1
+-                  else
+-                     iconj = 0
+-                  end if
+-c
+-               end if
+-c
+- 40         continue
+-c
+-            call dgemv ('T', ncv, nconv, one, workl(invsub),
+-     &                 ldq, workl(ihbds), 1, zero,  workev, 1)
+-c
+-            iconj = 0
+-            do 45 j=1, nconv
+-               if (workl(iheigi+j-1) .ne. zero) then
+-c
+-c                 %-------------------------------------------%
+-c                 | Complex conjugate pair case. Note that    |
+-c                 | since the real and imaginary part of      |
+-c                 | the eigenvector are stored in consecutive |
+-c                 %-------------------------------------------%
+-c
+-                  if (iconj .eq. 0) then
+-                     workev(j) = dlapy2 (workev(j), workev(j+1))
+-                     workev(j+1) = workev(j)
+-                     iconj = 1
+-                  else
+-                     iconj = 0
+-                  end if
+-               end if
+- 45         continue
+-c
+-            if (msglvl .gt. 2) then
+-               call dcopy (ncv, workl(invsub+ncv-1), ldq,
+-     &                    workl(ihbds), 1)
+-               call dvout (logfil, ncv, workl(ihbds), ndigit,
+-     &              '_neupd: Last row of the eigenvector matrix for T')
+-               if (msglvl .gt. 3) then
+-                  call dmout (logfil, ncv, ncv, workl(invsub), ldq, 
+-     &                 ndigit, '_neupd: The eigenvector matrix for T')
+-               end if
+-            end if
+-c
+-c           %---------------------------------------%
+-c           | Copy Ritz estimates into workl(ihbds) |
+-c           %---------------------------------------%
+-c
+-            call dcopy (nconv, workev, 1, workl(ihbds), 1)
+-c
+-c           %---------------------------------------------------------%
+-c           | Compute the QR factorization of the eigenvector matrix  |
+-c           | associated with leading portion of T in the first NCONV |
+-c           | columns of workl(invsub,ldq).                           |
+-c           %---------------------------------------------------------%
+-c     
+-            call dgeqr2 (ncv, nconv , workl(invsub), 
+-     &                   ldq, workev, workev(ncv+1),
+-     &                   ierr)
+-c     
+-c           %----------------------------------------------%
+-c           | * Postmultiply Z by Q.                       |   
+-c           | * Postmultiply Z by R.                       |
+-c           | The N by NCONV matrix Z is now contains the  | 
+-c           | Ritz vectors associated with the Ritz values |
+-c           | in workl(iheigr) and workl(iheigi).          |
+-c           %----------------------------------------------%
+-c     
+-            call dorm2r ('Right', 'Notranspose', n            ,
+-     &                   ncv  , nconv        , workl(invsub),
+-     &                   ldq  , workev       , z            ,
+-     &                   ldz  , workd(n+1)   , ierr)
+-c     
+-            call dtrmm ('Right'   , 'Upper'       , 'No transpose',
+-     &                  'Non-unit', n            , nconv         ,
+-     &                  one       , workl(invsub), ldq           ,
+-     &                  z         , ldz)
+-c     
+-         end if
+-c     
+-      else 
+-c
+-c        %------------------------------------------------------%
+-c        | An approximate invariant subspace is not needed.     |
+-c        | Place the Ritz values computed DNAUPD  into DR and DI |
+-c        %------------------------------------------------------%
+-c
+-         call dcopy (nconv, workl(ritzr), 1, dr, 1)
+-         call dcopy (nconv, workl(ritzi), 1, di, 1)
+-         call dcopy (nconv, workl(ritzr), 1, workl(iheigr), 1)
+-         call dcopy (nconv, workl(ritzi), 1, workl(iheigi), 1)
+-         call dcopy (nconv, workl(bounds), 1, workl(ihbds), 1)
+-      end if
+-c 
+-c     %------------------------------------------------%
+-c     | Transform the Ritz values and possibly vectors |
+-c     | and corresponding error bounds of OP to those  |
+-c     | of A*x = lambda*B*x.                           |
+-c     %------------------------------------------------%
+-c
+-      if (type .eq. 'REGULR') then
+-c
+-         if (rvec) 
+-     &      call dscal (ncv, rnorm, workl(ihbds), 1)     
+-c     
+-      else 
+-c     
+-c        %---------------------------------------%
+-c        |   A spectral transformation was used. |
+-c        | * Determine the Ritz estimates of the |
+-c        |   Ritz values in the original system. |
+-c        %---------------------------------------%
+-c     
+-         if (type .eq. 'SHIFTI') then
+-c
+-            if (rvec) 
+-     &         call dscal (ncv, rnorm, workl(ihbds), 1)
+-c
+-            do 50 k=1, ncv
+-               temp = dlapy2 ( workl(iheigr+k-1), 
+-     &                        workl(iheigi+k-1) )
+-               workl(ihbds+k-1) = abs( workl(ihbds+k-1) ) 
+-     &                          / temp / temp
+- 50         continue
+-c
+-         else if (type .eq. 'REALPT') then
+-c
+-            do 60 k=1, ncv
+- 60         continue
+-c
+-         else if (type .eq. 'IMAGPT') then
+-c
+-            do 70 k=1, ncv
+- 70         continue
+-c
+-         end if
+-c     
+-c        %-----------------------------------------------------------%
+-c        | *  Transform the Ritz values back to the original system. |
+-c        |    For TYPE = 'SHIFTI' the transformation is              |
+-c        |             lambda = 1/theta + sigma                      |
+-c        |    For TYPE = 'REALPT' or 'IMAGPT' the user must from     |
+-c        |    Rayleigh quotients or a projection. See remark 3 above.| 
+-c        | NOTES:                                                    |
+-c        | *The Ritz vectors are not affected by the transformation. |
+-c        %-----------------------------------------------------------%
+-c     
+-         if (type .eq. 'SHIFTI') then 
+-c
+-            do 80 k=1, ncv
+-               temp = dlapy2 ( workl(iheigr+k-1), 
+-     &                        workl(iheigi+k-1) )
+-               workl(iheigr+k-1) = workl(iheigr+k-1)/temp/temp 
+-     &                           + sigmar   
+-               workl(iheigi+k-1) = -workl(iheigi+k-1)/temp/temp
+-     &                           + sigmai   
+- 80         continue
+-c
+-            call dcopy (nconv, workl(iheigr), 1, dr, 1)
+-            call dcopy (nconv, workl(iheigi), 1, di, 1)
+-c
+-         else if (type .eq. 'REALPT' .or. type .eq. 'IMAGPT') then
+-c
+-            call dcopy (nconv, workl(iheigr), 1, dr, 1)
+-            call dcopy (nconv, workl(iheigi), 1, di, 1)
+-c
+-         end if
+-c
+-      end if
+-c
+-      if (type .eq. 'SHIFTI' .and. msglvl .gt. 1) then
+-         call dvout (logfil, nconv, dr, ndigit,
+-     &   '_neupd: Untransformed real part of the Ritz valuess.')
+-         call dvout  (logfil, nconv, di, ndigit,
+-     &   '_neupd: Untransformed imag part of the Ritz valuess.')
+-         call dvout (logfil, nconv, workl(ihbds), ndigit,
+-     &   '_neupd: Ritz estimates of untransformed Ritz values.')
+-      else if (type .eq. 'REGULR' .and. msglvl .gt. 1) then
+-         call dvout (logfil, nconv, dr, ndigit,
+-     &   '_neupd: Real parts of converged Ritz values.')
+-         call dvout  (logfil, nconv, di, ndigit,
+-     &   '_neupd: Imag parts of converged Ritz values.')
+-         call dvout (logfil, nconv, workl(ihbds), ndigit,
+-     &   '_neupd: Associated Ritz estimates.')
+-      end if
+-c 
+-c     %-------------------------------------------------%
+-c     | Eigenvector Purification step. Formally perform |
+-c     | one of inverse subspace iteration. Only used    |
+-c     | for MODE = 2.                                   |
+-c     %-------------------------------------------------%
+-c
+-      if (rvec .and. howmny .eq. 'A' .and. type .eq. 'SHIFTI') then
+-c
+-c        %------------------------------------------------%
+-c        | Purify the computed Ritz vectors by adding a   |
+-c        | little bit of the residual vector:             |
+-c        |                      T                         |
+-c        |          resid(:)*( e    s ) / theta           |
+-c        |                      NCV                       |
+-c        | where H s = s theta. Remember that when theta  |
+-c        | has nonzero imaginary part, the corresponding  |
+-c        | Ritz vector is stored across two columns of Z. |
+-c        %------------------------------------------------%
+-c
+-         iconj = 0
+-         do 110 j=1, nconv
+-            if (workl(iheigi+j-1) .eq. zero) then
+-               workev(j) =  workl(invsub+(j-1)*ldq+ncv-1) /
+-     &                      workl(iheigr+j-1)
+-            else if (iconj .eq. 0) then
+-               temp = dlapy2 ( workl(iheigr+j-1), workl(iheigi+j-1) )
+-               workev(j) = ( workl(invsub+(j-1)*ldq+ncv-1) * 
+-     &                       workl(iheigr+j-1) +
+-     &                       workl(invsub+j*ldq+ncv-1) * 
+-     &                       workl(iheigi+j-1) ) / temp / temp
+-               workev(j+1) = ( workl(invsub+j*ldq+ncv-1) * 
+-     &                         workl(iheigr+j-1) -
+-     &                         workl(invsub+(j-1)*ldq+ncv-1) * 
+-     &                         workl(iheigi+j-1) ) / temp / temp
+-               iconj = 1
+-            else
+-               iconj = 0
+-            end if
+- 110     continue
+-c
+-c        %---------------------------------------%
+-c        | Perform a rank one update to Z and    |
+-c        | purify all the Ritz vectors together. |
+-c        %---------------------------------------%
+-c
+-         call dger (n, nconv, one, resid, 1, workev, 1, z, ldz)
+-c
+-      end if
+-c
+- 9000 continue
+-c
+-      return
+-c     
+-c     %---------------%
+-c     | End of DNEUPD  |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dngets.f
++++ /dev/null
+@@ -1,231 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dngets
+-c
+-c\Description: 
+-c  Given the eigenvalues of the upper Hessenberg matrix H,
+-c  computes the NP shifts AMU that are zeros of the polynomial of 
+-c  degree NP which filters out components of the unwanted eigenvectors
+-c  corresponding to the AMU's based on some given criteria.
+-c
+-c  NOTE: call this even in the case of user specified shifts in order
+-c  to sort the eigenvalues, and error bounds of H for later use.
+-c
+-c\Usage:
+-c  call dngets
+-c     ( ISHIFT, WHICH, KEV, NP, RITZR, RITZI, BOUNDS, SHIFTR, SHIFTI )
+-c
+-c\Arguments
+-c  ISHIFT  Integer.  (INPUT)
+-c          Method for selecting the implicit shifts at each iteration.
+-c          ISHIFT = 0: user specified shifts
+-c          ISHIFT = 1: exact shift with respect to the matrix H.
+-c
+-c  WHICH   Character*2.  (INPUT)
+-c          Shift selection criteria.
+-c          'LM' -> want the KEV eigenvalues of largest magnitude.
+-c          'SM' -> want the KEV eigenvalues of smallest magnitude.
+-c          'LR' -> want the KEV eigenvalues of largest real part.
+-c          'SR' -> want the KEV eigenvalues of smallest real part.
+-c          'LI' -> want the KEV eigenvalues of largest imaginary part.
+-c          'SI' -> want the KEV eigenvalues of smallest imaginary part.
+-c
+-c  KEV      Integer.  (INPUT/OUTPUT)
+-c           INPUT: KEV+NP is the size of the matrix H.
+-c           OUTPUT: Possibly increases KEV by one to keep complex conjugate
+-c           pairs together.
+-c
+-c  NP       Integer.  (INPUT/OUTPUT)
+-c           Number of implicit shifts to be computed.
+-c           OUTPUT: Possibly decreases NP by one to keep complex conjugate
+-c           pairs together.
+-c
+-c  RITZR,  Double precision array of length KEV+NP.  (INPUT/OUTPUT)
+-c  RITZI   On INPUT, RITZR and RITZI contain the real and imaginary 
+-c          parts of the eigenvalues of H.
+-c          On OUTPUT, RITZR and RITZI are sorted so that the unwanted
+-c          eigenvalues are in the first NP locations and the wanted
+-c          portion is in the last KEV locations.  When exact shifts are 
+-c          selected, the unwanted part corresponds to the shifts to 
+-c          be applied. Also, if ISHIFT .eq. 1, the unwanted eigenvalues
+-c          are further sorted so that the ones with largest Ritz values
+-c          are first.
+-c
+-c  BOUNDS  Double precision array of length KEV+NP.  (INPUT/OUTPUT)
+-c          Error bounds corresponding to the ordering in RITZ.
+-c
+-c  SHIFTR, SHIFTI  *** USE deprecated as of version 2.1. ***
+-c  
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     dsortc  ARPACK sorting routine.
+-c     dcopy   Level 1 BLAS that copies one vector to another .
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas    
+-c
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.1'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: ngets.F   SID: 2.3   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c\Remarks
+-c     1. xxxx
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dngets ( ishift, which, kev, np, ritzr, ritzi, bounds,
+-     &                    shiftr, shifti )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character*2 which
+-      integer    ishift, kev, np
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Double precision
+-     &           bounds(kev+np), ritzr(kev+np), ritzi(kev+np), 
+-     &           shiftr(1), shifti(1)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision
+-     &           one, zero
+-      parameter (one = 1.0, zero = 0.0)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    msglvl
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   dcopy, dsortc, arscnd
+-c
+-c     %----------------------%
+-c     | Intrinsics Functions |
+-c     %----------------------%
+-c
+-      intrinsic  abs
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c 
+-      call arscnd (t0)
+-      msglvl = mngets
+-c 
+-c     %----------------------------------------------------%
+-c     | LM, SM, LR, SR, LI, SI case.                       |
+-c     | Sort the eigenvalues of H into the desired order   |
+-c     | and apply the resulting order to BOUNDS.           |
+-c     | The eigenvalues are sorted so that the wanted part |
+-c     | are always in the last KEV locations.              |
+-c     | We first do a pre-processing sort in order to keep |
+-c     | complex conjugate pairs together                   |
+-c     %----------------------------------------------------%
+-c
+-      if (which .eq. 'LM') then
+-         call dsortc ('LR', .true., kev+np, ritzr, ritzi, bounds)
+-      else if (which .eq. 'SM') then
+-         call dsortc ('SR', .true., kev+np, ritzr, ritzi, bounds)
+-      else if (which .eq. 'LR') then
+-         call dsortc ('LM', .true., kev+np, ritzr, ritzi, bounds)
+-      else if (which .eq. 'SR') then
+-         call dsortc ('SM', .true., kev+np, ritzr, ritzi, bounds)
+-      else if (which .eq. 'LI') then
+-         call dsortc ('LM', .true., kev+np, ritzr, ritzi, bounds)
+-      else if (which .eq. 'SI') then
+-         call dsortc ('SM', .true., kev+np, ritzr, ritzi, bounds)
+-      end if
+-c      
+-      call dsortc (which, .true., kev+np, ritzr, ritzi, bounds)
+-c     
+-c     %-------------------------------------------------------%
+-c     | Increase KEV by one if the ( ritzr(np),ritzi(np) )    |
+-c     | = ( ritzr(np+1),-ritzi(np+1) ) and ritz(np) .ne. zero |
+-c     | Accordingly decrease NP by one. In other words keep   |
+-c     | complex conjugate pairs together.                     |
+-c     %-------------------------------------------------------%
+-c     
+-      if (       ( ritzr(np+1) - ritzr(np) ) .eq. zero
+-     &     .and. ( ritzi(np+1) + ritzi(np) ) .eq. zero ) then
+-         np = np - 1
+-         kev = kev + 1
+-      end if
+-c
+-      if ( ishift .eq. 1 ) then
+-c     
+-c        %-------------------------------------------------------%
+-c        | Sort the unwanted Ritz values used as shifts so that  |
+-c        | the ones with largest Ritz estimates are first        |
+-c        | This will tend to minimize the effects of the         |
+-c        | forward instability of the iteration when they shifts |
+-c        | are applied in subroutine dnapps.                     |
+-c        | Be careful and use 'SR' since we want to sort BOUNDS! |
+-c        %-------------------------------------------------------%
+-c     
+-         call dsortc ( 'SR', .true., np, bounds, ritzr, ritzi )
+-      end if
+-c     
+-      call arscnd (t1)
+-      tngets = tngets + (t1 - t0)
+-c
+-      if (msglvl .gt. 0) then
+-         call ivout (logfil, 1, kev, ndigit, '_ngets: KEV is')
+-         call ivout (logfil, 1, np, ndigit, '_ngets: NP is')
+-         call dvout (logfil, kev+np, ritzr, ndigit,
+-     &        '_ngets: Eigenvalues of current H matrix -- real part')
+-         call dvout (logfil, kev+np, ritzi, ndigit,
+-     &        '_ngets: Eigenvalues of current H matrix -- imag part')
+-         call dvout (logfil, kev+np, bounds, ndigit, 
+-     &      '_ngets: Ritz estimates of the current KEV+NP Ritz values')
+-      end if
+-c     
+-      return
+-c     
+-c     %---------------%
+-c     | End of dngets |
+-c     %---------------%
+-c     
+-      end
+--- a/libcruft/arpack/src/dsaitr.f
++++ /dev/null
+@@ -1,853 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dsaitr
+-c
+-c\Description: 
+-c  Reverse communication interface for applying NP additional steps to 
+-c  a K step symmetric Arnoldi factorization.
+-c
+-c  Input:  OP*V_{k}  -  V_{k}*H = r_{k}*e_{k}^T
+-c
+-c          with (V_{k}^T)*B*V_{k} = I, (V_{k}^T)*B*r_{k} = 0.
+-c
+-c  Output: OP*V_{k+p}  -  V_{k+p}*H = r_{k+p}*e_{k+p}^T
+-c
+-c          with (V_{k+p}^T)*B*V_{k+p} = I, (V_{k+p}^T)*B*r_{k+p} = 0.
+-c
+-c  where OP and B are as in dsaupd.  The B-norm of r_{k+p} is also
+-c  computed and returned.
+-c
+-c\Usage:
+-c  call dsaitr
+-c     ( IDO, BMAT, N, K, NP, MODE, RESID, RNORM, V, LDV, H, LDH, 
+-c       IPNTR, WORKD, INFO )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y.
+-c                    This is for the restart phase to force the new
+-c                    starting vector into the range of OP.
+-c          IDO =  1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y,
+-c                    IPNTR(3) is the pointer into WORK for B * X.
+-c          IDO =  2: compute  Y = B * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c          When the routine is used in the "shift-and-invert" mode, the
+-c          vector B * Q is already available and does not need to be
+-c          recomputed in forming OP * Q.
+-c
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of matrix B that defines the
+-c          semi-inner product for the operator OP.  See dsaupd.
+-c          B = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          B = 'G' -> generalized eigenvalue problem A*x = lambda*M*x
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the eigenproblem.
+-c
+-c  K       Integer.  (INPUT)
+-c          Current order of H and the number of columns of V.
+-c
+-c  NP      Integer.  (INPUT)
+-c          Number of additional Arnoldi steps to take.
+-c
+-c  MODE    Integer.  (INPUT)
+-c          Signifies which form for "OP". If MODE=2 then
+-c          a reduction in the number of B matrix vector multiplies
+-c          is possible since the B-norm of OP*x is equivalent to
+-c          the inv(B)-norm of A*x.
+-c
+-c  RESID   Double precision array of length N.  (INPUT/OUTPUT)
+-c          On INPUT:  RESID contains the residual vector r_{k}.
+-c          On OUTPUT: RESID contains the residual vector r_{k+p}.
+-c
+-c  RNORM   Double precision scalar.  (INPUT/OUTPUT)
+-c          On INPUT the B-norm of r_{k}.
+-c          On OUTPUT the B-norm of the updated residual r_{k+p}.
+-c
+-c  V       Double precision N by K+NP array.  (INPUT/OUTPUT)
+-c          On INPUT:  V contains the Arnoldi vectors in the first K 
+-c          columns.
+-c          On OUTPUT: V contains the new NP Arnoldi vectors in the next
+-c          NP columns.  The first K columns are unchanged.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling 
+-c          program.
+-c
+-c  H       Double precision (K+NP) by 2 array.  (INPUT/OUTPUT)
+-c          H is used to store the generated symmetric tridiagonal matrix
+-c          with the subdiagonal in the first column starting at H(2,1)
+-c          and the main diagonal in the second column.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling 
+-c          program.
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORK for 
+-c          vectors used by the Arnoldi iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X.
+-c          IPNTR(2): pointer to the current result vector Y.
+-c          IPNTR(3): pointer to the vector B * X when used in the 
+-c                    shift-and-invert mode.  X is the current operand.
+-c          -------------------------------------------------------------
+-c          
+-c  WORKD   Double precision work array of length 3*N.  (REVERSE COMMUNICATION)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The calling program should not 
+-c          use WORKD as temporary workspace during the iteration !!!!!!
+-c          On INPUT, WORKD(1:N) = B*RESID where RESID is associated
+-c          with the K step Arnoldi factorization. Used to save some 
+-c          computation at the first step. 
+-c          On OUTPUT, WORKD(1:N) = B*RESID where RESID is associated
+-c          with the K+NP step Arnoldi factorization.
+-c
+-c  INFO    Integer.  (OUTPUT)
+-c          = 0: Normal exit.
+-c          > 0: Size of an invariant subspace of OP is found that is
+-c               less than K + NP.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     dgetv0  ARPACK routine to generate the initial vector.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     dmout   ARPACK utility routine that prints matrices.
+-c     dvout   ARPACK utility routine that prints vectors.
+-c     dlamch  LAPACK routine that determines machine constants.
+-c     dlascl  LAPACK routine for careful scaling of a matrix.
+-c     dgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     daxpy   Level 1 BLAS that computes a vector triad.
+-c     dscal   Level 1 BLAS that scales a vector.
+-c     dcopy   Level 1 BLAS that copies one vector to another .
+-c     ddot    Level 1 BLAS that computes the scalar product of two vectors. 
+-c     dnrm2   Level 1 BLAS that computes the norm of a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c 
+-c\Revision history:
+-c     xx/xx/93: Version ' 2.4'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: saitr.F   SID: 2.6   DATE OF SID: 8/28/96   RELEASE: 2
+-c
+-c\Remarks
+-c  The algorithm implemented is:
+-c  
+-c  restart = .false.
+-c  Given V_{k} = [v_{1}, ..., v_{k}], r_{k}; 
+-c  r_{k} contains the initial residual vector even for k = 0;
+-c  Also assume that rnorm = || B*r_{k} || and B*r_{k} are already 
+-c  computed by the calling program.
+-c
+-c  betaj = rnorm ; p_{k+1} = B*r_{k} ;
+-c  For  j = k+1, ..., k+np  Do
+-c     1) if ( betaj < tol ) stop or restart depending on j.
+-c        if ( restart ) generate a new starting vector.
+-c     2) v_{j} = r(j-1)/betaj;  V_{j} = [V_{j-1}, v_{j}];  
+-c        p_{j} = p_{j}/betaj
+-c     3) r_{j} = OP*v_{j} where OP is defined as in dsaupd
+-c        For shift-invert mode p_{j} = B*v_{j} is already available.
+-c        wnorm = || OP*v_{j} ||
+-c     4) Compute the j-th step residual vector.
+-c        w_{j} =  V_{j}^T * B * OP * v_{j}
+-c        r_{j} =  OP*v_{j} - V_{j} * w_{j}
+-c        alphaj <- j-th component of w_{j}
+-c        rnorm = || r_{j} ||
+-c        betaj+1 = rnorm
+-c        If (rnorm > 0.717*wnorm) accept step and go back to 1)
+-c     5) Re-orthogonalization step:
+-c        s = V_{j}'*B*r_{j}
+-c        r_{j} = r_{j} - V_{j}*s;  rnorm1 = || r_{j} ||
+-c        alphaj = alphaj + s_{j};   
+-c     6) Iterative refinement step:
+-c        If (rnorm1 > 0.717*rnorm) then
+-c           rnorm = rnorm1
+-c           accept step and go back to 1)
+-c        Else
+-c           rnorm = rnorm1
+-c           If this is the first time in step 6), go to 5)
+-c           Else r_{j} lies in the span of V_{j} numerically.
+-c              Set r_{j} = 0 and rnorm = 0; go to 1)
+-c        EndIf 
+-c  End Do
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dsaitr
+-     &   (ido, bmat, n, k, np, mode, resid, rnorm, v, ldv, h, ldh, 
+-     &    ipntr, workd, info)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1
+-      integer    ido, info, k, ldh, ldv, n, mode, np
+-      Double precision
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(3)
+-      Double precision
+-     &           h(ldh,2), resid(n), v(ldv,k+np), workd(3*n)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision
+-     &           one, zero
+-      parameter (one = 1.0D+0, zero = 0.0D+0)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      logical    first, orth1, orth2, rstart, step3, step4
+-      integer    i, ierr, ipj, irj, ivj, iter, itry, j, msglvl, 
+-     &           infol, jj
+-      Double precision
+-     &           rnorm1, wnorm, safmin, temp1
+-      save       orth1, orth2, rstart, step3, step4,
+-     &           ierr, ipj, irj, ivj, iter, itry, j, msglvl,
+-     &           rnorm1, safmin, wnorm
+-c
+-c     %-----------------------%
+-c     | Local Array Arguments | 
+-c     %-----------------------%
+-c
+-      Double precision
+-     &           xtemp(2)
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   daxpy, dcopy, dscal, dgemv, dgetv0, dvout, dmout,
+-     &           dlascl, ivout, arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision
+-     &           ddot, dnrm2, dlamch
+-      external   ddot, dnrm2, dlamch
+-c
+-c     %-----------------%
+-c     | Data statements |
+-c     %-----------------%
+-c
+-      data      first / .true. /
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (first) then
+-         first = .false.
+-c
+-c        %--------------------------------%
+-c        | safmin = safe minimum is such  |
+-c        | that 1/sfmin does not overflow |
+-c        %--------------------------------%
+-c
+-         safmin = dlamch('safmin')
+-      end if
+-c
+-      if (ido .eq. 0) then
+-c 
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call arscnd (t0)
+-         msglvl = msaitr
+-c 
+-c        %------------------------------%
+-c        | Initial call to this routine |
+-c        %------------------------------%
+-c
+-         info   = 0
+-         step3  = .false.
+-         step4  = .false.
+-         rstart = .false.
+-         orth1  = .false.
+-         orth2  = .false.
+-c 
+-c        %--------------------------------%
+-c        | Pointer to the current step of |
+-c        | the factorization to build     |
+-c        %--------------------------------%
+-c
+-         j      = k + 1
+-c 
+-c        %------------------------------------------%
+-c        | Pointers used for reverse communication  |
+-c        | when using WORKD.                        |
+-c        %------------------------------------------%
+-c
+-         ipj    = 1
+-         irj    = ipj   + n
+-         ivj    = irj   + n
+-      end if
+-c 
+-c     %-------------------------------------------------%
+-c     | When in reverse communication mode one of:      |
+-c     | STEP3, STEP4, ORTH1, ORTH2, RSTART              |
+-c     | will be .true.                                  |
+-c     | STEP3: return from computing OP*v_{j}.          |
+-c     | STEP4: return from computing B-norm of OP*v_{j} |
+-c     | ORTH1: return from computing B-norm of r_{j+1}  |
+-c     | ORTH2: return from computing B-norm of          |
+-c     |        correction to the residual vector.       |
+-c     | RSTART: return from OP computations needed by   |
+-c     |         dgetv0.                                 |
+-c     %-------------------------------------------------%
+-c
+-      if (step3)  go to 50
+-      if (step4)  go to 60
+-      if (orth1)  go to 70
+-      if (orth2)  go to 90
+-      if (rstart) go to 30
+-c
+-c     %------------------------------%
+-c     | Else this is the first step. |
+-c     %------------------------------%
+-c 
+-c     %--------------------------------------------------------------%
+-c     |                                                              |
+-c     |        A R N O L D I     I T E R A T I O N     L O O P       |
+-c     |                                                              |
+-c     | Note:  B*r_{j-1} is already in WORKD(1:N)=WORKD(IPJ:IPJ+N-1) |
+-c     %--------------------------------------------------------------%
+-c
+- 1000 continue
+-c
+-         if (msglvl .gt. 2) then
+-            call ivout (logfil, 1, j, ndigit, 
+-     &                  '_saitr: generating Arnoldi vector no.')
+-            call dvout (logfil, 1, rnorm, ndigit, 
+-     &                  '_saitr: B-norm of the current residual =')
+-         end if
+-c 
+-c        %---------------------------------------------------------%
+-c        | Check for exact zero. Equivalent to determing whether a |
+-c        | j-step Arnoldi factorization is present.                |
+-c        %---------------------------------------------------------%
+-c
+-         if (rnorm .gt. zero) go to 40
+-c
+-c           %---------------------------------------------------%
+-c           | Invariant subspace found, generate a new starting |
+-c           | vector which is orthogonal to the current Arnoldi |
+-c           | basis and continue the iteration.                 |
+-c           %---------------------------------------------------%
+-c
+-            if (msglvl .gt. 0) then
+-               call ivout (logfil, 1, j, ndigit,
+-     &                     '_saitr: ****** restart at step ******')
+-            end if
+-c 
+-c           %---------------------------------------------%
+-c           | ITRY is the loop variable that controls the |
+-c           | maximum amount of times that a restart is   |
+-c           | attempted. NRSTRT is used by stat.h         |
+-c           %---------------------------------------------%
+-c
+-            nrstrt = nrstrt + 1
+-            itry   = 1
+-   20       continue
+-            rstart = .true.
+-            ido    = 0
+-   30       continue
+-c
+-c           %--------------------------------------%
+-c           | If in reverse communication mode and |
+-c           | RSTART = .true. flow returns here.   |
+-c           %--------------------------------------%
+-c
+-            call dgetv0 (ido, bmat, itry, .false., n, j, v, ldv, 
+-     &                   resid, rnorm, ipntr, workd, ierr)
+-            if (ido .ne. 99) go to 9000
+-            if (ierr .lt. 0) then
+-               itry = itry + 1
+-               if (itry .le. 3) go to 20
+-c
+-c              %------------------------------------------------%
+-c              | Give up after several restart attempts.        |
+-c              | Set INFO to the size of the invariant subspace |
+-c              | which spans OP and exit.                       |
+-c              %------------------------------------------------%
+-c
+-               info = j - 1
+-               call arscnd (t1)
+-               tsaitr = tsaitr + (t1 - t0)
+-               ido = 99
+-               go to 9000
+-            end if
+-c 
+-   40    continue
+-c
+-c        %---------------------------------------------------------%
+-c        | STEP 2:  v_{j} = r_{j-1}/rnorm and p_{j} = p_{j}/rnorm  |
+-c        | Note that p_{j} = B*r_{j-1}. In order to avoid overflow |
+-c        | when reciprocating a small RNORM, test against lower    |
+-c        | machine bound.                                          |
+-c        %---------------------------------------------------------%
+-c
+-         call dcopy (n, resid, 1, v(1,j), 1)
+-         if (rnorm .ge. safmin) then
+-             temp1 = one / rnorm
+-             call dscal (n, temp1, v(1,j), 1)
+-             call dscal (n, temp1, workd(ipj), 1)
+-         else
+-c
+-c            %-----------------------------------------%
+-c            | To scale both v_{j} and p_{j} carefully |
+-c            | use LAPACK routine SLASCL               |
+-c            %-----------------------------------------%
+-c
+-             call dlascl ('General', i, i, rnorm, one, n, 1, 
+-     &                    v(1,j), n, infol)
+-             call dlascl ('General', i, i, rnorm, one, n, 1, 
+-     &                    workd(ipj), n, infol)
+-         end if
+-c 
+-c        %------------------------------------------------------%
+-c        | STEP 3:  r_{j} = OP*v_{j}; Note that p_{j} = B*v_{j} |
+-c        | Note that this is not quite yet r_{j}. See STEP 4    |
+-c        %------------------------------------------------------%
+-c
+-         step3 = .true.
+-         nopx  = nopx + 1
+-         call arscnd (t2)
+-         call dcopy (n, v(1,j), 1, workd(ivj), 1)
+-         ipntr(1) = ivj
+-         ipntr(2) = irj
+-         ipntr(3) = ipj
+-         ido = 1
+-c 
+-c        %-----------------------------------%
+-c        | Exit in order to compute OP*v_{j} |
+-c        %-----------------------------------%
+-c 
+-         go to 9000
+-   50    continue
+-c 
+-c        %-----------------------------------%
+-c        | Back from reverse communication;  |
+-c        | WORKD(IRJ:IRJ+N-1) := OP*v_{j}.   |
+-c        %-----------------------------------%
+-c
+-         call arscnd (t3)
+-         tmvopx = tmvopx + (t3 - t2)
+-c 
+-         step3 = .false.
+-c
+-c        %------------------------------------------%
+-c        | Put another copy of OP*v_{j} into RESID. |
+-c        %------------------------------------------%
+-c
+-         call dcopy (n, workd(irj), 1, resid, 1)
+-c 
+-c        %-------------------------------------------%
+-c        | STEP 4:  Finish extending the symmetric   |
+-c        |          Arnoldi to length j. If MODE = 2 |
+-c        |          then B*OP = B*inv(B)*A = A and   |
+-c        |          we don't need to compute B*OP.   |
+-c        | NOTE: If MODE = 2 WORKD(IVJ:IVJ+N-1) is   |
+-c        | assumed to have A*v_{j}.                  |
+-c        %-------------------------------------------%
+-c
+-         if (mode .eq. 2) go to 65
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            step4 = .true.
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %-------------------------------------%
+-c           | Exit in order to compute B*OP*v_{j} |
+-c           %-------------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-              call dcopy(n, resid, 1 , workd(ipj), 1)
+-         end if
+-   60    continue
+-c 
+-c        %-----------------------------------%
+-c        | Back from reverse communication;  |
+-c        | WORKD(IPJ:IPJ+N-1) := B*OP*v_{j}. |
+-c        %-----------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if 
+-c
+-         step4 = .false.
+-c
+-c        %-------------------------------------%
+-c        | The following is needed for STEP 5. |
+-c        | Compute the B-norm of OP*v_{j}.     |
+-c        %-------------------------------------%
+-c
+-   65    continue
+-         if (mode .eq. 2) then
+-c
+-c           %----------------------------------%
+-c           | Note that the B-norm of OP*v_{j} |
+-c           | is the inv(B)-norm of A*v_{j}.   |
+-c           %----------------------------------%
+-c
+-            wnorm = ddot (n, resid, 1, workd(ivj), 1)
+-            wnorm = sqrt(abs(wnorm))
+-         else if (bmat .eq. 'G') then         
+-            wnorm = ddot (n, resid, 1, workd(ipj), 1)
+-            wnorm = sqrt(abs(wnorm))
+-         else if (bmat .eq. 'I') then
+-            wnorm = dnrm2(n, resid, 1)
+-         end if
+-c
+-c        %-----------------------------------------%
+-c        | Compute the j-th residual corresponding |
+-c        | to the j step factorization.            |
+-c        | Use Classical Gram Schmidt and compute: |
+-c        | w_{j} <-  V_{j}^T * B * OP * v_{j}      |
+-c        | r_{j} <-  OP*v_{j} - V_{j} * w_{j}      |
+-c        %-----------------------------------------%
+-c
+-c
+-c        %------------------------------------------%
+-c        | Compute the j Fourier coefficients w_{j} |
+-c        | WORKD(IPJ:IPJ+N-1) contains B*OP*v_{j}.  |
+-c        %------------------------------------------%
+-c
+-         if (mode .ne. 2 ) then
+-            call dgemv('T', n, j, one, v, ldv, workd(ipj), 1, zero, 
+-     &                  workd(irj), 1)
+-         else if (mode .eq. 2) then
+-            call dgemv('T', n, j, one, v, ldv, workd(ivj), 1, zero, 
+-     &                  workd(irj), 1)
+-         end if
+-c
+-c        %--------------------------------------%
+-c        | Orthgonalize r_{j} against V_{j}.    |
+-c        | RESID contains OP*v_{j}. See STEP 3. | 
+-c        %--------------------------------------%
+-c
+-         call dgemv('N', n, j, -one, v, ldv, workd(irj), 1, one, 
+-     &               resid, 1)
+-c
+-c        %--------------------------------------%
+-c        | Extend H to have j rows and columns. |
+-c        %--------------------------------------%
+-c
+-         h(j,2) = workd(irj + j - 1)
+-         if (j .eq. 1  .or.  rstart) then
+-            h(j,1) = zero
+-         else
+-            h(j,1) = rnorm
+-         end if
+-         call arscnd (t4)
+-c 
+-         orth1 = .true.
+-         iter  = 0
+-c 
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call dcopy (n, resid, 1, workd(irj), 1)
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %----------------------------------%
+-c           | Exit in order to compute B*r_{j} |
+-c           %----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call dcopy (n, resid, 1, workd(ipj), 1)
+-         end if
+-   70    continue
+-c 
+-c        %---------------------------------------------------%
+-c        | Back from reverse communication if ORTH1 = .true. |
+-c        | WORKD(IPJ:IPJ+N-1) := B*r_{j}.                    |
+-c        %---------------------------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c 
+-         orth1 = .false.
+-c
+-c        %------------------------------%
+-c        | Compute the B-norm of r_{j}. |
+-c        %------------------------------%
+-c
+-         if (bmat .eq. 'G') then         
+-            rnorm = ddot (n, resid, 1, workd(ipj), 1)
+-            rnorm = sqrt(abs(rnorm))
+-         else if (bmat .eq. 'I') then
+-            rnorm = dnrm2(n, resid, 1)
+-         end if
+-c
+-c        %-----------------------------------------------------------%
+-c        | STEP 5: Re-orthogonalization / Iterative refinement phase |
+-c        | Maximum NITER_ITREF tries.                                |
+-c        |                                                           |
+-c        |          s      = V_{j}^T * B * r_{j}                     |
+-c        |          r_{j}  = r_{j} - V_{j}*s                         |
+-c        |          alphaj = alphaj + s_{j}                          |
+-c        |                                                           |
+-c        | The stopping criteria used for iterative refinement is    |
+-c        | discussed in Parlett's book SEP, page 107 and in Gragg &  |
+-c        | Reichel ACM TOMS paper; Algorithm 686, Dec. 1990.         |
+-c        | Determine if we need to correct the residual. The goal is |
+-c        | to enforce ||v(:,1:j)^T * r_{j}|| .le. eps * || r_{j} ||  |
+-c        %-----------------------------------------------------------%
+-c
+-         if (rnorm .gt. 0.717*wnorm) go to 100
+-         nrorth = nrorth + 1
+-c 
+-c        %---------------------------------------------------%
+-c        | Enter the Iterative refinement phase. If further  |
+-c        | refinement is necessary, loop back here. The loop |
+-c        | variable is ITER. Perform a step of Classical     |
+-c        | Gram-Schmidt using all the Arnoldi vectors V_{j}  |
+-c        %---------------------------------------------------%
+-c
+-   80    continue
+-c
+-         if (msglvl .gt. 2) then
+-            xtemp(1) = wnorm
+-            xtemp(2) = rnorm
+-            call dvout (logfil, 2, xtemp, ndigit, 
+-     &           '_saitr: re-orthonalization ; wnorm and rnorm are')
+-         end if
+-c
+-c        %----------------------------------------------------%
+-c        | Compute V_{j}^T * B * r_{j}.                       |
+-c        | WORKD(IRJ:IRJ+J-1) = v(:,1:J)'*WORKD(IPJ:IPJ+N-1). |
+-c        %----------------------------------------------------%
+-c
+-         call dgemv ('T', n, j, one, v, ldv, workd(ipj), 1, 
+-     &               zero, workd(irj), 1)
+-c
+-c        %----------------------------------------------%
+-c        | Compute the correction to the residual:      |
+-c        | r_{j} = r_{j} - V_{j} * WORKD(IRJ:IRJ+J-1).  |
+-c        | The correction to H is v(:,1:J)*H(1:J,1:J) + |
+-c        | v(:,1:J)*WORKD(IRJ:IRJ+J-1)*e'_j, but only   |
+-c        | H(j,j) is updated.                           |
+-c        %----------------------------------------------%
+-c
+-         call dgemv ('N', n, j, -one, v, ldv, workd(irj), 1, 
+-     &               one, resid, 1)
+-c
+-         if (j .eq. 1  .or.  rstart) h(j,1) = zero
+-         h(j,2) = h(j,2) + workd(irj + j - 1)
+-c 
+-         orth2 = .true.
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call dcopy (n, resid, 1, workd(irj), 1)
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %-----------------------------------%
+-c           | Exit in order to compute B*r_{j}. |
+-c           | r_{j} is the corrected residual.  |
+-c           %-----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call dcopy (n, resid, 1, workd(ipj), 1)
+-         end if
+-   90    continue
+-c
+-c        %---------------------------------------------------%
+-c        | Back from reverse communication if ORTH2 = .true. |
+-c        %---------------------------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c
+-c        %-----------------------------------------------------%
+-c        | Compute the B-norm of the corrected residual r_{j}. |
+-c        %-----------------------------------------------------%
+-c 
+-         if (bmat .eq. 'G') then         
+-             rnorm1 = ddot (n, resid, 1, workd(ipj), 1)
+-             rnorm1 = sqrt(abs(rnorm1))
+-         else if (bmat .eq. 'I') then
+-             rnorm1 = dnrm2(n, resid, 1)
+-         end if
+-c
+-         if (msglvl .gt. 0 .and. iter .gt. 0) then
+-            call ivout (logfil, 1, j, ndigit,
+-     &           '_saitr: Iterative refinement for Arnoldi residual')
+-            if (msglvl .gt. 2) then
+-                xtemp(1) = rnorm
+-                xtemp(2) = rnorm1
+-                call dvout (logfil, 2, xtemp, ndigit,
+-     &           '_saitr: iterative refinement ; rnorm and rnorm1 are')
+-            end if
+-         end if
+-c 
+-c        %-----------------------------------------%
+-c        | Determine if we need to perform another |
+-c        | step of re-orthogonalization.           |
+-c        %-----------------------------------------%
+-c
+-         if (rnorm1 .gt. 0.717*rnorm) then
+-c
+-c           %--------------------------------%
+-c           | No need for further refinement |
+-c           %--------------------------------%
+-c
+-            rnorm = rnorm1
+-c 
+-         else
+-c
+-c           %-------------------------------------------%
+-c           | Another step of iterative refinement step |
+-c           | is required. NITREF is used by stat.h     |
+-c           %-------------------------------------------%
+-c
+-            nitref = nitref + 1
+-            rnorm  = rnorm1
+-            iter   = iter + 1
+-            if (iter .le. 1) go to 80
+-c
+-c           %-------------------------------------------------%
+-c           | Otherwise RESID is numerically in the span of V |
+-c           %-------------------------------------------------%
+-c
+-            do 95 jj = 1, n
+-               resid(jj) = zero
+-  95        continue
+-            rnorm = zero
+-         end if
+-c 
+-c        %----------------------------------------------%
+-c        | Branch here directly if iterative refinement |
+-c        | wasn't necessary or after at most NITER_REF  |
+-c        | steps of iterative refinement.               |
+-c        %----------------------------------------------%
+-c
+-  100    continue
+-c 
+-         rstart = .false.
+-         orth2  = .false.
+-c 
+-         call arscnd (t5)
+-         titref = titref + (t5 - t4)
+-c 
+-c        %----------------------------------------------------------%
+-c        | Make sure the last off-diagonal element is non negative  |
+-c        | If not perform a similarity transformation on H(1:j,1:j) |
+-c        | and scale v(:,j) by -1.                                  |
+-c        %----------------------------------------------------------%
+-c
+-         if (h(j,1) .lt. zero) then
+-            h(j,1) = -h(j,1)
+-            if ( j .lt. k+np) then 
+-               call dscal(n, -one, v(1,j+1), 1)
+-            else
+-               call dscal(n, -one, resid, 1)
+-            end if
+-         end if
+-c 
+-c        %------------------------------------%
+-c        | STEP 6: Update  j = j+1;  Continue |
+-c        %------------------------------------%
+-c
+-         j = j + 1
+-         if (j .gt. k+np) then
+-            call arscnd (t1)
+-            tsaitr = tsaitr + (t1 - t0)
+-            ido = 99
+-c
+-            if (msglvl .gt. 1) then
+-               call dvout (logfil, k+np, h(1,2), ndigit, 
+-     &         '_saitr: main diagonal of matrix H of step K+NP.')
+-               if (k+np .gt. 1) then
+-               call dvout (logfil, k+np-1, h(2,1), ndigit, 
+-     &         '_saitr: sub diagonal of matrix H of step K+NP.')
+-               end if
+-            end if
+-c
+-            go to 9000
+-         end if
+-c
+-c        %--------------------------------------------------------%
+-c        | Loop back to extend the factorization by another step. |
+-c        %--------------------------------------------------------%
+-c
+-      go to 1000
+-c 
+-c     %---------------------------------------------------------------%
+-c     |                                                               |
+-c     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  |
+-c     |                                                               |
+-c     %---------------------------------------------------------------%
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of dsaitr |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dsapps.f
++++ /dev/null
+@@ -1,516 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dsapps
+-c
+-c\Description:
+-c  Given the Arnoldi factorization
+-c
+-c     A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T,
+-c
+-c  apply NP shifts implicitly resulting in
+-c
+-c     A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q
+-c
+-c  where Q is an orthogonal matrix of order KEV+NP. Q is the product of 
+-c  rotations resulting from the NP bulge chasing sweeps.  The updated Arnoldi 
+-c  factorization becomes:
+-c
+-c     A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T.
+-c
+-c\Usage:
+-c  call dsapps
+-c     ( N, KEV, NP, SHIFT, V, LDV, H, LDH, RESID, Q, LDQ, WORKD )
+-c
+-c\Arguments
+-c  N       Integer.  (INPUT)
+-c          Problem size, i.e. dimension of matrix A.
+-c
+-c  KEV     Integer.  (INPUT)
+-c          INPUT: KEV+NP is the size of the input matrix H.
+-c          OUTPUT: KEV is the size of the updated matrix HNEW.
+-c
+-c  NP      Integer.  (INPUT)
+-c          Number of implicit shifts to be applied.
+-c
+-c  SHIFT   Double precision array of length NP.  (INPUT)
+-c          The shifts to be applied.
+-c
+-c  V       Double precision N by (KEV+NP) array.  (INPUT/OUTPUT)
+-c          INPUT: V contains the current KEV+NP Arnoldi vectors.
+-c          OUTPUT: VNEW = V(1:n,1:KEV); the updated Arnoldi vectors
+-c          are in the first KEV columns of V.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling
+-c          program.
+-c
+-c  H       Double precision (KEV+NP) by 2 array.  (INPUT/OUTPUT)
+-c          INPUT: H contains the symmetric tridiagonal matrix of the
+-c          Arnoldi factorization with the subdiagonal in the 1st column
+-c          starting at H(2,1) and the main diagonal in the 2nd column.
+-c          OUTPUT: H contains the updated tridiagonal matrix in the 
+-c          KEV leading submatrix.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling
+-c          program.
+-c
+-c  RESID   Double precision array of length (N).  (INPUT/OUTPUT)
+-c          INPUT: RESID contains the the residual vector r_{k+p}.
+-c          OUTPUT: RESID is the updated residual vector rnew_{k}.
+-c
+-c  Q       Double precision KEV+NP by KEV+NP work array.  (WORKSPACE)
+-c          Work array used to accumulate the rotations during the bulge
+-c          chase sweep.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c
+-c  WORKD   Double precision work array of length 2*N.  (WORKSPACE)
+-c          Distributed array used in the application of the accumulated
+-c          orthogonal matrix Q.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c
+-c\Routines called:
+-c     ivout   ARPACK utility routine that prints integers. 
+-c     arscnd  ARPACK utility routine for timing.
+-c     dvout   ARPACK utility routine that prints vectors.
+-c     dlamch  LAPACK routine that determines machine constants.
+-c     dlartg  LAPACK Givens rotation construction routine.
+-c     dlacpy  LAPACK matrix copy routine.
+-c     dlaset  LAPACK matrix initialization routine.
+-c     dgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     daxpy   Level 1 BLAS that computes a vector triad.
+-c     dcopy   Level 1 BLAS that copies one vector to another.
+-c     dscal   Level 1 BLAS that scales a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\Revision history:
+-c     12/16/93: Version ' 2.4'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: sapps.F   SID: 2.6   DATE OF SID: 3/28/97   RELEASE: 2
+-c
+-c\Remarks
+-c  1. In this version, each shift is applied to all the subblocks of
+-c     the tridiagonal matrix H and not just to the submatrix that it 
+-c     comes from. This routine assumes that the subdiagonal elements 
+-c     of H that are stored in h(1:kev+np,1) are nonegative upon input
+-c     and enforce this condition upon output. This version incorporates
+-c     deflation. See code for documentation.
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dsapps
+-     &   ( n, kev, np, shift, v, ldv, h, ldh, resid, q, ldq, workd )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    kev, ldh, ldq, ldv, n, np
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Double precision
+-     &           h(ldh,2), q(ldq,kev+np), resid(n), shift(np), 
+-     &           v(ldv,kev+np), workd(2*n)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision
+-     &           one, zero
+-      parameter (one = 1.0D+0, zero = 0.0D+0)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i, iend, istart, itop, j, jj, kplusp, msglvl
+-      logical    first
+-      Double precision
+-     &           a1, a2, a3, a4, big, c, epsmch, f, g, r, s
+-      save       epsmch, first
+-c
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   daxpy, dcopy, dscal, dlacpy, dlartg, dlaset, dvout, 
+-     &           ivout, arscnd, dgemv
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision
+-     &           dlamch
+-      external   dlamch
+-c
+-c     %----------------------%
+-c     | Intrinsics Functions |
+-c     %----------------------%
+-c
+-      intrinsic  abs
+-c
+-c     %----------------%
+-c     | Data statments |
+-c     %----------------%
+-c
+-      data       first / .true. /
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (first) then
+-         epsmch = dlamch('Epsilon-Machine')
+-         first = .false.
+-      end if
+-      itop = 1
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c
+-      call arscnd (t0)
+-      msglvl = msapps
+-c 
+-      kplusp = kev + np 
+-c 
+-c     %----------------------------------------------%
+-c     | Initialize Q to the identity matrix of order |
+-c     | kplusp used to accumulate the rotations.     |
+-c     %----------------------------------------------%
+-c
+-      call dlaset ('All', kplusp, kplusp, zero, one, q, ldq)
+-c
+-c     %----------------------------------------------%
+-c     | Quick return if there are no shifts to apply |
+-c     %----------------------------------------------%
+-c
+-      if (np .eq. 0) go to 9000
+-c 
+-c     %----------------------------------------------------------%
+-c     | Apply the np shifts implicitly. Apply each shift to the  |
+-c     | whole matrix and not just to the submatrix from which it |
+-c     | comes.                                                   |
+-c     %----------------------------------------------------------%
+-c
+-      do 90 jj = 1, np
+-c 
+-         istart = itop
+-c
+-c        %----------------------------------------------------------%
+-c        | Check for splitting and deflation. Currently we consider |
+-c        | an off-diagonal element h(i+1,1) negligible if           |
+-c        |         h(i+1,1) .le. epsmch*( |h(i,2)| + |h(i+1,2)| )   |
+-c        | for i=1:KEV+NP-1.                                        |
+-c        | If above condition tests true then we set h(i+1,1) = 0.  |
+-c        | Note that h(1:KEV+NP,1) are assumed to be non negative.  |
+-c        %----------------------------------------------------------%
+-c
+-   20    continue
+-c
+-c        %------------------------------------------------%
+-c        | The following loop exits early if we encounter |
+-c        | a negligible off diagonal element.             |
+-c        %------------------------------------------------%
+-c
+-         do 30 i = istart, kplusp-1
+-            big   = abs(h(i,2)) + abs(h(i+1,2))
+-            if (h(i+1,1) .le. epsmch*big) then
+-               if (msglvl .gt. 0) then
+-                  call ivout (logfil, 1, i, ndigit, 
+-     &                 '_sapps: deflation at row/column no.')
+-                  call ivout (logfil, 1, jj, ndigit, 
+-     &                 '_sapps: occured before shift number.')
+-                  call dvout (logfil, 1, h(i+1,1), ndigit, 
+-     &                 '_sapps: the corresponding off diagonal element')
+-               end if
+-               h(i+1,1) = zero
+-               iend = i
+-               go to 40
+-            end if
+-   30    continue
+-         iend = kplusp
+-   40    continue
+-c
+-         if (istart .lt. iend) then
+-c 
+-c           %--------------------------------------------------------%
+-c           | Construct the plane rotation G'(istart,istart+1,theta) |
+-c           | that attempts to drive h(istart+1,1) to zero.          |
+-c           %--------------------------------------------------------%
+-c
+-             f = h(istart,2) - shift(jj)
+-             g = h(istart+1,1)
+-             call dlartg (f, g, c, s, r)
+-c 
+-c            %-------------------------------------------------------%
+-c            | Apply rotation to the left and right of H;            |
+-c            | H <- G' * H * G,  where G = G(istart,istart+1,theta). |
+-c            | This will create a "bulge".                           |
+-c            %-------------------------------------------------------%
+-c
+-             a1 = c*h(istart,2)   + s*h(istart+1,1)
+-             a2 = c*h(istart+1,1) + s*h(istart+1,2)
+-             a4 = c*h(istart+1,2) - s*h(istart+1,1)
+-             a3 = c*h(istart+1,1) - s*h(istart,2) 
+-             h(istart,2)   = c*a1 + s*a2
+-             h(istart+1,2) = c*a4 - s*a3
+-             h(istart+1,1) = c*a3 + s*a4
+-c 
+-c            %----------------------------------------------------%
+-c            | Accumulate the rotation in the matrix Q;  Q <- Q*G |
+-c            %----------------------------------------------------%
+-c
+-             do 60 j = 1, min(istart+jj,kplusp)
+-                a1            =   c*q(j,istart) + s*q(j,istart+1)
+-                q(j,istart+1) = - s*q(j,istart) + c*q(j,istart+1)
+-                q(j,istart)   = a1
+-   60        continue
+-c
+-c
+-c            %----------------------------------------------%
+-c            | The following loop chases the bulge created. |
+-c            | Note that the previous rotation may also be  |
+-c            | done within the following loop. But it is    |
+-c            | kept separate to make the distinction among  |
+-c            | the bulge chasing sweeps and the first plane |
+-c            | rotation designed to drive h(istart+1,1) to  |
+-c            | zero.                                        |
+-c            %----------------------------------------------%
+-c
+-             do 70 i = istart+1, iend-1
+-c 
+-c               %----------------------------------------------%
+-c               | Construct the plane rotation G'(i,i+1,theta) |
+-c               | that zeros the i-th bulge that was created   |
+-c               | by G(i-1,i,theta). g represents the bulge.   |
+-c               %----------------------------------------------%
+-c
+-                f = h(i,1)
+-                g = s*h(i+1,1)
+-c
+-c               %----------------------------------%
+-c               | Final update with G(i-1,i,theta) |
+-c               %----------------------------------%
+-c
+-                h(i+1,1) = c*h(i+1,1)
+-                call dlartg (f, g, c, s, r)
+-c
+-c               %-------------------------------------------%
+-c               | The following ensures that h(1:iend-1,1), |
+-c               | the first iend-2 off diagonal of elements |
+-c               | H, remain non negative.                   |
+-c               %-------------------------------------------%
+-c
+-                if (r .lt. zero) then
+-                   r = -r
+-                   c = -c
+-                   s = -s
+-                end if
+-c 
+-c               %--------------------------------------------%
+-c               | Apply rotation to the left and right of H; |
+-c               | H <- G * H * G',  where G = G(i,i+1,theta) |
+-c               %--------------------------------------------%
+-c
+-                h(i,1) = r
+-c 
+-                a1 = c*h(i,2)   + s*h(i+1,1)
+-                a2 = c*h(i+1,1) + s*h(i+1,2)
+-                a3 = c*h(i+1,1) - s*h(i,2)
+-                a4 = c*h(i+1,2) - s*h(i+1,1)
+-c 
+-                h(i,2)   = c*a1 + s*a2
+-                h(i+1,2) = c*a4 - s*a3
+-                h(i+1,1) = c*a3 + s*a4
+-c 
+-c               %----------------------------------------------------%
+-c               | Accumulate the rotation in the matrix Q;  Q <- Q*G |
+-c               %----------------------------------------------------%
+-c
+-                do 50 j = 1, min( i+jj, kplusp )
+-                   a1       =   c*q(j,i) + s*q(j,i+1)
+-                   q(j,i+1) = - s*q(j,i) + c*q(j,i+1)
+-                   q(j,i)   = a1
+-   50           continue
+-c
+-   70        continue
+-c
+-         end if
+-c
+-c        %--------------------------%
+-c        | Update the block pointer |
+-c        %--------------------------%
+-c
+-         istart = iend + 1
+-c
+-c        %------------------------------------------%
+-c        | Make sure that h(iend,1) is non-negative |
+-c        | If not then set h(iend,1) <-- -h(iend,1) |
+-c        | and negate the last column of Q.         |
+-c        | We have effectively carried out a        |
+-c        | similarity on transformation H           |
+-c        %------------------------------------------%
+-c
+-         if (h(iend,1) .lt. zero) then
+-             h(iend,1) = -h(iend,1)
+-             call dscal(kplusp, -one, q(1,iend), 1)
+-         end if
+-c
+-c        %--------------------------------------------------------%
+-c        | Apply the same shift to the next block if there is any |
+-c        %--------------------------------------------------------%
+-c
+-         if (iend .lt. kplusp) go to 20
+-c
+-c        %-----------------------------------------------------%
+-c        | Check if we can increase the the start of the block |
+-c        %-----------------------------------------------------%
+-c
+-         do 80 i = itop, kplusp-1
+-            if (h(i+1,1) .gt. zero) go to 90
+-            itop  = itop + 1
+-   80    continue
+-c
+-c        %-----------------------------------%
+-c        | Finished applying the jj-th shift |
+-c        %-----------------------------------%
+-c
+-   90 continue
+-c
+-c     %------------------------------------------%
+-c     | All shifts have been applied. Check for  |
+-c     | more possible deflation that might occur |
+-c     | after the last shift is applied.         |                               
+-c     %------------------------------------------%
+-c
+-      do 100 i = itop, kplusp-1
+-         big   = abs(h(i,2)) + abs(h(i+1,2))
+-         if (h(i+1,1) .le. epsmch*big) then
+-            if (msglvl .gt. 0) then
+-               call ivout (logfil, 1, i, ndigit, 
+-     &              '_sapps: deflation at row/column no.')
+-               call dvout (logfil, 1, h(i+1,1), ndigit, 
+-     &              '_sapps: the corresponding off diagonal element')
+-            end if
+-            h(i+1,1) = zero
+-         end if
+- 100  continue
+-c
+-c     %-------------------------------------------------%
+-c     | Compute the (kev+1)-st column of (V*Q) and      |
+-c     | temporarily store the result in WORKD(N+1:2*N). |
+-c     | This is not necessary if h(kev+1,1) = 0.         |
+-c     %-------------------------------------------------%
+-c
+-      if ( h(kev+1,1) .gt. zero ) 
+-     &   call dgemv ('N', n, kplusp, one, v, ldv,
+-     &                q(1,kev+1), 1, zero, workd(n+1), 1)
+-c 
+-c     %-------------------------------------------------------%
+-c     | Compute column 1 to kev of (V*Q) in backward order    |
+-c     | taking advantage that Q is an upper triangular matrix |    
+-c     | with lower bandwidth np.                              |
+-c     | Place results in v(:,kplusp-kev:kplusp) temporarily.  |
+-c     %-------------------------------------------------------%
+-c
+-      do 130 i = 1, kev
+-         call dgemv ('N', n, kplusp-i+1, one, v, ldv,
+-     &               q(1,kev-i+1), 1, zero, workd, 1)
+-         call dcopy (n, workd, 1, v(1,kplusp-i+1), 1)
+-  130 continue
+-c
+-c     %-------------------------------------------------%
+-c     |  Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). |
+-c     %-------------------------------------------------%
+-c
+-      call dlacpy ('All', n, kev, v(1,np+1), ldv, v, ldv)
+-c 
+-c     %--------------------------------------------%
+-c     | Copy the (kev+1)-st column of (V*Q) in the |
+-c     | appropriate place if h(kev+1,1) .ne. zero. |
+-c     %--------------------------------------------%
+-c
+-      if ( h(kev+1,1) .gt. zero ) 
+-     &     call dcopy (n, workd(n+1), 1, v(1,kev+1), 1)
+-c 
+-c     %-------------------------------------%
+-c     | Update the residual vector:         |
+-c     |    r <- sigmak*r + betak*v(:,kev+1) |
+-c     | where                               |
+-c     |    sigmak = (e_{kev+p}'*Q)*e_{kev}  |
+-c     |    betak = e_{kev+1}'*H*e_{kev}     |
+-c     %-------------------------------------%
+-c
+-      call dscal (n, q(kplusp,kev), resid, 1)
+-      if (h(kev+1,1) .gt. zero) 
+-     &   call daxpy (n, h(kev+1,1), v(1,kev+1), 1, resid, 1)
+-c
+-      if (msglvl .gt. 1) then
+-         call dvout (logfil, 1, q(kplusp,kev), ndigit, 
+-     &      '_sapps: sigmak of the updated residual vector')
+-         call dvout (logfil, 1, h(kev+1,1), ndigit, 
+-     &      '_sapps: betak of the updated residual vector')
+-         call dvout (logfil, kev, h(1,2), ndigit, 
+-     &      '_sapps: updated main diagonal of H for next iteration')
+-         if (kev .gt. 1) then
+-         call dvout (logfil, kev-1, h(2,1), ndigit, 
+-     &      '_sapps: updated sub diagonal of H for next iteration')
+-         end if
+-      end if
+-c
+-      call arscnd (t1)
+-      tsapps = tsapps + (t1 - t0)
+-c 
+- 9000 continue 
+-      return
+-c
+-c     %---------------%
+-c     | End of dsapps |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dsaup2.f
++++ /dev/null
+@@ -1,850 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dsaup2
+-c
+-c\Description: 
+-c  Intermediate level interface called by dsaupd.
+-c
+-c\Usage:
+-c  call dsaup2 
+-c     ( IDO, BMAT, N, WHICH, NEV, NP, TOL, RESID, MODE, IUPD,
+-c       ISHIFT, MXITER, V, LDV, H, LDH, RITZ, BOUNDS, Q, LDQ, WORKL, 
+-c       IPNTR, WORKD, INFO )
+-c
+-c\Arguments
+-c
+-c  IDO, BMAT, N, WHICH, NEV, TOL, RESID: same as defined in dsaupd.
+-c  MODE, ISHIFT, MXITER: see the definition of IPARAM in dsaupd.
+-c  
+-c  NP      Integer.  (INPUT/OUTPUT)
+-c          Contains the number of implicit shifts to apply during 
+-c          each Arnoldi/Lanczos iteration.  
+-c          If ISHIFT=1, NP is adjusted dynamically at each iteration 
+-c          to accelerate convergence and prevent stagnation.
+-c          This is also roughly equal to the number of matrix-vector 
+-c          products (involving the operator OP) per Arnoldi iteration.
+-c          The logic for adjusting is contained within the current
+-c          subroutine.
+-c          If ISHIFT=0, NP is the number of shifts the user needs
+-c          to provide via reverse comunication. 0 < NP < NCV-NEV.
+-c          NP may be less than NCV-NEV since a leading block of the current
+-c          upper Tridiagonal matrix has split off and contains "unwanted"
+-c          Ritz values.
+-c          Upon termination of the IRA iteration, NP contains the number 
+-c          of "converged" wanted Ritz values.
+-c
+-c  IUPD    Integer.  (INPUT)
+-c          IUPD .EQ. 0: use explicit restart instead implicit update.
+-c          IUPD .NE. 0: use implicit update.
+-c
+-c  V       Double precision N by (NEV+NP) array.  (INPUT/OUTPUT)
+-c          The Lanczos basis vectors.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling 
+-c          program.
+-c
+-c  H       Double precision (NEV+NP) by 2 array.  (OUTPUT)
+-c          H is used to store the generated symmetric tridiagonal matrix
+-c          The subdiagonal is stored in the first column of H starting 
+-c          at H(2,1).  The main diagonal is stored in the arscnd column
+-c          of H starting at H(1,2). If dsaup2 converges store the 
+-c          B-norm of the final residual vector in H(1,1).
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling 
+-c          program.
+-c
+-c  RITZ    Double precision array of length NEV+NP.  (OUTPUT)
+-c          RITZ(1:NEV) contains the computed Ritz values of OP.
+-c
+-c  BOUNDS  Double precision array of length NEV+NP.  (OUTPUT)
+-c          BOUNDS(1:NEV) contain the error bounds corresponding to RITZ.
+-c
+-c  Q       Double precision (NEV+NP) by (NEV+NP) array.  (WORKSPACE)
+-c          Private (replicated) work array used to accumulate the 
+-c          rotation in the shift application step.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c          
+-c  WORKL   Double precision array of length at least 3*(NEV+NP).  (INPUT/WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  It is used in the computation of the 
+-c          tridiagonal eigenvalue problem, the calculation and
+-c          application of the shifts and convergence checking.
+-c          If ISHIFT .EQ. O and IDO .EQ. 3, the first NP locations
+-c          of WORKL are used in reverse communication to hold the user 
+-c          supplied shifts.
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORKD for 
+-c          vectors used by the Lanczos iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X.
+-c          IPNTR(2): pointer to the current result vector Y.
+-c          IPNTR(3): pointer to the vector B * X when used in one of  
+-c                    the spectral transformation modes.  X is the current
+-c                    operand.
+-c          -------------------------------------------------------------
+-c          
+-c  WORKD   Double precision work array of length 3*N.  (REVERSE COMMUNICATION)
+-c          Distributed array to be used in the basic Lanczos iteration
+-c          for reverse communication.  The user should not use WORKD
+-c          as temporary workspace during the iteration !!!!!!!!!!
+-c          See Data Distribution Note in dsaupd.
+-c
+-c  INFO    Integer.  (INPUT/OUTPUT)
+-c          If INFO .EQ. 0, a randomly initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          Error flag on output.
+-c          =     0: Normal return.
+-c          =     1: All possible eigenvalues of OP has been found.  
+-c                   NP returns the size of the invariant subspace
+-c                   spanning the operator OP. 
+-c          =     2: No shifts could be applied.
+-c          =    -8: Error return from trid. eigenvalue calculation;
+-c                   This should never happen.
+-c          =    -9: Starting vector is zero.
+-c          = -9999: Could not build an Lanczos factorization.
+-c                   Size that was built in returned in NP.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c  3. B.N. Parlett, "The Symmetric Eigenvalue Problem". Prentice-Hall,
+-c     1980.
+-c  4. B.N. Parlett, B. Nour-Omid, "Towards a Black Box Lanczos Program",
+-c     Computer Physics Communications, 53 (1989), pp 169-179.
+-c  5. B. Nour-Omid, B.N. Parlett, T. Ericson, P.S. Jensen, "How to
+-c     Implement the Spectral Transformation", Math. Comp., 48 (1987),
+-c     pp 663-673.
+-c  6. R.G. Grimes, J.G. Lewis and H.D. Simon, "A Shifted Block Lanczos 
+-c     Algorithm for Solving Sparse Symmetric Generalized Eigenproblems", 
+-c     SIAM J. Matr. Anal. Apps.,  January (1993).
+-c  7. L. Reichel, W.B. Gragg, "Algorithm 686: FORTRAN Subroutines
+-c     for Updating the QR decomposition", ACM TOMS, December 1990,
+-c     Volume 16 Number 4, pp 369-377.
+-c
+-c\Routines called:
+-c     dgetv0  ARPACK initial vector generation routine. 
+-c     dsaitr  ARPACK Lanczos factorization routine.
+-c     dsapps  ARPACK application of implicit shifts routine.
+-c     dsconv  ARPACK convergence of Ritz values routine.
+-c     dseigt  ARPACK compute Ritz values and error bounds routine.
+-c     dsgets  ARPACK reorder Ritz values and error bounds routine.
+-c     dsortr  ARPACK sorting routine.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     dvout   ARPACK utility routine that prints vectors.
+-c     dlamch  LAPACK routine that determines machine constants.
+-c     dcopy   Level 1 BLAS that copies one vector to another.
+-c     ddot    Level 1 BLAS that computes the scalar product of two vectors. 
+-c     dnrm2   Level 1 BLAS that computes the norm of a vector.
+-c     dscal   Level 1 BLAS that scales a vector.
+-c     dswap   Level 1 BLAS that swaps two vectors.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c 
+-c\Revision history:
+-c     12/15/93: Version ' 2.4'
+-c     xx/xx/95: Version ' 2.4'.  (R.B. Lehoucq)
+-c
+-c\SCCS Information: @(#) 
+-c FILE: saup2.F   SID: 2.7   DATE OF SID: 5/19/98   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dsaup2
+-     &   ( ido, bmat, n, which, nev, np, tol, resid, mode, iupd, 
+-     &     ishift, mxiter, v, ldv, h, ldh, ritz, bounds, 
+-     &     q, ldq, workl, ipntr, workd, info )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1, which*2
+-      integer    ido, info, ishift, iupd, ldh, ldq, ldv, mxiter,
+-     &           n, mode, nev, np
+-      Double precision
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(3)
+-      Double precision
+-     &           bounds(nev+np), h(ldh,2), q(ldq,nev+np), resid(n), 
+-     &           ritz(nev+np), v(ldv,nev+np), workd(3*n), 
+-     &           workl(3*(nev+np))
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision
+-     &           one, zero
+-      parameter (one = 1.0D+0, zero = 0.0D+0)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      character  wprime*2
+-      logical    cnorm, getv0, initv, update, ushift
+-      integer    ierr, iter, j, kplusp, msglvl, nconv, nevbef, nev0, 
+-     &           np0, nptemp, nevd2, nevm2, kp(3) 
+-      Double precision
+-     &           rnorm, temp, eps23
+-      save       cnorm, getv0, initv, update, ushift,
+-     &           iter, kplusp, msglvl, nconv, nev0, np0,
+-     &           rnorm, eps23
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   dcopy, dgetv0, dsaitr, dscal, dsconv, dseigt, dsgets, 
+-     &           dsapps, dsortr, dvout, ivout, arscnd, dswap
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision
+-     &           ddot, dnrm2, dlamch
+-      external   ddot, dnrm2, dlamch
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    min
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (ido .eq. 0) then
+-c 
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call arscnd (t0)
+-         msglvl = msaup2
+-c
+-c        %---------------------------------%
+-c        | Set machine dependent constant. |
+-c        %---------------------------------%
+-c
+-         eps23 = dlamch('Epsilon-Machine')
+-         eps23 = eps23**(2.0D+0/3.0D+0)
+-c
+-c        %-------------------------------------%
+-c        | nev0 and np0 are integer variables  |
+-c        | hold the initial values of NEV & NP |
+-c        %-------------------------------------%
+-c
+-         nev0   = nev
+-         np0    = np
+-c
+-c        %-------------------------------------%
+-c        | kplusp is the bound on the largest  |
+-c        |        Lanczos factorization built. |
+-c        | nconv is the current number of      |
+-c        |        "converged" eigenvlues.      |
+-c        | iter is the counter on the current  |
+-c        |      iteration step.                |
+-c        %-------------------------------------%
+-c
+-         kplusp = nev0 + np0
+-         nconv  = 0
+-         iter   = 0
+-c 
+-c        %--------------------------------------------%
+-c        | Set flags for computing the first NEV steps |
+-c        | of the Lanczos factorization.              |
+-c        %--------------------------------------------%
+-c
+-         getv0    = .true.
+-         update   = .false.
+-         ushift   = .false.
+-         cnorm    = .false.
+-c
+-         if (info .ne. 0) then
+-c
+-c        %--------------------------------------------%
+-c        | User provides the initial residual vector. |
+-c        %--------------------------------------------%
+-c
+-            initv = .true.
+-            info  = 0
+-         else
+-            initv = .false.
+-         end if
+-      end if
+-c 
+-c     %---------------------------------------------%
+-c     | Get a possibly random starting vector and   |
+-c     | force it into the range of the operator OP. |
+-c     %---------------------------------------------%
+-c
+-   10 continue
+-c
+-      if (getv0) then
+-         call dgetv0 (ido, bmat, 1, initv, n, 1, v, ldv, resid, rnorm,
+-     &                ipntr, workd, info)
+-c
+-         if (ido .ne. 99) go to 9000
+-c
+-         if (rnorm .eq. zero) then
+-c
+-c           %-----------------------------------------%
+-c           | The initial vector is zero. Error exit. | 
+-c           %-----------------------------------------%
+-c
+-            info = -9
+-            go to 1200
+-         end if
+-         getv0 = .false.
+-         ido  = 0
+-      end if
+-c 
+-c     %------------------------------------------------------------%
+-c     | Back from reverse communication: continue with update step |
+-c     %------------------------------------------------------------%
+-c
+-      if (update) go to 20
+-c
+-c     %-------------------------------------------%
+-c     | Back from computing user specified shifts |
+-c     %-------------------------------------------%
+-c
+-      if (ushift) go to 50
+-c
+-c     %-------------------------------------%
+-c     | Back from computing residual norm   |
+-c     | at the end of the current iteration |
+-c     %-------------------------------------%
+-c
+-      if (cnorm)  go to 100
+-c 
+-c     %----------------------------------------------------------%
+-c     | Compute the first NEV steps of the Lanczos factorization |
+-c     %----------------------------------------------------------%
+-c
+-      call dsaitr (ido, bmat, n, 0, nev0, mode, resid, rnorm, v, ldv, 
+-     &             h, ldh, ipntr, workd, info)
+-c 
+-c     %---------------------------------------------------%
+-c     | ido .ne. 99 implies use of reverse communication  |
+-c     | to compute operations involving OP and possibly B |
+-c     %---------------------------------------------------%
+-c
+-      if (ido .ne. 99) go to 9000
+-c
+-      if (info .gt. 0) then
+-c
+-c        %-----------------------------------------------------%
+-c        | dsaitr was unable to build an Lanczos factorization |
+-c        | of length NEV0. INFO is returned with the size of   |
+-c        | the factorization built. Exit main loop.            |
+-c        %-----------------------------------------------------%
+-c
+-         np   = info
+-         mxiter = iter
+-         info = -9999
+-         go to 1200
+-      end if
+-c 
+-c     %--------------------------------------------------------------%
+-c     |                                                              |
+-c     |           M A I N  LANCZOS  I T E R A T I O N  L O O P       |
+-c     |           Each iteration implicitly restarts the Lanczos     |
+-c     |           factorization in place.                            |
+-c     |                                                              |
+-c     %--------------------------------------------------------------%
+-c 
+- 1000 continue
+-c
+-         iter = iter + 1
+-c
+-         if (msglvl .gt. 0) then
+-            call ivout (logfil, 1, iter, ndigit, 
+-     &           '_saup2: **** Start of major iteration number ****')
+-         end if
+-         if (msglvl .gt. 1) then
+-            call ivout (logfil, 1, nev, ndigit, 
+-     &     '_saup2: The length of the current Lanczos factorization')
+-            call ivout (logfil, 1, np, ndigit, 
+-     &           '_saup2: Extend the Lanczos factorization by')
+-         end if
+-c 
+-c        %------------------------------------------------------------%
+-c        | Compute NP additional steps of the Lanczos factorization. |
+-c        %------------------------------------------------------------%
+-c
+-         ido = 0
+-   20    continue
+-         update = .true.
+-c
+-         call dsaitr (ido, bmat, n, nev, np, mode, resid, rnorm, v, 
+-     &                ldv, h, ldh, ipntr, workd, info)
+-c 
+-c        %---------------------------------------------------%
+-c        | ido .ne. 99 implies use of reverse communication  |
+-c        | to compute operations involving OP and possibly B |
+-c        %---------------------------------------------------%
+-c
+-         if (ido .ne. 99) go to 9000
+-c
+-         if (info .gt. 0) then
+-c
+-c           %-----------------------------------------------------%
+-c           | dsaitr was unable to build an Lanczos factorization |
+-c           | of length NEV0+NP0. INFO is returned with the size  |  
+-c           | of the factorization built. Exit main loop.         |
+-c           %-----------------------------------------------------%
+-c
+-            np = info
+-            mxiter = iter
+-            info = -9999
+-            go to 1200
+-         end if
+-         update = .false.
+-c
+-         if (msglvl .gt. 1) then
+-            call dvout (logfil, 1, rnorm, ndigit, 
+-     &           '_saup2: Current B-norm of residual for factorization')
+-         end if
+-c 
+-c        %--------------------------------------------------------%
+-c        | Compute the eigenvalues and corresponding error bounds |
+-c        | of the current symmetric tridiagonal matrix.           |
+-c        %--------------------------------------------------------%
+-c
+-         call dseigt (rnorm, kplusp, h, ldh, ritz, bounds, workl, ierr)
+-c
+-         if (ierr .ne. 0) then
+-            info = -8
+-            go to 1200
+-         end if
+-c
+-c        %----------------------------------------------------%
+-c        | Make a copy of eigenvalues and corresponding error |
+-c        | bounds obtained from _seigt.                       |
+-c        %----------------------------------------------------%
+-c
+-         call dcopy(kplusp, ritz, 1, workl(kplusp+1), 1)
+-         call dcopy(kplusp, bounds, 1, workl(2*kplusp+1), 1)
+-c
+-c        %---------------------------------------------------%
+-c        | Select the wanted Ritz values and their bounds    |
+-c        | to be used in the convergence test.               |
+-c        | The selection is based on the requested number of |
+-c        | eigenvalues instead of the current NEV and NP to  |
+-c        | prevent possible misconvergence.                  |
+-c        | * Wanted Ritz values := RITZ(NP+1:NEV+NP)         |
+-c        | * Shifts := RITZ(1:NP) := WORKL(1:NP)             |
+-c        %---------------------------------------------------%
+-c
+-         nev = nev0
+-         np = np0
+-         call dsgets (ishift, which, nev, np, ritz, bounds, workl)
+-c 
+-c        %-------------------%
+-c        | Convergence test. |
+-c        %-------------------%
+-c
+-         call dcopy (nev, bounds(np+1), 1, workl(np+1), 1)
+-         call dsconv (nev, ritz(np+1), workl(np+1), tol, nconv)
+-c
+-         if (msglvl .gt. 2) then
+-            kp(1) = nev
+-            kp(2) = np
+-            kp(3) = nconv
+-            call ivout (logfil, 3, kp, ndigit,
+-     &                  '_saup2: NEV, NP, NCONV are')
+-            call dvout (logfil, kplusp, ritz, ndigit,
+-     &           '_saup2: The eigenvalues of H')
+-            call dvout (logfil, kplusp, bounds, ndigit,
+-     &          '_saup2: Ritz estimates of the current NCV Ritz values')
+-         end if
+-c
+-c        %---------------------------------------------------------%
+-c        | Count the number of unwanted Ritz values that have zero |
+-c        | Ritz estimates. If any Ritz estimates are equal to zero |
+-c        | then a leading block of H of order equal to at least    |
+-c        | the number of Ritz values with zero Ritz estimates has  |
+-c        | split off. None of these Ritz values may be removed by  |
+-c        | shifting. Decrease NP the number of shifts to apply. If |
+-c        | no shifts may be applied, then prepare to exit          |
+-c        %---------------------------------------------------------%
+-c
+-         nptemp = np
+-         do 30 j=1, nptemp
+-            if (bounds(j) .eq. zero) then
+-               np = np - 1
+-               nev = nev + 1
+-            end if
+- 30      continue
+-c 
+-         if ( (nconv .ge. nev0) .or. 
+-     &        (iter .gt. mxiter) .or.
+-     &        (np .eq. 0) ) then
+-c     
+-c           %------------------------------------------------%
+-c           | Prepare to exit. Put the converged Ritz values |
+-c           | and corresponding bounds in RITZ(1:NCONV) and  |
+-c           | BOUNDS(1:NCONV) respectively. Then sort. Be    |
+-c           | careful when NCONV > NP since we don't want to |
+-c           | swap overlapping locations.                    |
+-c           %------------------------------------------------%
+-c
+-            if (which .eq. 'BE') then
+-c
+-c              %-----------------------------------------------------%
+-c              | Both ends of the spectrum are requested.            |
+-c              | Sort the eigenvalues into algebraically decreasing  |
+-c              | order first then swap low end of the spectrum next  |
+-c              | to high end in appropriate locations.               |
+-c              | NOTE: when np < floor(nev/2) be careful not to swap |
+-c              | overlapping locations.                              |
+-c              %-----------------------------------------------------%
+-c
+-               wprime = 'SA'
+-               call dsortr (wprime, .true., kplusp, ritz, bounds)
+-               nevd2 = nev0 / 2
+-               nevm2 = nev0 - nevd2 
+-               if ( nev .gt. 1 ) then
+-                  call dswap ( min(nevd2,np), ritz(nevm2+1), 1,
+-     &                 ritz( max(kplusp-nevd2+1,kplusp-np+1) ), 1)
+-                  call dswap ( min(nevd2,np), bounds(nevm2+1), 1,
+-     &                 bounds( max(kplusp-nevd2+1,kplusp-np+1)), 1)
+-               end if
+-c
+-            else
+-c
+-c              %--------------------------------------------------%
+-c              | LM, SM, LA, SA case.                             |
+-c              | Sort the eigenvalues of H into the an order that |
+-c              | is opposite to WHICH, and apply the resulting    |
+-c              | order to BOUNDS.  The eigenvalues are sorted so  |
+-c              | that the wanted part are always within the first |
+-c              | NEV locations.                                   |
+-c              %--------------------------------------------------%
+-c
+-               if (which .eq. 'LM') wprime = 'SM'
+-               if (which .eq. 'SM') wprime = 'LM'
+-               if (which .eq. 'LA') wprime = 'SA'
+-               if (which .eq. 'SA') wprime = 'LA'
+-c
+-               call dsortr (wprime, .true., kplusp, ritz, bounds)
+-c
+-            end if
+-c
+-c           %--------------------------------------------------%
+-c           | Scale the Ritz estimate of each Ritz value       |
+-c           | by 1 / max(eps23,magnitude of the Ritz value).   |
+-c           %--------------------------------------------------%
+-c
+-            do 35 j = 1, nev0
+-               temp = max( eps23, abs(ritz(j)) )
+-               bounds(j) = bounds(j)/temp
+- 35         continue
+-c
+-c           %----------------------------------------------------%
+-c           | Sort the Ritz values according to the scaled Ritz  |
+-c           | esitmates.  This will push all the converged ones  |
+-c           | towards the front of ritzr, ritzi, bounds          |
+-c           | (in the case when NCONV < NEV.)                    |
+-c           %----------------------------------------------------%
+-c
+-            wprime = 'LA'
+-            call dsortr(wprime, .true., nev0, bounds, ritz)
+-c
+-c           %----------------------------------------------%
+-c           | Scale the Ritz estimate back to its original |
+-c           | value.                                       |
+-c           %----------------------------------------------%
+-c
+-            do 40 j = 1, nev0
+-                temp = max( eps23, abs(ritz(j)) )
+-                bounds(j) = bounds(j)*temp
+- 40         continue
+-c
+-c           %--------------------------------------------------%
+-c           | Sort the "converged" Ritz values again so that   |
+-c           | the "threshold" values and their associated Ritz |
+-c           | estimates appear at the appropriate position in  |
+-c           | ritz and bound.                                  |
+-c           %--------------------------------------------------%
+-c
+-            if (which .eq. 'BE') then
+-c
+-c              %------------------------------------------------%
+-c              | Sort the "converged" Ritz values in increasing |
+-c              | order.  The "threshold" values are in the      |
+-c              | middle.                                        |
+-c              %------------------------------------------------%
+-c
+-               wprime = 'LA'
+-               call dsortr(wprime, .true., nconv, ritz, bounds)
+-c
+-            else
+-c
+-c              %----------------------------------------------%
+-c              | In LM, SM, LA, SA case, sort the "converged" |
+-c              | Ritz values according to WHICH so that the   |
+-c              | "threshold" value appears at the front of    |
+-c              | ritz.                                        |
+-c              %----------------------------------------------%
+-
+-               call dsortr(which, .true., nconv, ritz, bounds)
+-c
+-            end if
+-c
+-c           %------------------------------------------%
+-c           |  Use h( 1,1 ) as storage to communicate  |
+-c           |  rnorm to _seupd if needed               |
+-c           %------------------------------------------%
+-c
+-            h(1,1) = rnorm
+-c
+-            if (msglvl .gt. 1) then
+-               call dvout (logfil, kplusp, ritz, ndigit,
+-     &            '_saup2: Sorted Ritz values.')
+-               call dvout (logfil, kplusp, bounds, ndigit,
+-     &            '_saup2: Sorted ritz estimates.')
+-            end if
+-c
+-c           %------------------------------------%
+-c           | Max iterations have been exceeded. | 
+-c           %------------------------------------%
+-c
+-            if (iter .gt. mxiter .and. nconv .lt. nev) info = 1
+-c
+-c           %---------------------%
+-c           | No shifts to apply. | 
+-c           %---------------------%
+-c
+-            if (np .eq. 0 .and. nconv .lt. nev0) info = 2
+-c
+-            np = nconv
+-            go to 1100
+-c
+-         else if (nconv .lt. nev .and. ishift .eq. 1) then
+-c
+-c           %---------------------------------------------------%
+-c           | Do not have all the requested eigenvalues yet.    |
+-c           | To prevent possible stagnation, adjust the number |
+-c           | of Ritz values and the shifts.                    |
+-c           %---------------------------------------------------%
+-c
+-            nevbef = nev
+-            nev = nev + min (nconv, np/2)
+-            if (nev .eq. 1 .and. kplusp .ge. 6) then
+-               nev = kplusp / 2
+-            else if (nev .eq. 1 .and. kplusp .gt. 2) then
+-               nev = 2
+-            end if
+-            np  = kplusp - nev
+-c     
+-c           %---------------------------------------%
+-c           | If the size of NEV was just increased |
+-c           | resort the eigenvalues.               |
+-c           %---------------------------------------%
+-c     
+-            if (nevbef .lt. nev) 
+-     &         call dsgets (ishift, which, nev, np, ritz, bounds,
+-     &              workl)
+-c
+-         end if
+-c
+-         if (msglvl .gt. 0) then
+-            call ivout (logfil, 1, nconv, ndigit,
+-     &           '_saup2: no. of "converged" Ritz values at this iter.')
+-            if (msglvl .gt. 1) then
+-               kp(1) = nev
+-               kp(2) = np
+-               call ivout (logfil, 2, kp, ndigit,
+-     &              '_saup2: NEV and NP are')
+-               call dvout (logfil, nev, ritz(np+1), ndigit,
+-     &              '_saup2: "wanted" Ritz values.')
+-               call dvout (logfil, nev, bounds(np+1), ndigit,
+-     &              '_saup2: Ritz estimates of the "wanted" values ')
+-            end if
+-         end if
+-
+-c 
+-         if (ishift .eq. 0) then
+-c
+-c           %-----------------------------------------------------%
+-c           | User specified shifts: reverse communication to     |
+-c           | compute the shifts. They are returned in the first  |
+-c           | NP locations of WORKL.                              |
+-c           %-----------------------------------------------------%
+-c
+-            ushift = .true.
+-            ido = 3
+-            go to 9000
+-         end if
+-c
+-   50    continue
+-c
+-c        %------------------------------------%
+-c        | Back from reverse communication;   |
+-c        | User specified shifts are returned |
+-c        | in WORKL(1:*NP)                   |
+-c        %------------------------------------%
+-c
+-         ushift = .false.
+-c 
+-c 
+-c        %---------------------------------------------------------%
+-c        | Move the NP shifts to the first NP locations of RITZ to |
+-c        | free up WORKL.  This is for the non-exact shift case;   |
+-c        | in the exact shift case, dsgets already handles this.   |
+-c        %---------------------------------------------------------%
+-c
+-         if (ishift .eq. 0) call dcopy (np, workl, 1, ritz, 1)
+-c
+-         if (msglvl .gt. 2) then
+-            call ivout (logfil, 1, np, ndigit,
+-     &                  '_saup2: The number of shifts to apply ')
+-            call dvout (logfil, np, workl, ndigit,
+-     &                  '_saup2: shifts selected')
+-            if (ishift .eq. 1) then
+-               call dvout (logfil, np, bounds, ndigit,
+-     &                  '_saup2: corresponding Ritz estimates')
+-             end if
+-         end if
+-c 
+-c        %---------------------------------------------------------%
+-c        | Apply the NP0 implicit shifts by QR bulge chasing.      |
+-c        | Each shift is applied to the entire tridiagonal matrix. |
+-c        | The first 2*N locations of WORKD are used as workspace. |
+-c        | After dsapps is done, we have a Lanczos                 |
+-c        | factorization of length NEV.                            |
+-c        %---------------------------------------------------------%
+-c
+-         call dsapps (n, nev, np, ritz, v, ldv, h, ldh, resid, q, ldq,
+-     &        workd)
+-c
+-c        %---------------------------------------------%
+-c        | Compute the B-norm of the updated residual. |
+-c        | Keep B*RESID in WORKD(1:N) to be used in    |
+-c        | the first step of the next call to dsaitr.  |
+-c        %---------------------------------------------%
+-c
+-         cnorm = .true.
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call dcopy (n, resid, 1, workd(n+1), 1)
+-            ipntr(1) = n + 1
+-            ipntr(2) = 1
+-            ido = 2
+-c 
+-c           %----------------------------------%
+-c           | Exit in order to compute B*RESID |
+-c           %----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call dcopy (n, resid, 1, workd, 1)
+-         end if
+-c 
+-  100    continue
+-c 
+-c        %----------------------------------%
+-c        | Back from reverse communication; |
+-c        | WORKD(1:N) := B*RESID            |
+-c        %----------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c 
+-         if (bmat .eq. 'G') then         
+-            rnorm = ddot (n, resid, 1, workd, 1)
+-            rnorm = sqrt(abs(rnorm))
+-         else if (bmat .eq. 'I') then
+-            rnorm = dnrm2(n, resid, 1)
+-         end if
+-         cnorm = .false.
+-  130    continue
+-c
+-         if (msglvl .gt. 2) then
+-            call dvout (logfil, 1, rnorm, ndigit, 
+-     &      '_saup2: B-norm of residual for NEV factorization')
+-            call dvout (logfil, nev, h(1,2), ndigit,
+-     &           '_saup2: main diagonal of compressed H matrix')
+-            call dvout (logfil, nev-1, h(2,1), ndigit,
+-     &           '_saup2: subdiagonal of compressed H matrix')
+-         end if
+-c 
+-      go to 1000
+-c
+-c     %---------------------------------------------------------------%
+-c     |                                                               |
+-c     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  |
+-c     |                                                               |
+-c     %---------------------------------------------------------------%
+-c 
+- 1100 continue
+-c
+-      mxiter = iter
+-      nev = nconv
+-c 
+- 1200 continue
+-      ido = 99
+-c
+-c     %------------%
+-c     | Error exit |
+-c     %------------%
+-c
+-      call arscnd (t1)
+-      tsaup2 = t1 - t0
+-c 
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of dsaup2 |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dsaupd.f
++++ /dev/null
+@@ -1,690 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dsaupd
+-c
+-c\Description:
+-c
+-c  Reverse communication interface for the Implicitly Restarted Arnoldi
+-c  Iteration.  For symmetric problems this reduces to a variant of the Lanczos
+-c  method.  This method has been designed to compute approximations to a
+-c  few eigenpairs of a linear operator OP that is real and symmetric
+-c  with respect to a real positive semi-definite symmetric matrix B,
+-c  i.e.
+-c
+-c       B*OP = (OP`)*B.
+-c
+-c  Another way to express this condition is
+-c
+-c       < x,OPy > = < OPx,y >  where < z,w > = z`Bw  .
+-c
+-c  In the standard eigenproblem B is the identity matrix.
+-c  ( A` denotes transpose of A)
+-c
+-c  The computed approximate eigenvalues are called Ritz values and
+-c  the corresponding approximate eigenvectors are called Ritz vectors.
+-c
+-c  dsaupd  is usually called iteratively to solve one of the
+-c  following problems:
+-c
+-c  Mode 1:  A*x = lambda*x, A symmetric
+-c           ===> OP = A  and  B = I.
+-c
+-c  Mode 2:  A*x = lambda*M*x, A symmetric, M symmetric positive definite
+-c           ===> OP = inv[M]*A  and  B = M.
+-c           ===> (If M can be factored see remark 3 below)
+-c
+-c  Mode 3:  K*x = lambda*M*x, K symmetric, M symmetric positive semi-definite
+-c           ===> OP = (inv[K - sigma*M])*M  and  B = M.
+-c           ===> Shift-and-Invert mode
+-c
+-c  Mode 4:  K*x = lambda*KG*x, K symmetric positive semi-definite,
+-c           KG symmetric indefinite
+-c           ===> OP = (inv[K - sigma*KG])*K  and  B = K.
+-c           ===> Buckling mode
+-c
+-c  Mode 5:  A*x = lambda*M*x, A symmetric, M symmetric positive semi-definite
+-c           ===> OP = inv[A - sigma*M]*[A + sigma*M]  and  B = M.
+-c           ===> Cayley transformed mode
+-c
+-c  NOTE: The action of w <- inv[A - sigma*M]*v or w <- inv[M]*v
+-c        should be accomplished either by a direct method
+-c        using a sparse matrix factorization and solving
+-c
+-c           [A - sigma*M]*w = v  or M*w = v,
+-c
+-c        or through an iterative method for solving these
+-c        systems.  If an iterative method is used, the
+-c        convergence test must be more stringent than
+-c        the accuracy requirements for the eigenvalue
+-c        approximations.
+-c
+-c\Usage:
+-c  call dsaupd
+-c     ( IDO, BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM,
+-c       IPNTR, WORKD, WORKL, LWORKL, INFO )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.  IDO must be zero on the first
+-c          call to dsaupd .  IDO will be set internally to
+-c          indicate the type of operation to be performed.  Control is
+-c          then given back to the calling routine which has the
+-c          responsibility to carry out the requested operation and call
+-c          dsaupd  with the result.  The operand is given in
+-c          WORKD(IPNTR(1)), the result must be put in WORKD(IPNTR(2)).
+-c          (If Mode = 2 see remark 5 below)
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    This is for the initialization phase to force the
+-c                    starting vector into the range of OP.
+-c          IDO =  1: compute  Y = OP * X where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    In mode 3,4 and 5, the vector B * X is already
+-c                    available in WORKD(ipntr(3)).  It does not
+-c                    need to be recomputed in forming OP * X.
+-c          IDO =  2: compute  Y = B * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c          IDO =  3: compute the IPARAM(8) shifts where
+-c                    IPNTR(11) is the pointer into WORKL for
+-c                    placing the shifts. See remark 6 below.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of the matrix B that defines the
+-c          semi-inner product for the operator OP.
+-c          B = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          B = 'G' -> generalized eigenvalue problem A*x = lambda*B*x
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the eigenproblem.
+-c
+-c  WHICH   Character*2.  (INPUT)
+-c          Specify which of the Ritz values of OP to compute.
+-c
+-c          'LA' - compute the NEV largest (algebraic) eigenvalues.
+-c          'SA' - compute the NEV smallest (algebraic) eigenvalues.
+-c          'LM' - compute the NEV largest (in magnitude) eigenvalues.
+-c          'SM' - compute the NEV smallest (in magnitude) eigenvalues.
+-c          'BE' - compute NEV eigenvalues, half from each end of the
+-c                 spectrum.  When NEV is odd, compute one more from the
+-c                 high end than from the low end.
+-c           (see remark 1 below)
+-c
+-c  NEV     Integer.  (INPUT)
+-c          Number of eigenvalues of OP to be computed. 0 < NEV < N.
+-c
+-c  TOL     Double precision  scalar.  (INPUT)
+-c          Stopping criterion: the relative accuracy of the Ritz value
+-c          is considered acceptable if BOUNDS(I) .LE. TOL*ABS(RITZ(I)).
+-c          If TOL .LE. 0. is passed a default is set:
+-c          DEFAULT = DLAMCH ('EPS')  (machine precision as computed
+-c                    by the LAPACK auxiliary subroutine DLAMCH ).
+-c
+-c  RESID   Double precision  array of length N.  (INPUT/OUTPUT)
+-c          On INPUT:
+-c          If INFO .EQ. 0, a random initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          On OUTPUT:
+-c          RESID contains the final residual vector.
+-c
+-c  NCV     Integer.  (INPUT)
+-c          Number of columns of the matrix V (less than or equal to N).
+-c          This will indicate how many Lanczos vectors are generated
+-c          at each iteration.  After the startup phase in which NEV
+-c          Lanczos vectors are generated, the algorithm generates
+-c          NCV-NEV Lanczos vectors at each subsequent update iteration.
+-c          Most of the cost in generating each Lanczos vector is in the
+-c          matrix-vector product OP*x. (See remark 4 below).
+-c
+-c  V       Double precision  N by NCV array.  (OUTPUT)
+-c          The NCV columns of V contain the Lanczos basis vectors.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling
+-c          program.
+-c
+-c  IPARAM  Integer array of length 11.  (INPUT/OUTPUT)
+-c          IPARAM(1) = ISHIFT: method for selecting the implicit shifts.
+-c          The shifts selected at each iteration are used to restart
+-c          the Arnoldi iteration in an implicit fashion.
+-c          -------------------------------------------------------------
+-c          ISHIFT = 0: the shifts are provided by the user via
+-c                      reverse communication.  The NCV eigenvalues of
+-c                      the current tridiagonal matrix T are returned in
+-c                      the part of WORKL array corresponding to RITZ.
+-c                      See remark 6 below.
+-c          ISHIFT = 1: exact shifts with respect to the reduced
+-c                      tridiagonal matrix T.  This is equivalent to
+-c                      restarting the iteration with a starting vector
+-c                      that is a linear combination of Ritz vectors
+-c                      associated with the "wanted" Ritz values.
+-c          -------------------------------------------------------------
+-c
+-c          IPARAM(2) = LEVEC
+-c          No longer referenced. See remark 2 below.
+-c
+-c          IPARAM(3) = MXITER
+-c          On INPUT:  maximum number of Arnoldi update iterations allowed.
+-c          On OUTPUT: actual number of Arnoldi update iterations taken.
+-c
+-c          IPARAM(4) = NB: blocksize to be used in the recurrence.
+-c          The code currently works only for NB = 1.
+-c
+-c          IPARAM(5) = NCONV: number of "converged" Ritz values.
+-c          This represents the number of Ritz values that satisfy
+-c          the convergence criterion.
+-c
+-c          IPARAM(6) = IUPD
+-c          No longer referenced. Implicit restarting is ALWAYS used.
+-c
+-c          IPARAM(7) = MODE
+-c          On INPUT determines what type of eigenproblem is being solved.
+-c          Must be 1,2,3,4,5; See under \Description of dsaupd  for the
+-c          five modes available.
+-c
+-c          IPARAM(8) = NP
+-c          When ido = 3 and the user provides shifts through reverse
+-c          communication (IPARAM(1)=0), dsaupd  returns NP, the number
+-c          of shifts the user is to provide. 0 < NP <=NCV-NEV. See Remark
+-c          6 below.
+-c
+-c          IPARAM(9) = NUMOP, IPARAM(10) = NUMOPB, IPARAM(11) = NUMREO,
+-c          OUTPUT: NUMOP  = total number of OP*x operations,
+-c                  NUMOPB = total number of B*x operations if BMAT='G',
+-c                  NUMREO = total number of steps of re-orthogonalization.
+-c
+-c  IPNTR   Integer array of length 11.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORKD and WORKL
+-c          arrays for matrices/vectors used by the Lanczos iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X in WORKD.
+-c          IPNTR(2): pointer to the current result vector Y in WORKD.
+-c          IPNTR(3): pointer to the vector B * X in WORKD when used in
+-c                    the shift-and-invert mode.
+-c          IPNTR(4): pointer to the next available location in WORKL
+-c                    that is untouched by the program.
+-c          IPNTR(5): pointer to the NCV by 2 tridiagonal matrix T in WORKL.
+-c          IPNTR(6): pointer to the NCV RITZ values array in WORKL.
+-c          IPNTR(7): pointer to the Ritz estimates in array WORKL associated
+-c                    with the Ritz values located in RITZ in WORKL.
+-c          IPNTR(11): pointer to the NP shifts in WORKL. See Remark 6 below.
+-c
+-c          Note: IPNTR(8:10) is only referenced by dseupd . See Remark 2.
+-c          IPNTR(8): pointer to the NCV RITZ values of the original system.
+-c          IPNTR(9): pointer to the NCV corresponding error bounds.
+-c          IPNTR(10): pointer to the NCV by NCV matrix of eigenvectors
+-c                     of the tridiagonal matrix T. Only referenced by
+-c                     dseupd  if RVEC = .TRUE. See Remarks.
+-c          -------------------------------------------------------------
+-c
+-c  WORKD   Double precision  work array of length 3*N.  (REVERSE COMMUNICATION)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The user should not use WORKD
+-c          as temporary workspace during the iteration. Upon termination
+-c          WORKD(1:N) contains B*RESID(1:N). If the Ritz vectors are desired
+-c          subroutine dseupd  uses this output.
+-c          See Data Distribution Note below.
+-c
+-c  WORKL   Double precision  work array of length LWORKL.  (OUTPUT/WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  See Data Distribution Note below.
+-c
+-c  LWORKL  Integer.  (INPUT)
+-c          LWORKL must be at least NCV**2 + 8*NCV .
+-c
+-c  INFO    Integer.  (INPUT/OUTPUT)
+-c          If INFO .EQ. 0, a randomly initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          Error flag on output.
+-c          =  0: Normal exit.
+-c          =  1: Maximum number of iterations taken.
+-c                All possible eigenvalues of OP has been found. IPARAM(5)
+-c                returns the number of wanted converged Ritz values.
+-c          =  2: No longer an informational error. Deprecated starting
+-c                with release 2 of ARPACK.
+-c          =  3: No shifts could be applied during a cycle of the
+-c                Implicitly restarted Arnoldi iteration. One possibility
+-c                is to increase the size of NCV relative to NEV.
+-c                See remark 4 below.
+-c          = -1: N must be positive.
+-c          = -2: NEV must be positive.
+-c          = -3: NCV must be greater than NEV and less than or equal to N.
+-c          = -4: The maximum number of Arnoldi update iterations allowed
+-c                must be greater than zero.
+-c          = -5: WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.
+-c          = -6: BMAT must be one of 'I' or 'G'.
+-c          = -7: Length of private work array WORKL is not sufficient.
+-c          = -8: Error return from trid. eigenvalue calculation;
+-c                Informatinal error from LAPACK routine dsteqr .
+-c          = -9: Starting vector is zero.
+-c          = -10: IPARAM(7) must be 1,2,3,4,5.
+-c          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatable.
+-c          = -12: IPARAM(1) must be equal to 0 or 1.
+-c          = -13: NEV and WHICH = 'BE' are incompatable.
+-c          = -9999: Could not build an Arnoldi factorization.
+-c                   IPARAM(5) returns the size of the current Arnoldi
+-c                   factorization. The user is advised to check that
+-c                   enough workspace and array storage has been allocated.
+-c
+-c
+-c\Remarks
+-c  1. The converged Ritz values are always returned in ascending
+-c     algebraic order.  The computed Ritz values are approximate
+-c     eigenvalues of OP.  The selection of WHICH should be made
+-c     with this in mind when Mode = 3,4,5.  After convergence,
+-c     approximate eigenvalues of the original problem may be obtained
+-c     with the ARPACK subroutine dseupd .
+-c
+-c  2. If the Ritz vectors corresponding to the converged Ritz values
+-c     are needed, the user must call dseupd  immediately following completion
+-c     of dsaupd . This is new starting with version 2.1 of ARPACK.
+-c
+-c  3. If M can be factored into a Cholesky factorization M = LL`
+-c     then Mode = 2 should not be selected.  Instead one should use
+-c     Mode = 1 with  OP = inv(L)*A*inv(L`).  Appropriate triangular
+-c     linear systems should be solved with L and L` rather
+-c     than computing inverses.  After convergence, an approximate
+-c     eigenvector z of the original problem is recovered by solving
+-c     L`z = x  where x is a Ritz vector of OP.
+-c
+-c  4. At present there is no a-priori analysis to guide the selection
+-c     of NCV relative to NEV.  The only formal requrement is that NCV > NEV.
+-c     However, it is recommended that NCV .ge. 2*NEV.  If many problems of
+-c     the same type are to be solved, one should experiment with increasing
+-c     NCV while keeping NEV fixed for a given test problem.  This will
+-c     usually decrease the required number of OP*x operations but it
+-c     also increases the work and storage required to maintain the orthogonal
+-c     basis vectors.   The optimal "cross-over" with respect to CPU time
+-c     is problem dependent and must be determined empirically.
+-c
+-c  5. If IPARAM(7) = 2 then in the Reverse commuication interface the user
+-c     must do the following. When IDO = 1, Y = OP * X is to be computed.
+-c     When IPARAM(7) = 2 OP = inv(B)*A. After computing A*X the user
+-c     must overwrite X with A*X. Y is then the solution to the linear set
+-c     of equations B*Y = A*X.
+-c
+-c  6. When IPARAM(1) = 0, and IDO = 3, the user needs to provide the
+-c     NP = IPARAM(8) shifts in locations:
+-c     1   WORKL(IPNTR(11))
+-c     2   WORKL(IPNTR(11)+1)
+-c                        .
+-c                        .
+-c                        .
+-c     NP  WORKL(IPNTR(11)+NP-1).
+-c
+-c     The eigenvalues of the current tridiagonal matrix are located in
+-c     WORKL(IPNTR(6)) through WORKL(IPNTR(6)+NCV-1). They are in the
+-c     order defined by WHICH. The associated Ritz estimates are located in
+-c     WORKL(IPNTR(8)), WORKL(IPNTR(8)+1), ... , WORKL(IPNTR(8)+NCV-1).
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\Data Distribution Note:
+-c
+-c  Fortran-D syntax:
+-c  ================
+-c  REAL       RESID(N), V(LDV,NCV), WORKD(3*N), WORKL(LWORKL)
+-c  DECOMPOSE  D1(N), D2(N,NCV)
+-c  ALIGN      RESID(I) with D1(I)
+-c  ALIGN      V(I,J)   with D2(I,J)
+-c  ALIGN      WORKD(I) with D1(I)     range (1:N)
+-c  ALIGN      WORKD(I) with D1(I-N)   range (N+1:2*N)
+-c  ALIGN      WORKD(I) with D1(I-2*N) range (2*N+1:3*N)
+-c  DISTRIBUTE D1(BLOCK), D2(BLOCK,:)
+-c  REPLICATED WORKL(LWORKL)
+-c
+-c  Cray MPP syntax:
+-c  ===============
+-c  REAL       RESID(N), V(LDV,NCV), WORKD(N,3), WORKL(LWORKL)
+-c  SHARED     RESID(BLOCK), V(BLOCK,:), WORKD(BLOCK,:)
+-c  REPLICATED WORKL(LWORKL)
+-c
+-c
+-c\BeginLib
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c  3. B.N. Parlett, "The Symmetric Eigenvalue Problem". Prentice-Hall,
+-c     1980.
+-c  4. B.N. Parlett, B. Nour-Omid, "Towards a Black Box Lanczos Program",
+-c     Computer Physics Communications, 53 (1989), pp 169-179.
+-c  5. B. Nour-Omid, B.N. Parlett, T. Ericson, P.S. Jensen, "How to
+-c     Implement the Spectral Transformation", Math. Comp., 48 (1987),
+-c     pp 663-673.
+-c  6. R.G. Grimes, J.G. Lewis and H.D. Simon, "A Shifted Block Lanczos
+-c     Algorithm for Solving Sparse Symmetric Generalized Eigenproblems",
+-c     SIAM J. Matr. Anal. Apps.,  January (1993).
+-c  7. L. Reichel, W.B. Gragg, "Algorithm 686: FORTRAN Subroutines
+-c     for Updating the QR decomposition", ACM TOMS, December 1990,
+-c     Volume 16 Number 4, pp 369-377.
+-c  8. R.B. Lehoucq, D.C. Sorensen, "Implementation of Some Spectral
+-c     Transformations in a k-Step Arnoldi Method". In Preparation.
+-c
+-c\Routines called:
+-c     dsaup2   ARPACK routine that implements the Implicitly Restarted
+-c             Arnoldi Iteration.
+-c     dstats   ARPACK routine that initialize timing and other statistics
+-c             variables.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     dvout    ARPACK utility routine that prints vectors.
+-c     dlamch   LAPACK routine that determines machine constants.
+-c
+-c\Authors
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University
+-c     Houston, Texas
+-c
+-c\Revision history:
+-c     12/15/93: Version ' 2.4'
+-c
+-c\SCCS Information: @(#)
+-c FILE: saupd.F   SID: 2.8   DATE OF SID: 04/10/01   RELEASE: 2
+-c
+-c\Remarks
+-c     1. None
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dsaupd
+-     &   ( ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam,
+-     &     ipntr, workd, workl, lworkl, info )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1, which*2
+-      integer    ido, info, ldv, lworkl, n, ncv, nev
+-      Double precision
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    iparam(11), ipntr(11)
+-      Double precision
+-     &           resid(n), v(ldv,ncv), workd(3*n), workl(lworkl)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision
+-     &           one, zero
+-      parameter (one = 1.0D+0 , zero = 0.0D+0 )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    bounds, ierr, ih, iq, ishift, iupd, iw,
+-     &           ldh, ldq, msglvl, mxiter, mode, nb,
+-     &           nev0, next, np, ritz, j
+-      save       bounds, ierr, ih, iq, ishift, iupd, iw,
+-     &           ldh, ldq, msglvl, mxiter, mode, nb,
+-     &           nev0, next, np, ritz
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   dsaup2 ,  dvout , ivout, arscnd, dstats
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision
+-     &           dlamch
+-      external   dlamch
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (ido .eq. 0) then
+-c
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call dstats
+-         call arscnd (t0)
+-         msglvl = msaupd
+-c
+-         ierr   = 0
+-         ishift = iparam(1)
+-         mxiter = iparam(3)
+-c         nb     = iparam(4)
+-         nb     = 1
+-c
+-c        %--------------------------------------------%
+-c        | Revision 2 performs only implicit restart. |
+-c        %--------------------------------------------%
+-c
+-         iupd   = 1
+-         mode   = iparam(7)
+-c
+-c        %----------------%
+-c        | Error checking |
+-c        %----------------%
+-c
+-         if (n .le. 0) then
+-            ierr = -1
+-         else if (nev .le. 0) then
+-            ierr = -2
+-         else if (ncv .le. nev .or.  ncv .gt. n) then
+-            ierr = -3
+-         end if
+-c
+-c        %----------------------------------------------%
+-c        | NP is the number of additional steps to      |
+-c        | extend the length NEV Lanczos factorization. |
+-c        %----------------------------------------------%
+-c
+-         np     = ncv - nev
+-c
+-         if (mxiter .le. 0)                     ierr = -4
+-         if (which .ne. 'LM' .and.
+-     &       which .ne. 'SM' .and.
+-     &       which .ne. 'LA' .and.
+-     &       which .ne. 'SA' .and.
+-     &       which .ne. 'BE')                   ierr = -5
+-         if (bmat .ne. 'I' .and. bmat .ne. 'G') ierr = -6
+-c
+-         if (lworkl .lt. ncv**2 + 8*ncv)        ierr = -7
+-         if (mode .lt. 1 .or. mode .gt. 5) then
+-                                                ierr = -10
+-         else if (mode .eq. 1 .and. bmat .eq. 'G') then
+-                                                ierr = -11
+-         else if (ishift .lt. 0 .or. ishift .gt. 1) then
+-                                                ierr = -12
+-         else if (nev .eq. 1 .and. which .eq. 'BE') then
+-                                                ierr = -13
+-         end if
+-c
+-c        %------------%
+-c        | Error Exit |
+-c        %------------%
+-c
+-         if (ierr .ne. 0) then
+-            info = ierr
+-            ido  = 99
+-            go to 9000
+-         end if
+-c
+-c        %------------------------%
+-c        | Set default parameters |
+-c        %------------------------%
+-c
+-         if (nb .le. 0)                         nb = 1
+-         if (tol .le. zero)                     tol = dlamch ('EpsMach')
+-c
+-c        %----------------------------------------------%
+-c        | NP is the number of additional steps to      |
+-c        | extend the length NEV Lanczos factorization. |
+-c        | NEV0 is the local variable designating the   |
+-c        | size of the invariant subspace desired.      |
+-c        %----------------------------------------------%
+-c
+-         np     = ncv - nev
+-         nev0   = nev
+-c
+-c        %-----------------------------%
+-c        | Zero out internal workspace |
+-c        %-----------------------------%
+-c
+-         do 10 j = 1, ncv**2 + 8*ncv
+-            workl(j) = zero
+- 10      continue
+-c
+-c        %-------------------------------------------------------%
+-c        | Pointer into WORKL for address of H, RITZ, BOUNDS, Q  |
+-c        | etc... and the remaining workspace.                   |
+-c        | Also update pointer to be used on output.             |
+-c        | Memory is laid out as follows:                        |
+-c        | workl(1:2*ncv) := generated tridiagonal matrix        |
+-c        | workl(2*ncv+1:2*ncv+ncv) := ritz values               |
+-c        | workl(3*ncv+1:3*ncv+ncv) := computed error bounds     |
+-c        | workl(4*ncv+1:4*ncv+ncv*ncv) := rotation matrix Q     |
+-c        | workl(4*ncv+ncv*ncv+1:7*ncv+ncv*ncv) := workspace     |
+-c        %-------------------------------------------------------%
+-c
+-         ldh    = ncv
+-         ldq    = ncv
+-         ih     = 1
+-         ritz   = ih     + 2*ldh
+-         bounds = ritz   + ncv
+-         iq     = bounds + ncv
+-         iw     = iq     + ncv**2
+-         next   = iw     + 3*ncv
+-c
+-         ipntr(4) = next
+-         ipntr(5) = ih
+-         ipntr(6) = ritz
+-         ipntr(7) = bounds
+-         ipntr(11) = iw
+-      end if
+-c
+-c     %-------------------------------------------------------%
+-c     | Carry out the Implicitly restarted Lanczos Iteration. |
+-c     %-------------------------------------------------------%
+-c
+-      call dsaup2
+-     &   ( ido, bmat, n, which, nev0, np, tol, resid, mode, iupd,
+-     &     ishift, mxiter, v, ldv, workl(ih), ldh, workl(ritz),
+-     &     workl(bounds), workl(iq), ldq, workl(iw), ipntr, workd,
+-     &     info )
+-c
+-c     %--------------------------------------------------%
+-c     | ido .ne. 99 implies use of reverse communication |
+-c     | to compute operations involving OP or shifts.    |
+-c     %--------------------------------------------------%
+-c
+-      if (ido .eq. 3) iparam(8) = np
+-      if (ido .ne. 99) go to 9000
+-c
+-      iparam(3) = mxiter
+-      iparam(5) = np
+-      iparam(9) = nopx
+-      iparam(10) = nbx
+-      iparam(11) = nrorth
+-c
+-c     %------------------------------------%
+-c     | Exit if there was an informational |
+-c     | error within dsaup2 .               |
+-c     %------------------------------------%
+-c
+-      if (info .lt. 0) go to 9000
+-      if (info .eq. 2) info = 3
+-c
+-      if (msglvl .gt. 0) then
+-         call ivout (logfil, 1, mxiter, ndigit,
+-     &               '_saupd: number of update iterations taken')
+-         call ivout (logfil, 1, np, ndigit,
+-     &               '_saupd: number of "converged" Ritz values')
+-         call dvout  (logfil, np, workl(Ritz), ndigit,
+-     &               '_saupd: final Ritz values')
+-         call dvout  (logfil, np, workl(Bounds), ndigit,
+-     &               '_saupd: corresponding error bounds')
+-      end if
+-c
+-      call arscnd (t1)
+-      tsaupd = t1 - t0
+-c
+-      if (msglvl .gt. 0) then
+-c
+-c        %--------------------------------------------------------%
+-c        | Version Number & Version Date are defined in version.h |
+-c        %--------------------------------------------------------%
+-c
+-         write (6,1000)
+-         write (6,1100) mxiter, nopx, nbx, nrorth, nitref, nrstrt,
+-     &                  tmvopx, tmvbx, tsaupd, tsaup2, tsaitr, titref,
+-     &                  tgetv0, tseigt, tsgets, tsapps, tsconv
+- 1000    format (//,
+-     &      5x, '==========================================',/
+-     &      5x, '= Symmetric implicit Arnoldi update code =',/
+-     &      5x, '= Version Number:', ' 2.4' , 19x, ' =',/
+-     &      5x, '= Version Date:  ', ' 07/31/96' , 14x, ' =',/
+-     &      5x, '==========================================',/
+-     &      5x, '= Summary of timing statistics           =',/
+-     &      5x, '==========================================',//)
+- 1100    format (
+-     &      5x, 'Total number update iterations             = ', i5,/
+-     &      5x, 'Total number of OP*x operations            = ', i5,/
+-     &      5x, 'Total number of B*x operations             = ', i5,/
+-     &      5x, 'Total number of reorthogonalization steps  = ', i5,/
+-     &      5x, 'Total number of iterative refinement steps = ', i5,/
+-     &      5x, 'Total number of restart steps              = ', i5,/
+-     &      5x, 'Total time in user OP*x operation          = ', f12.6,/
+-     &      5x, 'Total time in user B*x operation           = ', f12.6,/
+-     &      5x, 'Total time in Arnoldi update routine       = ', f12.6,/
+-     &      5x, 'Total time in saup2 routine                = ', f12.6,/
+-     &      5x, 'Total time in basic Arnoldi iteration loop = ', f12.6,/
+-     &      5x, 'Total time in reorthogonalization phase    = ', f12.6,/
+-     &      5x, 'Total time in (re)start vector generation  = ', f12.6,/
+-     &      5x, 'Total time in trid eigenvalue subproblem   = ', f12.6,/
+-     &      5x, 'Total time in getting the shifts           = ', f12.6,/
+-     &      5x, 'Total time in applying the shifts          = ', f12.6,/
+-     &      5x, 'Total time in convergence testing          = ', f12.6)
+-      end if
+-c
+- 9000 continue
+-c
+-      return
+-c
+-c     %---------------%
+-c     | End of dsaupd  |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dsconv.f
++++ /dev/null
+@@ -1,138 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dsconv
+-c
+-c\Description: 
+-c  Convergence testing for the symmetric Arnoldi eigenvalue routine.
+-c
+-c\Usage:
+-c  call dsconv
+-c     ( N, RITZ, BOUNDS, TOL, NCONV )
+-c
+-c\Arguments
+-c  N       Integer.  (INPUT)
+-c          Number of Ritz values to check for convergence.
+-c
+-c  RITZ    Double precision array of length N.  (INPUT)
+-c          The Ritz values to be checked for convergence.
+-c
+-c  BOUNDS  Double precision array of length N.  (INPUT)
+-c          Ritz estimates associated with the Ritz values in RITZ.
+-c
+-c  TOL     Double precision scalar.  (INPUT)
+-c          Desired relative accuracy for a Ritz value to be considered
+-c          "converged".
+-c
+-c  NCONV   Integer scalar.  (OUTPUT)
+-c          Number of "converged" Ritz values.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Routines called:
+-c     arscnd  ARPACK utility routine for timing.
+-c     dlamch  LAPACK routine that determines machine constants. 
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University 
+-c     Dept. of Computational &     Houston, Texas 
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\SCCS Information: @(#) 
+-c FILE: sconv.F   SID: 2.4   DATE OF SID: 4/19/96   RELEASE: 2
+-c
+-c\Remarks
+-c     1. Starting with version 2.4, this routine no longer uses the
+-c        Parlett strategy using the gap conditions. 
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dsconv (n, ritz, bounds, tol, nconv)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    n, nconv
+-      Double precision
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Double precision
+-     &           ritz(n), bounds(n)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i
+-      Double precision
+-     &           temp, eps23
+-c
+-c     %-------------------%
+-c     | External routines |
+-c     %-------------------%
+-c
+-      Double precision
+-     &           dlamch
+-      external   dlamch
+-
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    abs
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      call arscnd (t0)
+-c
+-      eps23 = dlamch('Epsilon-Machine') 
+-      eps23 = eps23**(2.0D+0 / 3.0D+0)
+-c
+-      nconv  = 0
+-      do 10 i = 1, n
+-c
+-c        %-----------------------------------------------------%
+-c        | The i-th Ritz value is considered "converged"       |
+-c        | when: bounds(i) .le. TOL*max(eps23, abs(ritz(i)))   |
+-c        %-----------------------------------------------------%
+-c
+-         temp = max( eps23, abs(ritz(i)) )
+-         if ( bounds(i) .le. tol*temp ) then
+-            nconv = nconv + 1
+-         end if
+-c
+-   10 continue
+-c 
+-      call arscnd (t1)
+-      tsconv = tsconv + (t1 - t0)
+-c 
+-      return
+-c
+-c     %---------------%
+-c     | End of dsconv |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dseigt.f
++++ /dev/null
+@@ -1,181 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dseigt
+-c
+-c\Description: 
+-c  Compute the eigenvalues of the current symmetric tridiagonal matrix
+-c  and the corresponding error bounds given the current residual norm.
+-c
+-c\Usage:
+-c  call dseigt
+-c     ( RNORM, N, H, LDH, EIG, BOUNDS, WORKL, IERR )
+-c
+-c\Arguments
+-c  RNORM   Double precision scalar.  (INPUT)
+-c          RNORM contains the residual norm corresponding to the current
+-c          symmetric tridiagonal matrix H.
+-c
+-c  N       Integer.  (INPUT)
+-c          Size of the symmetric tridiagonal matrix H.
+-c
+-c  H       Double precision N by 2 array.  (INPUT)
+-c          H contains the symmetric tridiagonal matrix with the 
+-c          subdiagonal in the first column starting at H(2,1) and the 
+-c          main diagonal in second column.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling 
+-c          program.
+-c
+-c  EIG     Double precision array of length N.  (OUTPUT)
+-c          On output, EIG contains the N eigenvalues of H possibly 
+-c          unsorted.  The BOUNDS arrays are returned in the
+-c          same sorted order as EIG.
+-c
+-c  BOUNDS  Double precision array of length N.  (OUTPUT)
+-c          On output, BOUNDS contains the error estimates corresponding
+-c          to the eigenvalues EIG.  This is equal to RNORM times the
+-c          last components of the eigenvectors corresponding to the
+-c          eigenvalues in EIG.
+-c
+-c  WORKL   Double precision work array of length 3*N.  (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.
+-c
+-c  IERR    Integer.  (OUTPUT)
+-c          Error exit flag from dstqrb.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     dstqrb  ARPACK routine that computes the eigenvalues and the
+-c             last components of the eigenvectors of a symmetric
+-c             and tridiagonal matrix.
+-c     arscnd  ARPACK utility routine for timing.
+-c     dvout   ARPACK utility routine that prints vectors.
+-c     dcopy   Level 1 BLAS that copies one vector to another.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University 
+-c     Dept. of Computational &     Houston, Texas 
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.4'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: seigt.F   SID: 2.4   DATE OF SID: 8/27/96   RELEASE: 2
+-c
+-c\Remarks
+-c     None
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dseigt 
+-     &   ( rnorm, n, h, ldh, eig, bounds, workl, ierr )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    ierr, ldh, n
+-      Double precision
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Double precision
+-     &           eig(n), bounds(n), h(ldh,2), workl(3*n)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision
+-     &           zero
+-      parameter (zero = 0.0D+0)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i, k, msglvl
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   dcopy, dstqrb, dvout, arscnd
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------% 
+-c
+-      call arscnd (t0)
+-      msglvl = mseigt
+-c
+-      if (msglvl .gt. 0) then
+-         call dvout (logfil, n, h(1,2), ndigit,
+-     &              '_seigt: main diagonal of matrix H')
+-         if (n .gt. 1) then
+-         call dvout (logfil, n-1, h(2,1), ndigit,
+-     &              '_seigt: sub diagonal of matrix H')
+-         end if
+-      end if
+-c
+-      call dcopy  (n, h(1,2), 1, eig, 1)
+-      call dcopy  (n-1, h(2,1), 1, workl, 1)
+-      call dstqrb (n, eig, workl, bounds, workl(n+1), ierr)
+-      if (ierr .ne. 0) go to 9000
+-      if (msglvl .gt. 1) then
+-         call dvout (logfil, n, bounds, ndigit,
+-     &              '_seigt: last row of the eigenvector matrix for H')
+-      end if
+-c
+-c     %-----------------------------------------------%
+-c     | Finally determine the error bounds associated |
+-c     | with the n Ritz values of H.                  |
+-c     %-----------------------------------------------%
+-c
+-      do 30 k = 1, n
+-         bounds(k) = rnorm*abs(bounds(k))
+-   30 continue
+-c 
+-      call arscnd (t1)
+-      tseigt = tseigt + (t1 - t0)
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of dseigt |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dsesrt.f
++++ /dev/null
+@@ -1,217 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dsesrt
+-c
+-c\Description:
+-c  Sort the array X in the order specified by WHICH and optionally 
+-c  apply the permutation to the columns of the matrix A.
+-c
+-c\Usage:
+-c  call dsesrt
+-c     ( WHICH, APPLY, N, X, NA, A, LDA)
+-c
+-c\Arguments
+-c  WHICH   Character*2.  (Input)
+-c          'LM' -> X is sorted into increasing order of magnitude.
+-c          'SM' -> X is sorted into decreasing order of magnitude.
+-c          'LA' -> X is sorted into increasing order of algebraic.
+-c          'SA' -> X is sorted into decreasing order of algebraic.
+-c
+-c  APPLY   Logical.  (Input)
+-c          APPLY = .TRUE.  -> apply the sorted order to A.
+-c          APPLY = .FALSE. -> do not apply the sorted order to A.
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the array X.
+-c
+-c  X      Double precision array of length N.  (INPUT/OUTPUT)
+-c          The array to be sorted.
+-c
+-c  NA      Integer.  (INPUT)
+-c          Number of rows of the matrix A.
+-c
+-c  A      Double precision array of length NA by N.  (INPUT/OUTPUT)
+-c         
+-c  LDA     Integer.  (INPUT)
+-c          Leading dimension of A.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Routines
+-c     dswap  Level 1 BLAS that swaps the contents of two vectors.
+-c
+-c\Authors
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University 
+-c     Dept. of Computational &     Houston, Texas 
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\Revision history:
+-c     12/15/93: Version ' 2.1'.
+-c               Adapted from the sort routine in LANSO and 
+-c               the ARPACK code dsortr
+-c
+-c\SCCS Information: @(#) 
+-c FILE: sesrt.F   SID: 2.3   DATE OF SID: 4/19/96   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dsesrt (which, apply, n, x, na, a, lda)
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character*2 which
+-      logical    apply
+-      integer    lda, n, na
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Double precision
+-     &           x(0:n-1), a(lda, 0:n-1)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i, igap, j
+-      Double precision
+-     &           temp
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   dswap
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      igap = n / 2
+-c 
+-      if (which .eq. 'SA') then
+-c
+-c        X is sorted into decreasing order of algebraic.
+-c
+-   10    continue
+-         if (igap .eq. 0) go to 9000
+-         do 30 i = igap, n-1
+-            j = i-igap
+-   20       continue
+-c
+-            if (j.lt.0) go to 30
+-c
+-            if (x(j).lt.x(j+igap)) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-               if (apply) call dswap( na, a(1, j), 1, a(1,j+igap), 1)
+-            else
+-               go to 30
+-            endif
+-            j = j-igap
+-            go to 20
+-   30    continue
+-         igap = igap / 2
+-         go to 10
+-c
+-      else if (which .eq. 'SM') then
+-c
+-c        X is sorted into decreasing order of magnitude.
+-c
+-   40    continue
+-         if (igap .eq. 0) go to 9000
+-         do 60 i = igap, n-1
+-            j = i-igap
+-   50       continue
+-c
+-            if (j.lt.0) go to 60
+-c
+-            if (abs(x(j)).lt.abs(x(j+igap))) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-               if (apply) call dswap( na, a(1, j), 1, a(1,j+igap), 1)
+-            else
+-               go to 60
+-            endif
+-            j = j-igap
+-            go to 50
+-   60    continue
+-         igap = igap / 2
+-         go to 40
+-c
+-      else if (which .eq. 'LA') then
+-c
+-c        X is sorted into increasing order of algebraic.
+-c
+-   70    continue
+-         if (igap .eq. 0) go to 9000
+-         do 90 i = igap, n-1
+-            j = i-igap
+-   80       continue
+-c
+-            if (j.lt.0) go to 90
+-c           
+-            if (x(j).gt.x(j+igap)) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-               if (apply) call dswap( na, a(1, j), 1, a(1,j+igap), 1)
+-            else
+-               go to 90
+-            endif
+-            j = j-igap
+-            go to 80
+-   90    continue
+-         igap = igap / 2
+-         go to 70
+-c 
+-      else if (which .eq. 'LM') then
+-c
+-c        X is sorted into increasing order of magnitude.
+-c
+-  100    continue
+-         if (igap .eq. 0) go to 9000
+-         do 120 i = igap, n-1
+-            j = i-igap
+-  110       continue
+-c
+-            if (j.lt.0) go to 120
+-c
+-            if (abs(x(j)).gt.abs(x(j+igap))) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-               if (apply) call dswap( na, a(1, j), 1, a(1,j+igap), 1)
+-            else
+-               go to 120
+-            endif
+-            j = j-igap
+-            go to 110
+-  120    continue
+-         igap = igap / 2
+-         go to 100
+-      end if
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of dsesrt |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dseupd.f
++++ /dev/null
+@@ -1,857 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: dseupd 
+-c
+-c\Description: 
+-c
+-c  This subroutine returns the converged approximations to eigenvalues
+-c  of A*z = lambda*B*z and (optionally):
+-c
+-c      (1) the corresponding approximate eigenvectors,
+-c
+-c      (2) an orthonormal (Lanczos) basis for the associated approximate
+-c          invariant subspace,
+-c
+-c      (3) Both.
+-c
+-c  There is negligible additional cost to obtain eigenvectors.  An orthonormal
+-c  (Lanczos) basis is always computed.  There is an additional storage cost 
+-c  of n*nev if both are requested (in this case a separate array Z must be 
+-c  supplied).
+-c
+-c  These quantities are obtained from the Lanczos factorization computed
+-c  by DSAUPD  for the linear operator OP prescribed by the MODE selection
+-c  (see IPARAM(7) in DSAUPD  documentation.)  DSAUPD  must be called before
+-c  this routine is called. These approximate eigenvalues and vectors are 
+-c  commonly called Ritz values and Ritz vectors respectively.  They are 
+-c  referred to as such in the comments that follow.   The computed orthonormal 
+-c  basis for the invariant subspace corresponding to these Ritz values is 
+-c  referred to as a Lanczos basis.
+-c
+-c  See documentation in the header of the subroutine DSAUPD  for a definition 
+-c  of OP as well as other terms and the relation of computed Ritz values 
+-c  and vectors of OP with respect to the given problem  A*z = lambda*B*z.  
+-c
+-c  The approximate eigenvalues of the original problem are returned in
+-c  ascending algebraic order.  The user may elect to call this routine
+-c  once for each desired Ritz vector and store it peripherally if desired.
+-c  There is also the option of computing a selected set of these vectors
+-c  with a single call.
+-c
+-c\Usage:
+-c  call dseupd  
+-c     ( RVEC, HOWMNY, SELECT, D, Z, LDZ, SIGMA, BMAT, N, WHICH, NEV, TOL,
+-c       RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD, WORKL, LWORKL, INFO )
+-c
+-c  RVEC    LOGICAL  (INPUT) 
+-c          Specifies whether Ritz vectors corresponding to the Ritz value 
+-c          approximations to the eigenproblem A*z = lambda*B*z are computed.
+-c
+-c             RVEC = .FALSE.     Compute Ritz values only.
+-c
+-c             RVEC = .TRUE.      Compute Ritz vectors.
+-c
+-c  HOWMNY  Character*1  (INPUT) 
+-c          Specifies how many Ritz vectors are wanted and the form of Z
+-c          the matrix of Ritz vectors. See remark 1 below.
+-c          = 'A': compute NEV Ritz vectors;
+-c          = 'S': compute some of the Ritz vectors, specified
+-c                 by the logical array SELECT.
+-c
+-c  SELECT  Logical array of dimension NCV.  (INPUT/WORKSPACE)
+-c          If HOWMNY = 'S', SELECT specifies the Ritz vectors to be
+-c          computed. To select the Ritz vector corresponding to a
+-c          Ritz value D(j), SELECT(j) must be set to .TRUE.. 
+-c          If HOWMNY = 'A' , SELECT is used as a workspace for
+-c          reordering the Ritz values.
+-c
+-c  D       Double precision  array of dimension NEV.  (OUTPUT)
+-c          On exit, D contains the Ritz value approximations to the
+-c          eigenvalues of A*z = lambda*B*z. The values are returned
+-c          in ascending order. If IPARAM(7) = 3,4,5 then D represents
+-c          the Ritz values of OP computed by dsaupd  transformed to
+-c          those of the original eigensystem A*z = lambda*B*z. If 
+-c          IPARAM(7) = 1,2 then the Ritz values of OP are the same 
+-c          as the those of A*z = lambda*B*z.
+-c
+-c  Z       Double precision  N by NEV array if HOWMNY = 'A'.  (OUTPUT)
+-c          On exit, Z contains the B-orthonormal Ritz vectors of the
+-c          eigensystem A*z = lambda*B*z corresponding to the Ritz
+-c          value approximations.
+-c          If  RVEC = .FALSE. then Z is not referenced.
+-c          NOTE: The array Z may be set equal to first NEV columns of the 
+-c          Arnoldi/Lanczos basis array V computed by DSAUPD .
+-c
+-c  LDZ     Integer.  (INPUT)
+-c          The leading dimension of the array Z.  If Ritz vectors are
+-c          desired, then  LDZ .ge.  max( 1, N ).  In any case,  LDZ .ge. 1.
+-c
+-c  SIGMA   Double precision   (INPUT)
+-c          If IPARAM(7) = 3,4,5 represents the shift. Not referenced if
+-c          IPARAM(7) = 1 or 2.
+-c
+-c
+-c  **** The remaining arguments MUST be the same as for the   ****
+-c  **** call to DSAUPD  that was just completed.               ****
+-c
+-c  NOTE: The remaining arguments
+-c
+-c           BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR,
+-c           WORKD, WORKL, LWORKL, INFO
+-c
+-c         must be passed directly to DSEUPD  following the last call
+-c         to DSAUPD .  These arguments MUST NOT BE MODIFIED between
+-c         the the last call to DSAUPD  and the call to DSEUPD .
+-c
+-c  Two of these parameters (WORKL, INFO) are also output parameters:
+-c
+-c  WORKL   Double precision  work array of length LWORKL.  (OUTPUT/WORKSPACE)
+-c          WORKL(1:4*ncv) contains information obtained in
+-c          dsaupd .  They are not changed by dseupd .
+-c          WORKL(4*ncv+1:ncv*ncv+8*ncv) holds the
+-c          untransformed Ritz values, the computed error estimates,
+-c          and the associated eigenvector matrix of H.
+-c
+-c          Note: IPNTR(8:10) contains the pointer into WORKL for addresses
+-c          of the above information computed by dseupd .
+-c          -------------------------------------------------------------
+-c          IPNTR(8): pointer to the NCV RITZ values of the original system.
+-c          IPNTR(9): pointer to the NCV corresponding error bounds.
+-c          IPNTR(10): pointer to the NCV by NCV matrix of eigenvectors
+-c                     of the tridiagonal matrix T. Only referenced by
+-c                     dseupd  if RVEC = .TRUE. See Remarks.
+-c          -------------------------------------------------------------
+-c
+-c  INFO    Integer.  (OUTPUT)
+-c          Error flag on output.
+-c          =  0: Normal exit.
+-c          = -1: N must be positive.
+-c          = -2: NEV must be positive.
+-c          = -3: NCV must be greater than NEV and less than or equal to N.
+-c          = -5: WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.
+-c          = -6: BMAT must be one of 'I' or 'G'.
+-c          = -7: Length of private work WORKL array is not sufficient.
+-c          = -8: Error return from trid. eigenvalue calculation;
+-c                Information error from LAPACK routine dsteqr .
+-c          = -9: Starting vector is zero.
+-c          = -10: IPARAM(7) must be 1,2,3,4,5.
+-c          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
+-c          = -12: NEV and WHICH = 'BE' are incompatible.
+-c          = -14: DSAUPD  did not find any eigenvalues to sufficient
+-c                 accuracy.
+-c          = -15: HOWMNY must be one of 'A' or 'S' if RVEC = .true.
+-c          = -16: HOWMNY = 'S' not yet implemented
+-c          = -17: DSEUPD  got a different count of the number of converged
+-c                 Ritz values than DSAUPD  got.  This indicates the user
+-c                 probably made an error in passing data from DSAUPD  to
+-c                 DSEUPD  or that the data was modified before entering 
+-c                 DSEUPD .
+-c
+-c\BeginLib
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c  3. B.N. Parlett, "The Symmetric Eigenvalue Problem". Prentice-Hall,
+-c     1980.
+-c  4. B.N. Parlett, B. Nour-Omid, "Towards a Black Box Lanczos Program",
+-c     Computer Physics Communications, 53 (1989), pp 169-179.
+-c  5. B. Nour-Omid, B.N. Parlett, T. Ericson, P.S. Jensen, "How to
+-c     Implement the Spectral Transformation", Math. Comp., 48 (1987),
+-c     pp 663-673.
+-c  6. R.G. Grimes, J.G. Lewis and H.D. Simon, "A Shifted Block Lanczos 
+-c     Algorithm for Solving Sparse Symmetric Generalized Eigenproblems", 
+-c     SIAM J. Matr. Anal. Apps.,  January (1993).
+-c  7. L. Reichel, W.B. Gragg, "Algorithm 686: FORTRAN Subroutines
+-c     for Updating the QR decomposition", ACM TOMS, December 1990,
+-c     Volume 16 Number 4, pp 369-377.
+-c
+-c\Remarks
+-c  1. The converged Ritz values are always returned in increasing 
+-c     (algebraic) order.
+-c
+-c  2. Currently only HOWMNY = 'A' is implemented. It is included at this
+-c     stage for the user who wants to incorporate it. 
+-c
+-c\Routines called:
+-c     dsesrt   ARPACK routine that sorts an array X, and applies the
+-c             corresponding permutation to a matrix A.
+-c     dsortr   dsortr   ARPACK sorting routine.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     dvout    ARPACK utility routine that prints vectors.
+-c     dgeqr2   LAPACK routine that computes the QR factorization of
+-c             a matrix.
+-c     dlacpy   LAPACK matrix copy routine.
+-c     dlamch   LAPACK routine that determines machine constants.
+-c     dorm2r   LAPACK routine that applies an orthogonal matrix in
+-c             factored form.
+-c     dsteqr   LAPACK routine that computes eigenvalues and eigenvectors
+-c             of a tridiagonal matrix.
+-c     dger     Level 2 BLAS rank one update to a matrix.
+-c     dcopy    Level 1 BLAS that copies one vector to another .
+-c     dnrm2    Level 1 BLAS that computes the norm of a vector.
+-c     dscal    Level 1 BLAS that scales a vector.
+-c     dswap    Level 1 BLAS that swaps the contents of two vectors.
+-
+-c\Authors
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Chao Yang                    Houston, Texas
+-c     Dept. of Computational & 
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c 
+-c\Revision history:
+-c     12/15/93: Version ' 2.1'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: seupd.F   SID: 2.11   DATE OF SID: 04/10/01   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-      subroutine dseupd (rvec  , howmny, select, d    ,
+-     &                   z     , ldz   , sigma , bmat ,
+-     &                   n     , which , nev   , tol  ,
+-     &                   resid , ncv   , v     , ldv  ,
+-     &                   iparam, ipntr , workd , workl,
+-     &                   lworkl, info )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat, howmny, which*2
+-      logical    rvec
+-      integer    info, ldz, ldv, lworkl, n, ncv, nev
+-      Double precision      
+-     &           sigma, tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    iparam(7), ipntr(11)
+-      logical    select(ncv)
+-      Double precision 
+-     &           d(nev)     , resid(n)  , v(ldv,ncv),
+-     &           z(ldz, nev), workd(2*n), workl(lworkl)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision 
+-     &           one, zero
+-      parameter (one = 1.0D+0 , zero = 0.0D+0 )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      character  type*6
+-      integer    bounds , ierr   , ih    , ihb   , ihd   ,
+-     &           iq     , iw     , j     , k     , ldh   ,
+-     &           ldq    , mode   , msglvl, nconv , next  ,
+-     &           ritz   , irz    , ibd   , np    , ishift,
+-     &           leftptr, rghtptr, numcnv, jj
+-      Double precision 
+-     &           bnorm2 , rnorm, temp, temp1, eps23
+-      logical    reord
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   dcopy  , dger   , dgeqr2 , dlacpy , dorm2r , dscal , 
+-     &           dsesrt , dsteqr , dswap  , dvout  , ivout , dsortr 
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision 
+-     &           dnrm2 , dlamch 
+-      external   dnrm2 , dlamch 
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    min
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c 
+-c     %------------------------%
+-c     | Set default parameters |
+-c     %------------------------%
+-c
+-      msglvl = mseupd
+-      mode = iparam(7)
+-      nconv = iparam(5)
+-      info = 0
+-c
+-c     %--------------%
+-c     | Quick return |
+-c     %--------------%
+-c
+-      if (nconv .eq. 0) go to 9000
+-      ierr = 0
+-c
+-      if (nconv .le. 0)                        ierr = -14 
+-      if (n .le. 0)                            ierr = -1
+-      if (nev .le. 0)                          ierr = -2
+-      if (ncv .le. nev .or.  ncv .gt. n)       ierr = -3
+-      if (which .ne. 'LM' .and.
+-     &    which .ne. 'SM' .and.
+-     &    which .ne. 'LA' .and.
+-     &    which .ne. 'SA' .and.
+-     &    which .ne. 'BE')                     ierr = -5
+-      if (bmat .ne. 'I' .and. bmat .ne. 'G')   ierr = -6
+-      if ( (howmny .ne. 'A' .and.
+-     &           howmny .ne. 'P' .and.
+-     &           howmny .ne. 'S') .and. rvec ) 
+-     &                                         ierr = -15
+-      if (rvec .and. howmny .eq. 'S')           ierr = -16
+-c
+-      if (rvec .and. lworkl .lt. ncv**2+8*ncv) ierr = -7
+-c     
+-      if (mode .eq. 1 .or. mode .eq. 2) then
+-         type = 'REGULR'
+-      else if (mode .eq. 3 ) then
+-         type = 'SHIFTI'
+-      else if (mode .eq. 4 ) then
+-         type = 'BUCKLE'
+-      else if (mode .eq. 5 ) then
+-         type = 'CAYLEY'
+-      else 
+-                                               ierr = -10
+-      end if
+-      if (mode .eq. 1 .and. bmat .eq. 'G')     ierr = -11
+-      if (nev .eq. 1 .and. which .eq. 'BE')    ierr = -12
+-c
+-c     %------------%
+-c     | Error Exit |
+-c     %------------%
+-c
+-      if (ierr .ne. 0) then
+-         info = ierr
+-         go to 9000
+-      end if
+-c     
+-c     %-------------------------------------------------------%
+-c     | Pointer into WORKL for address of H, RITZ, BOUNDS, Q  |
+-c     | etc... and the remaining workspace.                   |
+-c     | Also update pointer to be used on output.             |
+-c     | Memory is laid out as follows:                        |
+-c     | workl(1:2*ncv) := generated tridiagonal matrix H      |
+-c     |       The subdiagonal is stored in workl(2:ncv).      |
+-c     |       The dead spot is workl(1) but upon exiting      |
+-c     |       dsaupd  stores the B-norm of the last residual   |
+-c     |       vector in workl(1). We use this !!!             |
+-c     | workl(2*ncv+1:2*ncv+ncv) := ritz values               |
+-c     |       The wanted values are in the first NCONV spots. |
+-c     | workl(3*ncv+1:3*ncv+ncv) := computed Ritz estimates   |
+-c     |       The wanted values are in the first NCONV spots. |
+-c     | NOTE: workl(1:4*ncv) is set by dsaupd  and is not      |
+-c     |       modified by dseupd .                             |
+-c     %-------------------------------------------------------%
+-c
+-c     %-------------------------------------------------------%
+-c     | The following is used and set by dseupd .              |
+-c     | workl(4*ncv+1:4*ncv+ncv) := used as workspace during  |
+-c     |       computation of the eigenvectors of H. Stores    |
+-c     |       the diagonal of H. Upon EXIT contains the NCV   |
+-c     |       Ritz values of the original system. The first   |
+-c     |       NCONV spots have the wanted values. If MODE =   |
+-c     |       1 or 2 then will equal workl(2*ncv+1:3*ncv).    |
+-c     | workl(5*ncv+1:5*ncv+ncv) := used as workspace during  |
+-c     |       computation of the eigenvectors of H. Stores    |
+-c     |       the subdiagonal of H. Upon EXIT contains the    |
+-c     |       NCV corresponding Ritz estimates of the         |
+-c     |       original system. The first NCONV spots have the |
+-c     |       wanted values. If MODE = 1,2 then will equal    |
+-c     |       workl(3*ncv+1:4*ncv).                           |
+-c     | workl(6*ncv+1:6*ncv+ncv*ncv) := orthogonal Q that is  |
+-c     |       the eigenvector matrix for H as returned by     |
+-c     |       dsteqr . Not referenced if RVEC = .False.        |
+-c     |       Ordering follows that of workl(4*ncv+1:5*ncv)   |
+-c     | workl(6*ncv+ncv*ncv+1:6*ncv+ncv*ncv+2*ncv) :=         |
+-c     |       Workspace. Needed by dsteqr  and by dseupd .      |
+-c     | GRAND total of NCV*(NCV+8) locations.                 |
+-c     %-------------------------------------------------------%
+-c
+-c
+-      ih     = ipntr(5)
+-      ritz   = ipntr(6)
+-      bounds = ipntr(7)
+-      ldh    = ncv
+-      ldq    = ncv
+-      ihd    = bounds + ldh
+-      ihb    = ihd    + ldh
+-      iq     = ihb    + ldh
+-      iw     = iq     + ldh*ncv
+-      next   = iw     + 2*ncv
+-      ipntr(4)  = next
+-      ipntr(8)  = ihd
+-      ipntr(9)  = ihb
+-      ipntr(10) = iq
+-c
+-c     %----------------------------------------%
+-c     | irz points to the Ritz values computed |
+-c     |     by _seigt before exiting _saup2.   |
+-c     | ibd points to the Ritz estimates       |
+-c     |     computed by _seigt before exiting  |
+-c     |     _saup2.                            |
+-c     %----------------------------------------%
+-c
+-      irz = ipntr(11)+ncv
+-      ibd = irz+ncv
+-c
+-c
+-c     %---------------------------------%
+-c     | Set machine dependent constant. |
+-c     %---------------------------------%
+-c
+-      eps23 = dlamch ('Epsilon-Machine') 
+-      eps23 = eps23**(2.0D+0  / 3.0D+0 )
+-c
+-c     %---------------------------------------%
+-c     | RNORM is B-norm of the RESID(1:N).    |
+-c     | BNORM2 is the 2 norm of B*RESID(1:N). |
+-c     | Upon exit of dsaupd  WORKD(1:N) has    |
+-c     | B*RESID(1:N).                         |
+-c     %---------------------------------------%
+-c
+-      rnorm = workl(ih)
+-      if (bmat .eq. 'I') then
+-         bnorm2 = rnorm
+-      else if (bmat .eq. 'G') then
+-         bnorm2 = dnrm2 (n, workd, 1)
+-      end if
+-c
+-      if (msglvl .gt. 2) then
+-         call dvout (logfil, ncv, workl(irz), ndigit,
+-     &   '_seupd: Ritz values passed in from _SAUPD.')
+-         call dvout (logfil, ncv, workl(ibd), ndigit,
+-     &   '_seupd: Ritz estimates passed in from _SAUPD.')
+-      end if
+-c
+-      if (rvec) then
+-c
+-         reord = .false.
+-c
+-c        %---------------------------------------------------%
+-c        | Use the temporary bounds array to store indices   |
+-c        | These will be used to mark the select array later |
+-c        %---------------------------------------------------%
+-c
+-         do 10 j = 1,ncv
+-            workl(bounds+j-1) = j
+-            select(j) = .false.
+-   10    continue
+-c
+-c        %-------------------------------------%
+-c        | Select the wanted Ritz values.      |
+-c        | Sort the Ritz values so that the    |
+-c        | wanted ones appear at the tailing   |
+-c        | NEV positions of workl(irr) and     |
+-c        | workl(iri).  Move the corresponding |
+-c        | error estimates in workl(bound)     |
+-c        | accordingly.                        |
+-c        %-------------------------------------%
+-c
+-         np     = ncv - nev
+-         ishift = 0
+-         call dsgets (ishift, which       , nev          ,
+-     &                np    , workl(irz)  , workl(bounds),
+-     &                workl)
+-c
+-         if (msglvl .gt. 2) then
+-            call dvout (logfil, ncv, workl(irz), ndigit,
+-     &      '_seupd: Ritz values after calling _SGETS.')
+-            call dvout (logfil, ncv, workl(bounds), ndigit,
+-     &      '_seupd: Ritz value indices after calling _SGETS.')
+-         end if
+-c
+-c        %-----------------------------------------------------%
+-c        | Record indices of the converged wanted Ritz values  |
+-c        | Mark the select array for possible reordering       |
+-c        %-----------------------------------------------------%
+-c
+-         numcnv = 0
+-         do 11 j = 1,ncv
+-            temp1 = max(eps23, abs(workl(irz+ncv-j)) )
+-            jj = workl(bounds + ncv - j)
+-            if (numcnv .lt. nconv .and.
+-     &          workl(ibd+jj-1) .le. tol*temp1) then
+-               select(jj) = .true.
+-               numcnv = numcnv + 1
+-               if (jj .gt. nev) reord = .true.
+-            endif
+-   11    continue
+-c
+-c        %-----------------------------------------------------------%
+-c        | Check the count (numcnv) of converged Ritz values with    |
+-c        | the number (nconv) reported by _saupd.  If these two      |
+-c        | are different then there has probably been an error       |
+-c        | caused by incorrect passing of the _saupd data.           |
+-c        %-----------------------------------------------------------%
+-c
+-         if (msglvl .gt. 2) then
+-             call ivout(logfil, 1, numcnv, ndigit,
+-     &            '_seupd: Number of specified eigenvalues')
+-             call ivout(logfil, 1, nconv, ndigit,
+-     &            '_seupd: Number of "converged" eigenvalues')
+-         end if
+-c
+-         if (numcnv .ne. nconv) then
+-            info = -17
+-            go to 9000
+-         end if
+-c
+-c        %-----------------------------------------------------------%
+-c        | Call LAPACK routine _steqr to compute the eigenvalues and |
+-c        | eigenvectors of the final symmetric tridiagonal matrix H. |
+-c        | Initialize the eigenvector matrix Q to the identity.      |
+-c        %-----------------------------------------------------------%
+-c
+-         call dcopy (ncv-1, workl(ih+1), 1, workl(ihb), 1)
+-         call dcopy (ncv, workl(ih+ldh), 1, workl(ihd), 1)
+-c
+-         call dsteqr ('Identity', ncv, workl(ihd), workl(ihb),
+-     &                workl(iq) , ldq, workl(iw), ierr)
+-c
+-         if (ierr .ne. 0) then
+-            info = -8
+-            go to 9000
+-         end if
+-c
+-         if (msglvl .gt. 1) then
+-            call dcopy (ncv, workl(iq+ncv-1), ldq, workl(iw), 1)
+-            call dvout (logfil, ncv, workl(ihd), ndigit,
+-     &          '_seupd: NCV Ritz values of the final H matrix')
+-            call dvout (logfil, ncv, workl(iw), ndigit,
+-     &           '_seupd: last row of the eigenvector matrix for H')
+-         end if
+-c
+-         if (reord) then
+-c
+-c           %---------------------------------------------%
+-c           | Reordered the eigenvalues and eigenvectors  |
+-c           | computed by _steqr so that the "converged"  |
+-c           | eigenvalues appear in the first NCONV       |
+-c           | positions of workl(ihd), and the associated |
+-c           | eigenvectors appear in the first NCONV      |
+-c           | columns.                                    |
+-c           %---------------------------------------------%
+-c
+-            leftptr = 1
+-            rghtptr = ncv
+-c
+-            if (ncv .eq. 1) go to 30
+-c
+- 20         if (select(leftptr)) then
+-c
+-c              %-------------------------------------------%
+-c              | Search, from the left, for the first Ritz |
+-c              | value that has not converged.             |
+-c              %-------------------------------------------%
+-c
+-               leftptr = leftptr + 1
+-c
+-            else if ( .not. select(rghtptr)) then
+-c
+-c              %----------------------------------------------%
+-c              | Search, from the right, the first Ritz value |
+-c              | that has converged.                          |
+-c              %----------------------------------------------%
+-c
+-               rghtptr = rghtptr - 1
+-c
+-            else
+-c
+-c              %----------------------------------------------%
+-c              | Swap the Ritz value on the left that has not |
+-c              | converged with the Ritz value on the right   |
+-c              | that has converged.  Swap the associated     |
+-c              | eigenvector of the tridiagonal matrix H as   |
+-c              | well.                                        |
+-c              %----------------------------------------------%
+-c
+-               temp = workl(ihd+leftptr-1)
+-               workl(ihd+leftptr-1) = workl(ihd+rghtptr-1)
+-               workl(ihd+rghtptr-1) = temp
+-               call dcopy (ncv, workl(iq+ncv*(leftptr-1)), 1,
+-     &                    workl(iw), 1)
+-               call dcopy (ncv, workl(iq+ncv*(rghtptr-1)), 1,
+-     &                    workl(iq+ncv*(leftptr-1)), 1)
+-               call dcopy (ncv, workl(iw), 1,
+-     &                    workl(iq+ncv*(rghtptr-1)), 1)
+-               leftptr = leftptr + 1
+-               rghtptr = rghtptr - 1
+-c
+-            end if
+-c
+-            if (leftptr .lt. rghtptr) go to 20
+-c
+-         end if
+-c
+- 30      if (msglvl .gt. 2) then
+-             call dvout  (logfil, ncv, workl(ihd), ndigit,
+-     &       '_seupd: The eigenvalues of H--reordered')
+-         end if
+-c
+-c        %----------------------------------------%
+-c        | Load the converged Ritz values into D. |
+-c        %----------------------------------------%
+-c
+-         call dcopy (nconv, workl(ihd), 1, d, 1)
+-c
+-      else
+-c
+-c        %-----------------------------------------------------%
+-c        | Ritz vectors not required. Load Ritz values into D. |
+-c        %-----------------------------------------------------%
+-c
+-         call dcopy (nconv, workl(ritz), 1, d, 1)
+-         call dcopy (ncv, workl(ritz), 1, workl(ihd), 1)
+-c
+-      end if
+-c
+-c     %------------------------------------------------------------------%
+-c     | Transform the Ritz values and possibly vectors and corresponding |
+-c     | Ritz estimates of OP to those of A*x=lambda*B*x. The Ritz values |
+-c     | (and corresponding data) are returned in ascending order.        |
+-c     %------------------------------------------------------------------%
+-c
+-      if (type .eq. 'REGULR') then
+-c
+-c        %---------------------------------------------------------%
+-c        | Ascending sort of wanted Ritz values, vectors and error |
+-c        | bounds. Not necessary if only Ritz values are desired.  |
+-c        %---------------------------------------------------------%
+-c
+-         if (rvec) then
+-            call dsesrt ('LA', rvec , nconv, d, ncv, workl(iq), ldq)
+-         else
+-            call dcopy (ncv, workl(bounds), 1, workl(ihb), 1)
+-         end if
+-c
+-      else 
+-c 
+-c        %-------------------------------------------------------------%
+-c        | *  Make a copy of all the Ritz values.                      |
+-c        | *  Transform the Ritz values back to the original system.   |
+-c        |    For TYPE = 'SHIFTI' the transformation is                |
+-c        |             lambda = 1/theta + sigma                        |
+-c        |    For TYPE = 'BUCKLE' the transformation is                |
+-c        |             lambda = sigma * theta / ( theta - 1 )          |
+-c        |    For TYPE = 'CAYLEY' the transformation is                |
+-c        |             lambda = sigma * (theta + 1) / (theta - 1 )     |
+-c        |    where the theta are the Ritz values returned by dsaupd .  |
+-c        | NOTES:                                                      |
+-c        | *The Ritz vectors are not affected by the transformation.   |
+-c        |  They are only reordered.                                   |
+-c        %-------------------------------------------------------------%
+-c
+-         call dcopy  (ncv, workl(ihd), 1, workl(iw), 1)
+-         if (type .eq. 'SHIFTI') then 
+-            do 40 k=1, ncv
+-               workl(ihd+k-1) = one / workl(ihd+k-1) + sigma
+-  40        continue
+-         else if (type .eq. 'BUCKLE') then
+-            do 50 k=1, ncv
+-               workl(ihd+k-1) = sigma * workl(ihd+k-1) / 
+-     &                          (workl(ihd+k-1) - one)
+-  50        continue
+-         else if (type .eq. 'CAYLEY') then
+-            do 60 k=1, ncv
+-               workl(ihd+k-1) = sigma * (workl(ihd+k-1) + one) /
+-     &                          (workl(ihd+k-1) - one)
+-  60        continue
+-         end if
+-c 
+-c        %-------------------------------------------------------------%
+-c        | *  Store the wanted NCONV lambda values into D.             |
+-c        | *  Sort the NCONV wanted lambda in WORKL(IHD:IHD+NCONV-1)   |
+-c        |    into ascending order and apply sort to the NCONV theta   |
+-c        |    values in the transformed system. We will need this to   |
+-c        |    compute Ritz estimates in the original system.           |
+-c        | *  Finally sort the lambda`s into ascending order and apply |
+-c        |    to Ritz vectors if wanted. Else just sort lambda`s into  |
+-c        |    ascending order.                                         |
+-c        | NOTES:                                                      |
+-c        | *workl(iw:iw+ncv-1) contain the theta ordered so that they  |
+-c        |  match the ordering of the lambda. We`ll use them again for |
+-c        |  Ritz vector purification.                                  |
+-c        %-------------------------------------------------------------%
+-c
+-         call dcopy (nconv, workl(ihd), 1, d, 1)
+-         call dsortr ('LA', .true., nconv, workl(ihd), workl(iw))
+-         if (rvec) then
+-            call dsesrt ('LA', rvec , nconv, d, ncv, workl(iq), ldq)
+-         else
+-            call dcopy (ncv, workl(bounds), 1, workl(ihb), 1)
+-            call dscal (ncv, bnorm2/rnorm, workl(ihb), 1)
+-            call dsortr ('LA', .true., nconv, d, workl(ihb))
+-         end if
+-c
+-      end if 
+-c 
+-c     %------------------------------------------------%
+-c     | Compute the Ritz vectors. Transform the wanted |
+-c     | eigenvectors of the symmetric tridiagonal H by |
+-c     | the Lanczos basis matrix V.                    |
+-c     %------------------------------------------------%
+-c
+-      if (rvec .and. howmny .eq. 'A') then
+-c    
+-c        %----------------------------------------------------------%
+-c        | Compute the QR factorization of the matrix representing  |
+-c        | the wanted invariant subspace located in the first NCONV |
+-c        | columns of workl(iq,ldq).                                |
+-c        %----------------------------------------------------------%
+-c     
+-         call dgeqr2 (ncv, nconv        , workl(iq) ,
+-     &                ldq, workl(iw+ncv), workl(ihb),
+-     &                ierr)
+-c
+-c        %--------------------------------------------------------%
+-c        | * Postmultiply V by Q.                                 |   
+-c        | * Copy the first NCONV columns of VQ into Z.           |
+-c        | The N by NCONV matrix Z is now a matrix representation |
+-c        | of the approximate invariant subspace associated with  |
+-c        | the Ritz values in workl(ihd).                         |
+-c        %--------------------------------------------------------%
+-c     
+-         call dorm2r ('Right', 'Notranspose', n        ,
+-     &                ncv    , nconv        , workl(iq),
+-     &                ldq    , workl(iw+ncv), v        ,
+-     &                ldv    , workd(n+1)   , ierr)
+-         call dlacpy ('All', n, nconv, v, ldv, z, ldz)
+-c
+-c        %-----------------------------------------------------%
+-c        | In order to compute the Ritz estimates for the Ritz |
+-c        | values in both systems, need the last row of the    |
+-c        | eigenvector matrix. Remember, it`s in factored form |
+-c        %-----------------------------------------------------%
+-c
+-         do 65 j = 1, ncv-1
+-            workl(ihb+j-1) = zero 
+-  65     continue
+-         workl(ihb+ncv-1) = one
+-         call dorm2r ('Left', 'Transpose'  , ncv       ,
+-     &                1     , nconv        , workl(iq) ,
+-     &                ldq   , workl(iw+ncv), workl(ihb),
+-     &                ncv   , temp         , ierr)
+-c
+-      else if (rvec .and. howmny .eq. 'S') then
+-c
+-c     Not yet implemented. See remark 2 above.
+-c
+-      end if
+-c
+-      if (type .eq. 'REGULR' .and. rvec) then
+-c
+-            do 70 j=1, ncv
+-               workl(ihb+j-1) = rnorm * abs( workl(ihb+j-1) )
+- 70         continue
+-c
+-      else if (type .ne. 'REGULR' .and. rvec) then
+-c
+-c        %-------------------------------------------------%
+-c        | *  Determine Ritz estimates of the theta.       |
+-c        |    If RVEC = .true. then compute Ritz estimates |
+-c        |               of the theta.                     |
+-c        |    If RVEC = .false. then copy Ritz estimates   |
+-c        |              as computed by dsaupd .             |
+-c        | *  Determine Ritz estimates of the lambda.      |
+-c        %-------------------------------------------------%
+-c
+-         call dscal  (ncv, bnorm2, workl(ihb), 1)
+-         if (type .eq. 'SHIFTI') then 
+-c
+-            do 80 k=1, ncv
+-               workl(ihb+k-1) = abs( workl(ihb+k-1) ) 
+-     &                        / workl(iw+k-1)**2
+- 80         continue
+-c
+-         else if (type .eq. 'BUCKLE') then
+-c
+-            do 90 k=1, ncv
+-               workl(ihb+k-1) = sigma * abs( workl(ihb+k-1) )
+-     &                        / (workl(iw+k-1)-one )**2
+- 90         continue
+-c
+-         else if (type .eq. 'CAYLEY') then
+-c
+-            do 100 k=1, ncv
+-               workl(ihb+k-1) = abs( workl(ihb+k-1)
+-     &                        / workl(iw+k-1)*(workl(iw+k-1)-one) )
+- 100        continue
+-c
+-         end if
+-c
+-      end if
+-c
+-      if (type .ne. 'REGULR' .and. msglvl .gt. 1) then
+-         call dvout (logfil, nconv, d, ndigit,
+-     &          '_seupd: Untransformed converged Ritz values')
+-         call dvout (logfil, nconv, workl(ihb), ndigit, 
+-     &     '_seupd: Ritz estimates of the untransformed Ritz values')
+-      else if (msglvl .gt. 1) then
+-         call dvout (logfil, nconv, d, ndigit,
+-     &          '_seupd: Converged Ritz values')
+-         call dvout (logfil, nconv, workl(ihb), ndigit, 
+-     &     '_seupd: Associated Ritz estimates')
+-      end if
+-c 
+-c     %-------------------------------------------------%
+-c     | Ritz vector purification step. Formally perform |
+-c     | one of inverse subspace iteration. Only used    |
+-c     | for MODE = 3,4,5. See reference 7               |
+-c     %-------------------------------------------------%
+-c
+-      if (rvec .and. (type .eq. 'SHIFTI' .or. type .eq. 'CAYLEY')) then
+-c
+-         do 110 k=0, nconv-1
+-            workl(iw+k) = workl(iq+k*ldq+ncv-1)
+-     &                  / workl(iw+k)
+- 110     continue
+-c
+-      else if (rvec .and. type .eq. 'BUCKLE') then
+-c
+-         do 120 k=0, nconv-1
+-            workl(iw+k) = workl(iq+k*ldq+ncv-1)
+-     &                  / (workl(iw+k)-one)
+- 120     continue
+-c
+-      end if 
+-c
+-      if (type .ne. 'REGULR')
+-     &   call dger  (n, nconv, one, resid, 1, workl(iw), 1, z, ldz)
+-c
+- 9000 continue
+-c
+-      return
+-c
+-c     %---------------%
+-c     | End of dseupd |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dsgets.f
++++ /dev/null
+@@ -1,219 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dsgets
+-c
+-c\Description: 
+-c  Given the eigenvalues of the symmetric tridiagonal matrix H,
+-c  computes the NP shifts AMU that are zeros of the polynomial of 
+-c  degree NP which filters out components of the unwanted eigenvectors 
+-c  corresponding to the AMU's based on some given criteria.
+-c
+-c  NOTE: This is called even in the case of user specified shifts in 
+-c  order to sort the eigenvalues, and error bounds of H for later use.
+-c
+-c\Usage:
+-c  call dsgets
+-c     ( ISHIFT, WHICH, KEV, NP, RITZ, BOUNDS, SHIFTS )
+-c
+-c\Arguments
+-c  ISHIFT  Integer.  (INPUT)
+-c          Method for selecting the implicit shifts at each iteration.
+-c          ISHIFT = 0: user specified shifts
+-c          ISHIFT = 1: exact shift with respect to the matrix H.
+-c
+-c  WHICH   Character*2.  (INPUT)
+-c          Shift selection criteria.
+-c          'LM' -> KEV eigenvalues of largest magnitude are retained.
+-c          'SM' -> KEV eigenvalues of smallest magnitude are retained.
+-c          'LA' -> KEV eigenvalues of largest value are retained.
+-c          'SA' -> KEV eigenvalues of smallest value are retained.
+-c          'BE' -> KEV eigenvalues, half from each end of the spectrum.
+-c                  If KEV is odd, compute one more from the high end.
+-c
+-c  KEV      Integer.  (INPUT)
+-c          KEV+NP is the size of the matrix H.
+-c
+-c  NP      Integer.  (INPUT)
+-c          Number of implicit shifts to be computed.
+-c
+-c  RITZ    Double precision array of length KEV+NP.  (INPUT/OUTPUT)
+-c          On INPUT, RITZ contains the eigenvalues of H.
+-c          On OUTPUT, RITZ are sorted so that the unwanted eigenvalues 
+-c          are in the first NP locations and the wanted part is in 
+-c          the last KEV locations.  When exact shifts are selected, the
+-c          unwanted part corresponds to the shifts to be applied.
+-c
+-c  BOUNDS  Double precision array of length KEV+NP.  (INPUT/OUTPUT)
+-c          Error bounds corresponding to the ordering in RITZ.
+-c
+-c  SHIFTS  Double precision array of length NP.  (INPUT/OUTPUT)
+-c          On INPUT:  contains the user specified shifts if ISHIFT = 0.
+-c          On OUTPUT: contains the shifts sorted into decreasing order 
+-c          of magnitude with respect to the Ritz estimates contained in
+-c          BOUNDS. If ISHIFT = 0, SHIFTS is not modified on exit.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     dsortr  ARPACK utility sorting routine.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     dvout   ARPACK utility routine that prints vectors.
+-c     dcopy   Level 1 BLAS that copies one vector to another.
+-c     dswap   Level 1 BLAS that swaps the contents of two vectors.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\Revision history:
+-c     xx/xx/93: Version ' 2.1'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: sgets.F   SID: 2.4   DATE OF SID: 4/19/96   RELEASE: 2
+-c
+-c\Remarks
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dsgets ( ishift, which, kev, np, ritz, bounds, shifts )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character*2 which
+-      integer    ishift, kev, np
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Double precision
+-     &           bounds(kev+np), ritz(kev+np), shifts(np)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Double precision
+-     &           one, zero
+-      parameter (one = 1.0D+0, zero = 0.0D+0)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    kevd2, msglvl
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   dswap, dcopy, dsortr, arscnd
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    max, min
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c 
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c
+-      call arscnd (t0)
+-      msglvl = msgets
+-c 
+-      if (which .eq. 'BE') then
+-c
+-c        %-----------------------------------------------------%
+-c        | Both ends of the spectrum are requested.            |
+-c        | Sort the eigenvalues into algebraically increasing  |
+-c        | order first then swap high end of the spectrum next |
+-c        | to low end in appropriate locations.                |
+-c        | NOTE: when np < floor(kev/2) be careful not to swap |
+-c        | overlapping locations.                              |
+-c        %-----------------------------------------------------%
+-c
+-         call dsortr ('LA', .true., kev+np, ritz, bounds)
+-         kevd2 = kev / 2 
+-         if ( kev .gt. 1 ) then
+-            call dswap ( min(kevd2,np), ritz, 1, 
+-     &                   ritz( max(kevd2,np)+1 ), 1)
+-            call dswap ( min(kevd2,np), bounds, 1, 
+-     &                   bounds( max(kevd2,np)+1 ), 1)
+-         end if
+-c
+-      else
+-c
+-c        %----------------------------------------------------%
+-c        | LM, SM, LA, SA case.                               |
+-c        | Sort the eigenvalues of H into the desired order   |
+-c        | and apply the resulting order to BOUNDS.           |
+-c        | The eigenvalues are sorted so that the wanted part |
+-c        | are always in the last KEV locations.               |
+-c        %----------------------------------------------------%
+-c
+-         call dsortr (which, .true., kev+np, ritz, bounds)
+-      end if
+-c
+-      if (ishift .eq. 1 .and. np .gt. 0) then
+-c     
+-c        %-------------------------------------------------------%
+-c        | Sort the unwanted Ritz values used as shifts so that  |
+-c        | the ones with largest Ritz estimates are first.       |
+-c        | This will tend to minimize the effects of the         |
+-c        | forward instability of the iteration when the shifts  |
+-c        | are applied in subroutine dsapps.                     |
+-c        %-------------------------------------------------------%
+-c     
+-         call dsortr ('SM', .true., np, bounds, ritz)
+-         call dcopy (np, ritz, 1, shifts, 1)
+-      end if
+-c 
+-      call arscnd (t1)
+-      tsgets = tsgets + (t1 - t0)
+-c
+-      if (msglvl .gt. 0) then
+-         call ivout (logfil, 1, kev, ndigit, '_sgets: KEV is')
+-         call ivout (logfil, 1, np, ndigit, '_sgets: NP is')
+-         call dvout (logfil, kev+np, ritz, ndigit,
+-     &        '_sgets: Eigenvalues of current H matrix')
+-         call dvout (logfil, kev+np, bounds, ndigit, 
+-     &        '_sgets: Associated Ritz estimates')
+-      end if
+-c 
+-      return
+-c
+-c     %---------------%
+-c     | End of dsgets |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dsortc.f
++++ /dev/null
+@@ -1,344 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dsortc
+-c
+-c\Description:
+-c  Sorts the complex array in XREAL and XIMAG into the order 
+-c  specified by WHICH and optionally applies the permutation to the
+-c  real array Y. It is assumed that if an element of XIMAG is
+-c  nonzero, then its negative is also an element. In other words,
+-c  both members of a complex conjugate pair are to be sorted and the
+-c  pairs are kept adjacent to each other.
+-c
+-c\Usage:
+-c  call dsortc
+-c     ( WHICH, APPLY, N, XREAL, XIMAG, Y )
+-c
+-c\Arguments
+-c  WHICH   Character*2.  (Input)
+-c          'LM' -> sort XREAL,XIMAG into increasing order of magnitude.
+-c          'SM' -> sort XREAL,XIMAG into decreasing order of magnitude.
+-c          'LR' -> sort XREAL into increasing order of algebraic.
+-c          'SR' -> sort XREAL into decreasing order of algebraic.
+-c          'LI' -> sort XIMAG into increasing order of magnitude.
+-c          'SI' -> sort XIMAG into decreasing order of magnitude.
+-c          NOTE: If an element of XIMAG is non-zero, then its negative
+-c                is also an element.
+-c
+-c  APPLY   Logical.  (Input)
+-c          APPLY = .TRUE.  -> apply the sorted order to array Y.
+-c          APPLY = .FALSE. -> do not apply the sorted order to array Y.
+-c
+-c  N       Integer.  (INPUT)
+-c          Size of the arrays.
+-c
+-c  XREAL,  Double precision array of length N.  (INPUT/OUTPUT)
+-c  XIMAG   Real and imaginary part of the array to be sorted.
+-c
+-c  Y       Double precision array of length N.  (INPUT/OUTPUT)
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.1'
+-c               Adapted from the sort routine in LANSO.
+-c
+-c\SCCS Information: @(#) 
+-c FILE: sortc.F   SID: 2.3   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dsortc (which, apply, n, xreal, ximag, y)
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character*2 which
+-      logical    apply
+-      integer    n
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Double precision     
+-     &           xreal(0:n-1), ximag(0:n-1), y(0:n-1)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i, igap, j
+-      Double precision     
+-     &           temp, temp1, temp2
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision     
+-     &           dlapy2
+-      external   dlapy2
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      igap = n / 2
+-c 
+-      if (which .eq. 'LM') then
+-c
+-c        %------------------------------------------------------%
+-c        | Sort XREAL,XIMAG into increasing order of magnitude. |
+-c        %------------------------------------------------------%
+-c
+-   10    continue
+-         if (igap .eq. 0) go to 9000
+-c
+-         do 30 i = igap, n-1
+-            j = i-igap
+-   20       continue
+-c
+-            if (j.lt.0) go to 30
+-c
+-            temp1 = dlapy2(xreal(j),ximag(j))
+-            temp2 = dlapy2(xreal(j+igap),ximag(j+igap))
+-c
+-            if (temp1.gt.temp2) then
+-                temp = xreal(j)
+-                xreal(j) = xreal(j+igap)
+-                xreal(j+igap) = temp
+-c
+-                temp = ximag(j)
+-                ximag(j) = ximag(j+igap)
+-                ximag(j+igap) = temp
+-c
+-                if (apply) then
+-                    temp = y(j)
+-                    y(j) = y(j+igap)
+-                    y(j+igap) = temp
+-                end if
+-            else
+-                go to 30
+-            end if
+-            j = j-igap
+-            go to 20
+-   30    continue
+-         igap = igap / 2
+-         go to 10
+-c
+-      else if (which .eq. 'SM') then
+-c
+-c        %------------------------------------------------------%
+-c        | Sort XREAL,XIMAG into decreasing order of magnitude. |
+-c        %------------------------------------------------------%
+-c
+-   40    continue
+-         if (igap .eq. 0) go to 9000
+-c
+-         do 60 i = igap, n-1
+-            j = i-igap
+-   50       continue
+-c
+-            if (j .lt. 0) go to 60
+-c
+-            temp1 = dlapy2(xreal(j),ximag(j))
+-            temp2 = dlapy2(xreal(j+igap),ximag(j+igap))
+-c
+-            if (temp1.lt.temp2) then
+-               temp = xreal(j)
+-               xreal(j) = xreal(j+igap)
+-               xreal(j+igap) = temp
+-c
+-               temp = ximag(j)
+-               ximag(j) = ximag(j+igap)
+-               ximag(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 60
+-            endif
+-            j = j-igap
+-            go to 50
+-   60    continue
+-         igap = igap / 2
+-         go to 40
+-c 
+-      else if (which .eq. 'LR') then
+-c
+-c        %------------------------------------------------%
+-c        | Sort XREAL into increasing order of algebraic. |
+-c        %------------------------------------------------%
+-c
+-   70    continue
+-         if (igap .eq. 0) go to 9000
+-c
+-         do 90 i = igap, n-1
+-            j = i-igap
+-   80       continue
+-c
+-            if (j.lt.0) go to 90
+-c
+-            if (xreal(j).gt.xreal(j+igap)) then
+-               temp = xreal(j)
+-               xreal(j) = xreal(j+igap)
+-               xreal(j+igap) = temp
+-c
+-               temp = ximag(j)
+-               ximag(j) = ximag(j+igap)
+-               ximag(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 90
+-            endif
+-            j = j-igap
+-            go to 80
+-   90    continue
+-         igap = igap / 2
+-         go to 70
+-c 
+-      else if (which .eq. 'SR') then
+-c
+-c        %------------------------------------------------%
+-c        | Sort XREAL into decreasing order of algebraic. |
+-c        %------------------------------------------------%
+-c
+-  100    continue
+-         if (igap .eq. 0) go to 9000
+-         do 120 i = igap, n-1
+-            j = i-igap
+-  110       continue
+-c
+-            if (j.lt.0) go to 120
+-c
+-            if (xreal(j).lt.xreal(j+igap)) then
+-               temp = xreal(j)
+-               xreal(j) = xreal(j+igap)
+-               xreal(j+igap) = temp
+-c
+-               temp = ximag(j)
+-               ximag(j) = ximag(j+igap)
+-               ximag(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 120
+-            endif
+-            j = j-igap
+-            go to 110
+-  120    continue
+-         igap = igap / 2
+-         go to 100
+-c 
+-      else if (which .eq. 'LI') then
+-c
+-c        %------------------------------------------------%
+-c        | Sort XIMAG into increasing order of magnitude. |
+-c        %------------------------------------------------%
+-c
+-  130    continue
+-         if (igap .eq. 0) go to 9000
+-         do 150 i = igap, n-1
+-            j = i-igap
+-  140       continue
+-c
+-            if (j.lt.0) go to 150
+-c
+-            if (abs(ximag(j)).gt.abs(ximag(j+igap))) then
+-               temp = xreal(j)
+-               xreal(j) = xreal(j+igap)
+-               xreal(j+igap) = temp
+-c
+-               temp = ximag(j)
+-               ximag(j) = ximag(j+igap)
+-               ximag(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 150
+-            endif
+-            j = j-igap
+-            go to 140
+-  150    continue
+-         igap = igap / 2
+-         go to 130
+-c 
+-      else if (which .eq. 'SI') then
+-c
+-c        %------------------------------------------------%
+-c        | Sort XIMAG into decreasing order of magnitude. |
+-c        %------------------------------------------------%
+-c
+-  160    continue
+-         if (igap .eq. 0) go to 9000
+-         do 180 i = igap, n-1
+-            j = i-igap
+-  170       continue
+-c
+-            if (j.lt.0) go to 180
+-c
+-            if (abs(ximag(j)).lt.abs(ximag(j+igap))) then
+-               temp = xreal(j)
+-               xreal(j) = xreal(j+igap)
+-               xreal(j+igap) = temp
+-c
+-               temp = ximag(j)
+-               ximag(j) = ximag(j+igap)
+-               ximag(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 180
+-            endif
+-            j = j-igap
+-            go to 170
+-  180    continue
+-         igap = igap / 2
+-         go to 160
+-      end if
+-c 
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of dsortc |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dsortr.f
++++ /dev/null
+@@ -1,218 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dsortr
+-c
+-c\Description:
+-c  Sort the array X1 in the order specified by WHICH and optionally 
+-c  applies the permutation to the array X2.
+-c
+-c\Usage:
+-c  call dsortr
+-c     ( WHICH, APPLY, N, X1, X2 )
+-c
+-c\Arguments
+-c  WHICH   Character*2.  (Input)
+-c          'LM' -> X1 is sorted into increasing order of magnitude.
+-c          'SM' -> X1 is sorted into decreasing order of magnitude.
+-c          'LA' -> X1 is sorted into increasing order of algebraic.
+-c          'SA' -> X1 is sorted into decreasing order of algebraic.
+-c
+-c  APPLY   Logical.  (Input)
+-c          APPLY = .TRUE.  -> apply the sorted order to X2.
+-c          APPLY = .FALSE. -> do not apply the sorted order to X2.
+-c
+-c  N       Integer.  (INPUT)
+-c          Size of the arrays.
+-c
+-c  X1      Double precision array of length N.  (INPUT/OUTPUT)
+-c          The array to be sorted.
+-c
+-c  X2      Double precision array of length N.  (INPUT/OUTPUT)
+-c          Only referenced if APPLY = .TRUE.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University 
+-c     Dept. of Computational &     Houston, Texas 
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\Revision history:
+-c     12/16/93: Version ' 2.1'.
+-c               Adapted from the sort routine in LANSO.
+-c
+-c\SCCS Information: @(#) 
+-c FILE: sortr.F   SID: 2.3   DATE OF SID: 4/19/96   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dsortr (which, apply, n, x1, x2)
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character*2 which
+-      logical    apply
+-      integer    n
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Double precision
+-     &           x1(0:n-1), x2(0:n-1)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i, igap, j
+-      Double precision
+-     &           temp
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      igap = n / 2
+-c 
+-      if (which .eq. 'SA') then
+-c
+-c        X1 is sorted into decreasing order of algebraic.
+-c
+-   10    continue
+-         if (igap .eq. 0) go to 9000
+-         do 30 i = igap, n-1
+-            j = i-igap
+-   20       continue
+-c
+-            if (j.lt.0) go to 30
+-c
+-            if (x1(j).lt.x1(j+igap)) then
+-               temp = x1(j)
+-               x1(j) = x1(j+igap)
+-               x1(j+igap) = temp
+-               if (apply) then
+-                  temp = x2(j)
+-                  x2(j) = x2(j+igap)
+-                  x2(j+igap) = temp
+-               end if
+-            else
+-               go to 30
+-            endif
+-            j = j-igap
+-            go to 20
+-   30    continue
+-         igap = igap / 2
+-         go to 10
+-c
+-      else if (which .eq. 'SM') then
+-c
+-c        X1 is sorted into decreasing order of magnitude.
+-c
+-   40    continue
+-         if (igap .eq. 0) go to 9000
+-         do 60 i = igap, n-1
+-            j = i-igap
+-   50       continue
+-c
+-            if (j.lt.0) go to 60
+-c
+-            if (abs(x1(j)).lt.abs(x1(j+igap))) then
+-               temp = x1(j)
+-               x1(j) = x1(j+igap)
+-               x1(j+igap) = temp
+-               if (apply) then
+-                  temp = x2(j)
+-                  x2(j) = x2(j+igap)
+-                  x2(j+igap) = temp
+-               end if
+-            else
+-               go to 60
+-            endif
+-            j = j-igap
+-            go to 50
+-   60    continue
+-         igap = igap / 2
+-         go to 40
+-c
+-      else if (which .eq. 'LA') then
+-c
+-c        X1 is sorted into increasing order of algebraic.
+-c
+-   70    continue
+-         if (igap .eq. 0) go to 9000
+-         do 90 i = igap, n-1
+-            j = i-igap
+-   80       continue
+-c
+-            if (j.lt.0) go to 90
+-c           
+-            if (x1(j).gt.x1(j+igap)) then
+-               temp = x1(j)
+-               x1(j) = x1(j+igap)
+-               x1(j+igap) = temp
+-               if (apply) then
+-                  temp = x2(j)
+-                  x2(j) = x2(j+igap)
+-                  x2(j+igap) = temp
+-               end if
+-            else
+-               go to 90
+-            endif
+-            j = j-igap
+-            go to 80
+-   90    continue
+-         igap = igap / 2
+-         go to 70
+-c 
+-      else if (which .eq. 'LM') then
+-c
+-c        X1 is sorted into increasing order of magnitude.
+-c
+-  100    continue
+-         if (igap .eq. 0) go to 9000
+-         do 120 i = igap, n-1
+-            j = i-igap
+-  110       continue
+-c
+-            if (j.lt.0) go to 120
+-c
+-            if (abs(x1(j)).gt.abs(x1(j+igap))) then
+-               temp = x1(j)
+-               x1(j) = x1(j+igap)
+-               x1(j+igap) = temp
+-               if (apply) then
+-                  temp = x2(j)
+-                  x2(j) = x2(j+igap)
+-                  x2(j+igap) = temp
+-               end if
+-            else
+-               go to 120
+-            endif
+-            j = j-igap
+-            go to 110
+-  120    continue
+-         igap = igap / 2
+-         go to 100
+-      end if
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of dsortr |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dstatn.f
++++ /dev/null
+@@ -1,61 +0,0 @@
+-c
+-c     %---------------------------------------------%
+-c     | Initialize statistic and timing information |
+-c     | for nonsymmetric Arnoldi code.              |
+-c     %---------------------------------------------%
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas    
+-c
+-c\SCCS Information: @(#) 
+-c FILE: statn.F   SID: 2.4   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-      subroutine dstatn
+-c
+-c     %--------------------------------%
+-c     | See stat.doc for documentation |
+-c     %--------------------------------%
+-c
+-      include   'stat.h'
+-c 
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      nopx   = 0
+-      nbx    = 0
+-      nrorth = 0
+-      nitref = 0
+-      nrstrt = 0
+-c 
+-      tnaupd = 0.0D+0
+-      tnaup2 = 0.0D+0
+-      tnaitr = 0.0D+0
+-      tneigh = 0.0D+0
+-      tngets = 0.0D+0
+-      tnapps = 0.0D+0
+-      tnconv = 0.0D+0
+-      titref = 0.0D+0
+-      tgetv0 = 0.0D+0
+-      trvec  = 0.0D+0
+-c 
+-c     %----------------------------------------------------%
+-c     | User time including reverse communication overhead |
+-c     %----------------------------------------------------%
+-c
+-      tmvopx = 0.0D+0
+-      tmvbx  = 0.0D+0
+-c 
+-      return
+-c
+-c
+-c     %---------------%
+-c     | End of dstatn |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/dstats.f
++++ /dev/null
+@@ -1,47 +0,0 @@
+-c
+-c\SCCS Information: @(#) 
+-c FILE: stats.F   SID: 2.1   DATE OF SID: 4/19/96   RELEASE: 2
+-c     %---------------------------------------------%
+-c     | Initialize statistic and timing information |
+-c     | for symmetric Arnoldi code.                 |
+-c     %---------------------------------------------%
+- 
+-      subroutine dstats
+-
+-c     %--------------------------------%
+-c     | See stat.doc for documentation |
+-c     %--------------------------------%
+-      include   'stat.h'
+- 
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-
+-      nopx   = 0
+-      nbx    = 0
+-      nrorth = 0
+-      nitref = 0
+-      nrstrt = 0
+- 
+-      tsaupd = 0.0D+0
+-      tsaup2 = 0.0D+0
+-      tsaitr = 0.0D+0
+-      tseigt = 0.0D+0
+-      tsgets = 0.0D+0
+-      tsapps = 0.0D+0
+-      tsconv = 0.0D+0
+-      titref = 0.0D+0
+-      tgetv0 = 0.0D+0
+-      trvec  = 0.0D+0
+- 
+-c     %----------------------------------------------------%
+-c     | User time including reverse communication overhead |
+-c     %----------------------------------------------------%
+-      tmvopx = 0.0D+0
+-      tmvbx  = 0.0D+0
+- 
+-      return
+-c
+-c     End of dstats
+-c
+-      end
+--- a/libcruft/arpack/src/dstqrb.f
++++ /dev/null
+@@ -1,594 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: dstqrb
+-c
+-c\Description:
+-c  Computes all eigenvalues and the last component of the eigenvectors
+-c  of a symmetric tridiagonal matrix using the implicit QL or QR method.
+-c
+-c  This is mostly a modification of the LAPACK routine dsteqr.
+-c  See Remarks.
+-c
+-c\Usage:
+-c  call dstqrb
+-c     ( N, D, E, Z, WORK, INFO )
+-c
+-c\Arguments
+-c  N       Integer.  (INPUT)
+-c          The number of rows and columns in the matrix.  N >= 0.
+-c
+-c  D       Double precision array, dimension (N).  (INPUT/OUTPUT)
+-c          On entry, D contains the diagonal elements of the
+-c          tridiagonal matrix.
+-c          On exit, D contains the eigenvalues, in ascending order.
+-c          If an error exit is made, the eigenvalues are correct
+-c          for indices 1,2,...,INFO-1, but they are unordered and
+-c          may not be the smallest eigenvalues of the matrix.
+-c
+-c  E       Double precision array, dimension (N-1).  (INPUT/OUTPUT)
+-c          On entry, E contains the subdiagonal elements of the
+-c          tridiagonal matrix in positions 1 through N-1.
+-c          On exit, E has been destroyed.
+-c
+-c  Z       Double precision array, dimension (N).  (OUTPUT)
+-c          On exit, Z contains the last row of the orthonormal 
+-c          eigenvector matrix of the symmetric tridiagonal matrix.  
+-c          If an error exit is made, Z contains the last row of the
+-c          eigenvector matrix associated with the stored eigenvalues.
+-c
+-c  WORK    Double precision array, dimension (max(1,2*N-2)).  (WORKSPACE)
+-c          Workspace used in accumulating the transformation for 
+-c          computing the last components of the eigenvectors.
+-c
+-c  INFO    Integer.  (OUTPUT)
+-c          = 0:  normal return.
+-c          < 0:  if INFO = -i, the i-th argument had an illegal value.
+-c          > 0:  if INFO = +i, the i-th eigenvalue has not converged
+-c                              after a total of  30*N  iterations.
+-c
+-c\Remarks
+-c  1. None.
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     daxpy   Level 1 BLAS that computes a vector triad.
+-c     dcopy   Level 1 BLAS that copies one vector to another.
+-c     dswap   Level 1 BLAS that swaps the contents of two vectors.
+-c     lsame   LAPACK character comparison routine.
+-c     dlae2   LAPACK routine that computes the eigenvalues of a 2-by-2 
+-c             symmetric matrix.
+-c     dlaev2  LAPACK routine that eigendecomposition of a 2-by-2 symmetric 
+-c             matrix.
+-c     dlamch  LAPACK routine that determines machine constants.
+-c     dlanst  LAPACK routine that computes the norm of a matrix.
+-c     dlapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     dlartg  LAPACK Givens rotation construction routine.
+-c     dlascl  LAPACK routine for careful scaling of a matrix.
+-c     dlaset  LAPACK matrix initialization routine.
+-c     dlasr   LAPACK routine that applies an orthogonal transformation to 
+-c             a matrix.
+-c     dlasrt  LAPACK sorting routine.
+-c     dsteqr  LAPACK routine that computes eigenvalues and eigenvectors
+-c             of a symmetric tridiagonal matrix.
+-c     xerbla  LAPACK error handler routine.
+-c
+-c\Authors
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\SCCS Information: @(#) 
+-c FILE: stqrb.F   SID: 2.5   DATE OF SID: 8/27/96   RELEASE: 2
+-c
+-c\Remarks
+-c     1. Starting with version 2.5, this routine is a modified version
+-c        of LAPACK version 2.0 subroutine SSTEQR. No lines are deleted,
+-c        only commeted out and new lines inserted.
+-c        All lines commented out have "c$$$" at the beginning.
+-c        Note that the LAPACK version 1.0 subroutine SSTEQR contained
+-c        bugs. 
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine dstqrb ( n, d, e, z, work, info )
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    info, n
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Double precision
+-     &           d( n ), e( n-1 ), z( n ), work( 2*n-2 )
+-c
+-c     .. parameters ..
+-      Double precision               
+-     &                   zero, one, two, three
+-      parameter          ( zero = 0.0D+0, one = 1.0D+0, 
+-     &                     two = 2.0D+0, three = 3.0D+0 )
+-      integer            maxit
+-      parameter          ( maxit = 30 )
+-c     ..
+-c     .. local scalars ..
+-      integer            i, icompz, ii, iscale, j, jtot, k, l, l1, lend,
+-     &                   lendm1, lendp1, lendsv, lm1, lsv, m, mm, mm1,
+-     &                   nm1, nmaxit
+-      Double precision               
+-     &                   anorm, b, c, eps, eps2, f, g, p, r, rt1, rt2,
+-     &                   s, safmax, safmin, ssfmax, ssfmin, tst
+-c     ..
+-c     .. external functions ..
+-      logical            lsame
+-      Double precision
+-     &                   dlamch, dlanst, dlapy2
+-      external           lsame, dlamch, dlanst, dlapy2
+-c     ..
+-c     .. external subroutines ..
+-      external           dlae2, dlaev2, dlartg, dlascl, dlaset, dlasr,
+-     &                   dlasrt, dswap, xerbla
+-c     ..
+-c     .. intrinsic functions ..
+-      intrinsic          abs, max, sign, sqrt
+-c     ..
+-c     .. executable statements ..
+-c
+-c     test the input parameters.
+-c
+-      info = 0
+-c
+-c$$$      IF( LSAME( COMPZ, 'N' ) ) THEN
+-c$$$         ICOMPZ = 0
+-c$$$      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
+-c$$$         ICOMPZ = 1
+-c$$$      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
+-c$$$         ICOMPZ = 2
+-c$$$      ELSE
+-c$$$         ICOMPZ = -1
+-c$$$      END IF
+-c$$$      IF( ICOMPZ.LT.0 ) THEN
+-c$$$         INFO = -1
+-c$$$      ELSE IF( N.LT.0 ) THEN
+-c$$$         INFO = -2
+-c$$$      ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
+-c$$$     $         N ) ) ) THEN
+-c$$$         INFO = -6
+-c$$$      END IF
+-c$$$      IF( INFO.NE.0 ) THEN
+-c$$$         CALL XERBLA( 'SSTEQR', -INFO )
+-c$$$         RETURN
+-c$$$      END IF
+-c
+-c    *** New starting with version 2.5 ***
+-c
+-      icompz = 2
+-c    *************************************
+-c
+-c     quick return if possible
+-c
+-      if( n.eq.0 )
+-     $   return
+-c
+-      if( n.eq.1 ) then
+-         if( icompz.eq.2 )  z( 1 ) = one
+-         return
+-      end if
+-c
+-c     determine the unit roundoff and over/underflow thresholds.
+-c
+-      eps = dlamch( 'e' )
+-      eps2 = eps**2
+-      safmin = dlamch( 's' )
+-      safmax = one / safmin
+-      ssfmax = sqrt( safmax ) / three
+-      ssfmin = sqrt( safmin ) / eps2
+-c
+-c     compute the eigenvalues and eigenvectors of the tridiagonal
+-c     matrix.
+-c
+-c$$      if( icompz.eq.2 )
+-c$$$     $   call dlaset( 'full', n, n, zero, one, z, ldz )
+-c
+-c     *** New starting with version 2.5 ***
+-c
+-      if ( icompz .eq. 2 ) then
+-         do 5 j = 1, n-1
+-            z(j) = zero
+-  5      continue
+-         z( n ) = one
+-      end if
+-c     *************************************
+-c
+-      nmaxit = n*maxit
+-      jtot = 0
+-c
+-c     determine where the matrix splits and choose ql or qr iteration
+-c     for each block, according to whether top or bottom diagonal
+-c     element is smaller.
+-c
+-      l1 = 1
+-      nm1 = n - 1
+-c
+-   10 continue
+-      if( l1.gt.n )
+-     $   go to 160
+-      if( l1.gt.1 )
+-     $   e( l1-1 ) = zero
+-      if( l1.le.nm1 ) then
+-         do 20 m = l1, nm1
+-            tst = abs( e( m ) )
+-            if( tst.eq.zero )
+-     $         go to 30
+-            if( tst.le.( sqrt( abs( d( m ) ) )*sqrt( abs( d( m+
+-     $          1 ) ) ) )*eps ) then
+-               e( m ) = zero
+-               go to 30
+-            end if
+-   20    continue
+-      end if
+-      m = n
+-c
+-   30 continue
+-      l = l1
+-      lsv = l
+-      lend = m
+-      lendsv = lend
+-      l1 = m + 1
+-      if( lend.eq.l )
+-     $   go to 10
+-c
+-c     scale submatrix in rows and columns l to lend
+-c
+-      anorm = dlanst( 'i', lend-l+1, d( l ), e( l ) )
+-      iscale = 0
+-      if( anorm.eq.zero )
+-     $   go to 10
+-      if( anorm.gt.ssfmax ) then
+-         iscale = 1
+-         call dlascl( 'g', 0, 0, anorm, ssfmax, lend-l+1, 1, d( l ), n,
+-     $                info )
+-         call dlascl( 'g', 0, 0, anorm, ssfmax, lend-l, 1, e( l ), n,
+-     $                info )
+-      else if( anorm.lt.ssfmin ) then
+-         iscale = 2
+-         call dlascl( 'g', 0, 0, anorm, ssfmin, lend-l+1, 1, d( l ), n,
+-     $                info )
+-         call dlascl( 'g', 0, 0, anorm, ssfmin, lend-l, 1, e( l ), n,
+-     $                info )
+-      end if
+-c
+-c     choose between ql and qr iteration
+-c
+-      if( abs( d( lend ) ).lt.abs( d( l ) ) ) then
+-         lend = lsv
+-         l = lendsv
+-      end if
+-c
+-      if( lend.gt.l ) then
+-c
+-c        ql iteration
+-c
+-c        look for small subdiagonal element.
+-c
+-   40    continue
+-         if( l.ne.lend ) then
+-            lendm1 = lend - 1
+-            do 50 m = l, lendm1
+-               tst = abs( e( m ) )**2
+-               if( tst.le.( eps2*abs( d( m ) ) )*abs( d( m+1 ) )+
+-     $             safmin )go to 60
+-   50       continue
+-         end if
+-c
+-         m = lend
+-c
+-   60    continue
+-         if( m.lt.lend )
+-     $      e( m ) = zero
+-         p = d( l )
+-         if( m.eq.l )
+-     $      go to 80
+-c
+-c        if remaining matrix is 2-by-2, use dlae2 or dlaev2
+-c        to compute its eigensystem.
+-c
+-         if( m.eq.l+1 ) then
+-            if( icompz.gt.0 ) then
+-               call dlaev2( d( l ), e( l ), d( l+1 ), rt1, rt2, c, s )
+-               work( l ) = c
+-               work( n-1+l ) = s
+-c$$$               call dlasr( 'r', 'v', 'b', n, 2, work( l ),
+-c$$$     $                     work( n-1+l ), z( 1, l ), ldz )
+-c
+-c              *** New starting with version 2.5 ***
+-c
+-               tst      = z(l+1)
+-               z(l+1) = c*tst - s*z(l)
+-               z(l)   = s*tst + c*z(l)
+-c              *************************************
+-            else
+-               call dlae2( d( l ), e( l ), d( l+1 ), rt1, rt2 )
+-            end if
+-            d( l ) = rt1
+-            d( l+1 ) = rt2
+-            e( l ) = zero
+-            l = l + 2
+-            if( l.le.lend )
+-     $         go to 40
+-            go to 140
+-         end if
+-c
+-         if( jtot.eq.nmaxit )
+-     $      go to 140
+-         jtot = jtot + 1
+-c
+-c        form shift.
+-c
+-         g = ( d( l+1 )-p ) / ( two*e( l ) )
+-         r = dlapy2( g, one )
+-         g = d( m ) - p + ( e( l ) / ( g+sign( r, g ) ) )
+-c
+-         s = one
+-         c = one
+-         p = zero
+-c
+-c        inner loop
+-c
+-         mm1 = m - 1
+-         do 70 i = mm1, l, -1
+-            f = s*e( i )
+-            b = c*e( i )
+-            call dlartg( g, f, c, s, r )
+-            if( i.ne.m-1 )
+-     $         e( i+1 ) = r
+-            g = d( i+1 ) - p
+-            r = ( d( i )-g )*s + two*c*b
+-            p = s*r
+-            d( i+1 ) = g + p
+-            g = c*r - b
+-c
+-c           if eigenvectors are desired, then save rotations.
+-c
+-            if( icompz.gt.0 ) then
+-               work( i ) = c
+-               work( n-1+i ) = -s
+-            end if
+-c
+-   70    continue
+-c
+-c        if eigenvectors are desired, then apply saved rotations.
+-c
+-         if( icompz.gt.0 ) then
+-            mm = m - l + 1
+-c$$$            call dlasr( 'r', 'v', 'b', n, mm, work( l ), work( n-1+l ),
+-c$$$     $                  z( 1, l ), ldz )
+-c
+-c             *** New starting with version 2.5 ***
+-c
+-              call dlasr( 'r', 'v', 'b', 1, mm, work( l ), 
+-     &                    work( n-1+l ), z( l ), 1 )
+-c             *************************************                             
+-         end if
+-c
+-         d( l ) = d( l ) - p
+-         e( l ) = g
+-         go to 40
+-c
+-c        eigenvalue found.
+-c
+-   80    continue
+-         d( l ) = p
+-c
+-         l = l + 1
+-         if( l.le.lend )
+-     $      go to 40
+-         go to 140
+-c
+-      else
+-c
+-c        qr iteration
+-c
+-c        look for small superdiagonal element.
+-c
+-   90    continue
+-         if( l.ne.lend ) then
+-            lendp1 = lend + 1
+-            do 100 m = l, lendp1, -1
+-               tst = abs( e( m-1 ) )**2
+-               if( tst.le.( eps2*abs( d( m ) ) )*abs( d( m-1 ) )+
+-     $             safmin )go to 110
+-  100       continue
+-         end if
+-c
+-         m = lend
+-c
+-  110    continue
+-         if( m.gt.lend )
+-     $      e( m-1 ) = zero
+-         p = d( l )
+-         if( m.eq.l )
+-     $      go to 130
+-c
+-c        if remaining matrix is 2-by-2, use dlae2 or dlaev2
+-c        to compute its eigensystem.
+-c
+-         if( m.eq.l-1 ) then
+-            if( icompz.gt.0 ) then
+-               call dlaev2( d( l-1 ), e( l-1 ), d( l ), rt1, rt2, c, s )
+-c$$$               work( m ) = c
+-c$$$               work( n-1+m ) = s
+-c$$$               call dlasr( 'r', 'v', 'f', n, 2, work( m ),
+-c$$$     $                     work( n-1+m ), z( 1, l-1 ), ldz )
+-c
+-c               *** New starting with version 2.5 ***
+-c
+-                tst      = z(l)
+-                z(l)   = c*tst - s*z(l-1)
+-                z(l-1) = s*tst + c*z(l-1)
+-c               ************************************* 
+-            else
+-               call dlae2( d( l-1 ), e( l-1 ), d( l ), rt1, rt2 )
+-            end if
+-            d( l-1 ) = rt1
+-            d( l ) = rt2
+-            e( l-1 ) = zero
+-            l = l - 2
+-            if( l.ge.lend )
+-     $         go to 90
+-            go to 140
+-         end if
+-c
+-         if( jtot.eq.nmaxit )
+-     $      go to 140
+-         jtot = jtot + 1
+-c
+-c        form shift.
+-c
+-         g = ( d( l-1 )-p ) / ( two*e( l-1 ) )
+-         r = dlapy2( g, one )
+-         g = d( m ) - p + ( e( l-1 ) / ( g+sign( r, g ) ) )
+-c
+-         s = one
+-         c = one
+-         p = zero
+-c
+-c        inner loop
+-c
+-         lm1 = l - 1
+-         do 120 i = m, lm1
+-            f = s*e( i )
+-            b = c*e( i )
+-            call dlartg( g, f, c, s, r )
+-            if( i.ne.m )
+-     $         e( i-1 ) = r
+-            g = d( i ) - p
+-            r = ( d( i+1 )-g )*s + two*c*b
+-            p = s*r
+-            d( i ) = g + p
+-            g = c*r - b
+-c
+-c           if eigenvectors are desired, then save rotations.
+-c
+-            if( icompz.gt.0 ) then
+-               work( i ) = c
+-               work( n-1+i ) = s
+-            end if
+-c
+-  120    continue
+-c
+-c        if eigenvectors are desired, then apply saved rotations.
+-c
+-         if( icompz.gt.0 ) then
+-            mm = l - m + 1
+-c$$$            call dlasr( 'r', 'v', 'f', n, mm, work( m ), work( n-1+m ),
+-c$$$     $                  z( 1, m ), ldz )
+-c
+-c           *** New starting with version 2.5 ***
+-c
+-            call dlasr( 'r', 'v', 'f', 1, mm, work( m ), work( n-1+m ),
+-     &                  z( m ), 1 )
+-c           *************************************                             
+-         end if
+-c
+-         d( l ) = d( l ) - p
+-         e( lm1 ) = g
+-         go to 90
+-c
+-c        eigenvalue found.
+-c
+-  130    continue
+-         d( l ) = p
+-c
+-         l = l - 1
+-         if( l.ge.lend )
+-     $      go to 90
+-         go to 140
+-c
+-      end if
+-c
+-c     undo scaling if necessary
+-c
+-  140 continue
+-      if( iscale.eq.1 ) then
+-         call dlascl( 'g', 0, 0, ssfmax, anorm, lendsv-lsv+1, 1,
+-     $                d( lsv ), n, info )
+-         call dlascl( 'g', 0, 0, ssfmax, anorm, lendsv-lsv, 1, e( lsv ),
+-     $                n, info )
+-      else if( iscale.eq.2 ) then
+-         call dlascl( 'g', 0, 0, ssfmin, anorm, lendsv-lsv+1, 1,
+-     $                d( lsv ), n, info )
+-         call dlascl( 'g', 0, 0, ssfmin, anorm, lendsv-lsv, 1, e( lsv ),
+-     $                n, info )
+-      end if
+-c
+-c     check for no convergence to an eigenvalue after a total
+-c     of n*maxit iterations.
+-c
+-      if( jtot.lt.nmaxit )
+-     $   go to 10
+-      do 150 i = 1, n - 1
+-         if( e( i ).ne.zero )
+-     $      info = info + 1
+-  150 continue
+-      go to 190
+-c
+-c     order eigenvalues and eigenvectors.
+-c
+-  160 continue
+-      if( icompz.eq.0 ) then
+-c
+-c        use quick sort
+-c
+-         call dlasrt( 'i', n, d, info )
+-c
+-      else
+-c
+-c        use selection sort to minimize swaps of eigenvectors
+-c
+-         do 180 ii = 2, n
+-            i = ii - 1
+-            k = i
+-            p = d( i )
+-            do 170 j = ii, n
+-               if( d( j ).lt.p ) then
+-                  k = j
+-                  p = d( j )
+-               end if
+-  170       continue
+-            if( k.ne.i ) then
+-               d( k ) = d( i )
+-               d( i ) = p
+-c$$$               call dswap( n, z( 1, i ), 1, z( 1, k ), 1 )
+-c           *** New starting with version 2.5 ***
+-c
+-               p    = z(k)
+-               z(k) = z(i)
+-               z(i) = p
+-c           *************************************
+-            end if
+-  180    continue
+-      end if
+-c
+-  190 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of dstqrb |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/sgetv0.f
++++ /dev/null
+@@ -1,419 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: sgetv0
+-c
+-c\Description: 
+-c  Generate a random initial residual vector for the Arnoldi process.
+-c  Force the residual vector to be in the range of the operator OP.  
+-c
+-c\Usage:
+-c  call sgetv0
+-c     ( IDO, BMAT, ITRY, INITV, N, J, V, LDV, RESID, RNORM, 
+-c       IPNTR, WORKD, IERR )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.  IDO must be zero on the first
+-c          call to sgetv0.
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    This is for the initialization phase to force the
+-c                    starting vector into the range of OP.
+-c          IDO =  2: compute  Y = B * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of the matrix B in the (generalized)
+-c          eigenvalue problem A*x = lambda*B*x.
+-c          B = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          B = 'G' -> generalized eigenvalue problem A*x = lambda*B*x
+-c
+-c  ITRY    Integer.  (INPUT)
+-c          ITRY counts the number of times that sgetv0 is called.  
+-c          It should be set to 1 on the initial call to sgetv0.
+-c
+-c  INITV   Logical variable.  (INPUT)
+-c          .TRUE.  => the initial residual vector is given in RESID.
+-c          .FALSE. => generate a random initial residual vector.
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the problem.
+-c
+-c  J       Integer.  (INPUT)
+-c          Index of the residual vector to be generated, with respect to
+-c          the Arnoldi process.  J > 1 in case of a "restart".
+-c
+-c  V       Real N by J array.  (INPUT)
+-c          The first J-1 columns of V contain the current Arnoldi basis
+-c          if this is a "restart".
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling 
+-c          program.
+-c
+-c  RESID   Real array of length N.  (INPUT/OUTPUT)
+-c          Initial residual vector to be generated.  If RESID is 
+-c          provided, force RESID into the range of the operator OP.
+-c
+-c  RNORM   Real scalar.  (OUTPUT)
+-c          B-norm of the generated residual.
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c
+-c  WORKD   Real work array of length 2*N.  (REVERSE COMMUNICATION).
+-c          On exit, WORK(1:N) = B*RESID to be used in SSAITR.
+-c
+-c  IERR    Integer.  (OUTPUT)
+-c          =  0: Normal exit.
+-c          = -1: Cannot generate a nontrivial restarted residual vector
+-c                in the range of the operator OP.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c
+-c\Routines called:
+-c     arscnd  ARPACK utility routine for timing.
+-c     svout   ARPACK utility routine for vector output.
+-c     slarnv  LAPACK routine for generating a random vector.
+-c     sgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     scopy   Level 1 BLAS that copies one vector to another.
+-c     sdot    Level 1 BLAS that computes the scalar product of two vectors. 
+-c     snrm2   Level 1 BLAS that computes the norm of a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\SCCS Information: @(#) 
+-c FILE: getv0.F   SID: 2.7   DATE OF SID: 04/07/99   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine sgetv0 
+-     &   ( ido, bmat, itry, initv, n, j, v, ldv, resid, rnorm, 
+-     &     ipntr, workd, ierr )
+-c 
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1
+-      logical    initv
+-      integer    ido, ierr, itry, j, ldv, n
+-      Real
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(3)
+-      Real
+-     &           resid(n), v(ldv,j), workd(2*n)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real
+-     &           one, zero
+-      parameter (one = 1.0E+0, zero = 0.0E+0)
+-c
+-c     %------------------------%
+-c     | Local Scalars & Arrays |
+-c     %------------------------%
+-c
+-      logical    first, inits, orth
+-      integer    idist, iseed(4), iter, msglvl, jj
+-      Real
+-     &           rnorm0
+-      save       first, iseed, inits, iter, msglvl, orth, rnorm0
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   slarnv, svout, scopy, sgemv, arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real
+-     &           sdot, snrm2
+-      external   sdot, snrm2
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    abs, sqrt
+-c
+-c     %-----------------%
+-c     | Data Statements |
+-c     %-----------------%
+-c
+-      data       inits /.true./
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-c
+-c     %-----------------------------------%
+-c     | Initialize the seed of the LAPACK |
+-c     | random number generator           |
+-c     %-----------------------------------%
+-c
+-      if (inits) then
+-          iseed(1) = 1
+-          iseed(2) = 3
+-          iseed(3) = 5
+-          iseed(4) = 7
+-          inits = .false.
+-      end if
+-c
+-      if (ido .eq.  0) then
+-c 
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call arscnd (t0)
+-         msglvl = mgetv0
+-c 
+-         ierr   = 0
+-         iter   = 0
+-         first  = .FALSE.
+-         orth   = .FALSE.
+-c
+-c        %-----------------------------------------------------%
+-c        | Possibly generate a random starting vector in RESID |
+-c        | Use a LAPACK random number generator used by the    |
+-c        | matrix generation routines.                         |
+-c        |    idist = 1: uniform (0,1)  distribution;          |
+-c        |    idist = 2: uniform (-1,1) distribution;          |
+-c        |    idist = 3: normal  (0,1)  distribution;          |
+-c        %-----------------------------------------------------%
+-c
+-         if (.not.initv) then
+-            idist = 2
+-            call slarnv (idist, iseed, n, resid)
+-         end if
+-c 
+-c        %----------------------------------------------------------%
+-c        | Force the starting vector into the range of OP to handle |
+-c        | the generalized problem when B is possibly (singular).   |
+-c        %----------------------------------------------------------%
+-c
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nopx = nopx + 1
+-            ipntr(1) = 1
+-            ipntr(2) = n + 1
+-            call scopy (n, resid, 1, workd, 1)
+-            ido = -1
+-            go to 9000
+-         end if
+-      end if
+-c 
+-c     %-----------------------------------------%
+-c     | Back from computing OP*(initial-vector) |
+-c     %-----------------------------------------%
+-c
+-      if (first) go to 20
+-c
+-c     %-----------------------------------------------%
+-c     | Back from computing B*(orthogonalized-vector) |
+-c     %-----------------------------------------------%
+-c
+-      if (orth)  go to 40
+-c 
+-      if (bmat .eq. 'G') then
+-         call arscnd (t3)
+-         tmvopx = tmvopx + (t3 - t2)
+-      end if
+-c 
+-c     %------------------------------------------------------%
+-c     | Starting vector is now in the range of OP; r = OP*r; |
+-c     | Compute B-norm of starting vector.                   |
+-c     %------------------------------------------------------%
+-c
+-      call arscnd (t2)
+-      first = .TRUE.
+-      if (bmat .eq. 'G') then
+-         nbx = nbx + 1
+-         call scopy (n, workd(n+1), 1, resid, 1)
+-         ipntr(1) = n + 1
+-         ipntr(2) = 1
+-         ido = 2
+-         go to 9000
+-      else if (bmat .eq. 'I') then
+-         call scopy (n, resid, 1, workd, 1)
+-      end if
+-c 
+-   20 continue
+-c
+-      if (bmat .eq. 'G') then
+-         call arscnd (t3)
+-         tmvbx = tmvbx + (t3 - t2)
+-      end if
+-c 
+-      first = .FALSE.
+-      if (bmat .eq. 'G') then
+-          rnorm0 = sdot (n, resid, 1, workd, 1)
+-          rnorm0 = sqrt(abs(rnorm0))
+-      else if (bmat .eq. 'I') then
+-           rnorm0 = snrm2(n, resid, 1)
+-      end if
+-      rnorm  = rnorm0
+-c
+-c     %---------------------------------------------%
+-c     | Exit if this is the very first Arnoldi step |
+-c     %---------------------------------------------%
+-c
+-      if (j .eq. 1) go to 50
+-c 
+-c     %----------------------------------------------------------------
+-c     | Otherwise need to B-orthogonalize the starting vector against |
+-c     | the current Arnoldi basis using Gram-Schmidt with iter. ref.  |
+-c     | This is the case where an invariant subspace is encountered   |
+-c     | in the middle of the Arnoldi factorization.                   |
+-c     |                                                               |
+-c     |       s = V^{T}*B*r;   r = r - V*s;                           |
+-c     |                                                               |
+-c     | Stopping criteria used for iter. ref. is discussed in         |
+-c     | Parlett's book, page 107 and in Gragg & Reichel TOMS paper.   |
+-c     %---------------------------------------------------------------%
+-c
+-      orth = .TRUE.
+-   30 continue
+-c
+-      call sgemv ('T', n, j-1, one, v, ldv, workd, 1, 
+-     &            zero, workd(n+1), 1)
+-      call sgemv ('N', n, j-1, -one, v, ldv, workd(n+1), 1, 
+-     &            one, resid, 1)
+-c 
+-c     %----------------------------------------------------------%
+-c     | Compute the B-norm of the orthogonalized starting vector |
+-c     %----------------------------------------------------------%
+-c
+-      call arscnd (t2)
+-      if (bmat .eq. 'G') then
+-         nbx = nbx + 1
+-         call scopy (n, resid, 1, workd(n+1), 1)
+-         ipntr(1) = n + 1
+-         ipntr(2) = 1
+-         ido = 2
+-         go to 9000
+-      else if (bmat .eq. 'I') then
+-         call scopy (n, resid, 1, workd, 1)
+-      end if
+-c 
+-   40 continue
+-c
+-      if (bmat .eq. 'G') then
+-         call arscnd (t3)
+-         tmvbx = tmvbx + (t3 - t2)
+-      end if
+-c 
+-      if (bmat .eq. 'G') then
+-         rnorm = sdot (n, resid, 1, workd, 1)
+-         rnorm = sqrt(abs(rnorm))
+-      else if (bmat .eq. 'I') then
+-         rnorm = snrm2(n, resid, 1)
+-      end if
+-c
+-c     %--------------------------------------%
+-c     | Check for further orthogonalization. |
+-c     %--------------------------------------%
+-c
+-      if (msglvl .gt. 2) then
+-          call svout (logfil, 1, rnorm0, ndigit, 
+-     &                '_getv0: re-orthonalization ; rnorm0 is')
+-          call svout (logfil, 1, rnorm, ndigit, 
+-     &                '_getv0: re-orthonalization ; rnorm is')
+-      end if
+-c
+-      if (rnorm .gt. 0.717*rnorm0) go to 50
+-c 
+-      iter = iter + 1
+-      if (iter .le. 5) then
+-c
+-c        %-----------------------------------%
+-c        | Perform iterative refinement step |
+-c        %-----------------------------------%
+-c
+-         rnorm0 = rnorm
+-         go to 30
+-      else
+-c
+-c        %------------------------------------%
+-c        | Iterative refinement step "failed" |
+-c        %------------------------------------%
+-c
+-         do 45 jj = 1, n
+-            resid(jj) = zero
+-   45    continue
+-         rnorm = zero
+-         ierr = -1
+-      end if
+-c 
+-   50 continue
+-c
+-      if (msglvl .gt. 0) then
+-         call svout (logfil, 1, rnorm, ndigit,
+-     &        '_getv0: B-norm of initial / restarted starting vector')
+-      end if
+-      if (msglvl .gt. 3) then
+-         call svout (logfil, n, resid, ndigit,
+-     &        '_getv0: initial / restarted starting vector')
+-      end if
+-      ido = 99
+-c 
+-      call arscnd (t1)
+-      tgetv0 = tgetv0 + (t1 - t0)
+-c 
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of sgetv0 |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/slaqrb.f
++++ /dev/null
+@@ -1,521 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: slaqrb
+-c
+-c\Description:
+-c  Compute the eigenvalues and the Schur decomposition of an upper 
+-c  Hessenberg submatrix in rows and columns ILO to IHI.  Only the
+-c  last component of the Schur vectors are computed.
+-c
+-c  This is mostly a modification of the LAPACK routine slahqr.
+-c  
+-c\Usage:
+-c  call slaqrb
+-c     ( WANTT, N, ILO, IHI, H, LDH, WR, WI,  Z, INFO )
+-c
+-c\Arguments
+-c  WANTT   Logical variable.  (INPUT)
+-c          = .TRUE. : the full Schur form T is required;
+-c          = .FALSE.: only eigenvalues are required.
+-c
+-c  N       Integer.  (INPUT)
+-c          The order of the matrix H.  N >= 0.
+-c
+-c  ILO     Integer.  (INPUT)
+-c  IHI     Integer.  (INPUT)
+-c          It is assumed that H is already upper quasi-triangular in
+-c          rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
+-c          ILO = 1). SLAQRB works primarily with the Hessenberg
+-c          submatrix in rows and columns ILO to IHI, but applies
+-c          transformations to all of H if WANTT is .TRUE..
+-c          1 <= ILO <= max(1,IHI); IHI <= N.
+-c
+-c  H       Real array, dimension (LDH,N).  (INPUT/OUTPUT)
+-c          On entry, the upper Hessenberg matrix H.
+-c          On exit, if WANTT is .TRUE., H is upper quasi-triangular in
+-c          rows and columns ILO:IHI, with any 2-by-2 diagonal blocks in
+-c          standard form. If WANTT is .FALSE., the contents of H are
+-c          unspecified on exit.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          The leading dimension of the array H. LDH >= max(1,N).
+-c
+-c  WR      Real array, dimension (N).  (OUTPUT)
+-c  WI      Real array, dimension (N).  (OUTPUT)
+-c          The real and imaginary parts, respectively, of the computed
+-c          eigenvalues ILO to IHI are stored in the corresponding
+-c          elements of WR and WI. If two eigenvalues are computed as a
+-c          complex conjugate pair, they are stored in consecutive
+-c          elements of WR and WI, say the i-th and (i+1)th, with
+-c          WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
+-c          eigenvalues are stored in the same order as on the diagonal
+-c          of the Schur form returned in H, with WR(i) = H(i,i), and, if
+-c          H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
+-c          WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
+-c
+-c  Z       Real array, dimension (N).  (OUTPUT)
+-c          On exit Z contains the last components of the Schur vectors.
+-c
+-c  INFO    Integer.  (OUPUT)
+-c          = 0: successful exit
+-c          > 0: SLAQRB failed to compute all the eigenvalues ILO to IHI
+-c               in a total of 30*(IHI-ILO+1) iterations; if INFO = i,
+-c               elements i+1:ihi of WR and WI contain those eigenvalues
+-c               which have been successfully computed.
+-c
+-c\Remarks
+-c  1. None.
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     slabad  LAPACK routine that computes machine constants.
+-c     slamch  LAPACK routine that determines machine constants.
+-c     slanhs  LAPACK routine that computes various norms of a matrix.
+-c     slanv2  LAPACK routine that computes the Schur factorization of
+-c             2 by 2 nonsymmetric matrix in standard form.
+-c     slarfg  LAPACK Householder reflection construction routine.
+-c     scopy   Level 1 BLAS that copies one vector to another.
+-c     srot    Level 1 BLAS that applies a rotation to a 2 by 2 matrix.
+-
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas 
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.4'
+-c               Modified from the LAPACK routine slahqr so that only the
+-c               last component of the Schur vectors are computed.
+-c
+-c\SCCS Information: @(#) 
+-c FILE: laqrb.F   SID: 2.2   DATE OF SID: 8/27/96   RELEASE: 2
+-c
+-c\Remarks
+-c     1. None
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine slaqrb ( wantt, n, ilo, ihi, h, ldh, wr, wi,
+-     &                    z, info )
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      logical    wantt
+-      integer    ihi, ilo, info, ldh, n
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Real
+-     &           h( ldh, * ), wi( * ), wr( * ), z( * )
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real
+-     &           zero, one, dat1, dat2
+-      parameter (zero = 0.0E+0, one = 1.0E+0, dat1 = 7.5E-1, 
+-     &           dat2 = -4.375E-1)
+-c
+-c     %------------------------%
+-c     | Local Scalars & Arrays |
+-c     %------------------------%
+-c
+-      integer    i, i1, i2, itn, its, j, k, l, m, nh, nr
+-      Real
+-     &           cs, h00, h10, h11, h12, h21, h22, h33, h33s,
+-     &           h43h34, h44, h44s, ovfl, s, smlnum, sn, sum,
+-     &           t1, t2, t3, tst1, ulp, unfl, v1, v2, v3
+-      Real
+-     &           v( 3 ), work( 1 )
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real
+-     &           slamch, slanhs
+-      external   slamch, slanhs
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   scopy, slabad, slanv2, slarfg, srot
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      info = 0
+-c
+-c     %--------------------------%
+-c     | Quick return if possible |
+-c     %--------------------------%
+-c
+-      if( n.eq.0 )
+-     &   return
+-      if( ilo.eq.ihi ) then
+-         wr( ilo ) = h( ilo, ilo )
+-         wi( ilo ) = zero
+-         return
+-      end if
+-c 
+-c     %---------------------------------------------%
+-c     | Initialize the vector of last components of |
+-c     | the Schur vectors for accumulation.         |
+-c     %---------------------------------------------%
+-c
+-      do 5 j = 1, n-1
+-         z(j) = zero
+-  5   continue 
+-      z(n) = one
+-c 
+-      nh = ihi - ilo + 1
+-c
+-c     %-------------------------------------------------------------%
+-c     | Set machine-dependent constants for the stopping criterion. |
+-c     | If norm(H) <= sqrt(OVFL), overflow should not occur.        |
+-c     %-------------------------------------------------------------%
+-c
+-      unfl = slamch( 'safe minimum' )
+-      ovfl = one / unfl
+-      call slabad( unfl, ovfl )
+-      ulp = slamch( 'precision' )
+-      smlnum = unfl*( nh / ulp )
+-c
+-c     %---------------------------------------------------------------%
+-c     | I1 and I2 are the indices of the first row and last column    |
+-c     | of H to which transformations must be applied. If eigenvalues |
+-c     | only are computed, I1 and I2 are set inside the main loop.    |
+-c     | Zero out H(J+2,J) = ZERO for J=1:N if WANTT = .TRUE.          |
+-c     | else H(J+2,J) for J=ILO:IHI-ILO-1 if WANTT = .FALSE.          |
+-c     %---------------------------------------------------------------%
+-c
+-      if( wantt ) then
+-         i1 = 1
+-         i2 = n
+-         do 8 i=1,i2-2
+-            h(i1+i+1,i) = zero
+- 8       continue
+-      else
+-         do 9 i=1, ihi-ilo-1
+-            h(ilo+i+1,ilo+i-1) = zero
+- 9       continue
+-      end if
+-c 
+-c     %---------------------------------------------------%
+-c     | ITN is the total number of QR iterations allowed. |
+-c     %---------------------------------------------------%
+-c
+-      itn = 30*nh
+-c 
+-c     ------------------------------------------------------------------
+-c     The main loop begins here. I is the loop index and decreases from
+-c     IHI to ILO in steps of 1 or 2. Each iteration of the loop works
+-c     with the active submatrix in rows and columns L to I.
+-c     Eigenvalues I+1 to IHI have already converged. Either L = ILO or
+-c     H(L,L-1) is negligible so that the matrix splits.
+-c     ------------------------------------------------------------------
+-c 
+-      i = ihi
+-   10 continue
+-      l = ilo
+-      if( i.lt.ilo )
+-     &   go to 150
+- 
+-c     %--------------------------------------------------------------%
+-c     | Perform QR iterations on rows and columns ILO to I until a   |
+-c     | submatrix of order 1 or 2 splits off at the bottom because a |
+-c     | subdiagonal element has become negligible.                   |
+-c     %--------------------------------------------------------------%
+- 
+-      do 130 its = 0, itn
+-c
+-c        %----------------------------------------------%
+-c        | Look for a single small subdiagonal element. |
+-c        %----------------------------------------------%
+-c
+-         do 20 k = i, l + 1, -1
+-            tst1 = abs( h( k-1, k-1 ) ) + abs( h( k, k ) )
+-            if( tst1.eq.zero )
+-     &         tst1 = slanhs( '1', i-l+1, h( l, l ), ldh, work )
+-            if( abs( h( k, k-1 ) ).le.max( ulp*tst1, smlnum ) )
+-     &         go to 30
+-   20    continue
+-   30    continue
+-         l = k
+-         if( l.gt.ilo ) then
+-c
+-c           %------------------------%
+-c           | H(L,L-1) is negligible |
+-c           %------------------------%
+-c
+-            h( l, l-1 ) = zero
+-         end if
+-c
+-c        %-------------------------------------------------------------%
+-c        | Exit from loop if a submatrix of order 1 or 2 has split off |
+-c        %-------------------------------------------------------------%
+-c
+-         if( l.ge.i-1 )
+-     &      go to 140
+-c
+-c        %---------------------------------------------------------%
+-c        | Now the active submatrix is in rows and columns L to I. |
+-c        | If eigenvalues only are being computed, only the active |
+-c        | submatrix need be transformed.                          |
+-c        %---------------------------------------------------------%
+-c
+-         if( .not.wantt ) then
+-            i1 = l
+-            i2 = i
+-         end if
+-c 
+-         if( its.eq.10 .or. its.eq.20 ) then
+-c
+-c           %-------------------%
+-c           | Exceptional shift |
+-c           %-------------------%
+-c
+-            s = abs( h( i, i-1 ) ) + abs( h( i-1, i-2 ) )
+-            h44 = dat1*s
+-            h33 = h44
+-            h43h34 = dat2*s*s
+-c
+-         else
+-c
+-c           %-----------------------------------------%
+-c           | Prepare to use Wilkinson's double shift |
+-c           %-----------------------------------------%
+-c
+-            h44 = h( i, i )
+-            h33 = h( i-1, i-1 )
+-            h43h34 = h( i, i-1 )*h( i-1, i )
+-         end if
+-c
+-c        %-----------------------------------------------------%
+-c        | Look for two consecutive small subdiagonal elements |
+-c        %-----------------------------------------------------%
+-c
+-         do 40 m = i - 2, l, -1
+-c
+-c           %---------------------------------------------------------%
+-c           | Determine the effect of starting the double-shift QR    |
+-c           | iteration at row M, and see if this would make H(M,M-1) |
+-c           | negligible.                                             |
+-c           %---------------------------------------------------------%
+-c
+-            h11 = h( m, m )
+-            h22 = h( m+1, m+1 )
+-            h21 = h( m+1, m )
+-            h12 = h( m, m+1 )
+-            h44s = h44 - h11
+-            h33s = h33 - h11
+-            v1 = ( h33s*h44s-h43h34 ) / h21 + h12
+-            v2 = h22 - h11 - h33s - h44s
+-            v3 = h( m+2, m+1 )
+-            s = abs( v1 ) + abs( v2 ) + abs( v3 )
+-            v1 = v1 / s
+-            v2 = v2 / s
+-            v3 = v3 / s
+-            v( 1 ) = v1
+-            v( 2 ) = v2
+-            v( 3 ) = v3
+-            if( m.eq.l )
+-     &         go to 50
+-            h00 = h( m-1, m-1 )
+-            h10 = h( m, m-1 )
+-            tst1 = abs( v1 )*( abs( h00 )+abs( h11 )+abs( h22 ) )
+-            if( abs( h10 )*( abs( v2 )+abs( v3 ) ).le.ulp*tst1 )
+-     &         go to 50
+-   40    continue
+-   50    continue
+-c
+-c        %----------------------%
+-c        | Double-shift QR step |
+-c        %----------------------%
+-c
+-         do 120 k = m, i - 1
+-c 
+-c           ------------------------------------------------------------
+-c           The first iteration of this loop determines a reflection G
+-c           from the vector V and applies it from left and right to H,
+-c           thus creating a nonzero bulge below the subdiagonal.
+-c
+-c           Each subsequent iteration determines a reflection G to
+-c           restore the Hessenberg form in the (K-1)th column, and thus
+-c           chases the bulge one step toward the bottom of the active
+-c           submatrix. NR is the order of G.
+-c           ------------------------------------------------------------
+-c 
+-            nr = min( 3, i-k+1 )
+-            if( k.gt.m )
+-     &         call scopy( nr, h( k, k-1 ), 1, v, 1 )
+-            call slarfg( nr, v( 1 ), v( 2 ), 1, t1 )
+-            if( k.gt.m ) then
+-               h( k, k-1 ) = v( 1 )
+-               h( k+1, k-1 ) = zero
+-               if( k.lt.i-1 )
+-     &            h( k+2, k-1 ) = zero
+-            else if( m.gt.l ) then
+-               h( k, k-1 ) = -h( k, k-1 )
+-            end if
+-            v2 = v( 2 )
+-            t2 = t1*v2
+-            if( nr.eq.3 ) then
+-               v3 = v( 3 )
+-               t3 = t1*v3
+-c
+-c              %------------------------------------------------%
+-c              | Apply G from the left to transform the rows of |
+-c              | the matrix in columns K to I2.                 |
+-c              %------------------------------------------------%
+-c
+-               do 60 j = k, i2
+-                  sum = h( k, j ) + v2*h( k+1, j ) + v3*h( k+2, j )
+-                  h( k, j ) = h( k, j ) - sum*t1
+-                  h( k+1, j ) = h( k+1, j ) - sum*t2
+-                  h( k+2, j ) = h( k+2, j ) - sum*t3
+-   60          continue
+-c
+-c              %----------------------------------------------------%
+-c              | Apply G from the right to transform the columns of |
+-c              | the matrix in rows I1 to min(K+3,I).               |
+-c              %----------------------------------------------------%
+-c
+-               do 70 j = i1, min( k+3, i )
+-                  sum = h( j, k ) + v2*h( j, k+1 ) + v3*h( j, k+2 )
+-                  h( j, k ) = h( j, k ) - sum*t1
+-                  h( j, k+1 ) = h( j, k+1 ) - sum*t2
+-                  h( j, k+2 ) = h( j, k+2 ) - sum*t3
+-   70          continue
+-c
+-c              %----------------------------------%
+-c              | Accumulate transformations for Z |
+-c              %----------------------------------%
+-c
+-               sum      = z( k ) + v2*z( k+1 ) + v3*z( k+2 )
+-               z( k )   = z( k ) - sum*t1
+-               z( k+1 ) = z( k+1 ) - sum*t2
+-               z( k+2 ) = z( k+2 ) - sum*t3
+- 
+-            else if( nr.eq.2 ) then
+-c
+-c              %------------------------------------------------%
+-c              | Apply G from the left to transform the rows of |
+-c              | the matrix in columns K to I2.                 |
+-c              %------------------------------------------------%
+-c
+-               do 90 j = k, i2
+-                  sum = h( k, j ) + v2*h( k+1, j )
+-                  h( k, j ) = h( k, j ) - sum*t1
+-                  h( k+1, j ) = h( k+1, j ) - sum*t2
+-   90          continue
+-c
+-c              %----------------------------------------------------%
+-c              | Apply G from the right to transform the columns of |
+-c              | the matrix in rows I1 to min(K+3,I).               |
+-c              %----------------------------------------------------%
+-c
+-               do 100 j = i1, i
+-                  sum = h( j, k ) + v2*h( j, k+1 )
+-                  h( j, k ) = h( j, k ) - sum*t1
+-                  h( j, k+1 ) = h( j, k+1 ) - sum*t2
+-  100          continue
+-c
+-c              %----------------------------------%
+-c              | Accumulate transformations for Z |
+-c              %----------------------------------%
+-c
+-               sum      = z( k ) + v2*z( k+1 )
+-               z( k )   = z( k ) - sum*t1
+-               z( k+1 ) = z( k+1 ) - sum*t2
+-            end if
+-  120    continue
+- 
+-  130 continue
+-c
+-c     %-------------------------------------------------------%
+-c     | Failure to converge in remaining number of iterations |
+-c     %-------------------------------------------------------%
+-c
+-      info = i
+-      return
+- 
+-  140 continue
+- 
+-      if( l.eq.i ) then
+-c
+-c        %------------------------------------------------------%
+-c        | H(I,I-1) is negligible: one eigenvalue has converged |
+-c        %------------------------------------------------------%
+-c
+-         wr( i ) = h( i, i )
+-         wi( i ) = zero
+-
+-      else if( l.eq.i-1 ) then
+-c
+-c        %--------------------------------------------------------%
+-c        | H(I-1,I-2) is negligible;                              |
+-c        | a pair of eigenvalues have converged.                  |
+-c        |                                                        |
+-c        | Transform the 2-by-2 submatrix to standard Schur form, |
+-c        | and compute and store the eigenvalues.                 |
+-c        %--------------------------------------------------------%
+-c
+-         call slanv2( h( i-1, i-1 ), h( i-1, i ), h( i, i-1 ),
+-     &                h( i, i ), wr( i-1 ), wi( i-1 ), wr( i ), wi( i ),
+-     &                cs, sn )
+- 
+-         if( wantt ) then
+-c
+-c           %-----------------------------------------------------%
+-c           | Apply the transformation to the rest of H and to Z, |
+-c           | as required.                                        |
+-c           %-----------------------------------------------------%
+-c
+-            if( i2.gt.i )
+-     &         call srot( i2-i, h( i-1, i+1 ), ldh, h( i, i+1 ), ldh,
+-     &                    cs, sn )
+-            call srot( i-i1-1, h( i1, i-1 ), 1, h( i1, i ), 1, cs, sn )
+-            sum      = cs*z( i-1 ) + sn*z( i )
+-            z( i )   = cs*z( i )   - sn*z( i-1 )
+-            z( i-1 ) = sum
+-         end if
+-      end if
+-c
+-c     %---------------------------------------------------------%
+-c     | Decrement number of remaining iterations, and return to |
+-c     | start of the main loop with new value of I.             |
+-c     %---------------------------------------------------------%
+-c
+-      itn = itn - its
+-      i = l - 1
+-      go to 10
+- 
+-  150 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of slaqrb |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/snaitr.f
++++ /dev/null
+@@ -1,840 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: snaitr
+-c
+-c\Description: 
+-c  Reverse communication interface for applying NP additional steps to 
+-c  a K step nonsymmetric Arnoldi factorization.
+-c
+-c  Input:  OP*V_{k}  -  V_{k}*H = r_{k}*e_{k}^T
+-c
+-c          with (V_{k}^T)*B*V_{k} = I, (V_{k}^T)*B*r_{k} = 0.
+-c
+-c  Output: OP*V_{k+p}  -  V_{k+p}*H = r_{k+p}*e_{k+p}^T
+-c
+-c          with (V_{k+p}^T)*B*V_{k+p} = I, (V_{k+p}^T)*B*r_{k+p} = 0.
+-c
+-c  where OP and B are as in snaupd.  The B-norm of r_{k+p} is also
+-c  computed and returned.
+-c
+-c\Usage:
+-c  call snaitr
+-c     ( IDO, BMAT, N, K, NP, NB, RESID, RNORM, V, LDV, H, LDH, 
+-c       IPNTR, WORKD, INFO )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y.
+-c                    This is for the restart phase to force the new
+-c                    starting vector into the range of OP.
+-c          IDO =  1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y,
+-c                    IPNTR(3) is the pointer into WORK for B * X.
+-c          IDO =  2: compute  Y = B * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c          When the routine is used in the "shift-and-invert" mode, the
+-c          vector B * Q is already available and do not need to be
+-c          recompute in forming OP * Q.
+-c
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of the matrix B that defines the
+-c          semi-inner product for the operator OP.  See snaupd.
+-c          B = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          B = 'G' -> generalized eigenvalue problem A*x = lambda*M**x
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the eigenproblem.
+-c
+-c  K       Integer.  (INPUT)
+-c          Current size of V and H.
+-c
+-c  NP      Integer.  (INPUT)
+-c          Number of additional Arnoldi steps to take.
+-c
+-c  NB      Integer.  (INPUT)
+-c          Blocksize to be used in the recurrence.          
+-c          Only work for NB = 1 right now.  The goal is to have a 
+-c          program that implement both the block and non-block method.
+-c
+-c  RESID   Real array of length N.  (INPUT/OUTPUT)
+-c          On INPUT:  RESID contains the residual vector r_{k}.
+-c          On OUTPUT: RESID contains the residual vector r_{k+p}.
+-c
+-c  RNORM   Real scalar.  (INPUT/OUTPUT)
+-c          B-norm of the starting residual on input.
+-c          B-norm of the updated residual r_{k+p} on output.
+-c
+-c  V       Real N by K+NP array.  (INPUT/OUTPUT)
+-c          On INPUT:  V contains the Arnoldi vectors in the first K 
+-c          columns.
+-c          On OUTPUT: V contains the new NP Arnoldi vectors in the next
+-c          NP columns.  The first K columns are unchanged.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling 
+-c          program.
+-c
+-c  H       Real (K+NP) by (K+NP) array.  (INPUT/OUTPUT)
+-c          H is used to store the generated upper Hessenberg matrix.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling 
+-c          program.
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORK for 
+-c          vectors used by the Arnoldi iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X.
+-c          IPNTR(2): pointer to the current result vector Y.
+-c          IPNTR(3): pointer to the vector B * X when used in the 
+-c                    shift-and-invert mode.  X is the current operand.
+-c          -------------------------------------------------------------
+-c          
+-c  WORKD   Real work array of length 3*N.  (REVERSE COMMUNICATION)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The calling program should not 
+-c          use WORKD as temporary workspace during the iteration !!!!!!
+-c          On input, WORKD(1:N) = B*RESID and is used to save some 
+-c          computation at the first step.
+-c
+-c  INFO    Integer.  (OUTPUT)
+-c          = 0: Normal exit.
+-c          > 0: Size of the spanning invariant subspace of OP found.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c
+-c\Routines called:
+-c     sgetv0  ARPACK routine to generate the initial vector.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     smout   ARPACK utility routine that prints matrices
+-c     svout   ARPACK utility routine that prints vectors.
+-c     slabad  LAPACK routine that computes machine constants.
+-c     slamch  LAPACK routine that determines machine constants.
+-c     slascl  LAPACK routine for careful scaling of a matrix.
+-c     slanhs  LAPACK routine that computes various norms of a matrix.
+-c     sgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     saxpy   Level 1 BLAS that computes a vector triad.
+-c     sscal   Level 1 BLAS that scales a vector.
+-c     scopy   Level 1 BLAS that copies one vector to another .
+-c     sdot    Level 1 BLAS that computes the scalar product of two vectors. 
+-c     snrm2   Level 1 BLAS that computes the norm of a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas    
+-c 
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.4'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: naitr.F   SID: 2.4   DATE OF SID: 8/27/96   RELEASE: 2
+-c
+-c\Remarks
+-c  The algorithm implemented is:
+-c  
+-c  restart = .false.
+-c  Given V_{k} = [v_{1}, ..., v_{k}], r_{k}; 
+-c  r_{k} contains the initial residual vector even for k = 0;
+-c  Also assume that rnorm = || B*r_{k} || and B*r_{k} are already 
+-c  computed by the calling program.
+-c
+-c  betaj = rnorm ; p_{k+1} = B*r_{k} ;
+-c  For  j = k+1, ..., k+np  Do
+-c     1) if ( betaj < tol ) stop or restart depending on j.
+-c        ( At present tol is zero )
+-c        if ( restart ) generate a new starting vector.
+-c     2) v_{j} = r(j-1)/betaj;  V_{j} = [V_{j-1}, v_{j}];  
+-c        p_{j} = p_{j}/betaj
+-c     3) r_{j} = OP*v_{j} where OP is defined as in snaupd
+-c        For shift-invert mode p_{j} = B*v_{j} is already available.
+-c        wnorm = || OP*v_{j} ||
+-c     4) Compute the j-th step residual vector.
+-c        w_{j} =  V_{j}^T * B * OP * v_{j}
+-c        r_{j} =  OP*v_{j} - V_{j} * w_{j}
+-c        H(:,j) = w_{j};
+-c        H(j,j-1) = rnorm
+-c        rnorm = || r_(j) ||
+-c        If (rnorm > 0.717*wnorm) accept step and go back to 1)
+-c     5) Re-orthogonalization step:
+-c        s = V_{j}'*B*r_{j}
+-c        r_{j} = r_{j} - V_{j}*s;  rnorm1 = || r_{j} ||
+-c        alphaj = alphaj + s_{j};   
+-c     6) Iterative refinement step:
+-c        If (rnorm1 > 0.717*rnorm) then
+-c           rnorm = rnorm1
+-c           accept step and go back to 1)
+-c        Else
+-c           rnorm = rnorm1
+-c           If this is the first time in step 6), go to 5)
+-c           Else r_{j} lies in the span of V_{j} numerically.
+-c              Set r_{j} = 0 and rnorm = 0; go to 1)
+-c        EndIf 
+-c  End Do
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine snaitr
+-     &   (ido, bmat, n, k, np, nb, resid, rnorm, v, ldv, h, ldh, 
+-     &    ipntr, workd, info)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1
+-      integer    ido, info, k, ldh, ldv, n, nb, np
+-      Real
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(3)
+-      Real
+-     &           h(ldh,k+np), resid(n), v(ldv,k+np), workd(3*n)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real
+-     &           one, zero
+-      parameter (one = 1.0E+0, zero = 0.0E+0)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      logical    first, orth1, orth2, rstart, step3, step4
+-      integer    ierr, i, infol, ipj, irj, ivj, iter, itry, j, msglvl,
+-     &           jj
+-      Real
+-     &           betaj, ovfl, temp1, rnorm1, smlnum, tst1, ulp, unfl, 
+-     &           wnorm
+-      save       first, orth1, orth2, rstart, step3, step4,
+-     &           ierr, ipj, irj, ivj, iter, itry, j, msglvl, ovfl,
+-     &           betaj, rnorm1, smlnum, ulp, unfl, wnorm
+-c
+-c     %-----------------------%
+-c     | Local Array Arguments | 
+-c     %-----------------------%
+-c
+-      Real
+-     &           xtemp(2)
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   saxpy, scopy, sscal, sgemv, sgetv0, slabad, 
+-     &           svout, smout, ivout, arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real
+-     &           sdot, snrm2, slanhs, slamch
+-      external   sdot, snrm2, slanhs, slamch
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    abs, sqrt
+-c
+-c     %-----------------%
+-c     | Data statements |
+-c     %-----------------%
+-c
+-      data      first / .true. /
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (first) then
+-c
+-c        %-----------------------------------------%
+-c        | Set machine-dependent constants for the |
+-c        | the splitting and deflation criterion.  |
+-c        | If norm(H) <= sqrt(OVFL),               |
+-c        | overflow should not occur.              |
+-c        | REFERENCE: LAPACK subroutine slahqr     |
+-c        %-----------------------------------------%
+-c
+-         unfl = slamch( 'safe minimum' )
+-         ovfl = one / unfl
+-         call slabad( unfl, ovfl )
+-         ulp = slamch( 'precision' )
+-         smlnum = unfl*( n / ulp )
+-         first = .false.
+-      end if
+-c
+-      if (ido .eq. 0) then
+-c 
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call arscnd (t0)
+-         msglvl = mnaitr
+-c 
+-c        %------------------------------%
+-c        | Initial call to this routine |
+-c        %------------------------------%
+-c
+-         info   = 0
+-         step3  = .false.
+-         step4  = .false.
+-         rstart = .false.
+-         orth1  = .false.
+-         orth2  = .false.
+-         j      = k + 1
+-         ipj    = 1
+-         irj    = ipj   + n
+-         ivj    = irj   + n
+-      end if
+-c 
+-c     %-------------------------------------------------%
+-c     | When in reverse communication mode one of:      |
+-c     | STEP3, STEP4, ORTH1, ORTH2, RSTART              |
+-c     | will be .true. when ....                        |
+-c     | STEP3: return from computing OP*v_{j}.          |
+-c     | STEP4: return from computing B-norm of OP*v_{j} |
+-c     | ORTH1: return from computing B-norm of r_{j+1}  |
+-c     | ORTH2: return from computing B-norm of          |
+-c     |        correction to the residual vector.       |
+-c     | RSTART: return from OP computations needed by   |
+-c     |         sgetv0.                                 |
+-c     %-------------------------------------------------%
+-c
+-      if (step3)  go to 50
+-      if (step4)  go to 60
+-      if (orth1)  go to 70
+-      if (orth2)  go to 90
+-      if (rstart) go to 30
+-c
+-c     %-----------------------------%
+-c     | Else this is the first step |
+-c     %-----------------------------%
+-c
+-c     %--------------------------------------------------------------%
+-c     |                                                              |
+-c     |        A R N O L D I     I T E R A T I O N     L O O P       |
+-c     |                                                              |
+-c     | Note:  B*r_{j-1} is already in WORKD(1:N)=WORKD(IPJ:IPJ+N-1) |
+-c     %--------------------------------------------------------------%
+- 
+- 1000 continue
+-c
+-         if (msglvl .gt. 1) then
+-            call ivout (logfil, 1, j, ndigit, 
+-     &                  '_naitr: generating Arnoldi vector number')
+-            call svout (logfil, 1, rnorm, ndigit, 
+-     &                  '_naitr: B-norm of the current residual is')
+-         end if
+-c 
+-c        %---------------------------------------------------%
+-c        | STEP 1: Check if the B norm of j-th residual      |
+-c        | vector is zero. Equivalent to determing whether   |
+-c        | an exact j-step Arnoldi factorization is present. |
+-c        %---------------------------------------------------%
+-c
+-         betaj = rnorm
+-         if (rnorm .gt. zero) go to 40
+-c
+-c           %---------------------------------------------------%
+-c           | Invariant subspace found, generate a new starting |
+-c           | vector which is orthogonal to the current Arnoldi |
+-c           | basis and continue the iteration.                 |
+-c           %---------------------------------------------------%
+-c
+-            if (msglvl .gt. 0) then
+-               call ivout (logfil, 1, j, ndigit,
+-     &                     '_naitr: ****** RESTART AT STEP ******')
+-            end if
+-c 
+-c           %---------------------------------------------%
+-c           | ITRY is the loop variable that controls the |
+-c           | maximum amount of times that a restart is   |
+-c           | attempted. NRSTRT is used by stat.h         |
+-c           %---------------------------------------------%
+-c 
+-            betaj  = zero
+-            nrstrt = nrstrt + 1
+-            itry   = 1
+-   20       continue
+-            rstart = .true.
+-            ido    = 0
+-   30       continue
+-c
+-c           %--------------------------------------%
+-c           | If in reverse communication mode and |
+-c           | RSTART = .true. flow returns here.   |
+-c           %--------------------------------------%
+-c
+-            call sgetv0 (ido, bmat, itry, .false., n, j, v, ldv, 
+-     &                   resid, rnorm, ipntr, workd, ierr)
+-            if (ido .ne. 99) go to 9000
+-            if (ierr .lt. 0) then
+-               itry = itry + 1
+-               if (itry .le. 3) go to 20
+-c
+-c              %------------------------------------------------%
+-c              | Give up after several restart attempts.        |
+-c              | Set INFO to the size of the invariant subspace |
+-c              | which spans OP and exit.                       |
+-c              %------------------------------------------------%
+-c
+-               info = j - 1
+-               call arscnd (t1)
+-               tnaitr = tnaitr + (t1 - t0)
+-               ido = 99
+-               go to 9000
+-            end if
+-c 
+-   40    continue
+-c
+-c        %---------------------------------------------------------%
+-c        | STEP 2:  v_{j} = r_{j-1}/rnorm and p_{j} = p_{j}/rnorm  |
+-c        | Note that p_{j} = B*r_{j-1}. In order to avoid overflow |
+-c        | when reciprocating a small RNORM, test against lower    |
+-c        | machine bound.                                          |
+-c        %---------------------------------------------------------%
+-c
+-         call scopy (n, resid, 1, v(1,j), 1)
+-         if (rnorm .ge. unfl) then
+-             temp1 = one / rnorm
+-             call sscal (n, temp1, v(1,j), 1)
+-             call sscal (n, temp1, workd(ipj), 1)
+-         else
+-c
+-c            %-----------------------------------------%
+-c            | To scale both v_{j} and p_{j} carefully |
+-c            | use LAPACK routine SLASCL               |
+-c            %-----------------------------------------%
+-c
+-             call slascl ('General', i, i, rnorm, one, n, 1, 
+-     &                    v(1,j), n, infol)
+-             call slascl ('General', i, i, rnorm, one, n, 1, 
+-     &                    workd(ipj), n, infol)
+-         end if
+-c
+-c        %------------------------------------------------------%
+-c        | STEP 3:  r_{j} = OP*v_{j}; Note that p_{j} = B*v_{j} |
+-c        | Note that this is not quite yet r_{j}. See STEP 4    |
+-c        %------------------------------------------------------%
+-c
+-         step3 = .true.
+-         nopx  = nopx + 1
+-         call arscnd (t2)
+-         call scopy (n, v(1,j), 1, workd(ivj), 1)
+-         ipntr(1) = ivj
+-         ipntr(2) = irj
+-         ipntr(3) = ipj
+-         ido = 1
+-c 
+-c        %-----------------------------------%
+-c        | Exit in order to compute OP*v_{j} |
+-c        %-----------------------------------%
+-c 
+-         go to 9000 
+-   50    continue
+-c 
+-c        %----------------------------------%
+-c        | Back from reverse communication; |
+-c        | WORKD(IRJ:IRJ+N-1) := OP*v_{j}   |
+-c        | if step3 = .true.                |
+-c        %----------------------------------%
+-c
+-         call arscnd (t3)
+-         tmvopx = tmvopx + (t3 - t2)
+- 
+-         step3 = .false.
+-c
+-c        %------------------------------------------%
+-c        | Put another copy of OP*v_{j} into RESID. |
+-c        %------------------------------------------%
+-c
+-         call scopy (n, workd(irj), 1, resid, 1)
+-c 
+-c        %---------------------------------------%
+-c        | STEP 4:  Finish extending the Arnoldi |
+-c        |          factorization to length j.   |
+-c        %---------------------------------------%
+-c
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            step4 = .true.
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %-------------------------------------%
+-c           | Exit in order to compute B*OP*v_{j} |
+-c           %-------------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call scopy (n, resid, 1, workd(ipj), 1)
+-         end if
+-   60    continue
+-c 
+-c        %----------------------------------%
+-c        | Back from reverse communication; |
+-c        | WORKD(IPJ:IPJ+N-1) := B*OP*v_{j} |
+-c        | if step4 = .true.                |
+-c        %----------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c 
+-         step4 = .false.
+-c
+-c        %-------------------------------------%
+-c        | The following is needed for STEP 5. |
+-c        | Compute the B-norm of OP*v_{j}.     |
+-c        %-------------------------------------%
+-c
+-         if (bmat .eq. 'G') then  
+-             wnorm = sdot (n, resid, 1, workd(ipj), 1)
+-             wnorm = sqrt(abs(wnorm))
+-         else if (bmat .eq. 'I') then
+-            wnorm = snrm2(n, resid, 1)
+-         end if
+-c
+-c        %-----------------------------------------%
+-c        | Compute the j-th residual corresponding |
+-c        | to the j step factorization.            |
+-c        | Use Classical Gram Schmidt and compute: |
+-c        | w_{j} <-  V_{j}^T * B * OP * v_{j}      |
+-c        | r_{j} <-  OP*v_{j} - V_{j} * w_{j}      |
+-c        %-----------------------------------------%
+-c
+-c
+-c        %------------------------------------------%
+-c        | Compute the j Fourier coefficients w_{j} |
+-c        | WORKD(IPJ:IPJ+N-1) contains B*OP*v_{j}.  |
+-c        %------------------------------------------%
+-c 
+-         call sgemv ('T', n, j, one, v, ldv, workd(ipj), 1,
+-     &               zero, h(1,j), 1)
+-c
+-c        %--------------------------------------%
+-c        | Orthogonalize r_{j} against V_{j}.   |
+-c        | RESID contains OP*v_{j}. See STEP 3. | 
+-c        %--------------------------------------%
+-c
+-         call sgemv ('N', n, j, -one, v, ldv, h(1,j), 1,
+-     &               one, resid, 1)
+-c
+-         if (j .gt. 1) h(j,j-1) = betaj
+-c
+-         call arscnd (t4)
+-c 
+-         orth1 = .true.
+-c
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call scopy (n, resid, 1, workd(irj), 1)
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %----------------------------------%
+-c           | Exit in order to compute B*r_{j} |
+-c           %----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call scopy (n, resid, 1, workd(ipj), 1)
+-         end if 
+-   70    continue
+-c 
+-c        %---------------------------------------------------%
+-c        | Back from reverse communication if ORTH1 = .true. |
+-c        | WORKD(IPJ:IPJ+N-1) := B*r_{j}.                    |
+-c        %---------------------------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c 
+-         orth1 = .false.
+-c
+-c        %------------------------------%
+-c        | Compute the B-norm of r_{j}. |
+-c        %------------------------------%
+-c
+-         if (bmat .eq. 'G') then         
+-            rnorm = sdot (n, resid, 1, workd(ipj), 1)
+-            rnorm = sqrt(abs(rnorm))
+-         else if (bmat .eq. 'I') then
+-            rnorm = snrm2(n, resid, 1)
+-         end if
+-c 
+-c        %-----------------------------------------------------------%
+-c        | STEP 5: Re-orthogonalization / Iterative refinement phase |
+-c        | Maximum NITER_ITREF tries.                                |
+-c        |                                                           |
+-c        |          s      = V_{j}^T * B * r_{j}                     |
+-c        |          r_{j}  = r_{j} - V_{j}*s                         |
+-c        |          alphaj = alphaj + s_{j}                          |
+-c        |                                                           |
+-c        | The stopping criteria used for iterative refinement is    |
+-c        | discussed in Parlett's book SEP, page 107 and in Gragg &  |
+-c        | Reichel ACM TOMS paper; Algorithm 686, Dec. 1990.         |
+-c        | Determine if we need to correct the residual. The goal is |
+-c        | to enforce ||v(:,1:j)^T * r_{j}|| .le. eps * || r_{j} ||  |
+-c        | The following test determines whether the sine of the     |
+-c        | angle between  OP*x and the computed residual is less     |
+-c        | than or equal to 0.717.                                   |
+-c        %-----------------------------------------------------------%
+-c
+-         if (rnorm .gt. 0.717*wnorm) go to 100
+-         iter  = 0
+-         nrorth = nrorth + 1
+-c 
+-c        %---------------------------------------------------%
+-c        | Enter the Iterative refinement phase. If further  |
+-c        | refinement is necessary, loop back here. The loop |
+-c        | variable is ITER. Perform a step of Classical     |
+-c        | Gram-Schmidt using all the Arnoldi vectors V_{j}  |
+-c        %---------------------------------------------------%
+-c 
+-   80    continue
+-c
+-         if (msglvl .gt. 2) then
+-            xtemp(1) = wnorm
+-            xtemp(2) = rnorm
+-            call svout (logfil, 2, xtemp, ndigit, 
+-     &           '_naitr: re-orthonalization; wnorm and rnorm are')
+-            call svout (logfil, j, h(1,j), ndigit,
+-     &                  '_naitr: j-th column of H')
+-         end if
+-c
+-c        %----------------------------------------------------%
+-c        | Compute V_{j}^T * B * r_{j}.                       |
+-c        | WORKD(IRJ:IRJ+J-1) = v(:,1:J)'*WORKD(IPJ:IPJ+N-1). |
+-c        %----------------------------------------------------%
+-c
+-         call sgemv ('T', n, j, one, v, ldv, workd(ipj), 1, 
+-     &               zero, workd(irj), 1)
+-c
+-c        %---------------------------------------------%
+-c        | Compute the correction to the residual:     |
+-c        | r_{j} = r_{j} - V_{j} * WORKD(IRJ:IRJ+J-1). |
+-c        | The correction to H is v(:,1:J)*H(1:J,1:J)  |
+-c        | + v(:,1:J)*WORKD(IRJ:IRJ+J-1)*e'_j.         |
+-c        %---------------------------------------------%
+-c
+-         call sgemv ('N', n, j, -one, v, ldv, workd(irj), 1, 
+-     &               one, resid, 1)
+-         call saxpy (j, one, workd(irj), 1, h(1,j), 1)
+-c 
+-         orth2 = .true.
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call scopy (n, resid, 1, workd(irj), 1)
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %-----------------------------------%
+-c           | Exit in order to compute B*r_{j}. |
+-c           | r_{j} is the corrected residual.  |
+-c           %-----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call scopy (n, resid, 1, workd(ipj), 1)
+-         end if 
+-   90    continue
+-c
+-c        %---------------------------------------------------%
+-c        | Back from reverse communication if ORTH2 = .true. |
+-c        %---------------------------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c
+-c        %-----------------------------------------------------%
+-c        | Compute the B-norm of the corrected residual r_{j}. |
+-c        %-----------------------------------------------------%
+-c 
+-         if (bmat .eq. 'G') then         
+-             rnorm1 = sdot (n, resid, 1, workd(ipj), 1)
+-             rnorm1 = sqrt(abs(rnorm1))
+-         else if (bmat .eq. 'I') then
+-             rnorm1 = snrm2(n, resid, 1)
+-         end if
+-c
+-         if (msglvl .gt. 0 .and. iter .gt. 0) then
+-            call ivout (logfil, 1, j, ndigit,
+-     &           '_naitr: Iterative refinement for Arnoldi residual')
+-            if (msglvl .gt. 2) then
+-                xtemp(1) = rnorm
+-                xtemp(2) = rnorm1
+-                call svout (logfil, 2, xtemp, ndigit,
+-     &           '_naitr: iterative refinement ; rnorm and rnorm1 are')
+-            end if
+-         end if
+-c
+-c        %-----------------------------------------%
+-c        | Determine if we need to perform another |
+-c        | step of re-orthogonalization.           |
+-c        %-----------------------------------------%
+-c
+-         if (rnorm1 .gt. 0.717*rnorm) then
+-c
+-c           %---------------------------------------%
+-c           | No need for further refinement.       |
+-c           | The cosine of the angle between the   |
+-c           | corrected residual vector and the old |
+-c           | residual vector is greater than 0.717 |
+-c           | In other words the corrected residual |
+-c           | and the old residual vector share an  |
+-c           | angle of less than arcCOS(0.717)      |
+-c           %---------------------------------------%
+-c
+-            rnorm = rnorm1
+-c 
+-         else
+-c
+-c           %-------------------------------------------%
+-c           | Another step of iterative refinement step |
+-c           | is required. NITREF is used by stat.h     |
+-c           %-------------------------------------------%
+-c
+-            nitref = nitref + 1
+-            rnorm  = rnorm1
+-            iter   = iter + 1
+-            if (iter .le. 1) go to 80
+-c
+-c           %-------------------------------------------------%
+-c           | Otherwise RESID is numerically in the span of V |
+-c           %-------------------------------------------------%
+-c
+-            do 95 jj = 1, n
+-               resid(jj) = zero
+-  95        continue
+-            rnorm = zero
+-         end if
+-c 
+-c        %----------------------------------------------%
+-c        | Branch here directly if iterative refinement |
+-c        | wasn't necessary or after at most NITER_REF  |
+-c        | steps of iterative refinement.               |
+-c        %----------------------------------------------%
+-c 
+-  100    continue
+-c 
+-         rstart = .false.
+-         orth2  = .false.
+-c 
+-         call arscnd (t5)
+-         titref = titref + (t5 - t4)
+-c 
+-c        %------------------------------------%
+-c        | STEP 6: Update  j = j+1;  Continue |
+-c        %------------------------------------%
+-c
+-         j = j + 1
+-         if (j .gt. k+np) then
+-            call arscnd (t1)
+-            tnaitr = tnaitr + (t1 - t0)
+-            ido = 99
+-            do 110 i = max(1,k), k+np-1
+-c     
+-c              %--------------------------------------------%
+-c              | Check for splitting and deflation.         |
+-c              | Use a standard test as in the QR algorithm |
+-c              | REFERENCE: LAPACK subroutine slahqr        |
+-c              %--------------------------------------------%
+-c     
+-               tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) )
+-               if( tst1.eq.zero )
+-     &              tst1 = slanhs( '1', k+np, h, ldh, workd(n+1) )
+-               if( abs( h( i+1,i ) ).le.max( ulp*tst1, smlnum ) ) 
+-     &              h(i+1,i) = zero
+- 110        continue
+-c     
+-            if (msglvl .gt. 2) then
+-               call smout (logfil, k+np, k+np, h, ldh, ndigit, 
+-     &          '_naitr: Final upper Hessenberg matrix H of order K+NP')
+-            end if
+-c     
+-            go to 9000
+-         end if
+-c
+-c        %--------------------------------------------------------%
+-c        | Loop back to extend the factorization by another step. |
+-c        %--------------------------------------------------------%
+-c
+-      go to 1000
+-c 
+-c     %---------------------------------------------------------------%
+-c     |                                                               |
+-c     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  |
+-c     |                                                               |
+-c     %---------------------------------------------------------------%
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of snaitr |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/snapps.f
++++ /dev/null
+@@ -1,647 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: snapps
+-c
+-c\Description:
+-c  Given the Arnoldi factorization
+-c
+-c     A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T,
+-c
+-c  apply NP implicit shifts resulting in
+-c
+-c     A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q
+-c
+-c  where Q is an orthogonal matrix which is the product of rotations
+-c  and reflections resulting from the NP bulge chage sweeps.
+-c  The updated Arnoldi factorization becomes:
+-c
+-c     A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T.
+-c
+-c\Usage:
+-c  call snapps
+-c     ( N, KEV, NP, SHIFTR, SHIFTI, V, LDV, H, LDH, RESID, Q, LDQ, 
+-c       WORKL, WORKD )
+-c
+-c\Arguments
+-c  N       Integer.  (INPUT)
+-c          Problem size, i.e. size of matrix A.
+-c
+-c  KEV     Integer.  (INPUT/OUTPUT)
+-c          KEV+NP is the size of the input matrix H.
+-c          KEV is the size of the updated matrix HNEW.  KEV is only 
+-c          updated on ouput when fewer than NP shifts are applied in
+-c          order to keep the conjugate pair together.
+-c
+-c  NP      Integer.  (INPUT)
+-c          Number of implicit shifts to be applied.
+-c
+-c  SHIFTR, Real array of length NP.  (INPUT)
+-c  SHIFTI  Real and imaginary part of the shifts to be applied.
+-c          Upon, entry to snapps, the shifts must be sorted so that the 
+-c          conjugate pairs are in consecutive locations.
+-c
+-c  V       Real N by (KEV+NP) array.  (INPUT/OUTPUT)
+-c          On INPUT, V contains the current KEV+NP Arnoldi vectors.
+-c          On OUTPUT, V contains the updated KEV Arnoldi vectors
+-c          in the first KEV columns of V.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling
+-c          program.
+-c
+-c  H       Real (KEV+NP) by (KEV+NP) array.  (INPUT/OUTPUT)
+-c          On INPUT, H contains the current KEV+NP by KEV+NP upper 
+-c          Hessenber matrix of the Arnoldi factorization.
+-c          On OUTPUT, H contains the updated KEV by KEV upper Hessenberg
+-c          matrix in the KEV leading submatrix.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling
+-c          program.
+-c
+-c  RESID   Real array of length N.  (INPUT/OUTPUT)
+-c          On INPUT, RESID contains the the residual vector r_{k+p}.
+-c          On OUTPUT, RESID is the update residual vector rnew_{k} 
+-c          in the first KEV locations.
+-c
+-c  Q       Real KEV+NP by KEV+NP work array.  (WORKSPACE)
+-c          Work array used to accumulate the rotations and reflections
+-c          during the bulge chase sweep.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c
+-c  WORKL   Real work array of length (KEV+NP).  (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.
+-c
+-c  WORKD   Real work array of length 2*N.  (WORKSPACE)
+-c          Distributed array used in the application of the accumulated
+-c          orthogonal matrix Q.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c
+-c\Routines called:
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     smout   ARPACK utility routine that prints matrices.
+-c     svout   ARPACK utility routine that prints vectors.
+-c     slabad  LAPACK routine that computes machine constants.
+-c     slacpy  LAPACK matrix copy routine.
+-c     slamch  LAPACK routine that determines machine constants. 
+-c     slanhs  LAPACK routine that computes various norms of a matrix.
+-c     slapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     slarf   LAPACK routine that applies Householder reflection to
+-c             a matrix.
+-c     slarfg  LAPACK Householder reflection construction routine.
+-c     slartg  LAPACK Givens rotation construction routine.
+-c     slaset  LAPACK matrix initialization routine.
+-c     sgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     saxpy   Level 1 BLAS that computes a vector triad.
+-c     scopy   Level 1 BLAS that copies one vector to another .
+-c     sscal   Level 1 BLAS that scales a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas    
+-c
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.4'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: napps.F   SID: 2.4   DATE OF SID: 3/28/97   RELEASE: 2
+-c
+-c\Remarks
+-c  1. In this version, each shift is applied to all the sublocks of
+-c     the Hessenberg matrix H and not just to the submatrix that it
+-c     comes from. Deflation as in LAPACK routine slahqr (QR algorithm
+-c     for upper Hessenberg matrices ) is used.
+-c     The subdiagonals of H are enforced to be non-negative.
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine snapps
+-     &   ( n, kev, np, shiftr, shifti, v, ldv, h, ldh, resid, q, ldq, 
+-     &     workl, workd )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    kev, ldh, ldq, ldv, n, np
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Real
+-     &           h(ldh,kev+np), resid(n), shifti(np), shiftr(np), 
+-     &           v(ldv,kev+np), q(ldq,kev+np), workd(2*n), workl(kev+np)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real
+-     &           one, zero
+-      parameter (one = 1.0E+0, zero = 0.0E+0)
+-c
+-c     %------------------------%
+-c     | Local Scalars & Arrays |
+-c     %------------------------%
+-c
+-      integer    i, iend, ir, istart, j, jj, kplusp, msglvl, nr
+-      logical    cconj, first
+-      Real
+-     &           c, f, g, h11, h12, h21, h22, h32, ovfl, r, s, sigmai, 
+-     &           sigmar, smlnum, ulp, unfl, u(3), t, tau, tst1
+-      save       first, ovfl, smlnum, ulp, unfl 
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   saxpy, scopy, sscal, slacpy, slarfg, slarf,
+-     &           slaset, slabad, arscnd, slartg
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real
+-     &           slamch, slanhs, slapy2
+-      external   slamch, slanhs, slapy2
+-c
+-c     %----------------------%
+-c     | Intrinsics Functions |
+-c     %----------------------%
+-c
+-      intrinsic  abs, max, min
+-c
+-c     %----------------%
+-c     | Data statments |
+-c     %----------------%
+-c
+-      data       first / .true. /
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (first) then
+-c
+-c        %-----------------------------------------------%
+-c        | Set machine-dependent constants for the       |
+-c        | stopping criterion. If norm(H) <= sqrt(OVFL), |
+-c        | overflow should not occur.                    |
+-c        | REFERENCE: LAPACK subroutine slahqr           |
+-c        %-----------------------------------------------%
+-c
+-         unfl = slamch( 'safe minimum' )
+-         ovfl = one / unfl
+-         call slabad( unfl, ovfl )
+-         ulp = slamch( 'precision' )
+-         smlnum = unfl*( n / ulp )
+-         first = .false.
+-      end if
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c
+-      call arscnd (t0)
+-      msglvl = mnapps
+-      kplusp = kev + np 
+-c 
+-c     %--------------------------------------------%
+-c     | Initialize Q to the identity to accumulate |
+-c     | the rotations and reflections              |
+-c     %--------------------------------------------%
+-c
+-      call slaset ('All', kplusp, kplusp, zero, one, q, ldq)
+-c
+-c     %----------------------------------------------%
+-c     | Quick return if there are no shifts to apply |
+-c     %----------------------------------------------%
+-c
+-      if (np .eq. 0) go to 9000
+-c
+-c     %----------------------------------------------%
+-c     | Chase the bulge with the application of each |
+-c     | implicit shift. Each shift is applied to the |
+-c     | whole matrix including each block.           |
+-c     %----------------------------------------------%
+-c
+-      cconj = .false.
+-      do 110 jj = 1, np
+-         sigmar = shiftr(jj)
+-         sigmai = shifti(jj)
+-c
+-         if (msglvl .gt. 2 ) then
+-            call ivout (logfil, 1, jj, ndigit, 
+-     &               '_napps: shift number.')
+-            call svout (logfil, 1, sigmar, ndigit, 
+-     &               '_napps: The real part of the shift ')
+-            call svout (logfil, 1, sigmai, ndigit, 
+-     &               '_napps: The imaginary part of the shift ')
+-         end if
+-c
+-c        %-------------------------------------------------%
+-c        | The following set of conditionals is necessary  |
+-c        | in order that complex conjugate pairs of shifts |
+-c        | are applied together or not at all.             |
+-c        %-------------------------------------------------%
+-c
+-         if ( cconj ) then
+-c
+-c           %-----------------------------------------%
+-c           | cconj = .true. means the previous shift |
+-c           | had non-zero imaginary part.            |
+-c           %-----------------------------------------%
+-c
+-            cconj = .false.
+-            go to 110
+-         else if ( jj .lt. np .and. abs( sigmai ) .gt. zero ) then
+-c
+-c           %------------------------------------%
+-c           | Start of a complex conjugate pair. |
+-c           %------------------------------------%
+-c
+-            cconj = .true.
+-         else if ( jj .eq. np .and. abs( sigmai ) .gt. zero ) then
+-c
+-c           %----------------------------------------------%
+-c           | The last shift has a nonzero imaginary part. |
+-c           | Don't apply it; thus the order of the        |
+-c           | compressed H is order KEV+1 since only np-1  |
+-c           | were applied.                                |
+-c           %----------------------------------------------%
+-c
+-            kev = kev + 1
+-            go to 110
+-         end if
+-         istart = 1
+-   20    continue
+-c
+-c        %--------------------------------------------------%
+-c        | if sigmai = 0 then                               |
+-c        |    Apply the jj-th shift ...                     |
+-c        | else                                             |
+-c        |    Apply the jj-th and (jj+1)-th together ...    |
+-c        |    (Note that jj < np at this point in the code) |
+-c        | end                                              |
+-c        | to the current block of H. The next do loop      |
+-c        | determines the current block ;                   |
+-c        %--------------------------------------------------%
+-c
+-         do 30 i = istart, kplusp-1
+-c
+-c           %----------------------------------------%
+-c           | Check for splitting and deflation. Use |
+-c           | a standard test as in the QR algorithm |
+-c           | REFERENCE: LAPACK subroutine slahqr    |
+-c           %----------------------------------------%
+-c
+-            tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) )
+-            if( tst1.eq.zero )
+-     &         tst1 = slanhs( '1', kplusp-jj+1, h, ldh, workl )
+-            if( abs( h( i+1,i ) ).le.max( ulp*tst1, smlnum ) ) then
+-               if (msglvl .gt. 0) then
+-                  call ivout (logfil, 1, i, ndigit, 
+-     &                 '_napps: matrix splitting at row/column no.')
+-                  call ivout (logfil, 1, jj, ndigit, 
+-     &                 '_napps: matrix splitting with shift number.')
+-                  call svout (logfil, 1, h(i+1,i), ndigit, 
+-     &                 '_napps: off diagonal element.')
+-               end if
+-               iend = i
+-               h(i+1,i) = zero
+-               go to 40
+-            end if
+-   30    continue
+-         iend = kplusp
+-   40    continue
+-c
+-         if (msglvl .gt. 2) then
+-             call ivout (logfil, 1, istart, ndigit, 
+-     &                   '_napps: Start of current block ')
+-             call ivout (logfil, 1, iend, ndigit, 
+-     &                   '_napps: End of current block ')
+-         end if
+-c
+-c        %------------------------------------------------%
+-c        | No reason to apply a shift to block of order 1 |
+-c        %------------------------------------------------%
+-c
+-         if ( istart .eq. iend ) go to 100
+-c
+-c        %------------------------------------------------------%
+-c        | If istart + 1 = iend then no reason to apply a       |
+-c        | complex conjugate pair of shifts on a 2 by 2 matrix. |
+-c        %------------------------------------------------------%
+-c
+-         if ( istart + 1 .eq. iend .and. abs( sigmai ) .gt. zero ) 
+-     &      go to 100
+-c
+-         h11 = h(istart,istart)
+-         h21 = h(istart+1,istart)
+-         if ( abs( sigmai ) .le. zero ) then
+-c
+-c           %---------------------------------------------%
+-c           | Real-valued shift ==> apply single shift QR |
+-c           %---------------------------------------------%
+-c
+-            f = h11 - sigmar
+-            g = h21
+-c 
+-            do 80 i = istart, iend-1
+-c
+-c              %-----------------------------------------------------%
+-c              | Contruct the plane rotation G to zero out the bulge |
+-c              %-----------------------------------------------------%
+-c
+-               call slartg (f, g, c, s, r)
+-               if (i .gt. istart) then
+-c
+-c                 %-------------------------------------------%
+-c                 | The following ensures that h(1:iend-1,1), |
+-c                 | the first iend-2 off diagonal of elements |
+-c                 | H, remain non negative.                   |
+-c                 %-------------------------------------------%
+-c
+-                  if (r .lt. zero) then
+-                     r = -r
+-                     c = -c
+-                     s = -s
+-                  end if
+-                  h(i,i-1) = r
+-                  h(i+1,i-1) = zero
+-               end if
+-c
+-c              %---------------------------------------------%
+-c              | Apply rotation to the left of H;  H <- G'*H |
+-c              %---------------------------------------------%
+-c
+-               do 50 j = i, kplusp
+-                  t        =  c*h(i,j) + s*h(i+1,j)
+-                  h(i+1,j) = -s*h(i,j) + c*h(i+1,j)
+-                  h(i,j)   = t   
+-   50          continue
+-c
+-c              %---------------------------------------------%
+-c              | Apply rotation to the right of H;  H <- H*G |
+-c              %---------------------------------------------%
+-c
+-               do 60 j = 1, min(i+2,iend)
+-                  t        =  c*h(j,i) + s*h(j,i+1)
+-                  h(j,i+1) = -s*h(j,i) + c*h(j,i+1)
+-                  h(j,i)   = t   
+-   60          continue
+-c
+-c              %----------------------------------------------------%
+-c              | Accumulate the rotation in the matrix Q;  Q <- Q*G |
+-c              %----------------------------------------------------%
+-c
+-               do 70 j = 1, min( i+jj, kplusp ) 
+-                  t        =   c*q(j,i) + s*q(j,i+1)
+-                  q(j,i+1) = - s*q(j,i) + c*q(j,i+1)
+-                  q(j,i)   = t   
+-   70          continue
+-c
+-c              %---------------------------%
+-c              | Prepare for next rotation |
+-c              %---------------------------%
+-c
+-               if (i .lt. iend-1) then
+-                  f = h(i+1,i)
+-                  g = h(i+2,i)
+-               end if
+-   80       continue
+-c
+-c           %-----------------------------------%
+-c           | Finished applying the real shift. |
+-c           %-----------------------------------%
+-c 
+-         else
+-c
+-c           %----------------------------------------------------%
+-c           | Complex conjugate shifts ==> apply double shift QR |
+-c           %----------------------------------------------------%
+-c
+-            h12 = h(istart,istart+1)
+-            h22 = h(istart+1,istart+1)
+-            h32 = h(istart+2,istart+1)
+-c
+-c           %---------------------------------------------------------%
+-c           | Compute 1st column of (H - shift*I)*(H - conj(shift)*I) |
+-c           %---------------------------------------------------------%
+-c
+-            s    = 2.0*sigmar
+-            t = slapy2 ( sigmar, sigmai ) 
+-            u(1) = ( h11 * (h11 - s) + t * t ) / h21 + h12
+-            u(2) = h11 + h22 - s 
+-            u(3) = h32
+-c
+-            do 90 i = istart, iend-1
+-c
+-               nr = min ( 3, iend-i+1 )
+-c
+-c              %-----------------------------------------------------%
+-c              | Construct Householder reflector G to zero out u(1). |
+-c              | G is of the form I - tau*( 1 u )' * ( 1 u' ).       |
+-c              %-----------------------------------------------------%
+-c
+-               call slarfg ( nr, u(1), u(2), 1, tau )
+-c
+-               if (i .gt. istart) then
+-                  h(i,i-1)   = u(1)
+-                  h(i+1,i-1) = zero
+-                  if (i .lt. iend-1) h(i+2,i-1) = zero
+-               end if
+-               u(1) = one
+-c
+-c              %--------------------------------------%
+-c              | Apply the reflector to the left of H |
+-c              %--------------------------------------%
+-c
+-               call slarf ('Left', nr, kplusp-i+1, u, 1, tau,
+-     &                     h(i,i), ldh, workl)
+-c
+-c              %---------------------------------------%
+-c              | Apply the reflector to the right of H |
+-c              %---------------------------------------%
+-c
+-               ir = min ( i+3, iend )
+-               call slarf ('Right', ir, nr, u, 1, tau,
+-     &                     h(1,i), ldh, workl)
+-c
+-c              %-----------------------------------------------------%
+-c              | Accumulate the reflector in the matrix Q;  Q <- Q*G |
+-c              %-----------------------------------------------------%
+-c
+-               call slarf ('Right', kplusp, nr, u, 1, tau, 
+-     &                     q(1,i), ldq, workl)
+-c
+-c              %----------------------------%
+-c              | Prepare for next reflector |
+-c              %----------------------------%
+-c
+-               if (i .lt. iend-1) then
+-                  u(1) = h(i+1,i)
+-                  u(2) = h(i+2,i)
+-                  if (i .lt. iend-2) u(3) = h(i+3,i)
+-               end if
+-c
+-   90       continue
+-c
+-c           %--------------------------------------------%
+-c           | Finished applying a complex pair of shifts |
+-c           | to the current block                       |
+-c           %--------------------------------------------%
+-c 
+-         end if
+-c
+-  100    continue
+-c
+-c        %---------------------------------------------------------%
+-c        | Apply the same shift to the next block if there is any. |
+-c        %---------------------------------------------------------%
+-c
+-         istart = iend + 1
+-         if (iend .lt. kplusp) go to 20
+-c
+-c        %---------------------------------------------%
+-c        | Loop back to the top to get the next shift. |
+-c        %---------------------------------------------%
+-c
+-  110 continue
+-c
+-c     %--------------------------------------------------%
+-c     | Perform a similarity transformation that makes   |
+-c     | sure that H will have non negative sub diagonals |
+-c     %--------------------------------------------------%
+-c
+-      do 120 j=1,kev
+-         if ( h(j+1,j) .lt. zero ) then
+-              call sscal( kplusp-j+1, -one, h(j+1,j), ldh )
+-              call sscal( min(j+2, kplusp), -one, h(1,j+1), 1 )
+-              call sscal( min(j+np+1,kplusp), -one, q(1,j+1), 1 )
+-         end if
+- 120  continue
+-c
+-      do 130 i = 1, kev
+-c
+-c        %--------------------------------------------%
+-c        | Final check for splitting and deflation.   |
+-c        | Use a standard test as in the QR algorithm |
+-c        | REFERENCE: LAPACK subroutine slahqr        |
+-c        %--------------------------------------------%
+-c
+-         tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) )
+-         if( tst1.eq.zero )
+-     &       tst1 = slanhs( '1', kev, h, ldh, workl )
+-         if( h( i+1,i ) .le. max( ulp*tst1, smlnum ) ) 
+-     &       h(i+1,i) = zero
+- 130  continue
+-c
+-c     %-------------------------------------------------%
+-c     | Compute the (kev+1)-st column of (V*Q) and      |
+-c     | temporarily store the result in WORKD(N+1:2*N). |
+-c     | This is needed in the residual update since we  |
+-c     | cannot GUARANTEE that the corresponding entry   |
+-c     | of H would be zero as in exact arithmetic.      |
+-c     %-------------------------------------------------%
+-c
+-      if (h(kev+1,kev) .gt. zero)
+-     &    call sgemv ('N', n, kplusp, one, v, ldv, q(1,kev+1), 1, zero, 
+-     &                workd(n+1), 1)
+-c 
+-c     %----------------------------------------------------------%
+-c     | Compute column 1 to kev of (V*Q) in backward order       |
+-c     | taking advantage of the upper Hessenberg structure of Q. |
+-c     %----------------------------------------------------------%
+-c
+-      do 140 i = 1, kev
+-         call sgemv ('N', n, kplusp-i+1, one, v, ldv,
+-     &               q(1,kev-i+1), 1, zero, workd, 1)
+-         call scopy (n, workd, 1, v(1,kplusp-i+1), 1)
+-  140 continue
+-c
+-c     %-------------------------------------------------%
+-c     |  Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). |
+-c     %-------------------------------------------------%
+-c
+-      call slacpy ('A', n, kev, v(1,kplusp-kev+1), ldv, v, ldv)
+-c 
+-c     %--------------------------------------------------------------%
+-c     | Copy the (kev+1)-st column of (V*Q) in the appropriate place |
+-c     %--------------------------------------------------------------%
+-c
+-      if (h(kev+1,kev) .gt. zero)
+-     &   call scopy (n, workd(n+1), 1, v(1,kev+1), 1)
+-c 
+-c     %-------------------------------------%
+-c     | Update the residual vector:         |
+-c     |    r <- sigmak*r + betak*v(:,kev+1) |
+-c     | where                               |
+-c     |    sigmak = (e_{kplusp}'*Q)*e_{kev} |
+-c     |    betak = e_{kev+1}'*H*e_{kev}     |
+-c     %-------------------------------------%
+-c
+-      call sscal (n, q(kplusp,kev), resid, 1)
+-      if (h(kev+1,kev) .gt. zero)
+-     &   call saxpy (n, h(kev+1,kev), v(1,kev+1), 1, resid, 1)
+-c
+-      if (msglvl .gt. 1) then
+-         call svout (logfil, 1, q(kplusp,kev), ndigit,
+-     &        '_napps: sigmak = (e_{kev+p}^T*Q)*e_{kev}')
+-         call svout (logfil, 1, h(kev+1,kev), ndigit,
+-     &        '_napps: betak = e_{kev+1}^T*H*e_{kev}')
+-         call ivout (logfil, 1, kev, ndigit, 
+-     &               '_napps: Order of the final Hessenberg matrix ')
+-         if (msglvl .gt. 2) then
+-            call smout (logfil, kev, kev, h, ldh, ndigit,
+-     &      '_napps: updated Hessenberg matrix H for next iteration')
+-         end if
+-c
+-      end if
+-c 
+- 9000 continue
+-      call arscnd (t1)
+-      tnapps = tnapps + (t1 - t0)
+-c 
+-      return
+-c
+-c     %---------------%
+-c     | End of snapps |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/snaup2.f
++++ /dev/null
+@@ -1,835 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: snaup2
+-c
+-c\Description:
+-c  Intermediate level interface called by snaupd.
+-c
+-c\Usage:
+-c  call snaup2
+-c     ( IDO, BMAT, N, WHICH, NEV, NP, TOL, RESID, MODE, IUPD,
+-c       ISHIFT, MXITER, V, LDV, H, LDH, RITZR, RITZI, BOUNDS,
+-c       Q, LDQ, WORKL, IPNTR, WORKD, INFO )
+-c
+-c\Arguments
+-c
+-c  IDO, BMAT, N, WHICH, NEV, TOL, RESID: same as defined in snaupd.
+-c  MODE, ISHIFT, MXITER: see the definition of IPARAM in snaupd.
+-c
+-c  NP      Integer.  (INPUT/OUTPUT)
+-c          Contains the number of implicit shifts to apply during
+-c          each Arnoldi iteration.
+-c          If ISHIFT=1, NP is adjusted dynamically at each iteration
+-c          to accelerate convergence and prevent stagnation.
+-c          This is also roughly equal to the number of matrix-vector
+-c          products (involving the operator OP) per Arnoldi iteration.
+-c          The logic for adjusting is contained within the current
+-c          subroutine.
+-c          If ISHIFT=0, NP is the number of shifts the user needs
+-c          to provide via reverse comunication. 0 < NP < NCV-NEV.
+-c          NP may be less than NCV-NEV for two reasons. The first, is
+-c          to keep complex conjugate pairs of "wanted" Ritz values
+-c          together. The second, is that a leading block of the current
+-c          upper Hessenberg matrix has split off and contains "unwanted"
+-c          Ritz values.
+-c          Upon termination of the IRA iteration, NP contains the number
+-c          of "converged" wanted Ritz values.
+-c
+-c  IUPD    Integer.  (INPUT)
+-c          IUPD .EQ. 0: use explicit restart instead implicit update.
+-c          IUPD .NE. 0: use implicit update.
+-c
+-c  V       Real  N by (NEV+NP) array.  (INPUT/OUTPUT)
+-c          The Arnoldi basis vectors are returned in the first NEV
+-c          columns of V.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling
+-c          program.
+-c
+-c  H       Real  (NEV+NP) by (NEV+NP) array.  (OUTPUT)
+-c          H is used to store the generated upper Hessenberg matrix
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling
+-c          program.
+-c
+-c  RITZR,  Real  arrays of length NEV+NP.  (OUTPUT)
+-c  RITZI   RITZR(1:NEV) (resp. RITZI(1:NEV)) contains the real (resp.
+-c          imaginary) part of the computed Ritz values of OP.
+-c
+-c  BOUNDS  Real  array of length NEV+NP.  (OUTPUT)
+-c          BOUNDS(1:NEV) contain the error bounds corresponding to
+-c          the computed Ritz values.
+-c
+-c  Q       Real  (NEV+NP) by (NEV+NP) array.  (WORKSPACE)
+-c          Private (replicated) work array used to accumulate the
+-c          rotation in the shift application step.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c
+-c  WORKL   Real  work array of length at least
+-c          (NEV+NP)**2 + 3*(NEV+NP).  (INPUT/WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  It is used in shifts calculation, shifts
+-c          application and convergence checking.
+-c
+-c          On exit, the last 3*(NEV+NP) locations of WORKL contain
+-c          the Ritz values (real,imaginary) and associated Ritz
+-c          estimates of the current Hessenberg matrix.  They are
+-c          listed in the same order as returned from sneigh.
+-c
+-c          If ISHIFT .EQ. O and IDO .EQ. 3, the first 2*NP locations
+-c          of WORKL are used in reverse communication to hold the user
+-c          supplied shifts.
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORKD for
+-c          vectors used by the Arnoldi iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X.
+-c          IPNTR(2): pointer to the current result vector Y.
+-c          IPNTR(3): pointer to the vector B * X when used in the
+-c                    shift-and-invert mode.  X is the current operand.
+-c          -------------------------------------------------------------
+-c
+-c  WORKD   Real  work array of length 3*N.  (WORKSPACE)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The user should not use WORKD
+-c          as temporary workspace during the iteration !!!!!!!!!!
+-c          See Data Distribution Note in DNAUPD.
+-c
+-c  INFO    Integer.  (INPUT/OUTPUT)
+-c          If INFO .EQ. 0, a randomly initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          Error flag on output.
+-c          =     0: Normal return.
+-c          =     1: Maximum number of iterations taken.
+-c                   All possible eigenvalues of OP has been found.
+-c                   NP returns the number of converged Ritz values.
+-c          =     2: No shifts could be applied.
+-c          =    -8: Error return from LAPACK eigenvalue calculation;
+-c                   This should never happen.
+-c          =    -9: Starting vector is zero.
+-c          = -9999: Could not build an Arnoldi factorization.
+-c                   Size that was built in returned in NP.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c
+-c\Routines called:
+-c     sgetv0  ARPACK initial vector generation routine.
+-c     snaitr  ARPACK Arnoldi factorization routine.
+-c     snapps  ARPACK application of implicit shifts routine.
+-c     snconv  ARPACK convergence of Ritz values routine.
+-c     sneigh  ARPACK compute Ritz values and error bounds routine.
+-c     sngets  ARPACK reorder Ritz values and error bounds routine.
+-c     ssortc  ARPACK sorting routine.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     smout   ARPACK utility routine that prints matrices
+-c     svout   ARPACK utility routine that prints vectors.
+-c     slamch  LAPACK routine that determines machine constants.
+-c     slapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     scopy   Level 1 BLAS that copies one vector to another .
+-c     sdot    Level 1 BLAS that computes the scalar product of two vectors.
+-c     snrm2   Level 1 BLAS that computes the norm of a vector.
+-c     sswap   Level 1 BLAS that swaps two vectors.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University
+-c     Houston, Texas
+-c
+-c\SCCS Information: @(#)
+-c FILE: naup2.F   SID: 2.8   DATE OF SID: 10/17/00   RELEASE: 2
+-c
+-c\Remarks
+-c     1. None
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine snaup2
+-     &   ( ido, bmat, n, which, nev, np, tol, resid, mode, iupd,
+-     &     ishift, mxiter, v, ldv, h, ldh, ritzr, ritzi, bounds,
+-     &     q, ldq, workl, ipntr, workd, info )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1, which*2
+-      integer    ido, info, ishift, iupd, mode, ldh, ldq, ldv, mxiter,
+-     &           n, nev, np
+-      Real
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(13)
+-      Real
+-     &           bounds(nev+np), h(ldh,nev+np), q(ldq,nev+np), resid(n),
+-     &           ritzi(nev+np), ritzr(nev+np), v(ldv,nev+np),
+-     &           workd(3*n), workl( (nev+np)*(nev+np+3) )
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real
+-     &           one, zero
+-      parameter (one = 1.0E+0 , zero = 0.0E+0 )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      character  wprime*2
+-      logical    cnorm , getv0, initv, update, ushift
+-      integer    ierr  , iter , j    , kplusp, msglvl, nconv,
+-     &           nevbef, nev0 , np0  , nptemp, numcnv
+-      Real
+-     &           rnorm , temp , eps23
+-      save       cnorm , getv0, initv, update, ushift,
+-     &           rnorm , iter , eps23, kplusp, msglvl, nconv ,
+-     &           nevbef, nev0 , np0  , numcnv
+-c
+-c     %-----------------------%
+-c     | Local array arguments |
+-c     %-----------------------%
+-c
+-      integer    kp(4)
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   scopy , sgetv0, snaitr, snconv, sneigh,
+-     &           sngets, snapps, svout , ivout , arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real
+-     &           sdot, snrm2, slapy2, slamch
+-      external   sdot, snrm2, slapy2, slamch
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    min, max, abs, sqrt
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (ido .eq. 0) then
+-c
+-         call arscnd (t0)
+-c
+-         msglvl = mnaup2
+-c
+-c        %-------------------------------------%
+-c        | Get the machine dependent constant. |
+-c        %-------------------------------------%
+-c
+-         eps23 = slamch('Epsilon-Machine')
+-         eps23 = eps23**(2.0E+0  / 3.0E+0 )
+-c
+-         nev0   = nev
+-         np0    = np
+-c
+-c        %-------------------------------------%
+-c        | kplusp is the bound on the largest  |
+-c        |        Lanczos factorization built. |
+-c        | nconv is the current number of      |
+-c        |        "converged" eigenvlues.      |
+-c        | iter is the counter on the current  |
+-c        |      iteration step.                |
+-c        %-------------------------------------%
+-c
+-         kplusp = nev + np
+-         nconv  = 0
+-         iter   = 0
+-c
+-c        %---------------------------------------%
+-c        | Set flags for computing the first NEV |
+-c        | steps of the Arnoldi factorization.   |
+-c        %---------------------------------------%
+-c
+-         getv0    = .true.
+-         update   = .false.
+-         ushift   = .false.
+-         cnorm    = .false.
+-c
+-         if (info .ne. 0) then
+-c
+-c           %--------------------------------------------%
+-c           | User provides the initial residual vector. |
+-c           %--------------------------------------------%
+-c
+-            initv = .true.
+-            info  = 0
+-         else
+-            initv = .false.
+-         end if
+-      end if
+-c
+-c     %---------------------------------------------%
+-c     | Get a possibly random starting vector and   |
+-c     | force it into the range of the operator OP. |
+-c     %---------------------------------------------%
+-c
+-   10 continue
+-c
+-      if (getv0) then
+-         call sgetv0 (ido, bmat, 1, initv, n, 1, v, ldv, resid, rnorm,
+-     &                ipntr, workd, info)
+-c
+-         if (ido .ne. 99) go to 9000
+-c
+-         if (rnorm .eq. zero) then
+-c
+-c           %-----------------------------------------%
+-c           | The initial vector is zero. Error exit. |
+-c           %-----------------------------------------%
+-c
+-            info = -9
+-            go to 1100
+-         end if
+-         getv0 = .false.
+-         ido  = 0
+-      end if
+-c
+-c     %-----------------------------------%
+-c     | Back from reverse communication : |
+-c     | continue with update step         |
+-c     %-----------------------------------%
+-c
+-      if (update) go to 20
+-c
+-c     %-------------------------------------------%
+-c     | Back from computing user specified shifts |
+-c     %-------------------------------------------%
+-c
+-      if (ushift) go to 50
+-c
+-c     %-------------------------------------%
+-c     | Back from computing residual norm   |
+-c     | at the end of the current iteration |
+-c     %-------------------------------------%
+-c
+-      if (cnorm)  go to 100
+-c
+-c     %----------------------------------------------------------%
+-c     | Compute the first NEV steps of the Arnoldi factorization |
+-c     %----------------------------------------------------------%
+-c
+-      call snaitr (ido, bmat, n, 0, nev, mode, resid, rnorm, v, ldv,
+-     &             h, ldh, ipntr, workd, info)
+-c
+-c     %---------------------------------------------------%
+-c     | ido .ne. 99 implies use of reverse communication  |
+-c     | to compute operations involving OP and possibly B |
+-c     %---------------------------------------------------%
+-c
+-      if (ido .ne. 99) go to 9000
+-c
+-      if (info .gt. 0) then
+-         np   = info
+-         mxiter = iter
+-         info = -9999
+-         go to 1200
+-      end if
+-c
+-c     %--------------------------------------------------------------%
+-c     |                                                              |
+-c     |           M A I N  ARNOLDI  I T E R A T I O N  L O O P       |
+-c     |           Each iteration implicitly restarts the Arnoldi     |
+-c     |           factorization in place.                            |
+-c     |                                                              |
+-c     %--------------------------------------------------------------%
+-c
+- 1000 continue
+-c
+-         iter = iter + 1
+-c
+-         if (msglvl .gt. 0) then
+-            call ivout (logfil, 1, iter, ndigit,
+-     &           '_naup2: **** Start of major iteration number ****')
+-         end if
+-c
+-c        %-----------------------------------------------------------%
+-c        | Compute NP additional steps of the Arnoldi factorization. |
+-c        | Adjust NP since NEV might have been updated by last call  |
+-c        | to the shift application routine snapps.                  |
+-c        %-----------------------------------------------------------%
+-c
+-         np  = kplusp - nev
+-c
+-         if (msglvl .gt. 1) then
+-            call ivout (logfil, 1, nev, ndigit,
+-     &     '_naup2: The length of the current Arnoldi factorization')
+-            call ivout (logfil, 1, np, ndigit,
+-     &           '_naup2: Extend the Arnoldi factorization by')
+-         end if
+-c
+-c        %-----------------------------------------------------------%
+-c        | Compute NP additional steps of the Arnoldi factorization. |
+-c        %-----------------------------------------------------------%
+-c
+-         ido = 0
+-   20    continue
+-         update = .true.
+-c
+-         call snaitr (ido  , bmat, n  , nev, np , mode , resid,
+-     &                rnorm, v   , ldv, h  , ldh, ipntr, workd,
+-     &                info)
+-c
+-c        %---------------------------------------------------%
+-c        | ido .ne. 99 implies use of reverse communication  |
+-c        | to compute operations involving OP and possibly B |
+-c        %---------------------------------------------------%
+-c
+-         if (ido .ne. 99) go to 9000
+-c
+-         if (info .gt. 0) then
+-            np = info
+-            mxiter = iter
+-            info = -9999
+-            go to 1200
+-         end if
+-         update = .false.
+-c
+-         if (msglvl .gt. 1) then
+-            call svout (logfil, 1, rnorm, ndigit,
+-     &           '_naup2: Corresponding B-norm of the residual')
+-         end if
+-c
+-c        %--------------------------------------------------------%
+-c        | Compute the eigenvalues and corresponding error bounds |
+-c        | of the current upper Hessenberg matrix.                |
+-c        %--------------------------------------------------------%
+-c
+-         call sneigh (rnorm, kplusp, h, ldh, ritzr, ritzi, bounds,
+-     &                q, ldq, workl, ierr)
+-c
+-         if (ierr .ne. 0) then
+-            info = -8
+-            go to 1200
+-         end if
+-c
+-c        %----------------------------------------------------%
+-c        | Make a copy of eigenvalues and corresponding error |
+-c        | bounds obtained from sneigh.                       |
+-c        %----------------------------------------------------%
+-c
+-         call scopy(kplusp, ritzr, 1, workl(kplusp**2+1), 1)
+-         call scopy(kplusp, ritzi, 1, workl(kplusp**2+kplusp+1), 1)
+-         call scopy(kplusp, bounds, 1, workl(kplusp**2+2*kplusp+1), 1)
+-c
+-c        %---------------------------------------------------%
+-c        | Select the wanted Ritz values and their bounds    |
+-c        | to be used in the convergence test.               |
+-c        | The wanted part of the spectrum and corresponding |
+-c        | error bounds are in the last NEV loc. of RITZR,   |
+-c        | RITZI and BOUNDS respectively. The variables NEV  |
+-c        | and NP may be updated if the NEV-th wanted Ritz   |
+-c        | value has a non zero imaginary part. In this case |
+-c        | NEV is increased by one and NP decreased by one.  |
+-c        | NOTE: The last two arguments of sngets are no     |
+-c        | longer used as of version 2.1.                    |
+-c        %---------------------------------------------------%
+-c
+-         nev = nev0
+-         np = np0
+-         numcnv = nev
+-         call sngets (ishift, which, nev, np, ritzr, ritzi,
+-     &                bounds, workl, workl(np+1))
+-         if (nev .eq. nev0+1) numcnv = nev0+1
+-c
+-c        %-------------------%
+-c        | Convergence test. |
+-c        %-------------------%
+-c
+-         call scopy (nev, bounds(np+1), 1, workl(2*np+1), 1)
+-         call snconv (nev, ritzr(np+1), ritzi(np+1), workl(2*np+1),
+-     &        tol, nconv)
+-c
+-         if (msglvl .gt. 2) then
+-            kp(1) = nev
+-            kp(2) = np
+-            kp(3) = numcnv
+-            kp(4) = nconv
+-            call ivout (logfil, 4, kp, ndigit,
+-     &                  '_naup2: NEV, NP, NUMCNV, NCONV are')
+-            call svout (logfil, kplusp, ritzr, ndigit,
+-     &           '_naup2: Real part of the eigenvalues of H')
+-            call svout (logfil, kplusp, ritzi, ndigit,
+-     &           '_naup2: Imaginary part of the eigenvalues of H')
+-            call svout (logfil, kplusp, bounds, ndigit,
+-     &          '_naup2: Ritz estimates of the current NCV Ritz values')
+-         end if
+-c
+-c        %---------------------------------------------------------%
+-c        | Count the number of unwanted Ritz values that have zero |
+-c        | Ritz estimates. If any Ritz estimates are equal to zero |
+-c        | then a leading block of H of order equal to at least    |
+-c        | the number of Ritz values with zero Ritz estimates has  |
+-c        | split off. None of these Ritz values may be removed by  |
+-c        | shifting. Decrease NP the number of shifts to apply. If |
+-c        | no shifts may be applied, then prepare to exit          |
+-c        %---------------------------------------------------------%
+-c
+-         nptemp = np
+-         do 30 j=1, nptemp
+-            if (bounds(j) .eq. zero) then
+-               np = np - 1
+-               nev = nev + 1
+-            end if
+- 30      continue
+-c
+-         if ( (nconv .ge. numcnv) .or.
+-     &        (iter .gt. mxiter) .or.
+-     &        (np .eq. 0) ) then
+-c
+-            if (msglvl .gt. 4) then
+-               call svout(logfil, kplusp, workl(kplusp**2+1), ndigit,
+-     &             '_naup2: Real part of the eig computed by _neigh:')
+-               call svout(logfil, kplusp, workl(kplusp**2+kplusp+1),
+-     &                     ndigit,
+-     &             '_naup2: Imag part of the eig computed by _neigh:')
+-               call svout(logfil, kplusp, workl(kplusp**2+kplusp*2+1),
+-     &                     ndigit,
+-     &             '_naup2: Ritz eistmates computed by _neigh:')
+-            end if
+-c
+-c           %------------------------------------------------%
+-c           | Prepare to exit. Put the converged Ritz values |
+-c           | and corresponding bounds in RITZ(1:NCONV) and  |
+-c           | BOUNDS(1:NCONV) respectively. Then sort. Be    |
+-c           | careful when NCONV > NP                        |
+-c           %------------------------------------------------%
+-c
+-c           %------------------------------------------%
+-c           |  Use h( 3,1 ) as storage to communicate  |
+-c           |  rnorm to _neupd if needed               |
+-c           %------------------------------------------%
+-
+-            h(3,1) = rnorm
+-c
+-c           %----------------------------------------------%
+-c           | To be consistent with sngets, we first do a  |
+-c           | pre-processing sort in order to keep complex |
+-c           | conjugate pairs together.  This is similar   |
+-c           | to the pre-processing sort used in sngets    |
+-c           | except that the sort is done in the opposite |
+-c           | order.                                       |
+-c           %----------------------------------------------%
+-c
+-            if (which .eq. 'LM') wprime = 'SR'
+-            if (which .eq. 'SM') wprime = 'LR'
+-            if (which .eq. 'LR') wprime = 'SM'
+-            if (which .eq. 'SR') wprime = 'LM'
+-            if (which .eq. 'LI') wprime = 'SM'
+-            if (which .eq. 'SI') wprime = 'LM'
+-c
+-            call ssortc (wprime, .true., kplusp, ritzr, ritzi, bounds)
+-c
+-c           %----------------------------------------------%
+-c           | Now sort Ritz values so that converged Ritz  |
+-c           | values appear within the first NEV locations |
+-c           | of ritzr, ritzi and bounds, and the most     |
+-c           | desired one appears at the front.            |
+-c           %----------------------------------------------%
+-c
+-            if (which .eq. 'LM') wprime = 'SM'
+-            if (which .eq. 'SM') wprime = 'LM'
+-            if (which .eq. 'LR') wprime = 'SR'
+-            if (which .eq. 'SR') wprime = 'LR'
+-            if (which .eq. 'LI') wprime = 'SI'
+-            if (which .eq. 'SI') wprime = 'LI'
+-c
+-            call ssortc(wprime, .true., kplusp, ritzr, ritzi, bounds)
+-c
+-c           %--------------------------------------------------%
+-c           | Scale the Ritz estimate of each Ritz value       |
+-c           | by 1 / max(eps23,magnitude of the Ritz value).   |
+-c           %--------------------------------------------------%
+-c
+-            do 35 j = 1, numcnv
+-                temp = max(eps23,slapy2(ritzr(j),
+-     &                                   ritzi(j)))
+-                bounds(j) = bounds(j)/temp
+- 35         continue
+-c
+-c           %----------------------------------------------------%
+-c           | Sort the Ritz values according to the scaled Ritz  |
+-c           | esitmates.  This will push all the converged ones  |
+-c           | towards the front of ritzr, ritzi, bounds          |
+-c           | (in the case when NCONV < NEV.)                    |
+-c           %----------------------------------------------------%
+-c
+-            wprime = 'LR'
+-            call ssortc(wprime, .true., numcnv, bounds, ritzr, ritzi)
+-c
+-c           %----------------------------------------------%
+-c           | Scale the Ritz estimate back to its original |
+-c           | value.                                       |
+-c           %----------------------------------------------%
+-c
+-            do 40 j = 1, numcnv
+-                temp = max(eps23, slapy2(ritzr(j),
+-     &                                   ritzi(j)))
+-                bounds(j) = bounds(j)*temp
+- 40         continue
+-c
+-c           %------------------------------------------------%
+-c           | Sort the converged Ritz values again so that   |
+-c           | the "threshold" value appears at the front of  |
+-c           | ritzr, ritzi and bound.                        |
+-c           %------------------------------------------------%
+-c
+-            call ssortc(which, .true., nconv, ritzr, ritzi, bounds)
+-c
+-            if (msglvl .gt. 1) then
+-               call svout (logfil, kplusp, ritzr, ndigit,
+-     &            '_naup2: Sorted real part of the eigenvalues')
+-               call svout (logfil, kplusp, ritzi, ndigit,
+-     &            '_naup2: Sorted imaginary part of the eigenvalues')
+-               call svout (logfil, kplusp, bounds, ndigit,
+-     &            '_naup2: Sorted ritz estimates.')
+-            end if
+-c
+-c           %------------------------------------%
+-c           | Max iterations have been exceeded. |
+-c           %------------------------------------%
+-c
+-            if (iter .gt. mxiter .and. nconv .lt. numcnv) info = 1
+-c
+-c           %---------------------%
+-c           | No shifts to apply. |
+-c           %---------------------%
+-c
+-            if (np .eq. 0 .and. nconv .lt. numcnv) info = 2
+-c
+-            np = nconv
+-            go to 1100
+-c
+-         else if ( (nconv .lt. numcnv) .and. (ishift .eq. 1) ) then
+-c
+-c           %-------------------------------------------------%
+-c           | Do not have all the requested eigenvalues yet.  |
+-c           | To prevent possible stagnation, adjust the size |
+-c           | of NEV.                                         |
+-c           %-------------------------------------------------%
+-c
+-            nevbef = nev
+-            nev = nev + min(nconv, np/2)
+-            if (nev .eq. 1 .and. kplusp .ge. 6) then
+-               nev = kplusp / 2
+-            else if (nev .eq. 1 .and. kplusp .gt. 3) then
+-               nev = 2
+-            end if
+-            np = kplusp - nev
+-c
+-c           %---------------------------------------%
+-c           | If the size of NEV was just increased |
+-c           | resort the eigenvalues.               |
+-c           %---------------------------------------%
+-c
+-            if (nevbef .lt. nev)
+-     &         call sngets (ishift, which, nev, np, ritzr, ritzi,
+-     &              bounds, workl, workl(np+1))
+-c
+-         end if
+-c
+-         if (msglvl .gt. 0) then
+-            call ivout (logfil, 1, nconv, ndigit,
+-     &           '_naup2: no. of "converged" Ritz values at this iter.')
+-            if (msglvl .gt. 1) then
+-               kp(1) = nev
+-               kp(2) = np
+-               call ivout (logfil, 2, kp, ndigit,
+-     &              '_naup2: NEV and NP are')
+-               call svout (logfil, nev, ritzr(np+1), ndigit,
+-     &              '_naup2: "wanted" Ritz values -- real part')
+-               call svout (logfil, nev, ritzi(np+1), ndigit,
+-     &              '_naup2: "wanted" Ritz values -- imag part')
+-               call svout (logfil, nev, bounds(np+1), ndigit,
+-     &              '_naup2: Ritz estimates of the "wanted" values ')
+-            end if
+-         end if
+-c
+-         if (ishift .eq. 0) then
+-c
+-c           %-------------------------------------------------------%
+-c           | User specified shifts: reverse comminucation to       |
+-c           | compute the shifts. They are returned in the first    |
+-c           | 2*NP locations of WORKL.                              |
+-c           %-------------------------------------------------------%
+-c
+-            ushift = .true.
+-            ido = 3
+-            go to 9000
+-         end if
+-c
+-   50    continue
+-c
+-c        %------------------------------------%
+-c        | Back from reverse communication;   |
+-c        | User specified shifts are returned |
+-c        | in WORKL(1:2*NP)                   |
+-c        %------------------------------------%
+-c
+-         ushift = .false.
+-c
+-         if ( ishift .eq. 0 ) then
+-c
+-c            %----------------------------------%
+-c            | Move the NP shifts from WORKL to |
+-c            | RITZR, RITZI to free up WORKL    |
+-c            | for non-exact shift case.        |
+-c            %----------------------------------%
+-c
+-             call scopy (np, workl,       1, ritzr, 1)
+-             call scopy (np, workl(np+1), 1, ritzi, 1)
+-         end if
+-c
+-         if (msglvl .gt. 2) then
+-            call ivout (logfil, 1, np, ndigit,
+-     &                  '_naup2: The number of shifts to apply ')
+-            call svout (logfil, np, ritzr, ndigit,
+-     &                  '_naup2: Real part of the shifts')
+-            call svout (logfil, np, ritzi, ndigit,
+-     &                  '_naup2: Imaginary part of the shifts')
+-            if ( ishift .eq. 1 )
+-     &          call svout (logfil, np, bounds, ndigit,
+-     &                  '_naup2: Ritz estimates of the shifts')
+-         end if
+-c
+-c        %---------------------------------------------------------%
+-c        | Apply the NP implicit shifts by QR bulge chasing.       |
+-c        | Each shift is applied to the whole upper Hessenberg     |
+-c        | matrix H.                                               |
+-c        | The first 2*N locations of WORKD are used as workspace. |
+-c        %---------------------------------------------------------%
+-c
+-         call snapps (n, nev, np, ritzr, ritzi, v, ldv,
+-     &                h, ldh, resid, q, ldq, workl, workd)
+-c
+-c        %---------------------------------------------%
+-c        | Compute the B-norm of the updated residual. |
+-c        | Keep B*RESID in WORKD(1:N) to be used in    |
+-c        | the first step of the next call to snaitr.  |
+-c        %---------------------------------------------%
+-c
+-         cnorm = .true.
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call scopy (n, resid, 1, workd(n+1), 1)
+-            ipntr(1) = n + 1
+-            ipntr(2) = 1
+-            ido = 2
+-c
+-c           %----------------------------------%
+-c           | Exit in order to compute B*RESID |
+-c           %----------------------------------%
+-c
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call scopy (n, resid, 1, workd, 1)
+-         end if
+-c
+-  100    continue
+-c
+-c        %----------------------------------%
+-c        | Back from reverse communication; |
+-c        | WORKD(1:N) := B*RESID            |
+-c        %----------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c
+-         if (bmat .eq. 'G') then
+-            rnorm = sdot (n, resid, 1, workd, 1)
+-            rnorm = sqrt(abs(rnorm))
+-         else if (bmat .eq. 'I') then
+-            rnorm = snrm2(n, resid, 1)
+-         end if
+-         cnorm = .false.
+-c
+-         if (msglvl .gt. 2) then
+-            call svout (logfil, 1, rnorm, ndigit,
+-     &      '_naup2: B-norm of residual for compressed factorization')
+-            call smout (logfil, nev, nev, h, ldh, ndigit,
+-     &        '_naup2: Compressed upper Hessenberg matrix H')
+-         end if
+-c
+-      go to 1000
+-c
+-c     %---------------------------------------------------------------%
+-c     |                                                               |
+-c     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  |
+-c     |                                                               |
+-c     %---------------------------------------------------------------%
+-c
+- 1100 continue
+-c
+-      mxiter = iter
+-      nev = numcnv
+-c
+- 1200 continue
+-      ido = 99
+-c
+-c     %------------%
+-c     | Error Exit |
+-c     %------------%
+-c
+-      call arscnd (t1)
+-      tnaup2 = t1 - t0
+-c
+- 9000 continue
+-c
+-c     %---------------%
+-c     | End of snaup2 |
+-c     %---------------%
+-c
+-      return
+-      end
+--- a/libcruft/arpack/src/snaupd.f
++++ /dev/null
+@@ -1,693 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: snaupd
+-c
+-c\Description: 
+-c  Reverse communication interface for the Implicitly Restarted Arnoldi
+-c  iteration. This subroutine computes approximations to a few eigenpairs 
+-c  of a linear operator "OP" with respect to a semi-inner product defined by 
+-c  a symmetric positive semi-definite real matrix B. B may be the identity 
+-c  matrix. NOTE: If the linear operator "OP" is real and symmetric 
+-c  with respect to the real positive semi-definite symmetric matrix B, 
+-c  i.e. B*OP = (OP`)*B, then subroutine ssaupd should be used instead.
+-c
+-c  The computed approximate eigenvalues are called Ritz values and
+-c  the corresponding approximate eigenvectors are called Ritz vectors.
+-c
+-c  snaupd is usually called iteratively to solve one of the 
+-c  following problems:
+-c
+-c  Mode 1:  A*x = lambda*x.
+-c           ===> OP = A  and  B = I.
+-c
+-c  Mode 2:  A*x = lambda*M*x, M symmetric positive definite
+-c           ===> OP = inv[M]*A  and  B = M.
+-c           ===> (If M can be factored see remark 3 below)
+-c
+-c  Mode 3:  A*x = lambda*M*x, M symmetric semi-definite
+-c           ===> OP = Real_Part{ inv[A - sigma*M]*M }  and  B = M. 
+-c           ===> shift-and-invert mode (in real arithmetic)
+-c           If OP*x = amu*x, then 
+-c           amu = 1/2 * [ 1/(lambda-sigma) + 1/(lambda-conjg(sigma)) ].
+-c           Note: If sigma is real, i.e. imaginary part of sigma is zero;
+-c                 Real_Part{ inv[A - sigma*M]*M } == inv[A - sigma*M]*M 
+-c                 amu == 1/(lambda-sigma). 
+-c  
+-c  Mode 4:  A*x = lambda*M*x, M symmetric semi-definite
+-c           ===> OP = Imaginary_Part{ inv[A - sigma*M]*M }  and  B = M. 
+-c           ===> shift-and-invert mode (in real arithmetic)
+-c           If OP*x = amu*x, then 
+-c           amu = 1/2i * [ 1/(lambda-sigma) - 1/(lambda-conjg(sigma)) ].
+-c
+-c  Both mode 3 and 4 give the same enhancement to eigenvalues close to
+-c  the (complex) shift sigma.  However, as lambda goes to infinity,
+-c  the operator OP in mode 4 dampens the eigenvalues more strongly than
+-c  does OP defined in mode 3.
+-c
+-c  NOTE: The action of w <- inv[A - sigma*M]*v or w <- inv[M]*v
+-c        should be accomplished either by a direct method
+-c        using a sparse matrix factorization and solving
+-c
+-c           [A - sigma*M]*w = v  or M*w = v,
+-c
+-c        or through an iterative method for solving these
+-c        systems.  If an iterative method is used, the
+-c        convergence test must be more stringent than
+-c        the accuracy requirements for the eigenvalue
+-c        approximations.
+-c
+-c\Usage:
+-c  call snaupd
+-c     ( IDO, BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM,
+-c       IPNTR, WORKD, WORKL, LWORKL, INFO )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.  IDO must be zero on the first 
+-c          call to snaupd.  IDO will be set internally to
+-c          indicate the type of operation to be performed.  Control is
+-c          then given back to the calling routine which has the
+-c          responsibility to carry out the requested operation and call
+-c          snaupd with the result.  The operand is given in
+-c          WORKD(IPNTR(1)), the result must be put in WORKD(IPNTR(2)).
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    This is for the initialization phase to force the
+-c                    starting vector into the range of OP.
+-c          IDO =  1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    In mode 3 and 4, the vector B * X is already
+-c                    available in WORKD(ipntr(3)).  It does not
+-c                    need to be recomputed in forming OP * X.
+-c          IDO =  2: compute  Y = B * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c          IDO =  3: compute the IPARAM(8) real and imaginary parts 
+-c                    of the shifts where INPTR(14) is the pointer
+-c                    into WORKL for placing the shifts. See Remark
+-c                    5 below.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c             
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of the matrix B that defines the
+-c          semi-inner product for the operator OP.
+-c          BMAT = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          BMAT = 'G' -> generalized eigenvalue problem A*x = lambda*B*x
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the eigenproblem.
+-c
+-c  WHICH   Character*2.  (INPUT)
+-c          'LM' -> want the NEV eigenvalues of largest magnitude.
+-c          'SM' -> want the NEV eigenvalues of smallest magnitude.
+-c          'LR' -> want the NEV eigenvalues of largest real part.
+-c          'SR' -> want the NEV eigenvalues of smallest real part.
+-c          'LI' -> want the NEV eigenvalues of largest imaginary part.
+-c          'SI' -> want the NEV eigenvalues of smallest imaginary part.
+-c
+-c  NEV     Integer.  (INPUT)
+-c          Number of eigenvalues of OP to be computed. 0 < NEV < N-1.
+-c
+-c  TOL     Real  scalar.  (INPUT)
+-c          Stopping criterion: the relative accuracy of the Ritz value 
+-c          is considered acceptable if BOUNDS(I) .LE. TOL*ABS(RITZ(I))
+-c          where ABS(RITZ(I)) is the magnitude when RITZ(I) is complex.
+-c          DEFAULT = SLAMCH('EPS')  (machine precision as computed
+-c                    by the LAPACK auxiliary subroutine SLAMCH).
+-c
+-c  RESID   Real  array of length N.  (INPUT/OUTPUT)
+-c          On INPUT: 
+-c          If INFO .EQ. 0, a random initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          On OUTPUT:
+-c          RESID contains the final residual vector.
+-c
+-c  NCV     Integer.  (INPUT)
+-c          Number of columns of the matrix V. NCV must satisfy the two
+-c          inequalities 2 <= NCV-NEV and NCV <= N.
+-c          This will indicate how many Arnoldi vectors are generated 
+-c          at each iteration.  After the startup phase in which NEV 
+-c          Arnoldi vectors are generated, the algorithm generates 
+-c          approximately NCV-NEV Arnoldi vectors at each subsequent update 
+-c          iteration. Most of the cost in generating each Arnoldi vector is 
+-c          in the matrix-vector operation OP*x. 
+-c          NOTE: 2 <= NCV-NEV in order that complex conjugate pairs of Ritz 
+-c          values are kept together. (See remark 4 below)
+-c
+-c  V       Real  array N by NCV.  (OUTPUT)
+-c          Contains the final set of Arnoldi basis vectors. 
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling program.
+-c
+-c  IPARAM  Integer array of length 11.  (INPUT/OUTPUT)
+-c          IPARAM(1) = ISHIFT: method for selecting the implicit shifts.
+-c          The shifts selected at each iteration are used to restart
+-c          the Arnoldi iteration in an implicit fashion.
+-c          -------------------------------------------------------------
+-c          ISHIFT = 0: the shifts are provided by the user via
+-c                      reverse communication.  The real and imaginary
+-c                      parts of the NCV eigenvalues of the Hessenberg
+-c                      matrix H are returned in the part of the WORKL 
+-c                      array corresponding to RITZR and RITZI. See remark 
+-c                      5 below.
+-c          ISHIFT = 1: exact shifts with respect to the current
+-c                      Hessenberg matrix H.  This is equivalent to 
+-c                      restarting the iteration with a starting vector
+-c                      that is a linear combination of approximate Schur
+-c                      vectors associated with the "wanted" Ritz values.
+-c          -------------------------------------------------------------
+-c
+-c          IPARAM(2) = No longer referenced.
+-c
+-c          IPARAM(3) = MXITER
+-c          On INPUT:  maximum number of Arnoldi update iterations allowed. 
+-c          On OUTPUT: actual number of Arnoldi update iterations taken. 
+-c
+-c          IPARAM(4) = NB: blocksize to be used in the recurrence.
+-c          The code currently works only for NB = 1.
+-c
+-c          IPARAM(5) = NCONV: number of "converged" Ritz values.
+-c          This represents the number of Ritz values that satisfy
+-c          the convergence criterion.
+-c
+-c          IPARAM(6) = IUPD
+-c          No longer referenced. Implicit restarting is ALWAYS used.  
+-c
+-c          IPARAM(7) = MODE
+-c          On INPUT determines what type of eigenproblem is being solved.
+-c          Must be 1,2,3,4; See under \Description of snaupd for the 
+-c          four modes available.
+-c
+-c          IPARAM(8) = NP
+-c          When ido = 3 and the user provides shifts through reverse
+-c          communication (IPARAM(1)=0), snaupd returns NP, the number
+-c          of shifts the user is to provide. 0 < NP <=NCV-NEV. See Remark
+-c          5 below.
+-c
+-c          IPARAM(9) = NUMOP, IPARAM(10) = NUMOPB, IPARAM(11) = NUMREO,
+-c          OUTPUT: NUMOP  = total number of OP*x operations,
+-c                  NUMOPB = total number of B*x operations if BMAT='G',
+-c                  NUMREO = total number of steps of re-orthogonalization.        
+-c
+-c  IPNTR   Integer array of length 14.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORKD and WORKL
+-c          arrays for matrices/vectors used by the Arnoldi iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X in WORKD.
+-c          IPNTR(2): pointer to the current result vector Y in WORKD.
+-c          IPNTR(3): pointer to the vector B * X in WORKD when used in 
+-c                    the shift-and-invert mode.
+-c          IPNTR(4): pointer to the next available location in WORKL
+-c                    that is untouched by the program.
+-c          IPNTR(5): pointer to the NCV by NCV upper Hessenberg matrix
+-c                    H in WORKL.
+-c          IPNTR(6): pointer to the real part of the ritz value array 
+-c                    RITZR in WORKL.
+-c          IPNTR(7): pointer to the imaginary part of the ritz value array
+-c                    RITZI in WORKL.
+-c          IPNTR(8): pointer to the Ritz estimates in array WORKL associated
+-c                    with the Ritz values located in RITZR and RITZI in WORKL.
+-c
+-c          IPNTR(14): pointer to the NP shifts in WORKL. See Remark 5 below.
+-c
+-c          Note: IPNTR(9:13) is only referenced by sneupd. See Remark 2 below.
+-c
+-c          IPNTR(9):  pointer to the real part of the NCV RITZ values of the 
+-c                     original system.
+-c          IPNTR(10): pointer to the imaginary part of the NCV RITZ values of 
+-c                     the original system.
+-c          IPNTR(11): pointer to the NCV corresponding error bounds.
+-c          IPNTR(12): pointer to the NCV by NCV upper quasi-triangular
+-c                     Schur matrix for H.
+-c          IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors
+-c                     of the upper Hessenberg matrix H. Only referenced by
+-c                     sneupd if RVEC = .TRUE. See Remark 2 below.
+-c          -------------------------------------------------------------
+-c          
+-c  WORKD   Real  work array of length 3*N.  (REVERSE COMMUNICATION)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The user should not use WORKD 
+-c          as temporary workspace during the iteration. Upon termination
+-c          WORKD(1:N) contains B*RESID(1:N). If an invariant subspace
+-c          associated with the converged Ritz values is desired, see remark
+-c          2 below, subroutine sneupd uses this output.
+-c          See Data Distribution Note below.  
+-c
+-c  WORKL   Real  work array of length LWORKL.  (OUTPUT/WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  See Data Distribution Note below.
+-c
+-c  LWORKL  Integer.  (INPUT)
+-c          LWORKL must be at least 3*NCV**2 + 6*NCV.
+-c
+-c  INFO    Integer.  (INPUT/OUTPUT)
+-c          If INFO .EQ. 0, a randomly initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          Error flag on output.
+-c          =  0: Normal exit.
+-c          =  1: Maximum number of iterations taken.
+-c                All possible eigenvalues of OP has been found. IPARAM(5)  
+-c                returns the number of wanted converged Ritz values.
+-c          =  2: No longer an informational error. Deprecated starting
+-c                with release 2 of ARPACK.
+-c          =  3: No shifts could be applied during a cycle of the 
+-c                Implicitly restarted Arnoldi iteration. One possibility 
+-c                is to increase the size of NCV relative to NEV. 
+-c                See remark 4 below.
+-c          = -1: N must be positive.
+-c          = -2: NEV must be positive.
+-c          = -3: NCV-NEV >= 2 and less than or equal to N.
+-c          = -4: The maximum number of Arnoldi update iteration 
+-c                must be greater than zero.
+-c          = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'
+-c          = -6: BMAT must be one of 'I' or 'G'.
+-c          = -7: Length of private work array is not sufficient.
+-c          = -8: Error return from LAPACK eigenvalue calculation;
+-c          = -9: Starting vector is zero.
+-c          = -10: IPARAM(7) must be 1,2,3,4.
+-c          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatable.
+-c          = -12: IPARAM(1) must be equal to 0 or 1.
+-c          = -9999: Could not build an Arnoldi factorization.
+-c                   IPARAM(5) returns the size of the current Arnoldi
+-c                   factorization.
+-c
+-c\Remarks
+-c  1. The computed Ritz values are approximate eigenvalues of OP. The
+-c     selection of WHICH should be made with this in mind when
+-c     Mode = 3 and 4.  After convergence, approximate eigenvalues of the
+-c     original problem may be obtained with the ARPACK subroutine sneupd.
+-c
+-c  2. If a basis for the invariant subspace corresponding to the converged Ritz 
+-c     values is needed, the user must call sneupd immediately following 
+-c     completion of snaupd. This is new starting with release 2 of ARPACK.
+-c
+-c  3. If M can be factored into a Cholesky factorization M = LL`
+-c     then Mode = 2 should not be selected.  Instead one should use
+-c     Mode = 1 with  OP = inv(L)*A*inv(L`).  Appropriate triangular 
+-c     linear systems should be solved with L and L` rather
+-c     than computing inverses.  After convergence, an approximate
+-c     eigenvector z of the original problem is recovered by solving
+-c     L`z = x  where x is a Ritz vector of OP.
+-c
+-c  4. At present there is no a-priori analysis to guide the selection
+-c     of NCV relative to NEV.  The only formal requrement is that NCV > NEV + 2.
+-c     However, it is recommended that NCV .ge. 2*NEV+1.  If many problems of
+-c     the same type are to be solved, one should experiment with increasing
+-c     NCV while keeping NEV fixed for a given test problem.  This will 
+-c     usually decrease the required number of OP*x operations but it
+-c     also increases the work and storage required to maintain the orthogonal
+-c     basis vectors.  The optimal "cross-over" with respect to CPU time
+-c     is problem dependent and must be determined empirically. 
+-c     See Chapter 8 of Reference 2 for further information.
+-c
+-c  5. When IPARAM(1) = 0, and IDO = 3, the user needs to provide the 
+-c     NP = IPARAM(8) real and imaginary parts of the shifts in locations 
+-c         real part                  imaginary part
+-c         -----------------------    --------------
+-c     1   WORKL(IPNTR(14))           WORKL(IPNTR(14)+NP)
+-c     2   WORKL(IPNTR(14)+1)         WORKL(IPNTR(14)+NP+1)
+-c                        .                          .
+-c                        .                          .
+-c                        .                          .
+-c     NP  WORKL(IPNTR(14)+NP-1)      WORKL(IPNTR(14)+2*NP-1).
+-c
+-c     Only complex conjugate pairs of shifts may be applied and the pairs 
+-c     must be placed in consecutive locations. The real part of the 
+-c     eigenvalues of the current upper Hessenberg matrix are located in 
+-c     WORKL(IPNTR(6)) through WORKL(IPNTR(6)+NCV-1) and the imaginary part 
+-c     in WORKL(IPNTR(7)) through WORKL(IPNTR(7)+NCV-1). They are ordered
+-c     according to the order defined by WHICH. The complex conjugate
+-c     pairs are kept together and the associated Ritz estimates are located in
+-c     WORKL(IPNTR(8)), WORKL(IPNTR(8)+1), ... , WORKL(IPNTR(8)+NCV-1).
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\Data Distribution Note: 
+-c
+-c  Fortran-D syntax:
+-c  ================
+-c  Real  resid(n), v(ldv,ncv), workd(3*n), workl(lworkl)
+-c  decompose  d1(n), d2(n,ncv)
+-c  align      resid(i) with d1(i)
+-c  align      v(i,j)   with d2(i,j)
+-c  align      workd(i) with d1(i)     range (1:n)
+-c  align      workd(i) with d1(i-n)   range (n+1:2*n)
+-c  align      workd(i) with d1(i-2*n) range (2*n+1:3*n)
+-c  distribute d1(block), d2(block,:)
+-c  replicated workl(lworkl)
+-c
+-c  Cray MPP syntax:
+-c  ===============
+-c  Real   resid(n), v(ldv,ncv), workd(n,3), workl(lworkl)
+-c  shared     resid(block), v(block,:), workd(block,:)
+-c  replicated workl(lworkl)
+-c  
+-c  CM2/CM5 syntax:
+-c  ==============
+-c  
+-c-----------------------------------------------------------------------
+-c
+-c     include   'ex-nonsym.doc'
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c  3. B.N. Parlett & Y. Saad, "Complex Shift and Invert Strategies for
+-c     Real Matrices", Linear Algebra and its Applications, vol 88/89,
+-c     pp 575-595, (1987).
+-c
+-c\Routines called:
+-c     snaup2  ARPACK routine that implements the Implicitly Restarted
+-c             Arnoldi Iteration.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     svout   ARPACK utility routine that prints vectors.
+-c     slamch  LAPACK routine that determines machine constants.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c 
+-c\Revision history:
+-c     12/16/93: Version '1.1'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: naupd.F   SID: 2.8   DATE OF SID: 04/10/01   RELEASE: 2
+-c
+-c\Remarks
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine snaupd
+-     &   ( ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, 
+-     &     ipntr, workd, workl, lworkl, info )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1, which*2
+-      integer    ido, info, ldv, lworkl, n, ncv, nev
+-      Real 
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    iparam(11), ipntr(14)
+-      Real 
+-     &           resid(n), v(ldv,ncv), workd(3*n), workl(lworkl)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real 
+-     &           one, zero
+-      parameter (one = 1.0E+0 , zero = 0.0E+0 )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    bounds, ierr, ih, iq, ishift, iupd, iw, 
+-     &           ldh, ldq, levec, mode, msglvl, mxiter, nb,
+-     &           nev0, next, np, ritzi, ritzr, j
+-      save       bounds, ih, iq, ishift, iupd, iw, ldh, ldq,
+-     &           levec, mode, msglvl, mxiter, nb, nev0, next,
+-     &           np, ritzi, ritzr
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   snaup2, svout, ivout, arscnd, sstatn
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real 
+-     &           slamch
+-      external   slamch
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c 
+-      if (ido .eq. 0) then
+-c 
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call sstatn
+-         call arscnd (t0)
+-         msglvl = mnaupd
+-c
+-c        %----------------%
+-c        | Error checking |
+-c        %----------------%
+-c
+-         ierr   = 0
+-         ishift = iparam(1)
+-c         levec  = iparam(2)
+-         mxiter = iparam(3)
+-c         nb     = iparam(4)
+-         nb     = 1
+-c
+-c        %--------------------------------------------%
+-c        | Revision 2 performs only implicit restart. |
+-c        %--------------------------------------------%
+-c
+-         iupd   = 1
+-         mode   = iparam(7)
+-c
+-         if (n .le. 0) then
+-             ierr = -1
+-         else if (nev .le. 0) then
+-             ierr = -2
+-         else if (ncv .le. nev+1 .or.  ncv .gt. n) then
+-             ierr = -3
+-         else if (mxiter .le. 0) then
+-             ierr = -4
+-         else if (which .ne. 'LM' .and.
+-     &       which .ne. 'SM' .and.
+-     &       which .ne. 'LR' .and.
+-     &       which .ne. 'SR' .and.
+-     &       which .ne. 'LI' .and.
+-     &       which .ne. 'SI') then
+-            ierr = -5
+-         else if (bmat .ne. 'I' .and. bmat .ne. 'G') then
+-            ierr = -6
+-         else if (lworkl .lt. 3*ncv**2 + 6*ncv) then
+-            ierr = -7
+-         else if (mode .lt. 1 .or. mode .gt. 4) then
+-                                                ierr = -10
+-         else if (mode .eq. 1 .and. bmat .eq. 'G') then
+-                                                ierr = -11
+-         else if (ishift .lt. 0 .or. ishift .gt. 1) then
+-                                                ierr = -12
+-         end if
+-c 
+-c        %------------%
+-c        | Error Exit |
+-c        %------------%
+-c
+-         if (ierr .ne. 0) then
+-            info = ierr
+-            ido  = 99
+-            go to 9000
+-         end if
+-c 
+-c        %------------------------%
+-c        | Set default parameters |
+-c        %------------------------%
+-c
+-         if (nb .le. 0)				nb = 1
+-         if (tol .le. zero)			tol = slamch('EpsMach')
+-c
+-c        %----------------------------------------------%
+-c        | NP is the number of additional steps to      |
+-c        | extend the length NEV Lanczos factorization. |
+-c        | NEV0 is the local variable designating the   |
+-c        | size of the invariant subspace desired.      |
+-c        %----------------------------------------------%
+-c
+-         np     = ncv - nev
+-         nev0   = nev 
+-c 
+-c        %-----------------------------%
+-c        | Zero out internal workspace |
+-c        %-----------------------------%
+-c
+-         do 10 j = 1, 3*ncv**2 + 6*ncv
+-            workl(j) = zero
+-  10     continue
+-c 
+-c        %-------------------------------------------------------------%
+-c        | Pointer into WORKL for address of H, RITZ, BOUNDS, Q        |
+-c        | etc... and the remaining workspace.                         |
+-c        | Also update pointer to be used on output.                   |
+-c        | Memory is laid out as follows:                              |
+-c        | workl(1:ncv*ncv) := generated Hessenberg matrix             |
+-c        | workl(ncv*ncv+1:ncv*ncv+2*ncv) := real and imaginary        |
+-c        |                                   parts of ritz values      |
+-c        | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := error bounds        |
+-c        | workl(ncv*ncv+3*ncv+1:2*ncv*ncv+3*ncv) := rotation matrix Q |
+-c        | workl(2*ncv*ncv+3*ncv+1:3*ncv*ncv+6*ncv) := workspace       |
+-c        | The final workspace is needed by subroutine sneigh called   |
+-c        | by snaup2. Subroutine sneigh calls LAPACK routines for      |
+-c        | calculating eigenvalues and the last row of the eigenvector |
+-c        | matrix.                                                     |
+-c        %-------------------------------------------------------------%
+-c
+-         ldh    = ncv
+-         ldq    = ncv
+-         ih     = 1
+-         ritzr  = ih     + ldh*ncv
+-         ritzi  = ritzr  + ncv
+-         bounds = ritzi  + ncv
+-         iq     = bounds + ncv
+-         iw     = iq     + ldq*ncv
+-         next   = iw     + ncv**2 + 3*ncv
+-c
+-         ipntr(4) = next
+-         ipntr(5) = ih
+-         ipntr(6) = ritzr
+-         ipntr(7) = ritzi
+-         ipntr(8) = bounds
+-         ipntr(14) = iw 
+-c
+-      end if
+-c
+-c     %-------------------------------------------------------%
+-c     | Carry out the Implicitly restarted Arnoldi Iteration. |
+-c     %-------------------------------------------------------%
+-c
+-      call snaup2 
+-     &   ( ido, bmat, n, which, nev0, np, tol, resid, mode, iupd,
+-     &     ishift, mxiter, v, ldv, workl(ih), ldh, workl(ritzr), 
+-     &     workl(ritzi), workl(bounds), workl(iq), ldq, workl(iw), 
+-     &     ipntr, workd, info )
+-c 
+-c     %--------------------------------------------------%
+-c     | ido .ne. 99 implies use of reverse communication |
+-c     | to compute operations involving OP or shifts.    |
+-c     %--------------------------------------------------%
+-c
+-      if (ido .eq. 3) iparam(8) = np
+-      if (ido .ne. 99) go to 9000
+-c 
+-      iparam(3) = mxiter
+-      iparam(5) = np
+-      iparam(9) = nopx
+-      iparam(10) = nbx
+-      iparam(11) = nrorth
+-c
+-c     %------------------------------------%
+-c     | Exit if there was an informational |
+-c     | error within snaup2.               |
+-c     %------------------------------------%
+-c
+-      if (info .lt. 0) go to 9000
+-      if (info .eq. 2) info = 3
+-c
+-      if (msglvl .gt. 0) then
+-         call ivout (logfil, 1, mxiter, ndigit,
+-     &               '_naupd: Number of update iterations taken')
+-         call ivout (logfil, 1, np, ndigit,
+-     &               '_naupd: Number of wanted "converged" Ritz values')
+-         call svout (logfil, np, workl(ritzr), ndigit, 
+-     &               '_naupd: Real part of the final Ritz values')
+-         call svout (logfil, np, workl(ritzi), ndigit, 
+-     &               '_naupd: Imaginary part of the final Ritz values')
+-         call svout (logfil, np, workl(bounds), ndigit, 
+-     &               '_naupd: Associated Ritz estimates')
+-      end if
+-c
+-      call arscnd (t1)
+-      tnaupd = t1 - t0
+-c
+-      if (msglvl .gt. 0) then
+-c
+-c        %--------------------------------------------------------%
+-c        | Version Number & Version Date are defined in version.h |
+-c        %--------------------------------------------------------%
+-c
+-         write (6,1000)
+-         write (6,1100) mxiter, nopx, nbx, nrorth, nitref, nrstrt,
+-     &                  tmvopx, tmvbx, tnaupd, tnaup2, tnaitr, titref,
+-     &                  tgetv0, tneigh, tngets, tnapps, tnconv, trvec
+- 1000    format (//,
+-     &      5x, '=============================================',/
+-     &      5x, '= Nonsymmetric implicit Arnoldi update code =',/
+-     &      5x, '= Version Number: ', ' 2.4' , 21x, ' =',/
+-     &      5x, '= Version Date:   ', ' 07/31/96' , 16x,   ' =',/
+-     &      5x, '=============================================',/
+-     &      5x, '= Summary of timing statistics              =',/
+-     &      5x, '=============================================',//)
+- 1100    format (
+-     &      5x, 'Total number update iterations             = ', i5,/
+-     &      5x, 'Total number of OP*x operations            = ', i5,/
+-     &      5x, 'Total number of B*x operations             = ', i5,/
+-     &      5x, 'Total number of reorthogonalization steps  = ', i5,/
+-     &      5x, 'Total number of iterative refinement steps = ', i5,/
+-     &      5x, 'Total number of restart steps              = ', i5,/
+-     &      5x, 'Total time in user OP*x operation          = ', f12.6,/
+-     &      5x, 'Total time in user B*x operation           = ', f12.6,/
+-     &      5x, 'Total time in Arnoldi update routine       = ', f12.6,/
+-     &      5x, 'Total time in naup2 routine                = ', f12.6,/
+-     &      5x, 'Total time in basic Arnoldi iteration loop = ', f12.6,/
+-     &      5x, 'Total time in reorthogonalization phase    = ', f12.6,/
+-     &      5x, 'Total time in (re)start vector generation  = ', f12.6,/
+-     &      5x, 'Total time in Hessenberg eig. subproblem   = ', f12.6,/
+-     &      5x, 'Total time in getting the shifts           = ', f12.6,/
+-     &      5x, 'Total time in applying the shifts          = ', f12.6,/
+-     &      5x, 'Total time in convergence testing          = ', f12.6,/
+-     &      5x, 'Total time in computing final Ritz vectors = ', f12.6/)
+-      end if
+-c
+- 9000 continue
+-c
+-      return
+-c
+-c     %---------------%
+-c     | End of snaupd |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/snconv.f
++++ /dev/null
+@@ -1,146 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: snconv
+-c
+-c\Description: 
+-c  Convergence testing for the nonsymmetric Arnoldi eigenvalue routine.
+-c
+-c\Usage:
+-c  call snconv
+-c     ( N, RITZR, RITZI, BOUNDS, TOL, NCONV )
+-c
+-c\Arguments
+-c  N       Integer.  (INPUT)
+-c          Number of Ritz values to check for convergence.
+-c
+-c  RITZR,  Real arrays of length N.  (INPUT)
+-c  RITZI   Real and imaginary parts of the Ritz values to be checked
+-c          for convergence.
+-
+-c  BOUNDS  Real array of length N.  (INPUT)
+-c          Ritz estimates for the Ritz values in RITZR and RITZI.
+-c
+-c  TOL     Real scalar.  (INPUT)
+-c          Desired backward error for a Ritz value to be considered
+-c          "converged".
+-c
+-c  NCONV   Integer scalar.  (OUTPUT)
+-c          Number of "converged" Ritz values.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     arscnd  ARPACK utility routine for timing.
+-c     slamch  LAPACK routine that determines machine constants.
+-c     slapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University 
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas    
+-c
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.1'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: nconv.F   SID: 2.3   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c\Remarks
+-c     1. xxxx
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine snconv (n, ritzr, ritzi, bounds, tol, nconv)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    n, nconv
+-      Real
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-
+-      Real
+-     &           ritzr(n), ritzi(n), bounds(n)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i
+-      Real
+-     &           temp, eps23
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real
+-     &           slapy2, slamch
+-      external   slapy2, slamch
+-
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c 
+-c     %-------------------------------------------------------------%
+-c     | Convergence test: unlike in the symmetric code, I am not    |
+-c     | using things like refined error bounds and gap condition    |
+-c     | because I don't know the exact equivalent concept.          |
+-c     |                                                             |
+-c     | Instead the i-th Ritz value is considered "converged" when: |
+-c     |                                                             |
+-c     |     bounds(i) .le. ( TOL * | ritz | )                       |
+-c     |                                                             |
+-c     | for some appropriate choice of norm.                        |
+-c     %-------------------------------------------------------------%
+-c
+-      call arscnd (t0)
+-c
+-c     %---------------------------------%
+-c     | Get machine dependent constant. |
+-c     %---------------------------------%
+-c
+-      eps23 = slamch('Epsilon-Machine')
+-      eps23 = eps23**(2.0E+0 / 3.0E+0)
+-c
+-      nconv  = 0
+-      do 20 i = 1, n
+-         temp = max( eps23, slapy2( ritzr(i), ritzi(i) ) )
+-         if (bounds(i) .le. tol*temp)   nconv = nconv + 1
+-   20 continue
+-c 
+-      call arscnd (t1)
+-      tnconv = tnconv + (t1 - t0)
+-c 
+-      return
+-c
+-c     %---------------%
+-c     | End of snconv |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/sneigh.f
++++ /dev/null
+@@ -1,314 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: sneigh
+-c
+-c\Description:
+-c  Compute the eigenvalues of the current upper Hessenberg matrix
+-c  and the corresponding Ritz estimates given the current residual norm.
+-c
+-c\Usage:
+-c  call sneigh
+-c     ( RNORM, N, H, LDH, RITZR, RITZI, BOUNDS, Q, LDQ, WORKL, IERR )
+-c
+-c\Arguments
+-c  RNORM   Real scalar.  (INPUT)
+-c          Residual norm corresponding to the current upper Hessenberg 
+-c          matrix H.
+-c
+-c  N       Integer.  (INPUT)
+-c          Size of the matrix H.
+-c
+-c  H       Real N by N array.  (INPUT)
+-c          H contains the current upper Hessenberg matrix.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling
+-c          program.
+-c
+-c  RITZR,  Real arrays of length N.  (OUTPUT)
+-c  RITZI   On output, RITZR(1:N) (resp. RITZI(1:N)) contains the real 
+-c          (respectively imaginary) parts of the eigenvalues of H.
+-c
+-c  BOUNDS  Real array of length N.  (OUTPUT)
+-c          On output, BOUNDS contains the Ritz estimates associated with
+-c          the eigenvalues RITZR and RITZI.  This is equal to RNORM 
+-c          times the last components of the eigenvectors corresponding 
+-c          to the eigenvalues in RITZR and RITZI.
+-c
+-c  Q       Real N by N array.  (WORKSPACE)
+-c          Workspace needed to store the eigenvectors of H.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c
+-c  WORKL   Real work array of length N**2 + 3*N.  (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  This is needed to keep the full Schur form
+-c          of H and also in the calculation of the eigenvectors of H.
+-c
+-c  IERR    Integer.  (OUTPUT)
+-c          Error exit flag from slaqrb or strevc.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     slaqrb  ARPACK routine to compute the real Schur form of an
+-c             upper Hessenberg matrix and last row of the Schur vectors.
+-c     arscnd  ARPACK utility routine for timing.
+-c     smout   ARPACK utility routine that prints matrices
+-c     svout   ARPACK utility routine that prints vectors.
+-c     slacpy  LAPACK matrix copy routine.
+-c     slapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     strevc  LAPACK routine to compute the eigenvectors of a matrix
+-c             in upper quasi-triangular form
+-c     sgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     scopy   Level 1 BLAS that copies one vector to another .
+-c     snrm2   Level 1 BLAS that computes the norm of a vector.
+-c     sscal   Level 1 BLAS that scales a vector.
+-c     
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas    
+-c
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.1'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: neigh.F   SID: 2.3   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c\Remarks
+-c     None
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine sneigh (rnorm, n, h, ldh, ritzr, ritzi, bounds, 
+-     &                   q, ldq, workl, ierr)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    ierr, n, ldh, ldq
+-      Real     
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Real     
+-     &           bounds(n), h(ldh,n), q(ldq,n), ritzi(n), ritzr(n),
+-     &           workl(n*(n+3))
+-c 
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real     
+-     &           one, zero
+-      parameter (one = 1.0E+0, zero = 0.0E+0)
+-c 
+-c     %------------------------%
+-c     | Local Scalars & Arrays |
+-c     %------------------------%
+-c
+-      logical    select(1)
+-      integer    i, iconj, msglvl
+-      Real     
+-     &           temp, vl(1)
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   scopy, slacpy, slaqrb, strevc, svout, arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real
+-     &           slapy2, snrm2
+-      external   slapy2, snrm2
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic  abs
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c
+-      call arscnd (t0)
+-      msglvl = mneigh
+-c 
+-      if (msglvl .gt. 2) then
+-          call smout (logfil, n, n, h, ldh, ndigit, 
+-     &         '_neigh: Entering upper Hessenberg matrix H ')
+-      end if
+-c 
+-c     %-----------------------------------------------------------%
+-c     | 1. Compute the eigenvalues, the last components of the    |
+-c     |    corresponding Schur vectors and the full Schur form T  |
+-c     |    of the current upper Hessenberg matrix H.              |
+-c     | slaqrb returns the full Schur form of H in WORKL(1:N**2)  |
+-c     | and the last components of the Schur vectors in BOUNDS.   |
+-c     %-----------------------------------------------------------%
+-c
+-      call slacpy ('All', n, n, h, ldh, workl, n)
+-      call slaqrb (.true., n, 1, n, workl, n, ritzr, ritzi, bounds,
+-     &             ierr)
+-      if (ierr .ne. 0) go to 9000
+-c
+-      if (msglvl .gt. 1) then
+-         call svout (logfil, n, bounds, ndigit,
+-     &              '_neigh: last row of the Schur matrix for H')
+-      end if
+-c
+-c     %-----------------------------------------------------------%
+-c     | 2. Compute the eigenvectors of the full Schur form T and  |
+-c     |    apply the last components of the Schur vectors to get  |
+-c     |    the last components of the corresponding eigenvectors. |
+-c     | Remember that if the i-th and (i+1)-st eigenvalues are    |
+-c     | complex conjugate pairs, then the real & imaginary part   |
+-c     | of the eigenvector components are split across adjacent   |
+-c     | columns of Q.                                             |
+-c     %-----------------------------------------------------------%
+-c
+-      call strevc ('R', 'A', select, n, workl, n, vl, n, q, ldq,
+-     &             n, n, workl(n*n+1), ierr)
+-c
+-      if (ierr .ne. 0) go to 9000
+-c
+-c     %------------------------------------------------%
+-c     | Scale the returning eigenvectors so that their |
+-c     | euclidean norms are all one. LAPACK subroutine |
+-c     | strevc returns each eigenvector normalized so  |
+-c     | that the element of largest magnitude has      |
+-c     | magnitude 1; here the magnitude of a complex   |
+-c     | number (x,y) is taken to be |x| + |y|.         |
+-c     %------------------------------------------------%
+-c
+-      iconj = 0
+-      do 10 i=1, n
+-         if ( abs( ritzi(i) ) .le. zero ) then
+-c
+-c           %----------------------%
+-c           | Real eigenvalue case |
+-c           %----------------------%
+-c    
+-            temp = snrm2( n, q(1,i), 1 )
+-            call sscal ( n, one / temp, q(1,i), 1 )
+-         else
+-c
+-c           %-------------------------------------------%
+-c           | Complex conjugate pair case. Note that    |
+-c           | since the real and imaginary part of      |
+-c           | the eigenvector are stored in consecutive |
+-c           | columns, we further normalize by the      |
+-c           | square root of two.                       |
+-c           %-------------------------------------------%
+-c
+-            if (iconj .eq. 0) then
+-               temp = slapy2( snrm2( n, q(1,i), 1 ), 
+-     &                        snrm2( n, q(1,i+1), 1 ) )
+-               call sscal ( n, one / temp, q(1,i), 1 )
+-               call sscal ( n, one / temp, q(1,i+1), 1 )
+-               iconj = 1
+-            else
+-               iconj = 0
+-            end if
+-         end if         
+-   10 continue
+-c
+-      call sgemv ('T', n, n, one, q, ldq, bounds, 1, zero, workl, 1)
+-c
+-      if (msglvl .gt. 1) then
+-         call svout (logfil, n, workl, ndigit,
+-     &              '_neigh: Last row of the eigenvector matrix for H')
+-      end if
+-c
+-c     %----------------------------%
+-c     | Compute the Ritz estimates |
+-c     %----------------------------%
+-c
+-      iconj = 0
+-      do 20 i = 1, n
+-         if ( abs( ritzi(i) ) .le. zero ) then
+-c
+-c           %----------------------%
+-c           | Real eigenvalue case |
+-c           %----------------------%
+-c    
+-            bounds(i) = rnorm * abs( workl(i) )
+-         else
+-c
+-c           %-------------------------------------------%
+-c           | Complex conjugate pair case. Note that    |
+-c           | since the real and imaginary part of      |
+-c           | the eigenvector are stored in consecutive |
+-c           | columns, we need to take the magnitude    |
+-c           | of the last components of the two vectors |
+-c           %-------------------------------------------%
+-c
+-            if (iconj .eq. 0) then
+-               bounds(i) = rnorm * slapy2( workl(i), workl(i+1) )
+-               bounds(i+1) = bounds(i)
+-               iconj = 1
+-            else
+-               iconj = 0
+-            end if
+-         end if
+-   20 continue
+-c
+-      if (msglvl .gt. 2) then
+-         call svout (logfil, n, ritzr, ndigit,
+-     &              '_neigh: Real part of the eigenvalues of H')
+-         call svout (logfil, n, ritzi, ndigit,
+-     &              '_neigh: Imaginary part of the eigenvalues of H')
+-         call svout (logfil, n, bounds, ndigit,
+-     &              '_neigh: Ritz estimates for the eigenvalues of H')
+-      end if
+-c
+-      call arscnd (t1)
+-      tneigh = tneigh + (t1 - t0)
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of sneigh |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/sneupd.f
++++ /dev/null
+@@ -1,1067 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: sneupd
+-c
+-c\Description: 
+-c
+-c  This subroutine returns the converged approximations to eigenvalues
+-c  of A*z = lambda*B*z and (optionally):
+-c
+-c      (1) The corresponding approximate eigenvectors;
+-c
+-c      (2) An orthonormal basis for the associated approximate
+-c          invariant subspace;
+-c
+-c      (3) Both.
+-c
+-c  There is negligible additional cost to obtain eigenvectors.  An orthonormal
+-c  basis is always computed.  There is an additional storage cost of n*nev
+-c  if both are requested (in this case a separate array Z must be supplied).
+-c
+-c  The approximate eigenvalues and eigenvectors of  A*z = lambda*B*z
+-c  are derived from approximate eigenvalues and eigenvectors of
+-c  of the linear operator OP prescribed by the MODE selection in the
+-c  call to SNAUPD.  SNAUPD must be called before this routine is called.
+-c  These approximate eigenvalues and vectors are commonly called Ritz
+-c  values and Ritz vectors respectively.  They are referred to as such
+-c  in the comments that follow.  The computed orthonormal basis for the
+-c  invariant subspace corresponding to these Ritz values is referred to as a
+-c  Schur basis.
+-c
+-c  See documentation in the header of the subroutine SNAUPD for 
+-c  definition of OP as well as other terms and the relation of computed
+-c  Ritz values and Ritz vectors of OP with respect to the given problem
+-c  A*z = lambda*B*z.  For a brief description, see definitions of 
+-c  IPARAM(7), MODE and WHICH in the documentation of SNAUPD.
+-c
+-c\Usage:
+-c  call sneupd 
+-c     ( RVEC, HOWMNY, SELECT, DR, DI, Z, LDZ, SIGMAR, SIGMAI, WORKEV, BMAT, 
+-c       N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD, WORKL, 
+-c       LWORKL, INFO )
+-c
+-c\Arguments:
+-c  RVEC    LOGICAL  (INPUT) 
+-c          Specifies whether a basis for the invariant subspace corresponding 
+-c          to the converged Ritz value approximations for the eigenproblem 
+-c          A*z = lambda*B*z is computed.
+-c
+-c             RVEC = .FALSE.     Compute Ritz values only.
+-c
+-c             RVEC = .TRUE.      Compute the Ritz vectors or Schur vectors.
+-c                                See Remarks below. 
+-c 
+-c  HOWMNY  Character*1  (INPUT) 
+-c          Specifies the form of the basis for the invariant subspace 
+-c          corresponding to the converged Ritz values that is to be computed.
+-c
+-c          = 'A': Compute NEV Ritz vectors; 
+-c          = 'P': Compute NEV Schur vectors;
+-c          = 'S': compute some of the Ritz vectors, specified
+-c                 by the logical array SELECT.
+-c
+-c  SELECT  Logical array of dimension NCV.  (INPUT)
+-c          If HOWMNY = 'S', SELECT specifies the Ritz vectors to be
+-c          computed. To select the Ritz vector corresponding to a
+-c          Ritz value (DR(j), DI(j)), SELECT(j) must be set to .TRUE.. 
+-c          If HOWMNY = 'A' or 'P', SELECT is used as internal workspace.
+-c
+-c  DR      Real  array of dimension NEV+1.  (OUTPUT)
+-c          If IPARAM(7) = 1,2 or 3 and SIGMAI=0.0  then on exit: DR contains 
+-c          the real part of the Ritz  approximations to the eigenvalues of 
+-c          A*z = lambda*B*z. 
+-c          If IPARAM(7) = 3, 4 and SIGMAI is not equal to zero, then on exit:
+-c          DR contains the real part of the Ritz values of OP computed by 
+-c          SNAUPD. A further computation must be performed by the user
+-c          to transform the Ritz values computed for OP by SNAUPD to those
+-c          of the original system A*z = lambda*B*z. See remark 3 below.
+-c
+-c  DI      Real  array of dimension NEV+1.  (OUTPUT)
+-c          On exit, DI contains the imaginary part of the Ritz value 
+-c          approximations to the eigenvalues of A*z = lambda*B*z associated
+-c          with DR.
+-c
+-c          NOTE: When Ritz values are complex, they will come in complex 
+-c                conjugate pairs.  If eigenvectors are requested, the 
+-c                corresponding Ritz vectors will also come in conjugate 
+-c                pairs and the real and imaginary parts of these are 
+-c                represented in two consecutive columns of the array Z 
+-c                (see below).
+-c
+-c  Z       Real  N by NEV+1 array if RVEC = .TRUE. and HOWMNY = 'A'. (OUTPUT)
+-c          On exit, if RVEC = .TRUE. and HOWMNY = 'A', then the columns of 
+-c          Z represent approximate eigenvectors (Ritz vectors) corresponding 
+-c          to the NCONV=IPARAM(5) Ritz values for eigensystem 
+-c          A*z = lambda*B*z. 
+-c 
+-c          The complex Ritz vector associated with the Ritz value 
+-c          with positive imaginary part is stored in two consecutive 
+-c          columns.  The first column holds the real part of the Ritz 
+-c          vector and the second column holds the imaginary part.  The 
+-c          Ritz vector associated with the Ritz value with negative 
+-c          imaginary part is simply the complex conjugate of the Ritz vector 
+-c          associated with the positive imaginary part.
+-c
+-c          If  RVEC = .FALSE. or HOWMNY = 'P', then Z is not referenced.
+-c
+-c          NOTE: If if RVEC = .TRUE. and a Schur basis is not required,
+-c          the array Z may be set equal to first NEV+1 columns of the Arnoldi
+-c          basis array V computed by SNAUPD.  In this case the Arnoldi basis
+-c          will be destroyed and overwritten with the eigenvector basis.
+-c
+-c  LDZ     Integer.  (INPUT)
+-c          The leading dimension of the array Z.  If Ritz vectors are
+-c          desired, then  LDZ >= max( 1, N ).  In any case,  LDZ >= 1.
+-c
+-c  SIGMAR  Real   (INPUT)
+-c          If IPARAM(7) = 3 or 4, represents the real part of the shift. 
+-c          Not referenced if IPARAM(7) = 1 or 2.
+-c
+-c  SIGMAI  Real   (INPUT)
+-c          If IPARAM(7) = 3 or 4, represents the imaginary part of the shift. 
+-c          Not referenced if IPARAM(7) = 1 or 2. See remark 3 below.
+-c
+-c  WORKEV  Real  work array of dimension 3*NCV.  (WORKSPACE)
+-c
+-c  **** The remaining arguments MUST be the same as for the   ****
+-c  **** call to SNAUPD that was just completed.               ****
+-c
+-c  NOTE: The remaining arguments
+-c
+-c           BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR,
+-c           WORKD, WORKL, LWORKL, INFO
+-c
+-c         must be passed directly to SNEUPD following the last call
+-c         to SNAUPD.  These arguments MUST NOT BE MODIFIED between
+-c         the the last call to SNAUPD and the call to SNEUPD.
+-c
+-c  Three of these parameters (V, WORKL, INFO) are also output parameters:
+-c
+-c  V       Real  N by NCV array.  (INPUT/OUTPUT)
+-c
+-c          Upon INPUT: the NCV columns of V contain the Arnoldi basis
+-c                      vectors for OP as constructed by SNAUPD .
+-c
+-c          Upon OUTPUT: If RVEC = .TRUE. the first NCONV=IPARAM(5) columns
+-c                       contain approximate Schur vectors that span the
+-c                       desired invariant subspace.  See Remark 2 below.
+-c
+-c          NOTE: If the array Z has been set equal to first NEV+1 columns
+-c          of the array V and RVEC=.TRUE. and HOWMNY= 'A', then the
+-c          Arnoldi basis held by V has been overwritten by the desired
+-c          Ritz vectors.  If a separate array Z has been passed then
+-c          the first NCONV=IPARAM(5) columns of V will contain approximate
+-c          Schur vectors that span the desired invariant subspace.
+-c
+-c  WORKL   Real  work array of length LWORKL.  (OUTPUT/WORKSPACE)
+-c          WORKL(1:ncv*ncv+3*ncv) contains information obtained in
+-c          snaupd.  They are not changed by sneupd.
+-c          WORKL(ncv*ncv+3*ncv+1:3*ncv*ncv+6*ncv) holds the
+-c          real and imaginary part of the untransformed Ritz values,
+-c          the upper quasi-triangular matrix for H, and the
+-c          associated matrix representation of the invariant subspace for H.
+-c
+-c          Note: IPNTR(9:13) contains the pointer into WORKL for addresses
+-c          of the above information computed by sneupd.
+-c          -------------------------------------------------------------
+-c          IPNTR(9):  pointer to the real part of the NCV RITZ values of the
+-c                     original system.
+-c          IPNTR(10): pointer to the imaginary part of the NCV RITZ values of
+-c                     the original system.
+-c          IPNTR(11): pointer to the NCV corresponding error bounds.
+-c          IPNTR(12): pointer to the NCV by NCV upper quasi-triangular
+-c                     Schur matrix for H.
+-c          IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors
+-c                     of the upper Hessenberg matrix H. Only referenced by
+-c                     sneupd if RVEC = .TRUE. See Remark 2 below.
+-c          -------------------------------------------------------------
+-c
+-c  INFO    Integer.  (OUTPUT)
+-c          Error flag on output.
+-c
+-c          =  0: Normal exit.
+-c
+-c          =  1: The Schur form computed by LAPACK routine slahqr
+-c                could not be reordered by LAPACK routine strsen.
+-c                Re-enter subroutine sneupd with IPARAM(5)=NCV and 
+-c                increase the size of the arrays DR and DI to have 
+-c                dimension at least dimension NCV and allocate at least NCV 
+-c                columns for Z. NOTE: Not necessary if Z and V share 
+-c                the same space. Please notify the authors if this error
+-c                occurs.
+-c
+-c          = -1: N must be positive.
+-c          = -2: NEV must be positive.
+-c          = -3: NCV-NEV >= 2 and less than or equal to N.
+-c          = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'
+-c          = -6: BMAT must be one of 'I' or 'G'.
+-c          = -7: Length of private work WORKL array is not sufficient.
+-c          = -8: Error return from calculation of a real Schur form.
+-c                Informational error from LAPACK routine slahqr.
+-c          = -9: Error return from calculation of eigenvectors.
+-c                Informational error from LAPACK routine strevc.
+-c          = -10: IPARAM(7) must be 1,2,3,4.
+-c          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
+-c          = -12: HOWMNY = 'S' not yet implemented
+-c          = -13: HOWMNY must be one of 'A' or 'P' if RVEC = .true.
+-c          = -14: SNAUPD did not find any eigenvalues to sufficient
+-c                 accuracy.
+-c          = -15: DNEUPD got a different count of the number of converged
+-c                 Ritz values than DNAUPD got.  This indicates the user
+-c                 probably made an error in passing data from DNAUPD to
+-c                 DNEUPD or that the data was modified before entering
+-c                 DNEUPD
+-c
+-c\BeginLib
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c  3. B.N. Parlett & Y. Saad, "Complex Shift and Invert Strategies for
+-c     Real Matrices", Linear Algebra and its Applications, vol 88/89,
+-c     pp 575-595, (1987).
+-c
+-c\Routines called:
+-c     ivout   ARPACK utility routine that prints integers.
+-c     smout   ARPACK utility routine that prints matrices
+-c     svout   ARPACK utility routine that prints vectors.
+-c     sgeqr2  LAPACK routine that computes the QR factorization of 
+-c             a matrix.
+-c     slacpy  LAPACK matrix copy routine.
+-c     slahqr  LAPACK routine to compute the real Schur form of an
+-c             upper Hessenberg matrix.
+-c     slamch  LAPACK routine that determines machine constants.
+-c     slapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     slaset  LAPACK matrix initialization routine.
+-c     sorm2r  LAPACK routine that applies an orthogonal matrix in 
+-c             factored form.
+-c     strevc  LAPACK routine to compute the eigenvectors of a matrix
+-c             in upper quasi-triangular form.
+-c     strsen  LAPACK routine that re-orders the Schur form.
+-c     strmm   Level 3 BLAS matrix times an upper triangular matrix.
+-c     sger    Level 2 BLAS rank one update to a matrix.
+-c     scopy   Level 1 BLAS that copies one vector to another .
+-c     sdot    Level 1 BLAS that computes the scalar product of two vectors.
+-c     snrm2   Level 1 BLAS that computes the norm of a vector.
+-c     sscal   Level 1 BLAS that scales a vector.
+-c
+-c\Remarks
+-c
+-c  1. Currently only HOWMNY = 'A' and 'P' are implemented.
+-c
+-c     Let trans(X) denote the transpose of X.
+-c
+-c  2. Schur vectors are an orthogonal representation for the basis of
+-c     Ritz vectors. Thus, their numerical properties are often superior.
+-c     If RVEC = .TRUE. then the relationship
+-c             A * V(:,1:IPARAM(5)) = V(:,1:IPARAM(5)) * T, and
+-c     trans(V(:,1:IPARAM(5))) * V(:,1:IPARAM(5)) = I are approximately 
+-c     satisfied. Here T is the leading submatrix of order IPARAM(5) of the 
+-c     real upper quasi-triangular matrix stored workl(ipntr(12)). That is,
+-c     T is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; 
+-c     each 2-by-2 diagonal block has its diagonal elements equal and its
+-c     off-diagonal elements of opposite sign.  Corresponding to each 2-by-2
+-c     diagonal block is a complex conjugate pair of Ritz values. The real
+-c     Ritz values are stored on the diagonal of T.
+-c
+-c  3. If IPARAM(7) = 3 or 4 and SIGMAI is not equal zero, then the user must
+-c     form the IPARAM(5) Rayleigh quotients in order to transform the Ritz
+-c     values computed by SNAUPD for OP to those of A*z = lambda*B*z. 
+-c     Set RVEC = .true. and HOWMNY = 'A', and
+-c     compute 
+-c           trans(Z(:,I)) * A * Z(:,I) if DI(I) = 0.
+-c     If DI(I) is not equal to zero and DI(I+1) = - D(I), 
+-c     then the desired real and imaginary parts of the Ritz value are
+-c           trans(Z(:,I)) * A * Z(:,I) +  trans(Z(:,I+1)) * A * Z(:,I+1),
+-c           trans(Z(:,I)) * A * Z(:,I+1) -  trans(Z(:,I+1)) * A * Z(:,I), 
+-c     respectively.
+-c     Another possibility is to set RVEC = .true. and HOWMNY = 'P' and
+-c     compute trans(V(:,1:IPARAM(5))) * A * V(:,1:IPARAM(5)) and then an upper
+-c     quasi-triangular matrix of order IPARAM(5) is computed. See remark
+-c     2 above.
+-c
+-c\Authors
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University 
+-c     Chao Yang                    Houston, Texas
+-c     Dept. of Computational &
+-c     Applied Mathematics          
+-c     Rice University           
+-c     Houston, Texas            
+-c 
+-c\SCCS Information: @(#) 
+-c FILE: neupd.F   SID: 2.7   DATE OF SID: 09/20/00   RELEASE: 2 
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-      subroutine sneupd(rvec , howmny, select, dr    , di,    
+-     &                   z    , ldz   , sigmar, sigmai, workev,
+-     &                   bmat , n     , which , nev   , tol,
+-     &                   resid, ncv   , v     , ldv   , iparam,
+-     &                   ipntr, workd , workl , lworkl, info)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat, howmny, which*2
+-      logical    rvec
+-      integer    info, ldz, ldv, lworkl, n, ncv, nev
+-      Real      
+-     &           sigmar, sigmai, tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    iparam(11), ipntr(14)
+-      logical    select(ncv)
+-      Real 
+-     &           dr(nev+1)    , di(nev+1), resid(n)  , 
+-     &           v(ldv,ncv)   , z(ldz,*) , workd(3*n), 
+-     &           workl(lworkl), workev(3*ncv)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real 
+-     &           one, zero
+-      parameter (one = 1.0E+0 , zero = 0.0E+0 )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      character  type*6
+-      integer    bounds, ierr  , ih    , ihbds   , 
+-     &           iheigr, iheigi, iconj , nconv   , 
+-     &           invsub, iuptri, iwev  , iwork(1),
+-     &           j     , k     , ldh   , ldq     ,
+-     &           mode  , msglvl, outncv, ritzr   ,
+-     &           ritzi , wri   , wrr   , irr     ,
+-     &           iri   , ibd   , ishift, numcnv  ,
+-     &           np    , jj    , nconv2
+-      logical    reord
+-      Real 
+-     &           conds  , rnorm, sep  , temp,
+-     &           vl(1,1), temp1, eps23
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   scopy , sger  , sgeqr2, slacpy, 
+-     &           slahqr, slaset, smout , sorm2r, 
+-     &           strevc, strmm , strsen, sscal , 
+-     &           svout , ivout
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real 
+-     &           slapy2, snrm2, slamch, sdot
+-      external   slapy2, snrm2, slamch, sdot
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    abs, min, sqrt
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c 
+-c     %------------------------%
+-c     | Set default parameters |
+-c     %------------------------%
+-c
+-      msglvl = mneupd
+-      mode = iparam(7)
+-      nconv = iparam(5)
+-      info = 0
+-c
+-c     %---------------------------------%
+-c     | Get machine dependent constant. |
+-c     %---------------------------------%
+-c
+-      eps23 = slamch('Epsilon-Machine')
+-      eps23 = eps23**(2.0E+0  / 3.0E+0 )
+-c
+-c     %--------------%
+-c     | Quick return |
+-c     %--------------%
+-c
+-      ierr = 0
+-c
+-      if (nconv .le. 0) then
+-         ierr = -14
+-      else if (n .le. 0) then
+-         ierr = -1
+-      else if (nev .le. 0) then
+-         ierr = -2
+-      else if (ncv .le. nev+1 .or.  ncv .gt. n) then
+-         ierr = -3
+-      else if (which .ne. 'LM' .and.
+-     &        which .ne. 'SM' .and.
+-     &        which .ne. 'LR' .and.
+-     &        which .ne. 'SR' .and.
+-     &        which .ne. 'LI' .and.
+-     &        which .ne. 'SI') then
+-         ierr = -5
+-      else if (bmat .ne. 'I' .and. bmat .ne. 'G') then
+-         ierr = -6
+-      else if (lworkl .lt. 3*ncv**2 + 6*ncv) then
+-         ierr = -7
+-      else if ( (howmny .ne. 'A' .and.
+-     &           howmny .ne. 'P' .and.
+-     &           howmny .ne. 'S') .and. rvec ) then
+-         ierr = -13
+-      else if (howmny .eq. 'S' ) then
+-         ierr = -12
+-      end if
+-c     
+-      if (mode .eq. 1 .or. mode .eq. 2) then
+-         type = 'REGULR'
+-      else if (mode .eq. 3 .and. sigmai .eq. zero) then
+-         type = 'SHIFTI'
+-      else if (mode .eq. 3 ) then
+-         type = 'REALPT'
+-      else if (mode .eq. 4 ) then
+-         type = 'IMAGPT'
+-      else 
+-                                              ierr = -10
+-      end if
+-      if (mode .eq. 1 .and. bmat .eq. 'G')    ierr = -11
+-c
+-c     %------------%
+-c     | Error Exit |
+-c     %------------%
+-c
+-      if (ierr .ne. 0) then
+-         info = ierr
+-         go to 9000
+-      end if
+-c 
+-c     %--------------------------------------------------------%
+-c     | Pointer into WORKL for address of H, RITZ, BOUNDS, Q   |
+-c     | etc... and the remaining workspace.                    |
+-c     | Also update pointer to be used on output.              |
+-c     | Memory is laid out as follows:                         |
+-c     | workl(1:ncv*ncv) := generated Hessenberg matrix        |
+-c     | workl(ncv*ncv+1:ncv*ncv+2*ncv) := real and imaginary   |
+-c     |                                   parts of ritz values |
+-c     | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := error bounds   |
+-c     %--------------------------------------------------------%
+-c
+-c     %-----------------------------------------------------------%
+-c     | The following is used and set by SNEUPD.                  |
+-c     | workl(ncv*ncv+3*ncv+1:ncv*ncv+4*ncv) := The untransformed |
+-c     |                             real part of the Ritz values. |
+-c     | workl(ncv*ncv+4*ncv+1:ncv*ncv+5*ncv) := The untransformed |
+-c     |                        imaginary part of the Ritz values. |
+-c     | workl(ncv*ncv+5*ncv+1:ncv*ncv+6*ncv) := The untransformed |
+-c     |                           error bounds of the Ritz values |
+-c     | workl(ncv*ncv+6*ncv+1:2*ncv*ncv+6*ncv) := Holds the upper |
+-c     |                             quasi-triangular matrix for H |
+-c     | workl(2*ncv*ncv+6*ncv+1: 3*ncv*ncv+6*ncv) := Holds the    |
+-c     |       associated matrix representation of the invariant   |
+-c     |       subspace for H.                                     |
+-c     | GRAND total of NCV * ( 3 * NCV + 6 ) locations.           |
+-c     %-----------------------------------------------------------%
+-c     
+-      ih     = ipntr(5)
+-      ritzr  = ipntr(6)
+-      ritzi  = ipntr(7)
+-      bounds = ipntr(8)
+-      ldh    = ncv
+-      ldq    = ncv
+-      iheigr = bounds + ldh
+-      iheigi = iheigr + ldh
+-      ihbds  = iheigi + ldh
+-      iuptri = ihbds  + ldh
+-      invsub = iuptri + ldh*ncv
+-      ipntr(9)  = iheigr
+-      ipntr(10) = iheigi
+-      ipntr(11) = ihbds
+-      ipntr(12) = iuptri
+-      ipntr(13) = invsub
+-      wrr = 1
+-      wri = ncv + 1
+-      iwev = wri + ncv
+-c
+-c     %-----------------------------------------%
+-c     | irr points to the REAL part of the Ritz |
+-c     |     values computed by _neigh before    |
+-c     |     exiting _naup2.                     |
+-c     | iri points to the IMAGINARY part of the |
+-c     |     Ritz values computed by _neigh      |
+-c     |     before exiting _naup2.              |
+-c     | ibd points to the Ritz estimates        |
+-c     |     computed by _neigh before exiting   |
+-c     |     _naup2.                             |
+-c     %-----------------------------------------%
+-c
+-      irr = ipntr(14)+ncv*ncv
+-      iri = irr+ncv
+-      ibd = iri+ncv
+-c
+-c     %------------------------------------%
+-c     | RNORM is B-norm of the RESID(1:N). |
+-c     %------------------------------------%
+-c
+-      rnorm = workl(ih+2)
+-      workl(ih+2) = zero
+-c
+-      if (msglvl .gt. 2) then
+-         call svout(logfil, ncv, workl(irr), ndigit,
+-     &   '_neupd: Real part of Ritz values passed in from _NAUPD.')
+-         call svout(logfil, ncv, workl(iri), ndigit,
+-     &   '_neupd: Imag part of Ritz values passed in from _NAUPD.')
+-         call svout(logfil, ncv, workl(ibd), ndigit,
+-     &   '_neupd: Ritz estimates passed in from _NAUPD.')
+-      end if
+-c
+-      if (rvec) then
+-c     
+-         reord = .false.
+-c
+-c        %---------------------------------------------------%
+-c        | Use the temporary bounds array to store indices   |
+-c        | These will be used to mark the select array later |
+-c        %---------------------------------------------------%
+-c
+-         do 10 j = 1,ncv
+-            workl(bounds+j-1) = j
+-            select(j) = .false.
+-   10    continue
+-c
+-c        %-------------------------------------%
+-c        | Select the wanted Ritz values.      |
+-c        | Sort the Ritz values so that the    |
+-c        | wanted ones appear at the tailing   |
+-c        | NEV positions of workl(irr) and     |
+-c        | workl(iri).  Move the corresponding |
+-c        | error estimates in workl(bound)     |
+-c        | accordingly.                        |
+-c        %-------------------------------------%
+-c
+-         np     = ncv - nev
+-         ishift = 0
+-         call sngets(ishift       , which     , nev       , 
+-     &                np           , workl(irr), workl(iri),
+-     &                workl(bounds), workl     , workl(np+1))
+-c
+-         if (msglvl .gt. 2) then
+-            call svout(logfil, ncv, workl(irr), ndigit,
+-     &      '_neupd: Real part of Ritz values after calling _NGETS.')
+-            call svout(logfil, ncv, workl(iri), ndigit,
+-     &      '_neupd: Imag part of Ritz values after calling _NGETS.')
+-            call svout(logfil, ncv, workl(bounds), ndigit,
+-     &      '_neupd: Ritz value indices after calling _NGETS.')
+-         end if
+-c
+-c        %-----------------------------------------------------%
+-c        | Record indices of the converged wanted Ritz values  |
+-c        | Mark the select array for possible reordering       |
+-c        %-----------------------------------------------------%
+-c
+-         numcnv = 0
+-         do 11 j = 1,ncv
+-            temp1 = max(eps23,
+-     &                 slapy2( workl(irr+ncv-j), workl(iri+ncv-j) ))
+-            jj = workl(bounds + ncv - j)
+-            if (numcnv .lt. nconv .and.
+-     &          workl(ibd+jj-1) .le. tol*temp1) then
+-               select(jj) = .true.
+-               numcnv = numcnv + 1
+-               if (jj .gt. nev) reord = .true.
+-            endif
+-   11    continue
+-c
+-c        %-----------------------------------------------------------%
+-c        | Check the count (numcnv) of converged Ritz values with    |
+-c        | the number (nconv) reported by dnaupd.  If these two      |
+-c        | are different then there has probably been an error       |
+-c        | caused by incorrect passing of the dnaupd data.           |
+-c        %-----------------------------------------------------------%
+-c
+-         if (msglvl .gt. 2) then
+-             call ivout(logfil, 1, numcnv, ndigit,
+-     &            '_neupd: Number of specified eigenvalues')
+-             call ivout(logfil, 1, nconv, ndigit,
+-     &            '_neupd: Number of "converged" eigenvalues')
+-         end if
+-c
+-         if (numcnv .ne. nconv) then
+-            info = -15
+-            go to 9000
+-         end if
+-c
+-c        %-----------------------------------------------------------%
+-c        | Call LAPACK routine slahqr to compute the real Schur form |
+-c        | of the upper Hessenberg matrix returned by SNAUPD.        |
+-c        | Make a copy of the upper Hessenberg matrix.               |
+-c        | Initialize the Schur vector matrix Q to the identity.     |
+-c        %-----------------------------------------------------------%
+-c     
+-         call scopy(ldh*ncv, workl(ih), 1, workl(iuptri), 1)
+-         call slaset('All', ncv, ncv, 
+-     &                zero , one, workl(invsub),
+-     &                ldq)
+-         call slahqr(.true., .true.       , ncv, 
+-     &                1     , ncv          , workl(iuptri), 
+-     &                ldh   , workl(iheigr), workl(iheigi),
+-     &                1     , ncv          , workl(invsub), 
+-     &                ldq   , ierr)
+-         call scopy(ncv         , workl(invsub+ncv-1), ldq, 
+-     &               workl(ihbds), 1)
+-c     
+-         if (ierr .ne. 0) then
+-            info = -8
+-            go to 9000
+-         end if
+-c     
+-         if (msglvl .gt. 1) then
+-            call svout(logfil, ncv, workl(iheigr), ndigit,
+-     &           '_neupd: Real part of the eigenvalues of H')
+-            call svout(logfil, ncv, workl(iheigi), ndigit,
+-     &           '_neupd: Imaginary part of the Eigenvalues of H')
+-            call svout(logfil, ncv, workl(ihbds), ndigit,
+-     &           '_neupd: Last row of the Schur vector matrix')
+-            if (msglvl .gt. 3) then
+-               call smout(logfil       , ncv, ncv   , 
+-     &                     workl(iuptri), ldh, ndigit,
+-     &              '_neupd: The upper quasi-triangular matrix ')
+-            end if
+-         end if 
+-c
+-         if (reord) then
+-c     
+-c           %-----------------------------------------------------%
+-c           | Reorder the computed upper quasi-triangular matrix. | 
+-c           %-----------------------------------------------------%
+-c     
+-            call strsen('None'       , 'V'          , 
+-     &                   select       , ncv          ,
+-     &                   workl(iuptri), ldh          , 
+-     &                   workl(invsub), ldq          , 
+-     &                   workl(iheigr), workl(iheigi), 
+-     &                   nconv2       , conds        ,
+-     &                   sep          , workl(ihbds) , 
+-     &                   ncv          , iwork        ,
+-     &                   1            , ierr)
+-c
+-            if (nconv2 .lt. nconv) then
+-               nconv = nconv2
+-            end if
+-
+-            if (ierr .eq. 1) then
+-               info = 1
+-               go to 9000
+-            end if
+-c
+-            if (msglvl .gt. 2) then
+-                call svout(logfil, ncv, workl(iheigr), ndigit,
+-     &           '_neupd: Real part of the eigenvalues of H--reordered')
+-                call svout(logfil, ncv, workl(iheigi), ndigit,
+-     &           '_neupd: Imag part of the eigenvalues of H--reordered')
+-                if (msglvl .gt. 3) then
+-                   call smout(logfil       , ncv, ncv   , 
+-     &                         workl(iuptri), ldq, ndigit,
+-     &             '_neupd: Quasi-triangular matrix after re-ordering')
+-                end if
+-            end if
+-c     
+-         end if
+-c
+-c        %---------------------------------------%
+-c        | Copy the last row of the Schur vector |
+-c        | into workl(ihbds).  This will be used |
+-c        | to compute the Ritz estimates of      |
+-c        | converged Ritz values.                |
+-c        %---------------------------------------%
+-c
+-         call scopy(ncv, workl(invsub+ncv-1), ldq, workl(ihbds), 1)
+-c
+-c        %----------------------------------------------------%
+-c        | Place the computed eigenvalues of H into DR and DI |
+-c        | if a spectral transformation was not used.         |
+-c        %----------------------------------------------------%
+-c
+-         if (type .eq. 'REGULR') then 
+-            call scopy(nconv, workl(iheigr), 1, dr, 1)
+-            call scopy(nconv, workl(iheigi), 1, di, 1)
+-         end if
+-c     
+-c        %----------------------------------------------------------%
+-c        | Compute the QR factorization of the matrix representing  |
+-c        | the wanted invariant subspace located in the first NCONV |
+-c        | columns of workl(invsub,ldq).                            |
+-c        %----------------------------------------------------------%
+-c     
+-         call sgeqr2(ncv, nconv , workl(invsub), 
+-     &               ldq, workev, workev(ncv+1),
+-     &               ierr)
+-c
+-c        %---------------------------------------------------------%
+-c        | * Postmultiply V by Q using sorm2r.                     |   
+-c        | * Copy the first NCONV columns of VQ into Z.            |
+-c        | * Postmultiply Z by R.                                  |
+-c        | The N by NCONV matrix Z is now a matrix representation  |
+-c        | of the approximate invariant subspace associated with   |
+-c        | the Ritz values in workl(iheigr) and workl(iheigi)      |
+-c        | The first NCONV columns of V are now approximate Schur  |
+-c        | vectors associated with the real upper quasi-triangular |
+-c        | matrix of order NCONV in workl(iuptri)                  |
+-c        %---------------------------------------------------------%
+-c     
+-         call sorm2r('Right', 'Notranspose', n            , 
+-     &                ncv   , nconv        , workl(invsub),
+-     &                ldq   , workev       , v            , 
+-     &                ldv   , workd(n+1)   , ierr)
+-         call slacpy('All', n, nconv, v, ldv, z, ldz)
+-c
+-         do 20 j=1, nconv
+-c     
+-c           %---------------------------------------------------%
+-c           | Perform both a column and row scaling if the      |
+-c           | diagonal element of workl(invsub,ldq) is negative |
+-c           | I'm lazy and don't take advantage of the upper    |
+-c           | quasi-triangular form of workl(iuptri,ldq)        |
+-c           | Note that since Q is orthogonal, R is a diagonal  |
+-c           | matrix consisting of plus or minus ones           |
+-c           %---------------------------------------------------%
+-c     
+-            if (workl(invsub+(j-1)*ldq+j-1) .lt. zero) then
+-               call sscal(nconv, -one, workl(iuptri+j-1), ldq)
+-               call sscal(nconv, -one, workl(iuptri+(j-1)*ldq), 1)
+-            end if
+-c     
+- 20      continue
+-c     
+-         if (howmny .eq. 'A') then
+-c     
+-c           %--------------------------------------------%
+-c           | Compute the NCONV wanted eigenvectors of T | 
+-c           | located in workl(iuptri,ldq).              |
+-c           %--------------------------------------------%
+-c     
+-            do 30 j=1, ncv
+-               if (j .le. nconv) then
+-                  select(j) = .true.
+-               else
+-                  select(j) = .false.
+-               end if
+- 30         continue
+-c
+-            call strevc('Right', 'Select'     , select       , 
+-     &                   ncv    , workl(iuptri), ldq          , 
+-     &                   vl     , 1            , workl(invsub),
+-     &                   ldq    , ncv          , outncv       ,
+-     &                   workev , ierr)
+-c
+-            if (ierr .ne. 0) then
+-                info = -9
+-                go to 9000
+-            end if
+-c     
+-c           %------------------------------------------------%
+-c           | Scale the returning eigenvectors so that their |
+-c           | Euclidean norms are all one. LAPACK subroutine |
+-c           | strevc returns each eigenvector normalized so  |
+-c           | that the element of largest magnitude has      |
+-c           | magnitude 1;                                   |
+-c           %------------------------------------------------%
+-c     
+-            iconj = 0
+-            do 40 j=1, nconv
+-c
+-               if ( workl(iheigi+j-1) .eq. zero ) then
+-c     
+-c                 %----------------------%
+-c                 | real eigenvalue case |
+-c                 %----------------------%
+-c     
+-                  temp = snrm2( ncv, workl(invsub+(j-1)*ldq), 1 )
+-                  call sscal( ncv, one / temp, 
+-     &                 workl(invsub+(j-1)*ldq), 1 )
+-c
+-               else
+-c     
+-c                 %-------------------------------------------%
+-c                 | Complex conjugate pair case. Note that    |
+-c                 | since the real and imaginary part of      |
+-c                 | the eigenvector are stored in consecutive |
+-c                 | columns, we further normalize by the      |
+-c                 | square root of two.                       |
+-c                 %-------------------------------------------%
+-c
+-                  if (iconj .eq. 0) then
+-                     temp = slapy2(snrm2(ncv, 
+-     &                                   workl(invsub+(j-1)*ldq), 
+-     &                                   1),
+-     &                             snrm2(ncv, 
+-     &                                   workl(invsub+j*ldq),
+-     &                                   1))  
+-                     call sscal(ncv, one/temp, 
+-     &                           workl(invsub+(j-1)*ldq), 1 )
+-                     call sscal(ncv, one/temp, 
+-     &                           workl(invsub+j*ldq), 1 )
+-                     iconj = 1
+-                  else
+-                     iconj = 0
+-                  end if
+-c
+-               end if
+-c
+- 40         continue
+-c
+-            call sgemv('T', ncv, nconv, one, workl(invsub),
+-     &                 ldq, workl(ihbds), 1, zero,  workev, 1)
+-c
+-            iconj = 0
+-            do 45 j=1, nconv
+-               if (workl(iheigi+j-1) .ne. zero) then
+-c
+-c                 %-------------------------------------------%
+-c                 | Complex conjugate pair case. Note that    |
+-c                 | since the real and imaginary part of      |
+-c                 | the eigenvector are stored in consecutive |
+-c                 %-------------------------------------------%
+-c
+-                  if (iconj .eq. 0) then
+-                     workev(j) = slapy2(workev(j), workev(j+1))
+-                     workev(j+1) = workev(j)
+-                     iconj = 1
+-                  else
+-                     iconj = 0
+-                  end if
+-               end if
+- 45         continue
+-c
+-            if (msglvl .gt. 2) then
+-               call scopy(ncv, workl(invsub+ncv-1), ldq,
+-     &                    workl(ihbds), 1)
+-               call svout(logfil, ncv, workl(ihbds), ndigit,
+-     &              '_neupd: Last row of the eigenvector matrix for T')
+-               if (msglvl .gt. 3) then
+-                  call smout(logfil, ncv, ncv, workl(invsub), ldq, 
+-     &                 ndigit, '_neupd: The eigenvector matrix for T')
+-               end if
+-            end if
+-c
+-c           %---------------------------------------%
+-c           | Copy Ritz estimates into workl(ihbds) |
+-c           %---------------------------------------%
+-c
+-            call scopy(nconv, workev, 1, workl(ihbds), 1)
+-c
+-c           %---------------------------------------------------------%
+-c           | Compute the QR factorization of the eigenvector matrix  |
+-c           | associated with leading portion of T in the first NCONV |
+-c           | columns of workl(invsub,ldq).                           |
+-c           %---------------------------------------------------------%
+-c     
+-            call sgeqr2(ncv, nconv , workl(invsub), 
+-     &                   ldq, workev, workev(ncv+1),
+-     &                   ierr)
+-c     
+-c           %----------------------------------------------%
+-c           | * Postmultiply Z by Q.                       |   
+-c           | * Postmultiply Z by R.                       |
+-c           | The N by NCONV matrix Z is now contains the  | 
+-c           | Ritz vectors associated with the Ritz values |
+-c           | in workl(iheigr) and workl(iheigi).          |
+-c           %----------------------------------------------%
+-c     
+-            call sorm2r('Right', 'Notranspose', n            ,
+-     &                   ncv  , nconv        , workl(invsub),
+-     &                   ldq  , workev       , z            ,
+-     &                   ldz  , workd(n+1)   , ierr)
+-c     
+-            call strmm('Right'   , 'Upper'       , 'No transpose',
+-     &                  'Non-unit', n            , nconv         ,
+-     &                  one       , workl(invsub), ldq           ,
+-     &                  z         , ldz)
+-c     
+-         end if
+-c     
+-      else 
+-c
+-c        %------------------------------------------------------%
+-c        | An approximate invariant subspace is not needed.     |
+-c        | Place the Ritz values computed SNAUPD into DR and DI |
+-c        %------------------------------------------------------%
+-c
+-         call scopy(nconv, workl(ritzr), 1, dr, 1)
+-         call scopy(nconv, workl(ritzi), 1, di, 1)
+-         call scopy(nconv, workl(ritzr), 1, workl(iheigr), 1)
+-         call scopy(nconv, workl(ritzi), 1, workl(iheigi), 1)
+-         call scopy(nconv, workl(bounds), 1, workl(ihbds), 1)
+-      end if
+-c 
+-c     %------------------------------------------------%
+-c     | Transform the Ritz values and possibly vectors |
+-c     | and corresponding error bounds of OP to those  |
+-c     | of A*x = lambda*B*x.                           |
+-c     %------------------------------------------------%
+-c
+-      if (type .eq. 'REGULR') then
+-c
+-         if (rvec) 
+-     &      call sscal(ncv, rnorm, workl(ihbds), 1)     
+-c     
+-      else 
+-c     
+-c        %---------------------------------------%
+-c        |   A spectral transformation was used. |
+-c        | * Determine the Ritz estimates of the |
+-c        |   Ritz values in the original system. |
+-c        %---------------------------------------%
+-c     
+-         if (type .eq. 'SHIFTI') then
+-c
+-            if (rvec) 
+-     &         call sscal(ncv, rnorm, workl(ihbds), 1)
+-c
+-            do 50 k=1, ncv
+-               temp = slapy2( workl(iheigr+k-1), 
+-     &                        workl(iheigi+k-1) )
+-               workl(ihbds+k-1) = abs( workl(ihbds+k-1) ) 
+-     &                          / temp / temp
+- 50         continue
+-c
+-         else if (type .eq. 'REALPT') then
+-c
+-            do 60 k=1, ncv
+- 60         continue
+-c
+-         else if (type .eq. 'IMAGPT') then
+-c
+-            do 70 k=1, ncv
+- 70         continue
+-c
+-         end if
+-c     
+-c        %-----------------------------------------------------------%
+-c        | *  Transform the Ritz values back to the original system. |
+-c        |    For TYPE = 'SHIFTI' the transformation is              |
+-c        |             lambda = 1/theta + sigma                      |
+-c        |    For TYPE = 'REALPT' or 'IMAGPT' the user must from     |
+-c        |    Rayleigh quotients or a projection. See remark 3 above.| 
+-c        | NOTES:                                                    |
+-c        | *The Ritz vectors are not affected by the transformation. |
+-c        %-----------------------------------------------------------%
+-c     
+-         if (type .eq. 'SHIFTI') then 
+-c
+-            do 80 k=1, ncv
+-               temp = slapy2( workl(iheigr+k-1), 
+-     &                        workl(iheigi+k-1) )
+-               workl(iheigr+k-1) = workl(iheigr+k-1)/temp/temp 
+-     &                           + sigmar   
+-               workl(iheigi+k-1) = -workl(iheigi+k-1)/temp/temp
+-     &                           + sigmai   
+- 80         continue
+-c
+-            call scopy(nconv, workl(iheigr), 1, dr, 1)
+-            call scopy(nconv, workl(iheigi), 1, di, 1)
+-c
+-         else if (type .eq. 'REALPT' .or. type .eq. 'IMAGPT') then
+-c
+-            call scopy(nconv, workl(iheigr), 1, dr, 1)
+-            call scopy(nconv, workl(iheigi), 1, di, 1)
+-c
+-         end if
+-c
+-      end if
+-c
+-      if (type .eq. 'SHIFTI' .and. msglvl .gt. 1) then
+-         call svout(logfil, nconv, dr, ndigit,
+-     &   '_neupd: Untransformed real part of the Ritz valuess.')
+-         call svout (logfil, nconv, di, ndigit,
+-     &   '_neupd: Untransformed imag part of the Ritz valuess.')
+-         call svout(logfil, nconv, workl(ihbds), ndigit,
+-     &   '_neupd: Ritz estimates of untransformed Ritz values.')
+-      else if (type .eq. 'REGULR' .and. msglvl .gt. 1) then
+-         call svout(logfil, nconv, dr, ndigit,
+-     &   '_neupd: Real parts of converged Ritz values.')
+-         call svout (logfil, nconv, di, ndigit,
+-     &   '_neupd: Imag parts of converged Ritz values.')
+-         call svout(logfil, nconv, workl(ihbds), ndigit,
+-     &   '_neupd: Associated Ritz estimates.')
+-      end if
+-c 
+-c     %-------------------------------------------------%
+-c     | Eigenvector Purification step. Formally perform |
+-c     | one of inverse subspace iteration. Only used    |
+-c     | for MODE = 2.                                   |
+-c     %-------------------------------------------------%
+-c
+-      if (rvec .and. howmny .eq. 'A' .and. type .eq. 'SHIFTI') then
+-c
+-c        %------------------------------------------------%
+-c        | Purify the computed Ritz vectors by adding a   |
+-c        | little bit of the residual vector:             |
+-c        |                      T                         |
+-c        |          resid(:)*( e    s ) / theta           |
+-c        |                      NCV                       |
+-c        | where H s = s theta. Remember that when theta  |
+-c        | has nonzero imaginary part, the corresponding  |
+-c        | Ritz vector is stored across two columns of Z. |
+-c        %------------------------------------------------%
+-c
+-         iconj = 0
+-         do 110 j=1, nconv
+-            if (workl(iheigi+j-1) .eq. zero) then
+-               workev(j) =  workl(invsub+(j-1)*ldq+ncv-1) /
+-     &                      workl(iheigr+j-1)
+-            else if (iconj .eq. 0) then
+-               temp = slapy2( workl(iheigr+j-1), workl(iheigi+j-1) )
+-               workev(j) = ( workl(invsub+(j-1)*ldq+ncv-1) * 
+-     &                       workl(iheigr+j-1) +
+-     &                       workl(invsub+j*ldq+ncv-1) * 
+-     &                       workl(iheigi+j-1) ) / temp / temp
+-               workev(j+1) = ( workl(invsub+j*ldq+ncv-1) * 
+-     &                         workl(iheigr+j-1) -
+-     &                         workl(invsub+(j-1)*ldq+ncv-1) * 
+-     &                         workl(iheigi+j-1) ) / temp / temp
+-               iconj = 1
+-            else
+-               iconj = 0
+-            end if
+- 110     continue
+-c
+-c        %---------------------------------------%
+-c        | Perform a rank one update to Z and    |
+-c        | purify all the Ritz vectors together. |
+-c        %---------------------------------------%
+-c
+-         call sger(n, nconv, one, resid, 1, workev, 1, z, ldz)
+-c
+-      end if
+-c
+- 9000 continue
+-c
+-      return
+-c     
+-c     %---------------%
+-c     | End of SNEUPD |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/sngets.f
++++ /dev/null
+@@ -1,231 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: sngets
+-c
+-c\Description: 
+-c  Given the eigenvalues of the upper Hessenberg matrix H,
+-c  computes the NP shifts AMU that are zeros of the polynomial of 
+-c  degree NP which filters out components of the unwanted eigenvectors
+-c  corresponding to the AMU's based on some given criteria.
+-c
+-c  NOTE: call this even in the case of user specified shifts in order
+-c  to sort the eigenvalues, and error bounds of H for later use.
+-c
+-c\Usage:
+-c  call sngets
+-c     ( ISHIFT, WHICH, KEV, NP, RITZR, RITZI, BOUNDS, SHIFTR, SHIFTI )
+-c
+-c\Arguments
+-c  ISHIFT  Integer.  (INPUT)
+-c          Method for selecting the implicit shifts at each iteration.
+-c          ISHIFT = 0: user specified shifts
+-c          ISHIFT = 1: exact shift with respect to the matrix H.
+-c
+-c  WHICH   Character*2.  (INPUT)
+-c          Shift selection criteria.
+-c          'LM' -> want the KEV eigenvalues of largest magnitude.
+-c          'SM' -> want the KEV eigenvalues of smallest magnitude.
+-c          'LR' -> want the KEV eigenvalues of largest real part.
+-c          'SR' -> want the KEV eigenvalues of smallest real part.
+-c          'LI' -> want the KEV eigenvalues of largest imaginary part.
+-c          'SI' -> want the KEV eigenvalues of smallest imaginary part.
+-c
+-c  KEV      Integer.  (INPUT/OUTPUT)
+-c           INPUT: KEV+NP is the size of the matrix H.
+-c           OUTPUT: Possibly increases KEV by one to keep complex conjugate
+-c           pairs together.
+-c
+-c  NP       Integer.  (INPUT/OUTPUT)
+-c           Number of implicit shifts to be computed.
+-c           OUTPUT: Possibly decreases NP by one to keep complex conjugate
+-c           pairs together.
+-c
+-c  RITZR,  Real array of length KEV+NP.  (INPUT/OUTPUT)
+-c  RITZI   On INPUT, RITZR and RITZI contain the real and imaginary 
+-c          parts of the eigenvalues of H.
+-c          On OUTPUT, RITZR and RITZI are sorted so that the unwanted
+-c          eigenvalues are in the first NP locations and the wanted
+-c          portion is in the last KEV locations.  When exact shifts are 
+-c          selected, the unwanted part corresponds to the shifts to 
+-c          be applied. Also, if ISHIFT .eq. 1, the unwanted eigenvalues
+-c          are further sorted so that the ones with largest Ritz values
+-c          are first.
+-c
+-c  BOUNDS  Real array of length KEV+NP.  (INPUT/OUTPUT)
+-c          Error bounds corresponding to the ordering in RITZ.
+-c
+-c  SHIFTR, SHIFTI  *** USE deprecated as of version 2.1. ***
+-c  
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     ssortc  ARPACK sorting routine.
+-c     scopy   Level 1 BLAS that copies one vector to another .
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas    
+-c
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.1'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: ngets.F   SID: 2.3   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c\Remarks
+-c     1. xxxx
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine sngets ( ishift, which, kev, np, ritzr, ritzi, bounds,
+-     &                    shiftr, shifti )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character*2 which
+-      integer    ishift, kev, np
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Real
+-     &           bounds(kev+np), ritzr(kev+np), ritzi(kev+np), 
+-     &           shiftr(1), shifti(1)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real
+-     &           one, zero
+-      parameter (one = 1.0, zero = 0.0)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    msglvl
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   scopy, ssortc, arscnd
+-c
+-c     %----------------------%
+-c     | Intrinsics Functions |
+-c     %----------------------%
+-c
+-      intrinsic  abs
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c 
+-      call arscnd (t0)
+-      msglvl = mngets
+-c 
+-c     %----------------------------------------------------%
+-c     | LM, SM, LR, SR, LI, SI case.                       |
+-c     | Sort the eigenvalues of H into the desired order   |
+-c     | and apply the resulting order to BOUNDS.           |
+-c     | The eigenvalues are sorted so that the wanted part |
+-c     | are always in the last KEV locations.              |
+-c     | We first do a pre-processing sort in order to keep |
+-c     | complex conjugate pairs together                   |
+-c     %----------------------------------------------------%
+-c
+-      if (which .eq. 'LM') then
+-         call ssortc ('LR', .true., kev+np, ritzr, ritzi, bounds)
+-      else if (which .eq. 'SM') then
+-         call ssortc ('SR', .true., kev+np, ritzr, ritzi, bounds)
+-      else if (which .eq. 'LR') then
+-         call ssortc ('LM', .true., kev+np, ritzr, ritzi, bounds)
+-      else if (which .eq. 'SR') then
+-         call ssortc ('SM', .true., kev+np, ritzr, ritzi, bounds)
+-      else if (which .eq. 'LI') then
+-         call ssortc ('LM', .true., kev+np, ritzr, ritzi, bounds)
+-      else if (which .eq. 'SI') then
+-         call ssortc ('SM', .true., kev+np, ritzr, ritzi, bounds)
+-      end if
+-c      
+-      call ssortc (which, .true., kev+np, ritzr, ritzi, bounds)
+-c     
+-c     %-------------------------------------------------------%
+-c     | Increase KEV by one if the ( ritzr(np),ritzi(np) )    |
+-c     | = ( ritzr(np+1),-ritzi(np+1) ) and ritz(np) .ne. zero |
+-c     | Accordingly decrease NP by one. In other words keep   |
+-c     | complex conjugate pairs together.                     |
+-c     %-------------------------------------------------------%
+-c     
+-      if (       ( ritzr(np+1) - ritzr(np) ) .eq. zero
+-     &     .and. ( ritzi(np+1) + ritzi(np) ) .eq. zero ) then
+-         np = np - 1
+-         kev = kev + 1
+-      end if
+-c
+-      if ( ishift .eq. 1 ) then
+-c     
+-c        %-------------------------------------------------------%
+-c        | Sort the unwanted Ritz values used as shifts so that  |
+-c        | the ones with largest Ritz estimates are first        |
+-c        | This will tend to minimize the effects of the         |
+-c        | forward instability of the iteration when they shifts |
+-c        | are applied in subroutine snapps.                     |
+-c        | Be careful and use 'SR' since we want to sort BOUNDS! |
+-c        %-------------------------------------------------------%
+-c     
+-         call ssortc ( 'SR', .true., np, bounds, ritzr, ritzi )
+-      end if
+-c     
+-      call arscnd (t1)
+-      tngets = tngets + (t1 - t0)
+-c
+-      if (msglvl .gt. 0) then
+-         call ivout (logfil, 1, kev, ndigit, '_ngets: KEV is')
+-         call ivout (logfil, 1, np, ndigit, '_ngets: NP is')
+-         call svout (logfil, kev+np, ritzr, ndigit,
+-     &        '_ngets: Eigenvalues of current H matrix -- real part')
+-         call svout (logfil, kev+np, ritzi, ndigit,
+-     &        '_ngets: Eigenvalues of current H matrix -- imag part')
+-         call svout (logfil, kev+np, bounds, ndigit, 
+-     &      '_ngets: Ritz estimates of the current KEV+NP Ritz values')
+-      end if
+-c     
+-      return
+-c     
+-c     %---------------%
+-c     | End of sngets |
+-c     %---------------%
+-c     
+-      end
+--- a/libcruft/arpack/src/ssaitr.f
++++ /dev/null
+@@ -1,853 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: ssaitr
+-c
+-c\Description: 
+-c  Reverse communication interface for applying NP additional steps to 
+-c  a K step symmetric Arnoldi factorization.
+-c
+-c  Input:  OP*V_{k}  -  V_{k}*H = r_{k}*e_{k}^T
+-c
+-c          with (V_{k}^T)*B*V_{k} = I, (V_{k}^T)*B*r_{k} = 0.
+-c
+-c  Output: OP*V_{k+p}  -  V_{k+p}*H = r_{k+p}*e_{k+p}^T
+-c
+-c          with (V_{k+p}^T)*B*V_{k+p} = I, (V_{k+p}^T)*B*r_{k+p} = 0.
+-c
+-c  where OP and B are as in ssaupd.  The B-norm of r_{k+p} is also
+-c  computed and returned.
+-c
+-c\Usage:
+-c  call ssaitr
+-c     ( IDO, BMAT, N, K, NP, MODE, RESID, RNORM, V, LDV, H, LDH, 
+-c       IPNTR, WORKD, INFO )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y.
+-c                    This is for the restart phase to force the new
+-c                    starting vector into the range of OP.
+-c          IDO =  1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y,
+-c                    IPNTR(3) is the pointer into WORK for B * X.
+-c          IDO =  2: compute  Y = B * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c          When the routine is used in the "shift-and-invert" mode, the
+-c          vector B * Q is already available and does not need to be
+-c          recomputed in forming OP * Q.
+-c
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of matrix B that defines the
+-c          semi-inner product for the operator OP.  See ssaupd.
+-c          B = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          B = 'G' -> generalized eigenvalue problem A*x = lambda*M*x
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the eigenproblem.
+-c
+-c  K       Integer.  (INPUT)
+-c          Current order of H and the number of columns of V.
+-c
+-c  NP      Integer.  (INPUT)
+-c          Number of additional Arnoldi steps to take.
+-c
+-c  MODE    Integer.  (INPUT)
+-c          Signifies which form for "OP". If MODE=2 then
+-c          a reduction in the number of B matrix vector multiplies
+-c          is possible since the B-norm of OP*x is equivalent to
+-c          the inv(B)-norm of A*x.
+-c
+-c  RESID   Real array of length N.  (INPUT/OUTPUT)
+-c          On INPUT:  RESID contains the residual vector r_{k}.
+-c          On OUTPUT: RESID contains the residual vector r_{k+p}.
+-c
+-c  RNORM   Real scalar.  (INPUT/OUTPUT)
+-c          On INPUT the B-norm of r_{k}.
+-c          On OUTPUT the B-norm of the updated residual r_{k+p}.
+-c
+-c  V       Real N by K+NP array.  (INPUT/OUTPUT)
+-c          On INPUT:  V contains the Arnoldi vectors in the first K 
+-c          columns.
+-c          On OUTPUT: V contains the new NP Arnoldi vectors in the next
+-c          NP columns.  The first K columns are unchanged.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling 
+-c          program.
+-c
+-c  H       Real (K+NP) by 2 array.  (INPUT/OUTPUT)
+-c          H is used to store the generated symmetric tridiagonal matrix
+-c          with the subdiagonal in the first column starting at H(2,1)
+-c          and the main diagonal in the second column.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling 
+-c          program.
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORK for 
+-c          vectors used by the Arnoldi iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X.
+-c          IPNTR(2): pointer to the current result vector Y.
+-c          IPNTR(3): pointer to the vector B * X when used in the 
+-c                    shift-and-invert mode.  X is the current operand.
+-c          -------------------------------------------------------------
+-c          
+-c  WORKD   Real work array of length 3*N.  (REVERSE COMMUNICATION)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The calling program should not 
+-c          use WORKD as temporary workspace during the iteration !!!!!!
+-c          On INPUT, WORKD(1:N) = B*RESID where RESID is associated
+-c          with the K step Arnoldi factorization. Used to save some 
+-c          computation at the first step. 
+-c          On OUTPUT, WORKD(1:N) = B*RESID where RESID is associated
+-c          with the K+NP step Arnoldi factorization.
+-c
+-c  INFO    Integer.  (OUTPUT)
+-c          = 0: Normal exit.
+-c          > 0: Size of an invariant subspace of OP is found that is
+-c               less than K + NP.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     sgetv0  ARPACK routine to generate the initial vector.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     smout   ARPACK utility routine that prints matrices.
+-c     svout   ARPACK utility routine that prints vectors.
+-c     slamch  LAPACK routine that determines machine constants.
+-c     slascl  LAPACK routine for careful scaling of a matrix.
+-c     sgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     saxpy   Level 1 BLAS that computes a vector triad.
+-c     sscal   Level 1 BLAS that scales a vector.
+-c     scopy   Level 1 BLAS that copies one vector to another .
+-c     sdot    Level 1 BLAS that computes the scalar product of two vectors. 
+-c     snrm2   Level 1 BLAS that computes the norm of a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c 
+-c\Revision history:
+-c     xx/xx/93: Version ' 2.4'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: saitr.F   SID: 2.6   DATE OF SID: 8/28/96   RELEASE: 2
+-c
+-c\Remarks
+-c  The algorithm implemented is:
+-c  
+-c  restart = .false.
+-c  Given V_{k} = [v_{1}, ..., v_{k}], r_{k}; 
+-c  r_{k} contains the initial residual vector even for k = 0;
+-c  Also assume that rnorm = || B*r_{k} || and B*r_{k} are already 
+-c  computed by the calling program.
+-c
+-c  betaj = rnorm ; p_{k+1} = B*r_{k} ;
+-c  For  j = k+1, ..., k+np  Do
+-c     1) if ( betaj < tol ) stop or restart depending on j.
+-c        if ( restart ) generate a new starting vector.
+-c     2) v_{j} = r(j-1)/betaj;  V_{j} = [V_{j-1}, v_{j}];  
+-c        p_{j} = p_{j}/betaj
+-c     3) r_{j} = OP*v_{j} where OP is defined as in ssaupd
+-c        For shift-invert mode p_{j} = B*v_{j} is already available.
+-c        wnorm = || OP*v_{j} ||
+-c     4) Compute the j-th step residual vector.
+-c        w_{j} =  V_{j}^T * B * OP * v_{j}
+-c        r_{j} =  OP*v_{j} - V_{j} * w_{j}
+-c        alphaj <- j-th component of w_{j}
+-c        rnorm = || r_{j} ||
+-c        betaj+1 = rnorm
+-c        If (rnorm > 0.717*wnorm) accept step and go back to 1)
+-c     5) Re-orthogonalization step:
+-c        s = V_{j}'*B*r_{j}
+-c        r_{j} = r_{j} - V_{j}*s;  rnorm1 = || r_{j} ||
+-c        alphaj = alphaj + s_{j};   
+-c     6) Iterative refinement step:
+-c        If (rnorm1 > 0.717*rnorm) then
+-c           rnorm = rnorm1
+-c           accept step and go back to 1)
+-c        Else
+-c           rnorm = rnorm1
+-c           If this is the first time in step 6), go to 5)
+-c           Else r_{j} lies in the span of V_{j} numerically.
+-c              Set r_{j} = 0 and rnorm = 0; go to 1)
+-c        EndIf 
+-c  End Do
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine ssaitr
+-     &   (ido, bmat, n, k, np, mode, resid, rnorm, v, ldv, h, ldh, 
+-     &    ipntr, workd, info)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1
+-      integer    ido, info, k, ldh, ldv, n, mode, np
+-      Real
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(3)
+-      Real
+-     &           h(ldh,2), resid(n), v(ldv,k+np), workd(3*n)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real
+-     &           one, zero
+-      parameter (one = 1.0E+0, zero = 0.0E+0)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      logical    first, orth1, orth2, rstart, step3, step4
+-      integer    i, ierr, ipj, irj, ivj, iter, itry, j, msglvl, 
+-     &           infol, jj
+-      Real
+-     &           rnorm1, wnorm, safmin, temp1
+-      save       orth1, orth2, rstart, step3, step4,
+-     &           ierr, ipj, irj, ivj, iter, itry, j, msglvl,
+-     &           rnorm1, safmin, wnorm
+-c
+-c     %-----------------------%
+-c     | Local Array Arguments | 
+-c     %-----------------------%
+-c
+-      Real
+-     &           xtemp(2)
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   saxpy, scopy, sscal, sgemv, sgetv0, svout, smout,
+-     &           slascl, ivout, arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real
+-     &           sdot, snrm2, slamch
+-      external   sdot, snrm2, slamch
+-c
+-c     %-----------------%
+-c     | Data statements |
+-c     %-----------------%
+-c
+-      data      first / .true. /
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (first) then
+-         first = .false.
+-c
+-c        %--------------------------------%
+-c        | safmin = safe minimum is such  |
+-c        | that 1/sfmin does not overflow |
+-c        %--------------------------------%
+-c
+-         safmin = slamch('safmin')
+-      end if
+-c
+-      if (ido .eq. 0) then
+-c 
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call arscnd (t0)
+-         msglvl = msaitr
+-c 
+-c        %------------------------------%
+-c        | Initial call to this routine |
+-c        %------------------------------%
+-c
+-         info   = 0
+-         step3  = .false.
+-         step4  = .false.
+-         rstart = .false.
+-         orth1  = .false.
+-         orth2  = .false.
+-c 
+-c        %--------------------------------%
+-c        | Pointer to the current step of |
+-c        | the factorization to build     |
+-c        %--------------------------------%
+-c
+-         j      = k + 1
+-c 
+-c        %------------------------------------------%
+-c        | Pointers used for reverse communication  |
+-c        | when using WORKD.                        |
+-c        %------------------------------------------%
+-c
+-         ipj    = 1
+-         irj    = ipj   + n
+-         ivj    = irj   + n
+-      end if
+-c 
+-c     %-------------------------------------------------%
+-c     | When in reverse communication mode one of:      |
+-c     | STEP3, STEP4, ORTH1, ORTH2, RSTART              |
+-c     | will be .true.                                  |
+-c     | STEP3: return from computing OP*v_{j}.          |
+-c     | STEP4: return from computing B-norm of OP*v_{j} |
+-c     | ORTH1: return from computing B-norm of r_{j+1}  |
+-c     | ORTH2: return from computing B-norm of          |
+-c     |        correction to the residual vector.       |
+-c     | RSTART: return from OP computations needed by   |
+-c     |         sgetv0.                                 |
+-c     %-------------------------------------------------%
+-c
+-      if (step3)  go to 50
+-      if (step4)  go to 60
+-      if (orth1)  go to 70
+-      if (orth2)  go to 90
+-      if (rstart) go to 30
+-c
+-c     %------------------------------%
+-c     | Else this is the first step. |
+-c     %------------------------------%
+-c 
+-c     %--------------------------------------------------------------%
+-c     |                                                              |
+-c     |        A R N O L D I     I T E R A T I O N     L O O P       |
+-c     |                                                              |
+-c     | Note:  B*r_{j-1} is already in WORKD(1:N)=WORKD(IPJ:IPJ+N-1) |
+-c     %--------------------------------------------------------------%
+-c
+- 1000 continue
+-c
+-         if (msglvl .gt. 2) then
+-            call ivout (logfil, 1, j, ndigit, 
+-     &                  '_saitr: generating Arnoldi vector no.')
+-            call svout (logfil, 1, rnorm, ndigit, 
+-     &                  '_saitr: B-norm of the current residual =')
+-         end if
+-c 
+-c        %---------------------------------------------------------%
+-c        | Check for exact zero. Equivalent to determing whether a |
+-c        | j-step Arnoldi factorization is present.                |
+-c        %---------------------------------------------------------%
+-c
+-         if (rnorm .gt. zero) go to 40
+-c
+-c           %---------------------------------------------------%
+-c           | Invariant subspace found, generate a new starting |
+-c           | vector which is orthogonal to the current Arnoldi |
+-c           | basis and continue the iteration.                 |
+-c           %---------------------------------------------------%
+-c
+-            if (msglvl .gt. 0) then
+-               call ivout (logfil, 1, j, ndigit,
+-     &                     '_saitr: ****** restart at step ******')
+-            end if
+-c 
+-c           %---------------------------------------------%
+-c           | ITRY is the loop variable that controls the |
+-c           | maximum amount of times that a restart is   |
+-c           | attempted. NRSTRT is used by stat.h         |
+-c           %---------------------------------------------%
+-c
+-            nrstrt = nrstrt + 1
+-            itry   = 1
+-   20       continue
+-            rstart = .true.
+-            ido    = 0
+-   30       continue
+-c
+-c           %--------------------------------------%
+-c           | If in reverse communication mode and |
+-c           | RSTART = .true. flow returns here.   |
+-c           %--------------------------------------%
+-c
+-            call sgetv0 (ido, bmat, itry, .false., n, j, v, ldv, 
+-     &                   resid, rnorm, ipntr, workd, ierr)
+-            if (ido .ne. 99) go to 9000
+-            if (ierr .lt. 0) then
+-               itry = itry + 1
+-               if (itry .le. 3) go to 20
+-c
+-c              %------------------------------------------------%
+-c              | Give up after several restart attempts.        |
+-c              | Set INFO to the size of the invariant subspace |
+-c              | which spans OP and exit.                       |
+-c              %------------------------------------------------%
+-c
+-               info = j - 1
+-               call arscnd (t1)
+-               tsaitr = tsaitr + (t1 - t0)
+-               ido = 99
+-               go to 9000
+-            end if
+-c 
+-   40    continue
+-c
+-c        %---------------------------------------------------------%
+-c        | STEP 2:  v_{j} = r_{j-1}/rnorm and p_{j} = p_{j}/rnorm  |
+-c        | Note that p_{j} = B*r_{j-1}. In order to avoid overflow |
+-c        | when reciprocating a small RNORM, test against lower    |
+-c        | machine bound.                                          |
+-c        %---------------------------------------------------------%
+-c
+-         call scopy (n, resid, 1, v(1,j), 1)
+-         if (rnorm .ge. safmin) then
+-             temp1 = one / rnorm
+-             call sscal (n, temp1, v(1,j), 1)
+-             call sscal (n, temp1, workd(ipj), 1)
+-         else
+-c
+-c            %-----------------------------------------%
+-c            | To scale both v_{j} and p_{j} carefully |
+-c            | use LAPACK routine SLASCL               |
+-c            %-----------------------------------------%
+-c
+-             call slascl ('General', i, i, rnorm, one, n, 1, 
+-     &                    v(1,j), n, infol)
+-             call slascl ('General', i, i, rnorm, one, n, 1, 
+-     &                    workd(ipj), n, infol)
+-         end if
+-c 
+-c        %------------------------------------------------------%
+-c        | STEP 3:  r_{j} = OP*v_{j}; Note that p_{j} = B*v_{j} |
+-c        | Note that this is not quite yet r_{j}. See STEP 4    |
+-c        %------------------------------------------------------%
+-c
+-         step3 = .true.
+-         nopx  = nopx + 1
+-         call arscnd (t2)
+-         call scopy (n, v(1,j), 1, workd(ivj), 1)
+-         ipntr(1) = ivj
+-         ipntr(2) = irj
+-         ipntr(3) = ipj
+-         ido = 1
+-c 
+-c        %-----------------------------------%
+-c        | Exit in order to compute OP*v_{j} |
+-c        %-----------------------------------%
+-c 
+-         go to 9000
+-   50    continue
+-c 
+-c        %-----------------------------------%
+-c        | Back from reverse communication;  |
+-c        | WORKD(IRJ:IRJ+N-1) := OP*v_{j}.   |
+-c        %-----------------------------------%
+-c
+-         call arscnd (t3)
+-         tmvopx = tmvopx + (t3 - t2)
+-c 
+-         step3 = .false.
+-c
+-c        %------------------------------------------%
+-c        | Put another copy of OP*v_{j} into RESID. |
+-c        %------------------------------------------%
+-c
+-         call scopy (n, workd(irj), 1, resid, 1)
+-c 
+-c        %-------------------------------------------%
+-c        | STEP 4:  Finish extending the symmetric   |
+-c        |          Arnoldi to length j. If MODE = 2 |
+-c        |          then B*OP = B*inv(B)*A = A and   |
+-c        |          we don't need to compute B*OP.   |
+-c        | NOTE: If MODE = 2 WORKD(IVJ:IVJ+N-1) is   |
+-c        | assumed to have A*v_{j}.                  |
+-c        %-------------------------------------------%
+-c
+-         if (mode .eq. 2) go to 65
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            step4 = .true.
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %-------------------------------------%
+-c           | Exit in order to compute B*OP*v_{j} |
+-c           %-------------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-              call scopy(n, resid, 1 , workd(ipj), 1)
+-         end if
+-   60    continue
+-c 
+-c        %-----------------------------------%
+-c        | Back from reverse communication;  |
+-c        | WORKD(IPJ:IPJ+N-1) := B*OP*v_{j}. |
+-c        %-----------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if 
+-c
+-         step4 = .false.
+-c
+-c        %-------------------------------------%
+-c        | The following is needed for STEP 5. |
+-c        | Compute the B-norm of OP*v_{j}.     |
+-c        %-------------------------------------%
+-c
+-   65    continue
+-         if (mode .eq. 2) then
+-c
+-c           %----------------------------------%
+-c           | Note that the B-norm of OP*v_{j} |
+-c           | is the inv(B)-norm of A*v_{j}.   |
+-c           %----------------------------------%
+-c
+-            wnorm = sdot (n, resid, 1, workd(ivj), 1)
+-            wnorm = sqrt(abs(wnorm))
+-         else if (bmat .eq. 'G') then         
+-            wnorm = sdot (n, resid, 1, workd(ipj), 1)
+-            wnorm = sqrt(abs(wnorm))
+-         else if (bmat .eq. 'I') then
+-            wnorm = snrm2(n, resid, 1)
+-         end if
+-c
+-c        %-----------------------------------------%
+-c        | Compute the j-th residual corresponding |
+-c        | to the j step factorization.            |
+-c        | Use Classical Gram Schmidt and compute: |
+-c        | w_{j} <-  V_{j}^T * B * OP * v_{j}      |
+-c        | r_{j} <-  OP*v_{j} - V_{j} * w_{j}      |
+-c        %-----------------------------------------%
+-c
+-c
+-c        %------------------------------------------%
+-c        | Compute the j Fourier coefficients w_{j} |
+-c        | WORKD(IPJ:IPJ+N-1) contains B*OP*v_{j}.  |
+-c        %------------------------------------------%
+-c
+-         if (mode .ne. 2 ) then
+-            call sgemv('T', n, j, one, v, ldv, workd(ipj), 1, zero, 
+-     &                  workd(irj), 1)
+-         else if (mode .eq. 2) then
+-            call sgemv('T', n, j, one, v, ldv, workd(ivj), 1, zero, 
+-     &                  workd(irj), 1)
+-         end if
+-c
+-c        %--------------------------------------%
+-c        | Orthgonalize r_{j} against V_{j}.    |
+-c        | RESID contains OP*v_{j}. See STEP 3. | 
+-c        %--------------------------------------%
+-c
+-         call sgemv('N', n, j, -one, v, ldv, workd(irj), 1, one, 
+-     &               resid, 1)
+-c
+-c        %--------------------------------------%
+-c        | Extend H to have j rows and columns. |
+-c        %--------------------------------------%
+-c
+-         h(j,2) = workd(irj + j - 1)
+-         if (j .eq. 1  .or.  rstart) then
+-            h(j,1) = zero
+-         else
+-            h(j,1) = rnorm
+-         end if
+-         call arscnd (t4)
+-c 
+-         orth1 = .true.
+-         iter  = 0
+-c 
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call scopy (n, resid, 1, workd(irj), 1)
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %----------------------------------%
+-c           | Exit in order to compute B*r_{j} |
+-c           %----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call scopy (n, resid, 1, workd(ipj), 1)
+-         end if
+-   70    continue
+-c 
+-c        %---------------------------------------------------%
+-c        | Back from reverse communication if ORTH1 = .true. |
+-c        | WORKD(IPJ:IPJ+N-1) := B*r_{j}.                    |
+-c        %---------------------------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c 
+-         orth1 = .false.
+-c
+-c        %------------------------------%
+-c        | Compute the B-norm of r_{j}. |
+-c        %------------------------------%
+-c
+-         if (bmat .eq. 'G') then         
+-            rnorm = sdot (n, resid, 1, workd(ipj), 1)
+-            rnorm = sqrt(abs(rnorm))
+-         else if (bmat .eq. 'I') then
+-            rnorm = snrm2(n, resid, 1)
+-         end if
+-c
+-c        %-----------------------------------------------------------%
+-c        | STEP 5: Re-orthogonalization / Iterative refinement phase |
+-c        | Maximum NITER_ITREF tries.                                |
+-c        |                                                           |
+-c        |          s      = V_{j}^T * B * r_{j}                     |
+-c        |          r_{j}  = r_{j} - V_{j}*s                         |
+-c        |          alphaj = alphaj + s_{j}                          |
+-c        |                                                           |
+-c        | The stopping criteria used for iterative refinement is    |
+-c        | discussed in Parlett's book SEP, page 107 and in Gragg &  |
+-c        | Reichel ACM TOMS paper; Algorithm 686, Dec. 1990.         |
+-c        | Determine if we need to correct the residual. The goal is |
+-c        | to enforce ||v(:,1:j)^T * r_{j}|| .le. eps * || r_{j} ||  |
+-c        %-----------------------------------------------------------%
+-c
+-         if (rnorm .gt. 0.717*wnorm) go to 100
+-         nrorth = nrorth + 1
+-c 
+-c        %---------------------------------------------------%
+-c        | Enter the Iterative refinement phase. If further  |
+-c        | refinement is necessary, loop back here. The loop |
+-c        | variable is ITER. Perform a step of Classical     |
+-c        | Gram-Schmidt using all the Arnoldi vectors V_{j}  |
+-c        %---------------------------------------------------%
+-c
+-   80    continue
+-c
+-         if (msglvl .gt. 2) then
+-            xtemp(1) = wnorm
+-            xtemp(2) = rnorm
+-            call svout (logfil, 2, xtemp, ndigit, 
+-     &           '_saitr: re-orthonalization ; wnorm and rnorm are')
+-         end if
+-c
+-c        %----------------------------------------------------%
+-c        | Compute V_{j}^T * B * r_{j}.                       |
+-c        | WORKD(IRJ:IRJ+J-1) = v(:,1:J)'*WORKD(IPJ:IPJ+N-1). |
+-c        %----------------------------------------------------%
+-c
+-         call sgemv ('T', n, j, one, v, ldv, workd(ipj), 1, 
+-     &               zero, workd(irj), 1)
+-c
+-c        %----------------------------------------------%
+-c        | Compute the correction to the residual:      |
+-c        | r_{j} = r_{j} - V_{j} * WORKD(IRJ:IRJ+J-1).  |
+-c        | The correction to H is v(:,1:J)*H(1:J,1:J) + |
+-c        | v(:,1:J)*WORKD(IRJ:IRJ+J-1)*e'_j, but only   |
+-c        | H(j,j) is updated.                           |
+-c        %----------------------------------------------%
+-c
+-         call sgemv ('N', n, j, -one, v, ldv, workd(irj), 1, 
+-     &               one, resid, 1)
+-c
+-         if (j .eq. 1  .or.  rstart) h(j,1) = zero
+-         h(j,2) = h(j,2) + workd(irj + j - 1)
+-c 
+-         orth2 = .true.
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call scopy (n, resid, 1, workd(irj), 1)
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %-----------------------------------%
+-c           | Exit in order to compute B*r_{j}. |
+-c           | r_{j} is the corrected residual.  |
+-c           %-----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call scopy (n, resid, 1, workd(ipj), 1)
+-         end if
+-   90    continue
+-c
+-c        %---------------------------------------------------%
+-c        | Back from reverse communication if ORTH2 = .true. |
+-c        %---------------------------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c
+-c        %-----------------------------------------------------%
+-c        | Compute the B-norm of the corrected residual r_{j}. |
+-c        %-----------------------------------------------------%
+-c 
+-         if (bmat .eq. 'G') then         
+-             rnorm1 = sdot (n, resid, 1, workd(ipj), 1)
+-             rnorm1 = sqrt(abs(rnorm1))
+-         else if (bmat .eq. 'I') then
+-             rnorm1 = snrm2(n, resid, 1)
+-         end if
+-c
+-         if (msglvl .gt. 0 .and. iter .gt. 0) then
+-            call ivout (logfil, 1, j, ndigit,
+-     &           '_saitr: Iterative refinement for Arnoldi residual')
+-            if (msglvl .gt. 2) then
+-                xtemp(1) = rnorm
+-                xtemp(2) = rnorm1
+-                call svout (logfil, 2, xtemp, ndigit,
+-     &           '_saitr: iterative refinement ; rnorm and rnorm1 are')
+-            end if
+-         end if
+-c 
+-c        %-----------------------------------------%
+-c        | Determine if we need to perform another |
+-c        | step of re-orthogonalization.           |
+-c        %-----------------------------------------%
+-c
+-         if (rnorm1 .gt. 0.717*rnorm) then
+-c
+-c           %--------------------------------%
+-c           | No need for further refinement |
+-c           %--------------------------------%
+-c
+-            rnorm = rnorm1
+-c 
+-         else
+-c
+-c           %-------------------------------------------%
+-c           | Another step of iterative refinement step |
+-c           | is required. NITREF is used by stat.h     |
+-c           %-------------------------------------------%
+-c
+-            nitref = nitref + 1
+-            rnorm  = rnorm1
+-            iter   = iter + 1
+-            if (iter .le. 1) go to 80
+-c
+-c           %-------------------------------------------------%
+-c           | Otherwise RESID is numerically in the span of V |
+-c           %-------------------------------------------------%
+-c
+-            do 95 jj = 1, n
+-               resid(jj) = zero
+-  95        continue
+-            rnorm = zero
+-         end if
+-c 
+-c        %----------------------------------------------%
+-c        | Branch here directly if iterative refinement |
+-c        | wasn't necessary or after at most NITER_REF  |
+-c        | steps of iterative refinement.               |
+-c        %----------------------------------------------%
+-c
+-  100    continue
+-c 
+-         rstart = .false.
+-         orth2  = .false.
+-c 
+-         call arscnd (t5)
+-         titref = titref + (t5 - t4)
+-c 
+-c        %----------------------------------------------------------%
+-c        | Make sure the last off-diagonal element is non negative  |
+-c        | If not perform a similarity transformation on H(1:j,1:j) |
+-c        | and scale v(:,j) by -1.                                  |
+-c        %----------------------------------------------------------%
+-c
+-         if (h(j,1) .lt. zero) then
+-            h(j,1) = -h(j,1)
+-            if ( j .lt. k+np) then 
+-               call sscal(n, -one, v(1,j+1), 1)
+-            else
+-               call sscal(n, -one, resid, 1)
+-            end if
+-         end if
+-c 
+-c        %------------------------------------%
+-c        | STEP 6: Update  j = j+1;  Continue |
+-c        %------------------------------------%
+-c
+-         j = j + 1
+-         if (j .gt. k+np) then
+-            call arscnd (t1)
+-            tsaitr = tsaitr + (t1 - t0)
+-            ido = 99
+-c
+-            if (msglvl .gt. 1) then
+-               call svout (logfil, k+np, h(1,2), ndigit, 
+-     &         '_saitr: main diagonal of matrix H of step K+NP.')
+-               if (k+np .gt. 1) then
+-               call svout (logfil, k+np-1, h(2,1), ndigit, 
+-     &         '_saitr: sub diagonal of matrix H of step K+NP.')
+-               end if
+-            end if
+-c
+-            go to 9000
+-         end if
+-c
+-c        %--------------------------------------------------------%
+-c        | Loop back to extend the factorization by another step. |
+-c        %--------------------------------------------------------%
+-c
+-      go to 1000
+-c 
+-c     %---------------------------------------------------------------%
+-c     |                                                               |
+-c     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  |
+-c     |                                                               |
+-c     %---------------------------------------------------------------%
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of ssaitr |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/ssapps.f
++++ /dev/null
+@@ -1,516 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: ssapps
+-c
+-c\Description:
+-c  Given the Arnoldi factorization
+-c
+-c     A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T,
+-c
+-c  apply NP shifts implicitly resulting in
+-c
+-c     A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q
+-c
+-c  where Q is an orthogonal matrix of order KEV+NP. Q is the product of 
+-c  rotations resulting from the NP bulge chasing sweeps.  The updated Arnoldi 
+-c  factorization becomes:
+-c
+-c     A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T.
+-c
+-c\Usage:
+-c  call ssapps
+-c     ( N, KEV, NP, SHIFT, V, LDV, H, LDH, RESID, Q, LDQ, WORKD )
+-c
+-c\Arguments
+-c  N       Integer.  (INPUT)
+-c          Problem size, i.e. dimension of matrix A.
+-c
+-c  KEV     Integer.  (INPUT)
+-c          INPUT: KEV+NP is the size of the input matrix H.
+-c          OUTPUT: KEV is the size of the updated matrix HNEW.
+-c
+-c  NP      Integer.  (INPUT)
+-c          Number of implicit shifts to be applied.
+-c
+-c  SHIFT   Real array of length NP.  (INPUT)
+-c          The shifts to be applied.
+-c
+-c  V       Real N by (KEV+NP) array.  (INPUT/OUTPUT)
+-c          INPUT: V contains the current KEV+NP Arnoldi vectors.
+-c          OUTPUT: VNEW = V(1:n,1:KEV); the updated Arnoldi vectors
+-c          are in the first KEV columns of V.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling
+-c          program.
+-c
+-c  H       Real (KEV+NP) by 2 array.  (INPUT/OUTPUT)
+-c          INPUT: H contains the symmetric tridiagonal matrix of the
+-c          Arnoldi factorization with the subdiagonal in the 1st column
+-c          starting at H(2,1) and the main diagonal in the 2nd column.
+-c          OUTPUT: H contains the updated tridiagonal matrix in the 
+-c          KEV leading submatrix.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling
+-c          program.
+-c
+-c  RESID   Real array of length (N).  (INPUT/OUTPUT)
+-c          INPUT: RESID contains the the residual vector r_{k+p}.
+-c          OUTPUT: RESID is the updated residual vector rnew_{k}.
+-c
+-c  Q       Real KEV+NP by KEV+NP work array.  (WORKSPACE)
+-c          Work array used to accumulate the rotations during the bulge
+-c          chase sweep.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c
+-c  WORKD   Real work array of length 2*N.  (WORKSPACE)
+-c          Distributed array used in the application of the accumulated
+-c          orthogonal matrix Q.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c
+-c\Routines called:
+-c     ivout   ARPACK utility routine that prints integers. 
+-c     arscnd  ARPACK utility routine for timing.
+-c     svout   ARPACK utility routine that prints vectors.
+-c     slamch  LAPACK routine that determines machine constants.
+-c     slartg  LAPACK Givens rotation construction routine.
+-c     slacpy  LAPACK matrix copy routine.
+-c     slaset  LAPACK matrix initialization routine.
+-c     sgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     saxpy   Level 1 BLAS that computes a vector triad.
+-c     scopy   Level 1 BLAS that copies one vector to another.
+-c     sscal   Level 1 BLAS that scales a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\Revision history:
+-c     12/16/93: Version ' 2.4'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: sapps.F   SID: 2.6   DATE OF SID: 3/28/97   RELEASE: 2
+-c
+-c\Remarks
+-c  1. In this version, each shift is applied to all the subblocks of
+-c     the tridiagonal matrix H and not just to the submatrix that it 
+-c     comes from. This routine assumes that the subdiagonal elements 
+-c     of H that are stored in h(1:kev+np,1) are nonegative upon input
+-c     and enforce this condition upon output. This version incorporates
+-c     deflation. See code for documentation.
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine ssapps
+-     &   ( n, kev, np, shift, v, ldv, h, ldh, resid, q, ldq, workd )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    kev, ldh, ldq, ldv, n, np
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Real
+-     &           h(ldh,2), q(ldq,kev+np), resid(n), shift(np), 
+-     &           v(ldv,kev+np), workd(2*n)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real
+-     &           one, zero
+-      parameter (one = 1.0E+0, zero = 0.0E+0)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i, iend, istart, itop, j, jj, kplusp, msglvl
+-      logical    first
+-      Real
+-     &           a1, a2, a3, a4, big, c, epsmch, f, g, r, s
+-      save       epsmch, first
+-c
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   saxpy, scopy, sscal, slacpy, slartg, slaset, svout, 
+-     &           ivout, arscnd, sgemv
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real
+-     &           slamch
+-      external   slamch
+-c
+-c     %----------------------%
+-c     | Intrinsics Functions |
+-c     %----------------------%
+-c
+-      intrinsic  abs
+-c
+-c     %----------------%
+-c     | Data statments |
+-c     %----------------%
+-c
+-      data       first / .true. /
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (first) then
+-         epsmch = slamch('Epsilon-Machine')
+-         first = .false.
+-      end if
+-      itop = 1
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c
+-      call arscnd (t0)
+-      msglvl = msapps
+-c 
+-      kplusp = kev + np 
+-c 
+-c     %----------------------------------------------%
+-c     | Initialize Q to the identity matrix of order |
+-c     | kplusp used to accumulate the rotations.     |
+-c     %----------------------------------------------%
+-c
+-      call slaset ('All', kplusp, kplusp, zero, one, q, ldq)
+-c
+-c     %----------------------------------------------%
+-c     | Quick return if there are no shifts to apply |
+-c     %----------------------------------------------%
+-c
+-      if (np .eq. 0) go to 9000
+-c 
+-c     %----------------------------------------------------------%
+-c     | Apply the np shifts implicitly. Apply each shift to the  |
+-c     | whole matrix and not just to the submatrix from which it |
+-c     | comes.                                                   |
+-c     %----------------------------------------------------------%
+-c
+-      do 90 jj = 1, np
+-c 
+-         istart = itop
+-c
+-c        %----------------------------------------------------------%
+-c        | Check for splitting and deflation. Currently we consider |
+-c        | an off-diagonal element h(i+1,1) negligible if           |
+-c        |         h(i+1,1) .le. epsmch*( |h(i,2)| + |h(i+1,2)| )   |
+-c        | for i=1:KEV+NP-1.                                        |
+-c        | If above condition tests true then we set h(i+1,1) = 0.  |
+-c        | Note that h(1:KEV+NP,1) are assumed to be non negative.  |
+-c        %----------------------------------------------------------%
+-c
+-   20    continue
+-c
+-c        %------------------------------------------------%
+-c        | The following loop exits early if we encounter |
+-c        | a negligible off diagonal element.             |
+-c        %------------------------------------------------%
+-c
+-         do 30 i = istart, kplusp-1
+-            big   = abs(h(i,2)) + abs(h(i+1,2))
+-            if (h(i+1,1) .le. epsmch*big) then
+-               if (msglvl .gt. 0) then
+-                  call ivout (logfil, 1, i, ndigit, 
+-     &                 '_sapps: deflation at row/column no.')
+-                  call ivout (logfil, 1, jj, ndigit, 
+-     &                 '_sapps: occured before shift number.')
+-                  call svout (logfil, 1, h(i+1,1), ndigit, 
+-     &                 '_sapps: the corresponding off diagonal element')
+-               end if
+-               h(i+1,1) = zero
+-               iend = i
+-               go to 40
+-            end if
+-   30    continue
+-         iend = kplusp
+-   40    continue
+-c
+-         if (istart .lt. iend) then
+-c 
+-c           %--------------------------------------------------------%
+-c           | Construct the plane rotation G'(istart,istart+1,theta) |
+-c           | that attempts to drive h(istart+1,1) to zero.          |
+-c           %--------------------------------------------------------%
+-c
+-             f = h(istart,2) - shift(jj)
+-             g = h(istart+1,1)
+-             call slartg (f, g, c, s, r)
+-c 
+-c            %-------------------------------------------------------%
+-c            | Apply rotation to the left and right of H;            |
+-c            | H <- G' * H * G,  where G = G(istart,istart+1,theta). |
+-c            | This will create a "bulge".                           |
+-c            %-------------------------------------------------------%
+-c
+-             a1 = c*h(istart,2)   + s*h(istart+1,1)
+-             a2 = c*h(istart+1,1) + s*h(istart+1,2)
+-             a4 = c*h(istart+1,2) - s*h(istart+1,1)
+-             a3 = c*h(istart+1,1) - s*h(istart,2) 
+-             h(istart,2)   = c*a1 + s*a2
+-             h(istart+1,2) = c*a4 - s*a3
+-             h(istart+1,1) = c*a3 + s*a4
+-c 
+-c            %----------------------------------------------------%
+-c            | Accumulate the rotation in the matrix Q;  Q <- Q*G |
+-c            %----------------------------------------------------%
+-c
+-             do 60 j = 1, min(istart+jj,kplusp)
+-                a1            =   c*q(j,istart) + s*q(j,istart+1)
+-                q(j,istart+1) = - s*q(j,istart) + c*q(j,istart+1)
+-                q(j,istart)   = a1
+-   60        continue
+-c
+-c
+-c            %----------------------------------------------%
+-c            | The following loop chases the bulge created. |
+-c            | Note that the previous rotation may also be  |
+-c            | done within the following loop. But it is    |
+-c            | kept separate to make the distinction among  |
+-c            | the bulge chasing sweeps and the first plane |
+-c            | rotation designed to drive h(istart+1,1) to  |
+-c            | zero.                                        |
+-c            %----------------------------------------------%
+-c
+-             do 70 i = istart+1, iend-1
+-c 
+-c               %----------------------------------------------%
+-c               | Construct the plane rotation G'(i,i+1,theta) |
+-c               | that zeros the i-th bulge that was created   |
+-c               | by G(i-1,i,theta). g represents the bulge.   |
+-c               %----------------------------------------------%
+-c
+-                f = h(i,1)
+-                g = s*h(i+1,1)
+-c
+-c               %----------------------------------%
+-c               | Final update with G(i-1,i,theta) |
+-c               %----------------------------------%
+-c
+-                h(i+1,1) = c*h(i+1,1)
+-                call slartg (f, g, c, s, r)
+-c
+-c               %-------------------------------------------%
+-c               | The following ensures that h(1:iend-1,1), |
+-c               | the first iend-2 off diagonal of elements |
+-c               | H, remain non negative.                   |
+-c               %-------------------------------------------%
+-c
+-                if (r .lt. zero) then
+-                   r = -r
+-                   c = -c
+-                   s = -s
+-                end if
+-c 
+-c               %--------------------------------------------%
+-c               | Apply rotation to the left and right of H; |
+-c               | H <- G * H * G',  where G = G(i,i+1,theta) |
+-c               %--------------------------------------------%
+-c
+-                h(i,1) = r
+-c 
+-                a1 = c*h(i,2)   + s*h(i+1,1)
+-                a2 = c*h(i+1,1) + s*h(i+1,2)
+-                a3 = c*h(i+1,1) - s*h(i,2)
+-                a4 = c*h(i+1,2) - s*h(i+1,1)
+-c 
+-                h(i,2)   = c*a1 + s*a2
+-                h(i+1,2) = c*a4 - s*a3
+-                h(i+1,1) = c*a3 + s*a4
+-c 
+-c               %----------------------------------------------------%
+-c               | Accumulate the rotation in the matrix Q;  Q <- Q*G |
+-c               %----------------------------------------------------%
+-c
+-                do 50 j = 1, min( i+jj, kplusp )
+-                   a1       =   c*q(j,i) + s*q(j,i+1)
+-                   q(j,i+1) = - s*q(j,i) + c*q(j,i+1)
+-                   q(j,i)   = a1
+-   50           continue
+-c
+-   70        continue
+-c
+-         end if
+-c
+-c        %--------------------------%
+-c        | Update the block pointer |
+-c        %--------------------------%
+-c
+-         istart = iend + 1
+-c
+-c        %------------------------------------------%
+-c        | Make sure that h(iend,1) is non-negative |
+-c        | If not then set h(iend,1) <-- -h(iend,1) |
+-c        | and negate the last column of Q.         |
+-c        | We have effectively carried out a        |
+-c        | similarity on transformation H           |
+-c        %------------------------------------------%
+-c
+-         if (h(iend,1) .lt. zero) then
+-             h(iend,1) = -h(iend,1)
+-             call sscal(kplusp, -one, q(1,iend), 1)
+-         end if
+-c
+-c        %--------------------------------------------------------%
+-c        | Apply the same shift to the next block if there is any |
+-c        %--------------------------------------------------------%
+-c
+-         if (iend .lt. kplusp) go to 20
+-c
+-c        %-----------------------------------------------------%
+-c        | Check if we can increase the the start of the block |
+-c        %-----------------------------------------------------%
+-c
+-         do 80 i = itop, kplusp-1
+-            if (h(i+1,1) .gt. zero) go to 90
+-            itop  = itop + 1
+-   80    continue
+-c
+-c        %-----------------------------------%
+-c        | Finished applying the jj-th shift |
+-c        %-----------------------------------%
+-c
+-   90 continue
+-c
+-c     %------------------------------------------%
+-c     | All shifts have been applied. Check for  |
+-c     | more possible deflation that might occur |
+-c     | after the last shift is applied.         |                               
+-c     %------------------------------------------%
+-c
+-      do 100 i = itop, kplusp-1
+-         big   = abs(h(i,2)) + abs(h(i+1,2))
+-         if (h(i+1,1) .le. epsmch*big) then
+-            if (msglvl .gt. 0) then
+-               call ivout (logfil, 1, i, ndigit, 
+-     &              '_sapps: deflation at row/column no.')
+-               call svout (logfil, 1, h(i+1,1), ndigit, 
+-     &              '_sapps: the corresponding off diagonal element')
+-            end if
+-            h(i+1,1) = zero
+-         end if
+- 100  continue
+-c
+-c     %-------------------------------------------------%
+-c     | Compute the (kev+1)-st column of (V*Q) and      |
+-c     | temporarily store the result in WORKD(N+1:2*N). |
+-c     | This is not necessary if h(kev+1,1) = 0.         |
+-c     %-------------------------------------------------%
+-c
+-      if ( h(kev+1,1) .gt. zero ) 
+-     &   call sgemv ('N', n, kplusp, one, v, ldv,
+-     &                q(1,kev+1), 1, zero, workd(n+1), 1)
+-c 
+-c     %-------------------------------------------------------%
+-c     | Compute column 1 to kev of (V*Q) in backward order    |
+-c     | taking advantage that Q is an upper triangular matrix |    
+-c     | with lower bandwidth np.                              |
+-c     | Place results in v(:,kplusp-kev:kplusp) temporarily.  |
+-c     %-------------------------------------------------------%
+-c
+-      do 130 i = 1, kev
+-         call sgemv ('N', n, kplusp-i+1, one, v, ldv,
+-     &               q(1,kev-i+1), 1, zero, workd, 1)
+-         call scopy (n, workd, 1, v(1,kplusp-i+1), 1)
+-  130 continue
+-c
+-c     %-------------------------------------------------%
+-c     |  Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). |
+-c     %-------------------------------------------------%
+-c
+-      call slacpy ('All', n, kev, v(1,np+1), ldv, v, ldv)
+-c 
+-c     %--------------------------------------------%
+-c     | Copy the (kev+1)-st column of (V*Q) in the |
+-c     | appropriate place if h(kev+1,1) .ne. zero. |
+-c     %--------------------------------------------%
+-c
+-      if ( h(kev+1,1) .gt. zero ) 
+-     &     call scopy (n, workd(n+1), 1, v(1,kev+1), 1)
+-c 
+-c     %-------------------------------------%
+-c     | Update the residual vector:         |
+-c     |    r <- sigmak*r + betak*v(:,kev+1) |
+-c     | where                               |
+-c     |    sigmak = (e_{kev+p}'*Q)*e_{kev}  |
+-c     |    betak = e_{kev+1}'*H*e_{kev}     |
+-c     %-------------------------------------%
+-c
+-      call sscal (n, q(kplusp,kev), resid, 1)
+-      if (h(kev+1,1) .gt. zero) 
+-     &   call saxpy (n, h(kev+1,1), v(1,kev+1), 1, resid, 1)
+-c
+-      if (msglvl .gt. 1) then
+-         call svout (logfil, 1, q(kplusp,kev), ndigit, 
+-     &      '_sapps: sigmak of the updated residual vector')
+-         call svout (logfil, 1, h(kev+1,1), ndigit, 
+-     &      '_sapps: betak of the updated residual vector')
+-         call svout (logfil, kev, h(1,2), ndigit, 
+-     &      '_sapps: updated main diagonal of H for next iteration')
+-         if (kev .gt. 1) then
+-         call svout (logfil, kev-1, h(2,1), ndigit, 
+-     &      '_sapps: updated sub diagonal of H for next iteration')
+-         end if
+-      end if
+-c
+-      call arscnd (t1)
+-      tsapps = tsapps + (t1 - t0)
+-c 
+- 9000 continue 
+-      return
+-c
+-c     %---------------%
+-c     | End of ssapps |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/ssaup2.f
++++ /dev/null
+@@ -1,850 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: ssaup2
+-c
+-c\Description: 
+-c  Intermediate level interface called by ssaupd.
+-c
+-c\Usage:
+-c  call ssaup2 
+-c     ( IDO, BMAT, N, WHICH, NEV, NP, TOL, RESID, MODE, IUPD,
+-c       ISHIFT, MXITER, V, LDV, H, LDH, RITZ, BOUNDS, Q, LDQ, WORKL, 
+-c       IPNTR, WORKD, INFO )
+-c
+-c\Arguments
+-c
+-c  IDO, BMAT, N, WHICH, NEV, TOL, RESID: same as defined in ssaupd.
+-c  MODE, ISHIFT, MXITER: see the definition of IPARAM in ssaupd.
+-c  
+-c  NP      Integer.  (INPUT/OUTPUT)
+-c          Contains the number of implicit shifts to apply during 
+-c          each Arnoldi/Lanczos iteration.  
+-c          If ISHIFT=1, NP is adjusted dynamically at each iteration 
+-c          to accelerate convergence and prevent stagnation.
+-c          This is also roughly equal to the number of matrix-vector 
+-c          products (involving the operator OP) per Arnoldi iteration.
+-c          The logic for adjusting is contained within the current
+-c          subroutine.
+-c          If ISHIFT=0, NP is the number of shifts the user needs
+-c          to provide via reverse comunication. 0 < NP < NCV-NEV.
+-c          NP may be less than NCV-NEV since a leading block of the current
+-c          upper Tridiagonal matrix has split off and contains "unwanted"
+-c          Ritz values.
+-c          Upon termination of the IRA iteration, NP contains the number 
+-c          of "converged" wanted Ritz values.
+-c
+-c  IUPD    Integer.  (INPUT)
+-c          IUPD .EQ. 0: use explicit restart instead implicit update.
+-c          IUPD .NE. 0: use implicit update.
+-c
+-c  V       Real N by (NEV+NP) array.  (INPUT/OUTPUT)
+-c          The Lanczos basis vectors.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling 
+-c          program.
+-c
+-c  H       Real (NEV+NP) by 2 array.  (OUTPUT)
+-c          H is used to store the generated symmetric tridiagonal matrix
+-c          The subdiagonal is stored in the first column of H starting 
+-c          at H(2,1).  The main diagonal is stored in the second column
+-c          of H starting at H(1,2). If ssaup2 converges store the 
+-c          B-norm of the final residual vector in H(1,1).
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling 
+-c          program.
+-c
+-c  RITZ    Real array of length NEV+NP.  (OUTPUT)
+-c          RITZ(1:NEV) contains the computed Ritz values of OP.
+-c
+-c  BOUNDS  Real array of length NEV+NP.  (OUTPUT)
+-c          BOUNDS(1:NEV) contain the error bounds corresponding to RITZ.
+-c
+-c  Q       Real (NEV+NP) by (NEV+NP) array.  (WORKSPACE)
+-c          Private (replicated) work array used to accumulate the 
+-c          rotation in the shift application step.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c          
+-c  WORKL   Real array of length at least 3*(NEV+NP).  (INPUT/WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  It is used in the computation of the 
+-c          tridiagonal eigenvalue problem, the calculation and
+-c          application of the shifts and convergence checking.
+-c          If ISHIFT .EQ. O and IDO .EQ. 3, the first NP locations
+-c          of WORKL are used in reverse communication to hold the user 
+-c          supplied shifts.
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORKD for 
+-c          vectors used by the Lanczos iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X.
+-c          IPNTR(2): pointer to the current result vector Y.
+-c          IPNTR(3): pointer to the vector B * X when used in one of  
+-c                    the spectral transformation modes.  X is the current
+-c                    operand.
+-c          -------------------------------------------------------------
+-c          
+-c  WORKD   Real work array of length 3*N.  (REVERSE COMMUNICATION)
+-c          Distributed array to be used in the basic Lanczos iteration
+-c          for reverse communication.  The user should not use WORKD
+-c          as temporary workspace during the iteration !!!!!!!!!!
+-c          See Data Distribution Note in ssaupd.
+-c
+-c  INFO    Integer.  (INPUT/OUTPUT)
+-c          If INFO .EQ. 0, a randomly initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          Error flag on output.
+-c          =     0: Normal return.
+-c          =     1: All possible eigenvalues of OP has been found.  
+-c                   NP returns the size of the invariant subspace
+-c                   spanning the operator OP. 
+-c          =     2: No shifts could be applied.
+-c          =    -8: Error return from trid. eigenvalue calculation;
+-c                   This should never happen.
+-c          =    -9: Starting vector is zero.
+-c          = -9999: Could not build an Lanczos factorization.
+-c                   Size that was built in returned in NP.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c  3. B.N. Parlett, "The Symmetric Eigenvalue Problem". Prentice-Hall,
+-c     1980.
+-c  4. B.N. Parlett, B. Nour-Omid, "Towards a Black Box Lanczos Program",
+-c     Computer Physics Communications, 53 (1989), pp 169-179.
+-c  5. B. Nour-Omid, B.N. Parlett, T. Ericson, P.S. Jensen, "How to
+-c     Implement the Spectral Transformation", Math. Comp., 48 (1987),
+-c     pp 663-673.
+-c  6. R.G. Grimes, J.G. Lewis and H.D. Simon, "A Shifted Block Lanczos 
+-c     Algorithm for Solving Sparse Symmetric Generalized Eigenproblems", 
+-c     SIAM J. Matr. Anal. Apps.,  January (1993).
+-c  7. L. Reichel, W.B. Gragg, "Algorithm 686: FORTRAN Subroutines
+-c     for Updating the QR decomposition", ACM TOMS, December 1990,
+-c     Volume 16 Number 4, pp 369-377.
+-c
+-c\Routines called:
+-c     sgetv0  ARPACK initial vector generation routine. 
+-c     ssaitr  ARPACK Lanczos factorization routine.
+-c     ssapps  ARPACK application of implicit shifts routine.
+-c     ssconv  ARPACK convergence of Ritz values routine.
+-c     sseigt  ARPACK compute Ritz values and error bounds routine.
+-c     ssgets  ARPACK reorder Ritz values and error bounds routine.
+-c     ssortr  ARPACK sorting routine.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     svout   ARPACK utility routine that prints vectors.
+-c     slamch  LAPACK routine that determines machine constants.
+-c     scopy   Level 1 BLAS that copies one vector to another.
+-c     sdot    Level 1 BLAS that computes the scalar product of two vectors. 
+-c     snrm2   Level 1 BLAS that computes the norm of a vector.
+-c     sscal   Level 1 BLAS that scales a vector.
+-c     sswap   Level 1 BLAS that swaps two vectors.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c 
+-c\Revision history:
+-c     12/15/93: Version ' 2.4'
+-c     xx/xx/95: Version ' 2.4'.  (R.B. Lehoucq)
+-c
+-c\SCCS Information: @(#) 
+-c FILE: saup2.F   SID: 2.7   DATE OF SID: 5/19/98   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine ssaup2
+-     &   ( ido, bmat, n, which, nev, np, tol, resid, mode, iupd, 
+-     &     ishift, mxiter, v, ldv, h, ldh, ritz, bounds, 
+-     &     q, ldq, workl, ipntr, workd, info )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1, which*2
+-      integer    ido, info, ishift, iupd, ldh, ldq, ldv, mxiter,
+-     &           n, mode, nev, np
+-      Real
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(3)
+-      Real
+-     &           bounds(nev+np), h(ldh,2), q(ldq,nev+np), resid(n), 
+-     &           ritz(nev+np), v(ldv,nev+np), workd(3*n), 
+-     &           workl(3*(nev+np))
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real
+-     &           one, zero
+-      parameter (one = 1.0E+0, zero = 0.0E+0)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      character  wprime*2
+-      logical    cnorm, getv0, initv, update, ushift
+-      integer    ierr, iter, j, kplusp, msglvl, nconv, nevbef, nev0, 
+-     &           np0, nptemp, nevd2, nevm2, kp(3) 
+-      Real
+-     &           rnorm, temp, eps23
+-      save       cnorm, getv0, initv, update, ushift,
+-     &           iter, kplusp, msglvl, nconv, nev0, np0,
+-     &           rnorm, eps23
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   scopy, sgetv0, ssaitr, sscal, ssconv, sseigt, ssgets, 
+-     &           ssapps, ssortr, svout, ivout, arscnd, sswap
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real
+-     &           sdot, snrm2, slamch
+-      external   sdot, snrm2, slamch
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    min
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (ido .eq. 0) then
+-c 
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call arscnd (t0)
+-         msglvl = msaup2
+-c
+-c        %---------------------------------%
+-c        | Set machine dependent constant. |
+-c        %---------------------------------%
+-c
+-         eps23 = slamch('Epsilon-Machine')
+-         eps23 = eps23**(2.0E+0/3.0E+0)
+-c
+-c        %-------------------------------------%
+-c        | nev0 and np0 are integer variables  |
+-c        | hold the initial values of NEV & NP |
+-c        %-------------------------------------%
+-c
+-         nev0   = nev
+-         np0    = np
+-c
+-c        %-------------------------------------%
+-c        | kplusp is the bound on the largest  |
+-c        |        Lanczos factorization built. |
+-c        | nconv is the current number of      |
+-c        |        "converged" eigenvlues.      |
+-c        | iter is the counter on the current  |
+-c        |      iteration step.                |
+-c        %-------------------------------------%
+-c
+-         kplusp = nev0 + np0
+-         nconv  = 0
+-         iter   = 0
+-c 
+-c        %--------------------------------------------%
+-c        | Set flags for computing the first NEV steps |
+-c        | of the Lanczos factorization.              |
+-c        %--------------------------------------------%
+-c
+-         getv0    = .true.
+-         update   = .false.
+-         ushift   = .false.
+-         cnorm    = .false.
+-c
+-         if (info .ne. 0) then
+-c
+-c        %--------------------------------------------%
+-c        | User provides the initial residual vector. |
+-c        %--------------------------------------------%
+-c
+-            initv = .true.
+-            info  = 0
+-         else
+-            initv = .false.
+-         end if
+-      end if
+-c 
+-c     %---------------------------------------------%
+-c     | Get a possibly random starting vector and   |
+-c     | force it into the range of the operator OP. |
+-c     %---------------------------------------------%
+-c
+-   10 continue
+-c
+-      if (getv0) then
+-         call sgetv0 (ido, bmat, 1, initv, n, 1, v, ldv, resid, rnorm,
+-     &                ipntr, workd, info)
+-c
+-         if (ido .ne. 99) go to 9000
+-c
+-         if (rnorm .eq. zero) then
+-c
+-c           %-----------------------------------------%
+-c           | The initial vector is zero. Error exit. | 
+-c           %-----------------------------------------%
+-c
+-            info = -9
+-            go to 1200
+-         end if
+-         getv0 = .false.
+-         ido  = 0
+-      end if
+-c 
+-c     %------------------------------------------------------------%
+-c     | Back from reverse communication: continue with update step |
+-c     %------------------------------------------------------------%
+-c
+-      if (update) go to 20
+-c
+-c     %-------------------------------------------%
+-c     | Back from computing user specified shifts |
+-c     %-------------------------------------------%
+-c
+-      if (ushift) go to 50
+-c
+-c     %-------------------------------------%
+-c     | Back from computing residual norm   |
+-c     | at the end of the current iteration |
+-c     %-------------------------------------%
+-c
+-      if (cnorm)  go to 100
+-c 
+-c     %----------------------------------------------------------%
+-c     | Compute the first NEV steps of the Lanczos factorization |
+-c     %----------------------------------------------------------%
+-c
+-      call ssaitr (ido, bmat, n, 0, nev0, mode, resid, rnorm, v, ldv, 
+-     &             h, ldh, ipntr, workd, info)
+-c 
+-c     %---------------------------------------------------%
+-c     | ido .ne. 99 implies use of reverse communication  |
+-c     | to compute operations involving OP and possibly B |
+-c     %---------------------------------------------------%
+-c
+-      if (ido .ne. 99) go to 9000
+-c
+-      if (info .gt. 0) then
+-c
+-c        %-----------------------------------------------------%
+-c        | ssaitr was unable to build an Lanczos factorization |
+-c        | of length NEV0. INFO is returned with the size of   |
+-c        | the factorization built. Exit main loop.            |
+-c        %-----------------------------------------------------%
+-c
+-         np   = info
+-         mxiter = iter
+-         info = -9999
+-         go to 1200
+-      end if
+-c 
+-c     %--------------------------------------------------------------%
+-c     |                                                              |
+-c     |           M A I N  LANCZOS  I T E R A T I O N  L O O P       |
+-c     |           Each iteration implicitly restarts the Lanczos     |
+-c     |           factorization in place.                            |
+-c     |                                                              |
+-c     %--------------------------------------------------------------%
+-c 
+- 1000 continue
+-c
+-         iter = iter + 1
+-c
+-         if (msglvl .gt. 0) then
+-            call ivout (logfil, 1, iter, ndigit, 
+-     &           '_saup2: **** Start of major iteration number ****')
+-         end if
+-         if (msglvl .gt. 1) then
+-            call ivout (logfil, 1, nev, ndigit, 
+-     &     '_saup2: The length of the current Lanczos factorization')
+-            call ivout (logfil, 1, np, ndigit, 
+-     &           '_saup2: Extend the Lanczos factorization by')
+-         end if
+-c 
+-c        %------------------------------------------------------------%
+-c        | Compute NP additional steps of the Lanczos factorization. |
+-c        %------------------------------------------------------------%
+-c
+-         ido = 0
+-   20    continue
+-         update = .true.
+-c
+-         call ssaitr (ido, bmat, n, nev, np, mode, resid, rnorm, v, 
+-     &                ldv, h, ldh, ipntr, workd, info)
+-c 
+-c        %---------------------------------------------------%
+-c        | ido .ne. 99 implies use of reverse communication  |
+-c        | to compute operations involving OP and possibly B |
+-c        %---------------------------------------------------%
+-c
+-         if (ido .ne. 99) go to 9000
+-c
+-         if (info .gt. 0) then
+-c
+-c           %-----------------------------------------------------%
+-c           | ssaitr was unable to build an Lanczos factorization |
+-c           | of length NEV0+NP0. INFO is returned with the size  |  
+-c           | of the factorization built. Exit main loop.         |
+-c           %-----------------------------------------------------%
+-c
+-            np = info
+-            mxiter = iter
+-            info = -9999
+-            go to 1200
+-         end if
+-         update = .false.
+-c
+-         if (msglvl .gt. 1) then
+-            call svout (logfil, 1, rnorm, ndigit, 
+-     &           '_saup2: Current B-norm of residual for factorization')
+-         end if
+-c 
+-c        %--------------------------------------------------------%
+-c        | Compute the eigenvalues and corresponding error bounds |
+-c        | of the current symmetric tridiagonal matrix.           |
+-c        %--------------------------------------------------------%
+-c
+-         call sseigt (rnorm, kplusp, h, ldh, ritz, bounds, workl, ierr)
+-c
+-         if (ierr .ne. 0) then
+-            info = -8
+-            go to 1200
+-         end if
+-c
+-c        %----------------------------------------------------%
+-c        | Make a copy of eigenvalues and corresponding error |
+-c        | bounds obtained from _seigt.                       |
+-c        %----------------------------------------------------%
+-c
+-         call scopy(kplusp, ritz, 1, workl(kplusp+1), 1)
+-         call scopy(kplusp, bounds, 1, workl(2*kplusp+1), 1)
+-c
+-c        %---------------------------------------------------%
+-c        | Select the wanted Ritz values and their bounds    |
+-c        | to be used in the convergence test.               |
+-c        | The selection is based on the requested number of |
+-c        | eigenvalues instead of the current NEV and NP to  |
+-c        | prevent possible misconvergence.                  |
+-c        | * Wanted Ritz values := RITZ(NP+1:NEV+NP)         |
+-c        | * Shifts := RITZ(1:NP) := WORKL(1:NP)             |
+-c        %---------------------------------------------------%
+-c
+-         nev = nev0
+-         np = np0
+-         call ssgets (ishift, which, nev, np, ritz, bounds, workl)
+-c 
+-c        %-------------------%
+-c        | Convergence test. |
+-c        %-------------------%
+-c
+-         call scopy (nev, bounds(np+1), 1, workl(np+1), 1)
+-         call ssconv (nev, ritz(np+1), workl(np+1), tol, nconv)
+-c
+-         if (msglvl .gt. 2) then
+-            kp(1) = nev
+-            kp(2) = np
+-            kp(3) = nconv
+-            call ivout (logfil, 3, kp, ndigit,
+-     &                  '_saup2: NEV, NP, NCONV are')
+-            call svout (logfil, kplusp, ritz, ndigit,
+-     &           '_saup2: The eigenvalues of H')
+-            call svout (logfil, kplusp, bounds, ndigit,
+-     &          '_saup2: Ritz estimates of the current NCV Ritz values')
+-         end if
+-c
+-c        %---------------------------------------------------------%
+-c        | Count the number of unwanted Ritz values that have zero |
+-c        | Ritz estimates. If any Ritz estimates are equal to zero |
+-c        | then a leading block of H of order equal to at least    |
+-c        | the number of Ritz values with zero Ritz estimates has  |
+-c        | split off. None of these Ritz values may be removed by  |
+-c        | shifting. Decrease NP the number of shifts to apply. If |
+-c        | no shifts may be applied, then prepare to exit          |
+-c        %---------------------------------------------------------%
+-c
+-         nptemp = np
+-         do 30 j=1, nptemp
+-            if (bounds(j) .eq. zero) then
+-               np = np - 1
+-               nev = nev + 1
+-            end if
+- 30      continue
+-c 
+-         if ( (nconv .ge. nev0) .or. 
+-     &        (iter .gt. mxiter) .or.
+-     &        (np .eq. 0) ) then
+-c     
+-c           %------------------------------------------------%
+-c           | Prepare to exit. Put the converged Ritz values |
+-c           | and corresponding bounds in RITZ(1:NCONV) and  |
+-c           | BOUNDS(1:NCONV) respectively. Then sort. Be    |
+-c           | careful when NCONV > NP since we don't want to |
+-c           | swap overlapping locations.                    |
+-c           %------------------------------------------------%
+-c
+-            if (which .eq. 'BE') then
+-c
+-c              %-----------------------------------------------------%
+-c              | Both ends of the spectrum are requested.            |
+-c              | Sort the eigenvalues into algebraically decreasing  |
+-c              | order first then swap low end of the spectrum next  |
+-c              | to high end in appropriate locations.               |
+-c              | NOTE: when np < floor(nev/2) be careful not to swap |
+-c              | overlapping locations.                              |
+-c              %-----------------------------------------------------%
+-c
+-               wprime = 'SA'
+-               call ssortr (wprime, .true., kplusp, ritz, bounds)
+-               nevd2 = nev0 / 2
+-               nevm2 = nev0 - nevd2 
+-               if ( nev .gt. 1 ) then
+-                  call sswap ( min(nevd2,np), ritz(nevm2+1), 1,
+-     &                 ritz( max(kplusp-nevd2+1,kplusp-np+1) ), 1)
+-                  call sswap ( min(nevd2,np), bounds(nevm2+1), 1,
+-     &                 bounds( max(kplusp-nevd2+1,kplusp-np+1)), 1)
+-               end if
+-c
+-            else
+-c
+-c              %--------------------------------------------------%
+-c              | LM, SM, LA, SA case.                             |
+-c              | Sort the eigenvalues of H into the an order that |
+-c              | is opposite to WHICH, and apply the resulting    |
+-c              | order to BOUNDS.  The eigenvalues are sorted so  |
+-c              | that the wanted part are always within the first |
+-c              | NEV locations.                                   |
+-c              %--------------------------------------------------%
+-c
+-               if (which .eq. 'LM') wprime = 'SM'
+-               if (which .eq. 'SM') wprime = 'LM'
+-               if (which .eq. 'LA') wprime = 'SA'
+-               if (which .eq. 'SA') wprime = 'LA'
+-c
+-               call ssortr (wprime, .true., kplusp, ritz, bounds)
+-c
+-            end if
+-c
+-c           %--------------------------------------------------%
+-c           | Scale the Ritz estimate of each Ritz value       |
+-c           | by 1 / max(eps23,magnitude of the Ritz value).   |
+-c           %--------------------------------------------------%
+-c
+-            do 35 j = 1, nev0
+-               temp = max( eps23, abs(ritz(j)) )
+-               bounds(j) = bounds(j)/temp
+- 35         continue
+-c
+-c           %----------------------------------------------------%
+-c           | Sort the Ritz values according to the scaled Ritz  |
+-c           | esitmates.  This will push all the converged ones  |
+-c           | towards the front of ritzr, ritzi, bounds          |
+-c           | (in the case when NCONV < NEV.)                    |
+-c           %----------------------------------------------------%
+-c
+-            wprime = 'LA'
+-            call ssortr(wprime, .true., nev0, bounds, ritz)
+-c
+-c           %----------------------------------------------%
+-c           | Scale the Ritz estimate back to its original |
+-c           | value.                                       |
+-c           %----------------------------------------------%
+-c
+-            do 40 j = 1, nev0
+-                temp = max( eps23, abs(ritz(j)) )
+-                bounds(j) = bounds(j)*temp
+- 40         continue
+-c
+-c           %--------------------------------------------------%
+-c           | Sort the "converged" Ritz values again so that   |
+-c           | the "threshold" values and their associated Ritz |
+-c           | estimates appear at the appropriate position in  |
+-c           | ritz and bound.                                  |
+-c           %--------------------------------------------------%
+-c
+-            if (which .eq. 'BE') then
+-c
+-c              %------------------------------------------------%
+-c              | Sort the "converged" Ritz values in increasing |
+-c              | order.  The "threshold" values are in the      |
+-c              | middle.                                        |
+-c              %------------------------------------------------%
+-c
+-               wprime = 'LA'
+-               call ssortr(wprime, .true., nconv, ritz, bounds)
+-c
+-            else
+-c
+-c              %----------------------------------------------%
+-c              | In LM, SM, LA, SA case, sort the "converged" |
+-c              | Ritz values according to WHICH so that the   |
+-c              | "threshold" value appears at the front of    |
+-c              | ritz.                                        |
+-c              %----------------------------------------------%
+-
+-               call ssortr(which, .true., nconv, ritz, bounds)
+-c
+-            end if
+-c
+-c           %------------------------------------------%
+-c           |  Use h( 1,1 ) as storage to communicate  |
+-c           |  rnorm to _seupd if needed               |
+-c           %------------------------------------------%
+-c
+-            h(1,1) = rnorm
+-c
+-            if (msglvl .gt. 1) then
+-               call svout (logfil, kplusp, ritz, ndigit,
+-     &            '_saup2: Sorted Ritz values.')
+-               call svout (logfil, kplusp, bounds, ndigit,
+-     &            '_saup2: Sorted ritz estimates.')
+-            end if
+-c
+-c           %------------------------------------%
+-c           | Max iterations have been exceeded. | 
+-c           %------------------------------------%
+-c
+-            if (iter .gt. mxiter .and. nconv .lt. nev) info = 1
+-c
+-c           %---------------------%
+-c           | No shifts to apply. | 
+-c           %---------------------%
+-c
+-            if (np .eq. 0 .and. nconv .lt. nev0) info = 2
+-c
+-            np = nconv
+-            go to 1100
+-c
+-         else if (nconv .lt. nev .and. ishift .eq. 1) then
+-c
+-c           %---------------------------------------------------%
+-c           | Do not have all the requested eigenvalues yet.    |
+-c           | To prevent possible stagnation, adjust the number |
+-c           | of Ritz values and the shifts.                    |
+-c           %---------------------------------------------------%
+-c
+-            nevbef = nev
+-            nev = nev + min (nconv, np/2)
+-            if (nev .eq. 1 .and. kplusp .ge. 6) then
+-               nev = kplusp / 2
+-            else if (nev .eq. 1 .and. kplusp .gt. 2) then
+-               nev = 2
+-            end if
+-            np  = kplusp - nev
+-c     
+-c           %---------------------------------------%
+-c           | If the size of NEV was just increased |
+-c           | resort the eigenvalues.               |
+-c           %---------------------------------------%
+-c     
+-            if (nevbef .lt. nev) 
+-     &         call ssgets (ishift, which, nev, np, ritz, bounds,
+-     &              workl)
+-c
+-         end if
+-c
+-         if (msglvl .gt. 0) then
+-            call ivout (logfil, 1, nconv, ndigit,
+-     &           '_saup2: no. of "converged" Ritz values at this iter.')
+-            if (msglvl .gt. 1) then
+-               kp(1) = nev
+-               kp(2) = np
+-               call ivout (logfil, 2, kp, ndigit,
+-     &              '_saup2: NEV and NP are')
+-               call svout (logfil, nev, ritz(np+1), ndigit,
+-     &              '_saup2: "wanted" Ritz values.')
+-               call svout (logfil, nev, bounds(np+1), ndigit,
+-     &              '_saup2: Ritz estimates of the "wanted" values ')
+-            end if
+-         end if
+-
+-c 
+-         if (ishift .eq. 0) then
+-c
+-c           %-----------------------------------------------------%
+-c           | User specified shifts: reverse communication to     |
+-c           | compute the shifts. They are returned in the first  |
+-c           | NP locations of WORKL.                              |
+-c           %-----------------------------------------------------%
+-c
+-            ushift = .true.
+-            ido = 3
+-            go to 9000
+-         end if
+-c
+-   50    continue
+-c
+-c        %------------------------------------%
+-c        | Back from reverse communication;   |
+-c        | User specified shifts are returned |
+-c        | in WORKL(1:*NP)                   |
+-c        %------------------------------------%
+-c
+-         ushift = .false.
+-c 
+-c 
+-c        %---------------------------------------------------------%
+-c        | Move the NP shifts to the first NP locations of RITZ to |
+-c        | free up WORKL.  This is for the non-exact shift case;   |
+-c        | in the exact shift case, ssgets already handles this.   |
+-c        %---------------------------------------------------------%
+-c
+-         if (ishift .eq. 0) call scopy (np, workl, 1, ritz, 1)
+-c
+-         if (msglvl .gt. 2) then
+-            call ivout (logfil, 1, np, ndigit,
+-     &                  '_saup2: The number of shifts to apply ')
+-            call svout (logfil, np, workl, ndigit,
+-     &                  '_saup2: shifts selected')
+-            if (ishift .eq. 1) then
+-               call svout (logfil, np, bounds, ndigit,
+-     &                  '_saup2: corresponding Ritz estimates')
+-             end if
+-         end if
+-c 
+-c        %---------------------------------------------------------%
+-c        | Apply the NP0 implicit shifts by QR bulge chasing.      |
+-c        | Each shift is applied to the entire tridiagonal matrix. |
+-c        | The first 2*N locations of WORKD are used as workspace. |
+-c        | After ssapps is done, we have a Lanczos                 |
+-c        | factorization of length NEV.                            |
+-c        %---------------------------------------------------------%
+-c
+-         call ssapps (n, nev, np, ritz, v, ldv, h, ldh, resid, q, ldq,
+-     &        workd)
+-c
+-c        %---------------------------------------------%
+-c        | Compute the B-norm of the updated residual. |
+-c        | Keep B*RESID in WORKD(1:N) to be used in    |
+-c        | the first step of the next call to ssaitr.  |
+-c        %---------------------------------------------%
+-c
+-         cnorm = .true.
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call scopy (n, resid, 1, workd(n+1), 1)
+-            ipntr(1) = n + 1
+-            ipntr(2) = 1
+-            ido = 2
+-c 
+-c           %----------------------------------%
+-c           | Exit in order to compute B*RESID |
+-c           %----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call scopy (n, resid, 1, workd, 1)
+-         end if
+-c 
+-  100    continue
+-c 
+-c        %----------------------------------%
+-c        | Back from reverse communication; |
+-c        | WORKD(1:N) := B*RESID            |
+-c        %----------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c 
+-         if (bmat .eq. 'G') then         
+-            rnorm = sdot (n, resid, 1, workd, 1)
+-            rnorm = sqrt(abs(rnorm))
+-         else if (bmat .eq. 'I') then
+-            rnorm = snrm2(n, resid, 1)
+-         end if
+-         cnorm = .false.
+-  130    continue
+-c
+-         if (msglvl .gt. 2) then
+-            call svout (logfil, 1, rnorm, ndigit, 
+-     &      '_saup2: B-norm of residual for NEV factorization')
+-            call svout (logfil, nev, h(1,2), ndigit,
+-     &           '_saup2: main diagonal of compressed H matrix')
+-            call svout (logfil, nev-1, h(2,1), ndigit,
+-     &           '_saup2: subdiagonal of compressed H matrix')
+-         end if
+-c 
+-      go to 1000
+-c
+-c     %---------------------------------------------------------------%
+-c     |                                                               |
+-c     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  |
+-c     |                                                               |
+-c     %---------------------------------------------------------------%
+-c 
+- 1100 continue
+-c
+-      mxiter = iter
+-      nev = nconv
+-c 
+- 1200 continue
+-      ido = 99
+-c
+-c     %------------%
+-c     | Error exit |
+-c     %------------%
+-c
+-      call arscnd (t1)
+-      tsaup2 = t1 - t0
+-c 
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of ssaup2 |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/ssaupd.f
++++ /dev/null
+@@ -1,690 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: ssaupd
+-c
+-c\Description: 
+-c
+-c  Reverse communication interface for the Implicitly Restarted Arnoldi 
+-c  Iteration.  For symmetric problems this reduces to a variant of the Lanczos 
+-c  method.  This method has been designed to compute approximations to a 
+-c  few eigenpairs of a linear operator OP that is real and symmetric 
+-c  with respect to a real positive semi-definite symmetric matrix B, 
+-c  i.e.
+-c                   
+-c       B*OP = (OP`)*B.  
+-c
+-c  Another way to express this condition is 
+-c
+-c       < x,OPy > = < OPx,y >  where < z,w > = z`Bw  .
+-c  
+-c  In the standard eigenproblem B is the identity matrix.  
+-c  ( A` denotes transpose of A)
+-c
+-c  The computed approximate eigenvalues are called Ritz values and
+-c  the corresponding approximate eigenvectors are called Ritz vectors.
+-c
+-c  ssaupd is usually called iteratively to solve one of the 
+-c  following problems:
+-c
+-c  Mode 1:  A*x = lambda*x, A symmetric 
+-c           ===> OP = A  and  B = I.
+-c
+-c  Mode 2:  A*x = lambda*M*x, A symmetric, M symmetric positive definite
+-c           ===> OP = inv[M]*A  and  B = M.
+-c           ===> (If M can be factored see remark 3 below)
+-c
+-c  Mode 3:  K*x = lambda*M*x, K symmetric, M symmetric positive semi-definite
+-c           ===> OP = (inv[K - sigma*M])*M  and  B = M. 
+-c           ===> Shift-and-Invert mode
+-c
+-c  Mode 4:  K*x = lambda*KG*x, K symmetric positive semi-definite, 
+-c           KG symmetric indefinite
+-c           ===> OP = (inv[K - sigma*KG])*K  and  B = K.
+-c           ===> Buckling mode
+-c
+-c  Mode 5:  A*x = lambda*M*x, A symmetric, M symmetric positive semi-definite
+-c           ===> OP = inv[A - sigma*M]*[A + sigma*M]  and  B = M.
+-c           ===> Cayley transformed mode
+-c
+-c  NOTE: The action of w <- inv[A - sigma*M]*v or w <- inv[M]*v
+-c        should be accomplished either by a direct method
+-c        using a sparse matrix factorization and solving
+-c
+-c           [A - sigma*M]*w = v  or M*w = v,
+-c
+-c        or through an iterative method for solving these
+-c        systems.  If an iterative method is used, the
+-c        convergence test must be more stringent than
+-c        the accuracy requirements for the eigenvalue
+-c        approximations.
+-c
+-c\Usage:
+-c  call ssaupd 
+-c     ( IDO, BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM,
+-c       IPNTR, WORKD, WORKL, LWORKL, INFO )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.  IDO must be zero on the first 
+-c          call to ssaupd.  IDO will be set internally to
+-c          indicate the type of operation to be performed.  Control is
+-c          then given back to the calling routine which has the
+-c          responsibility to carry out the requested operation and call
+-c          ssaupd with the result.  The operand is given in
+-c          WORKD(IPNTR(1)), the result must be put in WORKD(IPNTR(2)).
+-c          (If Mode = 2 see remark 5 below)
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    This is for the initialization phase to force the
+-c                    starting vector into the range of OP.
+-c          IDO =  1: compute  Y = OP * X where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    In mode 3,4 and 5, the vector B * X is already
+-c                    available in WORKD(ipntr(3)).  It does not
+-c                    need to be recomputed in forming OP * X.
+-c          IDO =  2: compute  Y = B * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c          IDO =  3: compute the IPARAM(8) shifts where
+-c                    IPNTR(11) is the pointer into WORKL for
+-c                    placing the shifts. See remark 6 below.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c             
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of the matrix B that defines the
+-c          semi-inner product for the operator OP.
+-c          B = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          B = 'G' -> generalized eigenvalue problem A*x = lambda*B*x
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the eigenproblem.
+-c
+-c  WHICH   Character*2.  (INPUT)
+-c          Specify which of the Ritz values of OP to compute.
+-c
+-c          'LA' - compute the NEV largest (algebraic) eigenvalues.
+-c          'SA' - compute the NEV smallest (algebraic) eigenvalues.
+-c          'LM' - compute the NEV largest (in magnitude) eigenvalues.
+-c          'SM' - compute the NEV smallest (in magnitude) eigenvalues. 
+-c          'BE' - compute NEV eigenvalues, half from each end of the
+-c                 spectrum.  When NEV is odd, compute one more from the
+-c                 high end than from the low end.
+-c           (see remark 1 below)
+-c
+-c  NEV     Integer.  (INPUT)
+-c          Number of eigenvalues of OP to be computed. 0 < NEV < N.
+-c
+-c  TOL     Real  scalar.  (INPUT)
+-c          Stopping criterion: the relative accuracy of the Ritz value 
+-c          is considered acceptable if BOUNDS(I) .LE. TOL*ABS(RITZ(I)).
+-c          If TOL .LE. 0. is passed a default is set:
+-c          DEFAULT = SLAMCH('EPS')  (machine precision as computed
+-c                    by the LAPACK auxiliary subroutine SLAMCH).
+-c
+-c  RESID   Real  array of length N.  (INPUT/OUTPUT)
+-c          On INPUT: 
+-c          If INFO .EQ. 0, a random initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          On OUTPUT:
+-c          RESID contains the final residual vector. 
+-c
+-c  NCV     Integer.  (INPUT)
+-c          Number of columns of the matrix V (less than or equal to N).
+-c          This will indicate how many Lanczos vectors are generated 
+-c          at each iteration.  After the startup phase in which NEV 
+-c          Lanczos vectors are generated, the algorithm generates 
+-c          NCV-NEV Lanczos vectors at each subsequent update iteration.
+-c          Most of the cost in generating each Lanczos vector is in the 
+-c          matrix-vector product OP*x. (See remark 4 below).
+-c
+-c  V       Real  N by NCV array.  (OUTPUT)
+-c          The NCV columns of V contain the Lanczos basis vectors.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling
+-c          program.
+-c
+-c  IPARAM  Integer array of length 11.  (INPUT/OUTPUT)
+-c          IPARAM(1) = ISHIFT: method for selecting the implicit shifts.
+-c          The shifts selected at each iteration are used to restart
+-c          the Arnoldi iteration in an implicit fashion.
+-c          -------------------------------------------------------------
+-c          ISHIFT = 0: the shifts are provided by the user via
+-c                      reverse communication.  The NCV eigenvalues of
+-c                      the current tridiagonal matrix T are returned in
+-c                      the part of WORKL array corresponding to RITZ.
+-c                      See remark 6 below.
+-c          ISHIFT = 1: exact shifts with respect to the reduced 
+-c                      tridiagonal matrix T.  This is equivalent to 
+-c                      restarting the iteration with a starting vector 
+-c                      that is a linear combination of Ritz vectors 
+-c                      associated with the "wanted" Ritz values.
+-c          -------------------------------------------------------------
+-c
+-c          IPARAM(2) = LEVEC
+-c          No longer referenced. See remark 2 below.
+-c
+-c          IPARAM(3) = MXITER
+-c          On INPUT:  maximum number of Arnoldi update iterations allowed. 
+-c          On OUTPUT: actual number of Arnoldi update iterations taken. 
+-c
+-c          IPARAM(4) = NB: blocksize to be used in the recurrence.
+-c          The code currently works only for NB = 1.
+-c
+-c          IPARAM(5) = NCONV: number of "converged" Ritz values.
+-c          This represents the number of Ritz values that satisfy
+-c          the convergence criterion.
+-c
+-c          IPARAM(6) = IUPD
+-c          No longer referenced. Implicit restarting is ALWAYS used. 
+-c
+-c          IPARAM(7) = MODE
+-c          On INPUT determines what type of eigenproblem is being solved.
+-c          Must be 1,2,3,4,5; See under \Description of ssaupd for the 
+-c          five modes available.
+-c
+-c          IPARAM(8) = NP
+-c          When ido = 3 and the user provides shifts through reverse
+-c          communication (IPARAM(1)=0), ssaupd returns NP, the number
+-c          of shifts the user is to provide. 0 < NP <=NCV-NEV. See Remark
+-c          6 below.
+-c
+-c          IPARAM(9) = NUMOP, IPARAM(10) = NUMOPB, IPARAM(11) = NUMREO,
+-c          OUTPUT: NUMOP  = total number of OP*x operations,
+-c                  NUMOPB = total number of B*x operations if BMAT='G',
+-c                  NUMREO = total number of steps of re-orthogonalization.        
+-c
+-c  IPNTR   Integer array of length 11.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORKD and WORKL
+-c          arrays for matrices/vectors used by the Lanczos iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X in WORKD.
+-c          IPNTR(2): pointer to the current result vector Y in WORKD.
+-c          IPNTR(3): pointer to the vector B * X in WORKD when used in 
+-c                    the shift-and-invert mode.
+-c          IPNTR(4): pointer to the next available location in WORKL
+-c                    that is untouched by the program.
+-c          IPNTR(5): pointer to the NCV by 2 tridiagonal matrix T in WORKL.
+-c          IPNTR(6): pointer to the NCV RITZ values array in WORKL.
+-c          IPNTR(7): pointer to the Ritz estimates in array WORKL associated
+-c                    with the Ritz values located in RITZ in WORKL.
+-c          IPNTR(11): pointer to the NP shifts in WORKL. See Remark 6 below.
+-c
+-c          Note: IPNTR(8:10) is only referenced by sseupd. See Remark 2.
+-c          IPNTR(8): pointer to the NCV RITZ values of the original system.
+-c          IPNTR(9): pointer to the NCV corresponding error bounds.
+-c          IPNTR(10): pointer to the NCV by NCV matrix of eigenvectors
+-c                     of the tridiagonal matrix T. Only referenced by
+-c                     sseupd if RVEC = .TRUE. See Remarks.
+-c          -------------------------------------------------------------
+-c          
+-c  WORKD   Real  work array of length 3*N.  (REVERSE COMMUNICATION)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The user should not use WORKD 
+-c          as temporary workspace during the iteration. Upon termination
+-c          WORKD(1:N) contains B*RESID(1:N). If the Ritz vectors are desired
+-c          subroutine sseupd uses this output.
+-c          See Data Distribution Note below.  
+-c
+-c  WORKL   Real  work array of length LWORKL.  (OUTPUT/WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  See Data Distribution Note below.
+-c
+-c  LWORKL  Integer.  (INPUT)
+-c          LWORKL must be at least NCV**2 + 8*NCV .
+-c
+-c  INFO    Integer.  (INPUT/OUTPUT)
+-c          If INFO .EQ. 0, a randomly initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          Error flag on output.
+-c          =  0: Normal exit.
+-c          =  1: Maximum number of iterations taken.
+-c                All possible eigenvalues of OP has been found. IPARAM(5)  
+-c                returns the number of wanted converged Ritz values.
+-c          =  2: No longer an informational error. Deprecated starting
+-c                with release 2 of ARPACK.
+-c          =  3: No shifts could be applied during a cycle of the 
+-c                Implicitly restarted Arnoldi iteration. One possibility 
+-c                is to increase the size of NCV relative to NEV. 
+-c                See remark 4 below.
+-c          = -1: N must be positive.
+-c          = -2: NEV must be positive.
+-c          = -3: NCV must be greater than NEV and less than or equal to N.
+-c          = -4: The maximum number of Arnoldi update iterations allowed
+-c                must be greater than zero.
+-c          = -5: WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.
+-c          = -6: BMAT must be one of 'I' or 'G'.
+-c          = -7: Length of private work array WORKL is not sufficient.
+-c          = -8: Error return from trid. eigenvalue calculation;
+-c                Informatinal error from LAPACK routine ssteqr.
+-c          = -9: Starting vector is zero.
+-c          = -10: IPARAM(7) must be 1,2,3,4,5.
+-c          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatable.
+-c          = -12: IPARAM(1) must be equal to 0 or 1.
+-c          = -13: NEV and WHICH = 'BE' are incompatable.
+-c          = -9999: Could not build an Arnoldi factorization.
+-c                   IPARAM(5) returns the size of the current Arnoldi
+-c                   factorization. The user is advised to check that
+-c                   enough workspace and array storage has been allocated.
+-c
+-c
+-c\Remarks
+-c  1. The converged Ritz values are always returned in ascending 
+-c     algebraic order.  The computed Ritz values are approximate
+-c     eigenvalues of OP.  The selection of WHICH should be made
+-c     with this in mind when Mode = 3,4,5.  After convergence, 
+-c     approximate eigenvalues of the original problem may be obtained 
+-c     with the ARPACK subroutine sseupd. 
+-c
+-c  2. If the Ritz vectors corresponding to the converged Ritz values
+-c     are needed, the user must call sseupd immediately following completion
+-c     of ssaupd. This is new starting with version 2.1 of ARPACK.
+-c
+-c  3. If M can be factored into a Cholesky factorization M = LL`
+-c     then Mode = 2 should not be selected.  Instead one should use
+-c     Mode = 1 with  OP = inv(L)*A*inv(L`).  Appropriate triangular 
+-c     linear systems should be solved with L and L` rather
+-c     than computing inverses.  After convergence, an approximate
+-c     eigenvector z of the original problem is recovered by solving
+-c     L`z = x  where x is a Ritz vector of OP.
+-c
+-c  4. At present there is no a-priori analysis to guide the selection
+-c     of NCV relative to NEV.  The only formal requrement is that NCV > NEV.
+-c     However, it is recommended that NCV .ge. 2*NEV.  If many problems of
+-c     the same type are to be solved, one should experiment with increasing
+-c     NCV while keeping NEV fixed for a given test problem.  This will 
+-c     usually decrease the required number of OP*x operations but it
+-c     also increases the work and storage required to maintain the orthogonal
+-c     basis vectors.   The optimal "cross-over" with respect to CPU time
+-c     is problem dependent and must be determined empirically.
+-c
+-c  5. If IPARAM(7) = 2 then in the Reverse commuication interface the user
+-c     must do the following. When IDO = 1, Y = OP * X is to be computed.
+-c     When IPARAM(7) = 2 OP = inv(B)*A. After computing A*X the user
+-c     must overwrite X with A*X. Y is then the solution to the linear set
+-c     of equations B*Y = A*X.
+-c
+-c  6. When IPARAM(1) = 0, and IDO = 3, the user needs to provide the 
+-c     NP = IPARAM(8) shifts in locations: 
+-c     1   WORKL(IPNTR(11))           
+-c     2   WORKL(IPNTR(11)+1)         
+-c                        .           
+-c                        .           
+-c                        .      
+-c     NP  WORKL(IPNTR(11)+NP-1). 
+-c
+-c     The eigenvalues of the current tridiagonal matrix are located in 
+-c     WORKL(IPNTR(6)) through WORKL(IPNTR(6)+NCV-1). They are in the
+-c     order defined by WHICH. The associated Ritz estimates are located in
+-c     WORKL(IPNTR(8)), WORKL(IPNTR(8)+1), ... , WORKL(IPNTR(8)+NCV-1).
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\Data Distribution Note:
+-c
+-c  Fortran-D syntax:
+-c  ================
+-c  REAL       RESID(N), V(LDV,NCV), WORKD(3*N), WORKL(LWORKL)
+-c  DECOMPOSE  D1(N), D2(N,NCV)
+-c  ALIGN      RESID(I) with D1(I)
+-c  ALIGN      V(I,J)   with D2(I,J)
+-c  ALIGN      WORKD(I) with D1(I)     range (1:N)
+-c  ALIGN      WORKD(I) with D1(I-N)   range (N+1:2*N)
+-c  ALIGN      WORKD(I) with D1(I-2*N) range (2*N+1:3*N)
+-c  DISTRIBUTE D1(BLOCK), D2(BLOCK,:)
+-c  REPLICATED WORKL(LWORKL)
+-c
+-c  Cray MPP syntax:
+-c  ===============
+-c  REAL       RESID(N), V(LDV,NCV), WORKD(N,3), WORKL(LWORKL)
+-c  SHARED     RESID(BLOCK), V(BLOCK,:), WORKD(BLOCK,:)
+-c  REPLICATED WORKL(LWORKL)
+-c  
+-c
+-c\BeginLib
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c  3. B.N. Parlett, "The Symmetric Eigenvalue Problem". Prentice-Hall,
+-c     1980.
+-c  4. B.N. Parlett, B. Nour-Omid, "Towards a Black Box Lanczos Program",
+-c     Computer Physics Communications, 53 (1989), pp 169-179.
+-c  5. B. Nour-Omid, B.N. Parlett, T. Ericson, P.S. Jensen, "How to
+-c     Implement the Spectral Transformation", Math. Comp., 48 (1987),
+-c     pp 663-673.
+-c  6. R.G. Grimes, J.G. Lewis and H.D. Simon, "A Shifted Block Lanczos 
+-c     Algorithm for Solving Sparse Symmetric Generalized Eigenproblems", 
+-c     SIAM J. Matr. Anal. Apps.,  January (1993).
+-c  7. L. Reichel, W.B. Gragg, "Algorithm 686: FORTRAN Subroutines
+-c     for Updating the QR decomposition", ACM TOMS, December 1990,
+-c     Volume 16 Number 4, pp 369-377.
+-c  8. R.B. Lehoucq, D.C. Sorensen, "Implementation of Some Spectral
+-c     Transformations in a k-Step Arnoldi Method". In Preparation.
+-c
+-c\Routines called:
+-c     ssaup2  ARPACK routine that implements the Implicitly Restarted
+-c             Arnoldi Iteration.
+-c     sstats  ARPACK routine that initialize timing and other statistics
+-c             variables.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     svout   ARPACK utility routine that prints vectors.
+-c     slamch  LAPACK routine that determines machine constants.
+-c
+-c\Authors
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c 
+-c\Revision history:
+-c     12/15/93: Version ' 2.4' 
+-c
+-c\SCCS Information: @(#) 
+-c FILE: saupd.F   SID: 2.8   DATE OF SID: 04/10/01   RELEASE: 2 
+-c
+-c\Remarks
+-c     1. None
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine ssaupd
+-     &   ( ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, 
+-     &     ipntr, workd, workl, lworkl, info )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1, which*2
+-      integer    ido, info, ldv, lworkl, n, ncv, nev
+-      Real 
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    iparam(11), ipntr(11)
+-      Real 
+-     &           resid(n), v(ldv,ncv), workd(3*n), workl(lworkl)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real 
+-     &           one, zero
+-      parameter (one = 1.0E+0 , zero = 0.0E+0 )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    bounds, ierr, ih, iq, ishift, iupd, iw, 
+-     &           ldh, ldq, msglvl, mxiter, mode, nb,
+-     &           nev0, next, np, ritz, j
+-      save       bounds, ierr, ih, iq, ishift, iupd, iw,
+-     &           ldh, ldq, msglvl, mxiter, mode, nb,
+-     &           nev0, next, np, ritz
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   ssaup2,  svout, ivout, arscnd, sstats
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real 
+-     &           slamch
+-      external   slamch
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c 
+-      if (ido .eq. 0) then
+-c
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call sstats
+-         call arscnd (t0)
+-         msglvl = msaupd
+-c
+-         ierr   = 0
+-         ishift = iparam(1)
+-         mxiter = iparam(3)
+-c         nb     = iparam(4)
+-         nb     = 1
+-c
+-c        %--------------------------------------------%
+-c        | Revision 2 performs only implicit restart. |
+-c        %--------------------------------------------%
+-c
+-         iupd   = 1
+-         mode   = iparam(7)
+-c
+-c        %----------------%
+-c        | Error checking |
+-c        %----------------%
+-c
+-         if (n .le. 0) then
+-            ierr = -1
+-         else if (nev .le. 0) then
+-            ierr = -2
+-         else if (ncv .le. nev .or.  ncv .gt. n) then
+-            ierr = -3
+-         end if
+-c
+-c        %----------------------------------------------%
+-c        | NP is the number of additional steps to      |
+-c        | extend the length NEV Lanczos factorization. |
+-c        %----------------------------------------------%
+-c
+-         np     = ncv - nev
+-c 
+-         if (mxiter .le. 0)                     ierr = -4
+-         if (which .ne. 'LM' .and.
+-     &       which .ne. 'SM' .and.
+-     &       which .ne. 'LA' .and.
+-     &       which .ne. 'SA' .and.
+-     &       which .ne. 'BE')                   ierr = -5
+-         if (bmat .ne. 'I' .and. bmat .ne. 'G') ierr = -6
+-c
+-         if (lworkl .lt. ncv**2 + 8*ncv)        ierr = -7
+-         if (mode .lt. 1 .or. mode .gt. 5) then
+-                                                ierr = -10
+-         else if (mode .eq. 1 .and. bmat .eq. 'G') then
+-                                                ierr = -11
+-         else if (ishift .lt. 0 .or. ishift .gt. 1) then
+-                                                ierr = -12
+-         else if (nev .eq. 1 .and. which .eq. 'BE') then
+-                                                ierr = -13
+-         end if
+-c 
+-c        %------------%
+-c        | Error Exit |
+-c        %------------%
+-c
+-         if (ierr .ne. 0) then
+-            info = ierr
+-            ido  = 99
+-            go to 9000
+-         end if
+-c 
+-c        %------------------------%
+-c        | Set default parameters |
+-c        %------------------------%
+-c
+-         if (nb .le. 0)                         nb = 1
+-         if (tol .le. zero)                     tol = slamch('EpsMach')
+-c
+-c        %----------------------------------------------%
+-c        | NP is the number of additional steps to      |
+-c        | extend the length NEV Lanczos factorization. |
+-c        | NEV0 is the local variable designating the   |
+-c        | size of the invariant subspace desired.      |
+-c        %----------------------------------------------%
+-c
+-         np     = ncv - nev
+-         nev0   = nev 
+-c 
+-c        %-----------------------------%
+-c        | Zero out internal workspace |
+-c        %-----------------------------%
+-c
+-         do 10 j = 1, ncv**2 + 8*ncv
+-            workl(j) = zero
+- 10      continue
+-c 
+-c        %-------------------------------------------------------%
+-c        | Pointer into WORKL for address of H, RITZ, BOUNDS, Q  |
+-c        | etc... and the remaining workspace.                   |
+-c        | Also update pointer to be used on output.             |
+-c        | Memory is laid out as follows:                        |
+-c        | workl(1:2*ncv) := generated tridiagonal matrix        |
+-c        | workl(2*ncv+1:2*ncv+ncv) := ritz values               |
+-c        | workl(3*ncv+1:3*ncv+ncv) := computed error bounds     |
+-c        | workl(4*ncv+1:4*ncv+ncv*ncv) := rotation matrix Q     |
+-c        | workl(4*ncv+ncv*ncv+1:7*ncv+ncv*ncv) := workspace     |
+-c        %-------------------------------------------------------%
+-c
+-         ldh    = ncv
+-         ldq    = ncv
+-         ih     = 1
+-         ritz   = ih     + 2*ldh
+-         bounds = ritz   + ncv
+-         iq     = bounds + ncv
+-         iw     = iq     + ncv**2
+-         next   = iw     + 3*ncv
+-c
+-         ipntr(4) = next
+-         ipntr(5) = ih
+-         ipntr(6) = ritz
+-         ipntr(7) = bounds
+-         ipntr(11) = iw
+-      end if
+-c
+-c     %-------------------------------------------------------%
+-c     | Carry out the Implicitly restarted Lanczos Iteration. |
+-c     %-------------------------------------------------------%
+-c
+-      call ssaup2 
+-     &   ( ido, bmat, n, which, nev0, np, tol, resid, mode, iupd,
+-     &     ishift, mxiter, v, ldv, workl(ih), ldh, workl(ritz),
+-     &     workl(bounds), workl(iq), ldq, workl(iw), ipntr, workd,
+-     &     info )
+-c
+-c     %--------------------------------------------------%
+-c     | ido .ne. 99 implies use of reverse communication |
+-c     | to compute operations involving OP or shifts.    |
+-c     %--------------------------------------------------%
+-c
+-      if (ido .eq. 3) iparam(8) = np
+-      if (ido .ne. 99) go to 9000
+-c 
+-      iparam(3) = mxiter
+-      iparam(5) = np
+-      iparam(9) = nopx
+-      iparam(10) = nbx
+-      iparam(11) = nrorth
+-c
+-c     %------------------------------------%
+-c     | Exit if there was an informational |
+-c     | error within ssaup2.               |
+-c     %------------------------------------%
+-c
+-      if (info .lt. 0) go to 9000
+-      if (info .eq. 2) info = 3
+-c
+-      if (msglvl .gt. 0) then
+-         call ivout (logfil, 1, mxiter, ndigit,
+-     &               '_saupd: number of update iterations taken')
+-         call ivout (logfil, 1, np, ndigit,
+-     &               '_saupd: number of "converged" Ritz values')
+-         call svout (logfil, np, workl(Ritz), ndigit, 
+-     &               '_saupd: final Ritz values')
+-         call svout (logfil, np, workl(Bounds), ndigit, 
+-     &               '_saupd: corresponding error bounds')
+-      end if 
+-c
+-      call arscnd (t1)
+-      tsaupd = t1 - t0
+-c 
+-      if (msglvl .gt. 0) then
+-c
+-c        %--------------------------------------------------------%
+-c        | Version Number & Version Date are defined in version.h |
+-c        %--------------------------------------------------------%
+-c
+-         write (6,1000)
+-         write (6,1100) mxiter, nopx, nbx, nrorth, nitref, nrstrt,
+-     &                  tmvopx, tmvbx, tsaupd, tsaup2, tsaitr, titref,
+-     &                  tgetv0, tseigt, tsgets, tsapps, tsconv
+- 1000    format (//,
+-     &      5x, '==========================================',/
+-     &      5x, '= Symmetric implicit Arnoldi update code =',/
+-     &      5x, '= Version Number:', ' 2.4' , 19x, ' =',/
+-     &      5x, '= Version Date:  ', ' 07/31/96' , 14x, ' =',/
+-     &      5x, '==========================================',/
+-     &      5x, '= Summary of timing statistics           =',/
+-     &      5x, '==========================================',//)
+- 1100    format (
+-     &      5x, 'Total number update iterations             = ', i5,/
+-     &      5x, 'Total number of OP*x operations            = ', i5,/
+-     &      5x, 'Total number of B*x operations             = ', i5,/
+-     &      5x, 'Total number of reorthogonalization steps  = ', i5,/
+-     &      5x, 'Total number of iterative refinement steps = ', i5,/
+-     &      5x, 'Total number of restart steps              = ', i5,/
+-     &      5x, 'Total time in user OP*x operation          = ', f12.6,/
+-     &      5x, 'Total time in user B*x operation           = ', f12.6,/
+-     &      5x, 'Total time in Arnoldi update routine       = ', f12.6,/
+-     &      5x, 'Total time in saup2 routine                = ', f12.6,/
+-     &      5x, 'Total time in basic Arnoldi iteration loop = ', f12.6,/
+-     &      5x, 'Total time in reorthogonalization phase    = ', f12.6,/
+-     &      5x, 'Total time in (re)start vector generation  = ', f12.6,/
+-     &      5x, 'Total time in trid eigenvalue subproblem   = ', f12.6,/
+-     &      5x, 'Total time in getting the shifts           = ', f12.6,/
+-     &      5x, 'Total time in applying the shifts          = ', f12.6,/
+-     &      5x, 'Total time in convergence testing          = ', f12.6)
+-      end if
+-c 
+- 9000 continue
+-c 
+-      return
+-c
+-c     %---------------%
+-c     | End of ssaupd |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/ssconv.f
++++ /dev/null
+@@ -1,138 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: ssconv
+-c
+-c\Description: 
+-c  Convergence testing for the symmetric Arnoldi eigenvalue routine.
+-c
+-c\Usage:
+-c  call ssconv
+-c     ( N, RITZ, BOUNDS, TOL, NCONV )
+-c
+-c\Arguments
+-c  N       Integer.  (INPUT)
+-c          Number of Ritz values to check for convergence.
+-c
+-c  RITZ    Real array of length N.  (INPUT)
+-c          The Ritz values to be checked for convergence.
+-c
+-c  BOUNDS  Real array of length N.  (INPUT)
+-c          Ritz estimates associated with the Ritz values in RITZ.
+-c
+-c  TOL     Real scalar.  (INPUT)
+-c          Desired relative accuracy for a Ritz value to be considered
+-c          "converged".
+-c
+-c  NCONV   Integer scalar.  (OUTPUT)
+-c          Number of "converged" Ritz values.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Routines called:
+-c     arscnd  ARPACK utility routine for timing.
+-c     slamch  LAPACK routine that determines machine constants. 
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University 
+-c     Dept. of Computational &     Houston, Texas 
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\SCCS Information: @(#) 
+-c FILE: sconv.F   SID: 2.4   DATE OF SID: 4/19/96   RELEASE: 2
+-c
+-c\Remarks
+-c     1. Starting with version 2.4, this routine no longer uses the
+-c        Parlett strategy using the gap conditions. 
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine ssconv (n, ritz, bounds, tol, nconv)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    n, nconv
+-      Real
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Real
+-     &           ritz(n), bounds(n)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i
+-      Real
+-     &           temp, eps23
+-c
+-c     %-------------------%
+-c     | External routines |
+-c     %-------------------%
+-c
+-      Real
+-     &           slamch
+-      external   slamch
+-
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    abs
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      call arscnd (t0)
+-c
+-      eps23 = slamch('Epsilon-Machine') 
+-      eps23 = eps23**(2.0E+0 / 3.0E+0)
+-c
+-      nconv  = 0
+-      do 10 i = 1, n
+-c
+-c        %-----------------------------------------------------%
+-c        | The i-th Ritz value is considered "converged"       |
+-c        | when: bounds(i) .le. TOL*max(eps23, abs(ritz(i)))   |
+-c        %-----------------------------------------------------%
+-c
+-         temp = max( eps23, abs(ritz(i)) )
+-         if ( bounds(i) .le. tol*temp ) then
+-            nconv = nconv + 1
+-         end if
+-c
+-   10 continue
+-c 
+-      call arscnd (t1)
+-      tsconv = tsconv + (t1 - t0)
+-c 
+-      return
+-c
+-c     %---------------%
+-c     | End of ssconv |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/sseigt.f
++++ /dev/null
+@@ -1,181 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: sseigt
+-c
+-c\Description: 
+-c  Compute the eigenvalues of the current symmetric tridiagonal matrix
+-c  and the corresponding error bounds given the current residual norm.
+-c
+-c\Usage:
+-c  call sseigt
+-c     ( RNORM, N, H, LDH, EIG, BOUNDS, WORKL, IERR )
+-c
+-c\Arguments
+-c  RNORM   Real scalar.  (INPUT)
+-c          RNORM contains the residual norm corresponding to the current
+-c          symmetric tridiagonal matrix H.
+-c
+-c  N       Integer.  (INPUT)
+-c          Size of the symmetric tridiagonal matrix H.
+-c
+-c  H       Real N by 2 array.  (INPUT)
+-c          H contains the symmetric tridiagonal matrix with the 
+-c          subdiagonal in the first column starting at H(2,1) and the 
+-c          main diagonal in second column.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling 
+-c          program.
+-c
+-c  EIG     Real array of length N.  (OUTPUT)
+-c          On output, EIG contains the N eigenvalues of H possibly 
+-c          unsorted.  The BOUNDS arrays are returned in the
+-c          same sorted order as EIG.
+-c
+-c  BOUNDS  Real array of length N.  (OUTPUT)
+-c          On output, BOUNDS contains the error estimates corresponding
+-c          to the eigenvalues EIG.  This is equal to RNORM times the
+-c          last components of the eigenvectors corresponding to the
+-c          eigenvalues in EIG.
+-c
+-c  WORKL   Real work array of length 3*N.  (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.
+-c
+-c  IERR    Integer.  (OUTPUT)
+-c          Error exit flag from sstqrb.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     sstqrb  ARPACK routine that computes the eigenvalues and the
+-c             last components of the eigenvectors of a symmetric
+-c             and tridiagonal matrix.
+-c     arscnd  ARPACK utility routine for timing.
+-c     svout   ARPACK utility routine that prints vectors.
+-c     scopy   Level 1 BLAS that copies one vector to another.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University 
+-c     Dept. of Computational &     Houston, Texas 
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.4'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: seigt.F   SID: 2.4   DATE OF SID: 8/27/96   RELEASE: 2
+-c
+-c\Remarks
+-c     None
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine sseigt 
+-     &   ( rnorm, n, h, ldh, eig, bounds, workl, ierr )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    ierr, ldh, n
+-      Real
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Real
+-     &           eig(n), bounds(n), h(ldh,2), workl(3*n)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real
+-     &           zero
+-      parameter (zero = 0.0E+0)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i, k, msglvl
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   scopy, sstqrb, svout, arscnd
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------% 
+-c
+-      call arscnd (t0)
+-      msglvl = mseigt
+-c
+-      if (msglvl .gt. 0) then
+-         call svout (logfil, n, h(1,2), ndigit,
+-     &              '_seigt: main diagonal of matrix H')
+-         if (n .gt. 1) then
+-         call svout (logfil, n-1, h(2,1), ndigit,
+-     &              '_seigt: sub diagonal of matrix H')
+-         end if
+-      end if
+-c
+-      call scopy  (n, h(1,2), 1, eig, 1)
+-      call scopy  (n-1, h(2,1), 1, workl, 1)
+-      call sstqrb (n, eig, workl, bounds, workl(n+1), ierr)
+-      if (ierr .ne. 0) go to 9000
+-      if (msglvl .gt. 1) then
+-         call svout (logfil, n, bounds, ndigit,
+-     &              '_seigt: last row of the eigenvector matrix for H')
+-      end if
+-c
+-c     %-----------------------------------------------%
+-c     | Finally determine the error bounds associated |
+-c     | with the n Ritz values of H.                  |
+-c     %-----------------------------------------------%
+-c
+-      do 30 k = 1, n
+-         bounds(k) = rnorm*abs(bounds(k))
+-   30 continue
+-c 
+-      call arscnd (t1)
+-      tseigt = tseigt + (t1 - t0)
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of sseigt |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/ssesrt.f
++++ /dev/null
+@@ -1,217 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: ssesrt
+-c
+-c\Description:
+-c  Sort the array X in the order specified by WHICH and optionally 
+-c  apply the permutation to the columns of the matrix A.
+-c
+-c\Usage:
+-c  call ssesrt
+-c     ( WHICH, APPLY, N, X, NA, A, LDA)
+-c
+-c\Arguments
+-c  WHICH   Character*2.  (Input)
+-c          'LM' -> X is sorted into increasing order of magnitude.
+-c          'SM' -> X is sorted into decreasing order of magnitude.
+-c          'LA' -> X is sorted into increasing order of algebraic.
+-c          'SA' -> X is sorted into decreasing order of algebraic.
+-c
+-c  APPLY   Logical.  (Input)
+-c          APPLY = .TRUE.  -> apply the sorted order to A.
+-c          APPLY = .FALSE. -> do not apply the sorted order to A.
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the array X.
+-c
+-c  X      Real array of length N.  (INPUT/OUTPUT)
+-c          The array to be sorted.
+-c
+-c  NA      Integer.  (INPUT)
+-c          Number of rows of the matrix A.
+-c
+-c  A      Real array of length NA by N.  (INPUT/OUTPUT)
+-c         
+-c  LDA     Integer.  (INPUT)
+-c          Leading dimension of A.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Routines
+-c     sswap  Level 1 BLAS that swaps the contents of two vectors.
+-c
+-c\Authors
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University 
+-c     Dept. of Computational &     Houston, Texas 
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\Revision history:
+-c     12/15/93: Version ' 2.1'.
+-c               Adapted from the sort routine in LANSO and 
+-c               the ARPACK code ssortr
+-c
+-c\SCCS Information: @(#) 
+-c FILE: sesrt.F   SID: 2.3   DATE OF SID: 4/19/96   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine ssesrt (which, apply, n, x, na, a, lda)
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character*2 which
+-      logical    apply
+-      integer    lda, n, na
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Real
+-     &           x(0:n-1), a(lda, 0:n-1)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i, igap, j
+-      Real
+-     &           temp
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   sswap
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      igap = n / 2
+-c 
+-      if (which .eq. 'SA') then
+-c
+-c        X is sorted into decreasing order of algebraic.
+-c
+-   10    continue
+-         if (igap .eq. 0) go to 9000
+-         do 30 i = igap, n-1
+-            j = i-igap
+-   20       continue
+-c
+-            if (j.lt.0) go to 30
+-c
+-            if (x(j).lt.x(j+igap)) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-               if (apply) call sswap( na, a(1, j), 1, a(1,j+igap), 1)
+-            else
+-               go to 30
+-            endif
+-            j = j-igap
+-            go to 20
+-   30    continue
+-         igap = igap / 2
+-         go to 10
+-c
+-      else if (which .eq. 'SM') then
+-c
+-c        X is sorted into decreasing order of magnitude.
+-c
+-   40    continue
+-         if (igap .eq. 0) go to 9000
+-         do 60 i = igap, n-1
+-            j = i-igap
+-   50       continue
+-c
+-            if (j.lt.0) go to 60
+-c
+-            if (abs(x(j)).lt.abs(x(j+igap))) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-               if (apply) call sswap( na, a(1, j), 1, a(1,j+igap), 1)
+-            else
+-               go to 60
+-            endif
+-            j = j-igap
+-            go to 50
+-   60    continue
+-         igap = igap / 2
+-         go to 40
+-c
+-      else if (which .eq. 'LA') then
+-c
+-c        X is sorted into increasing order of algebraic.
+-c
+-   70    continue
+-         if (igap .eq. 0) go to 9000
+-         do 90 i = igap, n-1
+-            j = i-igap
+-   80       continue
+-c
+-            if (j.lt.0) go to 90
+-c           
+-            if (x(j).gt.x(j+igap)) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-               if (apply) call sswap( na, a(1, j), 1, a(1,j+igap), 1)
+-            else
+-               go to 90
+-            endif
+-            j = j-igap
+-            go to 80
+-   90    continue
+-         igap = igap / 2
+-         go to 70
+-c 
+-      else if (which .eq. 'LM') then
+-c
+-c        X is sorted into increasing order of magnitude.
+-c
+-  100    continue
+-         if (igap .eq. 0) go to 9000
+-         do 120 i = igap, n-1
+-            j = i-igap
+-  110       continue
+-c
+-            if (j.lt.0) go to 120
+-c
+-            if (abs(x(j)).gt.abs(x(j+igap))) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-               if (apply) call sswap( na, a(1, j), 1, a(1,j+igap), 1)
+-            else
+-               go to 120
+-            endif
+-            j = j-igap
+-            go to 110
+-  120    continue
+-         igap = igap / 2
+-         go to 100
+-      end if
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of ssesrt |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/sseupd.f
++++ /dev/null
+@@ -1,857 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: sseupd
+-c
+-c\Description: 
+-c
+-c  This subroutine returns the converged approximations to eigenvalues
+-c  of A*z = lambda*B*z and (optionally):
+-c
+-c      (1) the corresponding approximate eigenvectors,
+-c
+-c      (2) an orthonormal (Lanczos) basis for the associated approximate
+-c          invariant subspace,
+-c
+-c      (3) Both.
+-c
+-c  There is negligible additional cost to obtain eigenvectors.  An orthonormal
+-c  (Lanczos) basis is always computed.  There is an additional storage cost 
+-c  of n*nev if both are requested (in this case a separate array Z must be 
+-c  supplied).
+-c
+-c  These quantities are obtained from the Lanczos factorization computed
+-c  by SSAUPD for the linear operator OP prescribed by the MODE selection
+-c  (see IPARAM(7) in SSAUPD documentation.)  SSAUPD must be called before
+-c  this routine is called. These approximate eigenvalues and vectors are 
+-c  commonly called Ritz values and Ritz vectors respectively.  They are 
+-c  referred to as such in the comments that follow.   The computed orthonormal 
+-c  basis for the invariant subspace corresponding to these Ritz values is 
+-c  referred to as a Lanczos basis.
+-c
+-c  See documentation in the header of the subroutine SSAUPD for a definition 
+-c  of OP as well as other terms and the relation of computed Ritz values 
+-c  and vectors of OP with respect to the given problem  A*z = lambda*B*z.  
+-c
+-c  The approximate eigenvalues of the original problem are returned in
+-c  ascending algebraic order.  The user may elect to call this routine
+-c  once for each desired Ritz vector and store it peripherally if desired.
+-c  There is also the option of computing a selected set of these vectors
+-c  with a single call.
+-c
+-c\Usage:
+-c  call sseupd 
+-c     ( RVEC, HOWMNY, SELECT, D, Z, LDZ, SIGMA, BMAT, N, WHICH, NEV, TOL,
+-c       RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD, WORKL, LWORKL, INFO )
+-c
+-c  RVEC    LOGICAL  (INPUT) 
+-c          Specifies whether Ritz vectors corresponding to the Ritz value 
+-c          approximations to the eigenproblem A*z = lambda*B*z are computed.
+-c
+-c             RVEC = .FALSE.     Compute Ritz values only.
+-c
+-c             RVEC = .TRUE.      Compute Ritz vectors.
+-c
+-c  HOWMNY  Character*1  (INPUT) 
+-c          Specifies how many Ritz vectors are wanted and the form of Z
+-c          the matrix of Ritz vectors. See remark 1 below.
+-c          = 'A': compute NEV Ritz vectors;
+-c          = 'S': compute some of the Ritz vectors, specified
+-c                 by the logical array SELECT.
+-c
+-c  SELECT  Logical array of dimension NCV.  (INPUT/WORKSPACE)
+-c          If HOWMNY = 'S', SELECT specifies the Ritz vectors to be
+-c          computed. To select the Ritz vector corresponding to a
+-c          Ritz value D(j), SELECT(j) must be set to .TRUE.. 
+-c          If HOWMNY = 'A' , SELECT is used as a workspace for
+-c          reordering the Ritz values.
+-c
+-c  D       Real  array of dimension NEV.  (OUTPUT)
+-c          On exit, D contains the Ritz value approximations to the
+-c          eigenvalues of A*z = lambda*B*z. The values are returned
+-c          in ascending order. If IPARAM(7) = 3,4,5 then D represents
+-c          the Ritz values of OP computed by ssaupd transformed to
+-c          those of the original eigensystem A*z = lambda*B*z. If 
+-c          IPARAM(7) = 1,2 then the Ritz values of OP are the same 
+-c          as the those of A*z = lambda*B*z.
+-c
+-c  Z       Real  N by NEV array if HOWMNY = 'A'.  (OUTPUT)
+-c          On exit, Z contains the B-orthonormal Ritz vectors of the
+-c          eigensystem A*z = lambda*B*z corresponding to the Ritz
+-c          value approximations.
+-c          If  RVEC = .FALSE. then Z is not referenced.
+-c          NOTE: The array Z may be set equal to first NEV columns of the 
+-c          Arnoldi/Lanczos basis array V computed by SSAUPD.
+-c
+-c  LDZ     Integer.  (INPUT)
+-c          The leading dimension of the array Z.  If Ritz vectors are
+-c          desired, then  LDZ .ge.  max( 1, N ).  In any case,  LDZ .ge. 1.
+-c
+-c  SIGMA   Real   (INPUT)
+-c          If IPARAM(7) = 3,4,5 represents the shift. Not referenced if
+-c          IPARAM(7) = 1 or 2.
+-c
+-c
+-c  **** The remaining arguments MUST be the same as for the   ****
+-c  **** call to SSAUPD that was just completed.               ****
+-c
+-c  NOTE: The remaining arguments
+-c
+-c           BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR,
+-c           WORKD, WORKL, LWORKL, INFO
+-c
+-c         must be passed directly to SSEUPD following the last call
+-c         to SSAUPD.  These arguments MUST NOT BE MODIFIED between
+-c         the the last call to SSAUPD and the call to SSEUPD.
+-c
+-c  Two of these parameters (WORKL, INFO) are also output parameters:
+-c
+-c  WORKL   Real  work array of length LWORKL.  (OUTPUT/WORKSPACE)
+-c          WORKL(1:4*ncv) contains information obtained in
+-c          ssaupd.  They are not changed by sseupd.
+-c          WORKL(4*ncv+1:ncv*ncv+8*ncv) holds the
+-c          untransformed Ritz values, the computed error estimates,
+-c          and the associated eigenvector matrix of H.
+-c
+-c          Note: IPNTR(8:10) contains the pointer into WORKL for addresses
+-c          of the above information computed by sseupd.
+-c          -------------------------------------------------------------
+-c          IPNTR(8): pointer to the NCV RITZ values of the original system.
+-c          IPNTR(9): pointer to the NCV corresponding error bounds.
+-c          IPNTR(10): pointer to the NCV by NCV matrix of eigenvectors
+-c                     of the tridiagonal matrix T. Only referenced by
+-c                     sseupd if RVEC = .TRUE. See Remarks.
+-c          -------------------------------------------------------------
+-c
+-c  INFO    Integer.  (OUTPUT)
+-c          Error flag on output.
+-c          =  0: Normal exit.
+-c          = -1: N must be positive.
+-c          = -2: NEV must be positive.
+-c          = -3: NCV must be greater than NEV and less than or equal to N.
+-c          = -5: WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.
+-c          = -6: BMAT must be one of 'I' or 'G'.
+-c          = -7: Length of private work WORKL array is not sufficient.
+-c          = -8: Error return from trid. eigenvalue calculation;
+-c                Information error from LAPACK routine ssteqr.
+-c          = -9: Starting vector is zero.
+-c          = -10: IPARAM(7) must be 1,2,3,4,5.
+-c          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
+-c          = -12: NEV and WHICH = 'BE' are incompatible.
+-c          = -14: SSAUPD did not find any eigenvalues to sufficient
+-c                 accuracy.
+-c          = -15: HOWMNY must be one of 'A' or 'S' if RVEC = .true.
+-c          = -16: HOWMNY = 'S' not yet implemented
+-c          = -17: SSEUPD got a different count of the number of converged
+-c                 Ritz values than SSAUPD got.  This indicates the user
+-c                 probably made an error in passing data from SSAUPD to
+-c                 SSEUPD or that the data was modified before entering 
+-c                 SSEUPD.
+-c
+-c\BeginLib
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c  3. B.N. Parlett, "The Symmetric Eigenvalue Problem". Prentice-Hall,
+-c     1980.
+-c  4. B.N. Parlett, B. Nour-Omid, "Towards a Black Box Lanczos Program",
+-c     Computer Physics Communications, 53 (1989), pp 169-179.
+-c  5. B. Nour-Omid, B.N. Parlett, T. Ericson, P.S. Jensen, "How to
+-c     Implement the Spectral Transformation", Math. Comp., 48 (1987),
+-c     pp 663-673.
+-c  6. R.G. Grimes, J.G. Lewis and H.D. Simon, "A Shifted Block Lanczos 
+-c     Algorithm for Solving Sparse Symmetric Generalized Eigenproblems", 
+-c     SIAM J. Matr. Anal. Apps.,  January (1993).
+-c  7. L. Reichel, W.B. Gragg, "Algorithm 686: FORTRAN Subroutines
+-c     for Updating the QR decomposition", ACM TOMS, December 1990,
+-c     Volume 16 Number 4, pp 369-377.
+-c
+-c\Remarks
+-c  1. The converged Ritz values are always returned in increasing 
+-c     (algebraic) order.
+-c
+-c  2. Currently only HOWMNY = 'A' is implemented. It is included at this
+-c     stage for the user who wants to incorporate it. 
+-c
+-c\Routines called:
+-c     ssesrt  ARPACK routine that sorts an array X, and applies the
+-c             corresponding permutation to a matrix A.
+-c     ssortr  ssortr  ARPACK sorting routine.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     svout   ARPACK utility routine that prints vectors.
+-c     sgeqr2  LAPACK routine that computes the QR factorization of
+-c             a matrix.
+-c     slacpy  LAPACK matrix copy routine.
+-c     slamch  LAPACK routine that determines machine constants.
+-c     sorm2r  LAPACK routine that applies an orthogonal matrix in
+-c             factored form.
+-c     ssteqr  LAPACK routine that computes eigenvalues and eigenvectors
+-c             of a tridiagonal matrix.
+-c     sger    Level 2 BLAS rank one update to a matrix.
+-c     scopy   Level 1 BLAS that copies one vector to another .
+-c     snrm2   Level 1 BLAS that computes the norm of a vector.
+-c     sscal   Level 1 BLAS that scales a vector.
+-c     sswap   Level 1 BLAS that swaps the contents of two vectors.
+-
+-c\Authors
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Chao Yang                    Houston, Texas
+-c     Dept. of Computational & 
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c 
+-c\Revision history:
+-c     12/15/93: Version ' 2.1'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: seupd.F   SID: 2.11   DATE OF SID: 04/10/01   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-      subroutine sseupd(rvec  , howmny, select, d    ,
+-     &                   z     , ldz   , sigma , bmat ,
+-     &                   n     , which , nev   , tol  ,
+-     &                   resid , ncv   , v     , ldv  ,
+-     &                   iparam, ipntr , workd , workl,
+-     &                   lworkl, info )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat, howmny, which*2
+-      logical    rvec
+-      integer    info, ldz, ldv, lworkl, n, ncv, nev
+-      Real      
+-     &           sigma, tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    iparam(7), ipntr(11)
+-      logical    select(ncv)
+-      Real 
+-     &           d(nev)     , resid(n)  , v(ldv,ncv),
+-     &           z(ldz, nev), workd(2*n), workl(lworkl)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real 
+-     &           one, zero
+-      parameter (one = 1.0E+0 , zero = 0.0E+0 )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      character  type*6
+-      integer    bounds , ierr   , ih    , ihb   , ihd   ,
+-     &           iq     , iw     , j     , k     , ldh   ,
+-     &           ldq    , mode   , msglvl, nconv , next  ,
+-     &           ritz   , irz    , ibd   , np    , ishift,
+-     &           leftptr, rghtptr, numcnv, jj
+-      Real 
+-     &           bnorm2 , rnorm, temp, temp1, eps23
+-      logical    reord
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   scopy , sger  , sgeqr2, slacpy, sorm2r, sscal, 
+-     &           ssesrt, ssteqr, sswap , svout , ivout , ssortr
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real 
+-     &           snrm2, slamch
+-      external   snrm2, slamch
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    min
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c 
+-c     %------------------------%
+-c     | Set default parameters |
+-c     %------------------------%
+-c
+-      msglvl = mseupd
+-      mode = iparam(7)
+-      nconv = iparam(5)
+-      info = 0
+-c
+-c     %--------------%
+-c     | Quick return |
+-c     %--------------%
+-c
+-      if (nconv .eq. 0) go to 9000
+-      ierr = 0
+-c
+-      if (nconv .le. 0)                        ierr = -14 
+-      if (n .le. 0)                            ierr = -1
+-      if (nev .le. 0)                          ierr = -2
+-      if (ncv .le. nev .or.  ncv .gt. n)       ierr = -3
+-      if (which .ne. 'LM' .and.
+-     &    which .ne. 'SM' .and.
+-     &    which .ne. 'LA' .and.
+-     &    which .ne. 'SA' .and.
+-     &    which .ne. 'BE')                     ierr = -5
+-      if (bmat .ne. 'I' .and. bmat .ne. 'G')   ierr = -6
+-      if ( (howmny .ne. 'A' .and.
+-     &           howmny .ne. 'P' .and.
+-     &           howmny .ne. 'S') .and. rvec ) 
+-     &                                         ierr = -15
+-      if (rvec .and. howmny .eq. 'S')           ierr = -16
+-c
+-      if (rvec .and. lworkl .lt. ncv**2+8*ncv) ierr = -7
+-c     
+-      if (mode .eq. 1 .or. mode .eq. 2) then
+-         type = 'REGULR'
+-      else if (mode .eq. 3 ) then
+-         type = 'SHIFTI'
+-      else if (mode .eq. 4 ) then
+-         type = 'BUCKLE'
+-      else if (mode .eq. 5 ) then
+-         type = 'CAYLEY'
+-      else 
+-                                               ierr = -10
+-      end if
+-      if (mode .eq. 1 .and. bmat .eq. 'G')     ierr = -11
+-      if (nev .eq. 1 .and. which .eq. 'BE')    ierr = -12
+-c
+-c     %------------%
+-c     | Error Exit |
+-c     %------------%
+-c
+-      if (ierr .ne. 0) then
+-         info = ierr
+-         go to 9000
+-      end if
+-c     
+-c     %-------------------------------------------------------%
+-c     | Pointer into WORKL for address of H, RITZ, BOUNDS, Q  |
+-c     | etc... and the remaining workspace.                   |
+-c     | Also update pointer to be used on output.             |
+-c     | Memory is laid out as follows:                        |
+-c     | workl(1:2*ncv) := generated tridiagonal matrix H      |
+-c     |       The subdiagonal is stored in workl(2:ncv).      |
+-c     |       The dead spot is workl(1) but upon exiting      |
+-c     |       ssaupd stores the B-norm of the last residual   |
+-c     |       vector in workl(1). We use this !!!             |
+-c     | workl(2*ncv+1:2*ncv+ncv) := ritz values               |
+-c     |       The wanted values are in the first NCONV spots. |
+-c     | workl(3*ncv+1:3*ncv+ncv) := computed Ritz estimates   |
+-c     |       The wanted values are in the first NCONV spots. |
+-c     | NOTE: workl(1:4*ncv) is set by ssaupd and is not      |
+-c     |       modified by sseupd.                             |
+-c     %-------------------------------------------------------%
+-c
+-c     %-------------------------------------------------------%
+-c     | The following is used and set by sseupd.              |
+-c     | workl(4*ncv+1:4*ncv+ncv) := used as workspace during  |
+-c     |       computation of the eigenvectors of H. Stores    |
+-c     |       the diagonal of H. Upon EXIT contains the NCV   |
+-c     |       Ritz values of the original system. The first   |
+-c     |       NCONV spots have the wanted values. If MODE =   |
+-c     |       1 or 2 then will equal workl(2*ncv+1:3*ncv).    |
+-c     | workl(5*ncv+1:5*ncv+ncv) := used as workspace during  |
+-c     |       computation of the eigenvectors of H. Stores    |
+-c     |       the subdiagonal of H. Upon EXIT contains the    |
+-c     |       NCV corresponding Ritz estimates of the         |
+-c     |       original system. The first NCONV spots have the |
+-c     |       wanted values. If MODE = 1,2 then will equal    |
+-c     |       workl(3*ncv+1:4*ncv).                           |
+-c     | workl(6*ncv+1:6*ncv+ncv*ncv) := orthogonal Q that is  |
+-c     |       the eigenvector matrix for H as returned by     |
+-c     |       ssteqr. Not referenced if RVEC = .False.        |
+-c     |       Ordering follows that of workl(4*ncv+1:5*ncv)   |
+-c     | workl(6*ncv+ncv*ncv+1:6*ncv+ncv*ncv+2*ncv) :=         |
+-c     |       Workspace. Needed by ssteqr and by sseupd.      |
+-c     | GRAND total of NCV*(NCV+8) locations.                 |
+-c     %-------------------------------------------------------%
+-c
+-c
+-      ih     = ipntr(5)
+-      ritz   = ipntr(6)
+-      bounds = ipntr(7)
+-      ldh    = ncv
+-      ldq    = ncv
+-      ihd    = bounds + ldh
+-      ihb    = ihd    + ldh
+-      iq     = ihb    + ldh
+-      iw     = iq     + ldh*ncv
+-      next   = iw     + 2*ncv
+-      ipntr(4)  = next
+-      ipntr(8)  = ihd
+-      ipntr(9)  = ihb
+-      ipntr(10) = iq
+-c
+-c     %----------------------------------------%
+-c     | irz points to the Ritz values computed |
+-c     |     by _seigt before exiting _saup2.   |
+-c     | ibd points to the Ritz estimates       |
+-c     |     computed by _seigt before exiting  |
+-c     |     _saup2.                            |
+-c     %----------------------------------------%
+-c
+-      irz = ipntr(11)+ncv
+-      ibd = irz+ncv
+-c
+-c
+-c     %---------------------------------%
+-c     | Set machine dependent constant. |
+-c     %---------------------------------%
+-c
+-      eps23 = slamch('Epsilon-Machine') 
+-      eps23 = eps23**(2.0E+0  / 3.0E+0 )
+-c
+-c     %---------------------------------------%
+-c     | RNORM is B-norm of the RESID(1:N).    |
+-c     | BNORM2 is the 2 norm of B*RESID(1:N). |
+-c     | Upon exit of ssaupd WORKD(1:N) has    |
+-c     | B*RESID(1:N).                         |
+-c     %---------------------------------------%
+-c
+-      rnorm = workl(ih)
+-      if (bmat .eq. 'I') then
+-         bnorm2 = rnorm
+-      else if (bmat .eq. 'G') then
+-         bnorm2 = snrm2(n, workd, 1)
+-      end if
+-c
+-      if (msglvl .gt. 2) then
+-         call svout(logfil, ncv, workl(irz), ndigit,
+-     &   '_seupd: Ritz values passed in from _SAUPD.')
+-         call svout(logfil, ncv, workl(ibd), ndigit,
+-     &   '_seupd: Ritz estimates passed in from _SAUPD.')
+-      end if
+-c
+-      if (rvec) then
+-c
+-         reord = .false.
+-c
+-c        %---------------------------------------------------%
+-c        | Use the temporary bounds array to store indices   |
+-c        | These will be used to mark the select array later |
+-c        %---------------------------------------------------%
+-c
+-         do 10 j = 1,ncv
+-            workl(bounds+j-1) = j
+-            select(j) = .false.
+-   10    continue
+-c
+-c        %-------------------------------------%
+-c        | Select the wanted Ritz values.      |
+-c        | Sort the Ritz values so that the    |
+-c        | wanted ones appear at the tailing   |
+-c        | NEV positions of workl(irr) and     |
+-c        | workl(iri).  Move the corresponding |
+-c        | error estimates in workl(bound)     |
+-c        | accordingly.                        |
+-c        %-------------------------------------%
+-c
+-         np     = ncv - nev
+-         ishift = 0
+-         call ssgets(ishift, which       , nev          ,
+-     &                np    , workl(irz)  , workl(bounds),
+-     &                workl)
+-c
+-         if (msglvl .gt. 2) then
+-            call svout(logfil, ncv, workl(irz), ndigit,
+-     &      '_seupd: Ritz values after calling _SGETS.')
+-            call svout(logfil, ncv, workl(bounds), ndigit,
+-     &      '_seupd: Ritz value indices after calling _SGETS.')
+-         end if
+-c
+-c        %-----------------------------------------------------%
+-c        | Record indices of the converged wanted Ritz values  |
+-c        | Mark the select array for possible reordering       |
+-c        %-----------------------------------------------------%
+-c
+-         numcnv = 0
+-         do 11 j = 1,ncv
+-            temp1 = max(eps23, abs(workl(irz+ncv-j)) )
+-            jj = workl(bounds + ncv - j)
+-            if (numcnv .lt. nconv .and.
+-     &          workl(ibd+jj-1) .le. tol*temp1) then
+-               select(jj) = .true.
+-               numcnv = numcnv + 1
+-               if (jj .gt. nev) reord = .true.
+-            endif
+-   11    continue
+-c
+-c        %-----------------------------------------------------------%
+-c        | Check the count (numcnv) of converged Ritz values with    |
+-c        | the number (nconv) reported by _saupd.  If these two      |
+-c        | are different then there has probably been an error       |
+-c        | caused by incorrect passing of the _saupd data.           |
+-c        %-----------------------------------------------------------%
+-c
+-         if (msglvl .gt. 2) then
+-             call ivout(logfil, 1, numcnv, ndigit,
+-     &            '_seupd: Number of specified eigenvalues')
+-             call ivout(logfil, 1, nconv, ndigit,
+-     &            '_seupd: Number of "converged" eigenvalues')
+-         end if
+-c
+-         if (numcnv .ne. nconv) then
+-            info = -17
+-            go to 9000
+-         end if
+-c
+-c        %-----------------------------------------------------------%
+-c        | Call LAPACK routine _steqr to compute the eigenvalues and |
+-c        | eigenvectors of the final symmetric tridiagonal matrix H. |
+-c        | Initialize the eigenvector matrix Q to the identity.      |
+-c        %-----------------------------------------------------------%
+-c
+-         call scopy(ncv-1, workl(ih+1), 1, workl(ihb), 1)
+-         call scopy(ncv, workl(ih+ldh), 1, workl(ihd), 1)
+-c
+-         call ssteqr('Identity', ncv, workl(ihd), workl(ihb),
+-     &                workl(iq) , ldq, workl(iw), ierr)
+-c
+-         if (ierr .ne. 0) then
+-            info = -8
+-            go to 9000
+-         end if
+-c
+-         if (msglvl .gt. 1) then
+-            call scopy(ncv, workl(iq+ncv-1), ldq, workl(iw), 1)
+-            call svout(logfil, ncv, workl(ihd), ndigit,
+-     &          '_seupd: NCV Ritz values of the final H matrix')
+-            call svout(logfil, ncv, workl(iw), ndigit,
+-     &           '_seupd: last row of the eigenvector matrix for H')
+-         end if
+-c
+-         if (reord) then
+-c
+-c           %---------------------------------------------%
+-c           | Reordered the eigenvalues and eigenvectors  |
+-c           | computed by _steqr so that the "converged"  |
+-c           | eigenvalues appear in the first NCONV       |
+-c           | positions of workl(ihd), and the associated |
+-c           | eigenvectors appear in the first NCONV      |
+-c           | columns.                                    |
+-c           %---------------------------------------------%
+-c
+-            leftptr = 1
+-            rghtptr = ncv
+-c
+-            if (ncv .eq. 1) go to 30
+-c
+- 20         if (select(leftptr)) then
+-c
+-c              %-------------------------------------------%
+-c              | Search, from the left, for the first Ritz |
+-c              | value that has not converged.             |
+-c              %-------------------------------------------%
+-c
+-               leftptr = leftptr + 1
+-c
+-            else if ( .not. select(rghtptr)) then
+-c
+-c              %----------------------------------------------%
+-c              | Search, from the right, the first Ritz value |
+-c              | that has converged.                          |
+-c              %----------------------------------------------%
+-c
+-               rghtptr = rghtptr - 1
+-c
+-            else
+-c
+-c              %----------------------------------------------%
+-c              | Swap the Ritz value on the left that has not |
+-c              | converged with the Ritz value on the right   |
+-c              | that has converged.  Swap the associated     |
+-c              | eigenvector of the tridiagonal matrix H as   |
+-c              | well.                                        |
+-c              %----------------------------------------------%
+-c
+-               temp = workl(ihd+leftptr-1)
+-               workl(ihd+leftptr-1) = workl(ihd+rghtptr-1)
+-               workl(ihd+rghtptr-1) = temp
+-               call scopy(ncv, workl(iq+ncv*(leftptr-1)), 1,
+-     &                    workl(iw), 1)
+-               call scopy(ncv, workl(iq+ncv*(rghtptr-1)), 1,
+-     &                    workl(iq+ncv*(leftptr-1)), 1)
+-               call scopy(ncv, workl(iw), 1,
+-     &                    workl(iq+ncv*(rghtptr-1)), 1)
+-               leftptr = leftptr + 1
+-               rghtptr = rghtptr - 1
+-c
+-            end if
+-c
+-            if (leftptr .lt. rghtptr) go to 20
+-c
+-         end if
+-c
+- 30      if (msglvl .gt. 2) then
+-             call svout (logfil, ncv, workl(ihd), ndigit,
+-     &       '_seupd: The eigenvalues of H--reordered')
+-         end if
+-c
+-c        %----------------------------------------%
+-c        | Load the converged Ritz values into D. |
+-c        %----------------------------------------%
+-c
+-         call scopy(nconv, workl(ihd), 1, d, 1)
+-c
+-      else
+-c
+-c        %-----------------------------------------------------%
+-c        | Ritz vectors not required. Load Ritz values into D. |
+-c        %-----------------------------------------------------%
+-c
+-         call scopy(nconv, workl(ritz), 1, d, 1)
+-         call scopy(ncv, workl(ritz), 1, workl(ihd), 1)
+-c
+-      end if
+-c
+-c     %------------------------------------------------------------------%
+-c     | Transform the Ritz values and possibly vectors and corresponding |
+-c     | Ritz estimates of OP to those of A*x=lambda*B*x. The Ritz values |
+-c     | (and corresponding data) are returned in ascending order.        |
+-c     %------------------------------------------------------------------%
+-c
+-      if (type .eq. 'REGULR') then
+-c
+-c        %---------------------------------------------------------%
+-c        | Ascending sort of wanted Ritz values, vectors and error |
+-c        | bounds. Not necessary if only Ritz values are desired.  |
+-c        %---------------------------------------------------------%
+-c
+-         if (rvec) then
+-            call ssesrt('LA', rvec , nconv, d, ncv, workl(iq), ldq)
+-         else
+-            call scopy(ncv, workl(bounds), 1, workl(ihb), 1)
+-         end if
+-c
+-      else 
+-c 
+-c        %-------------------------------------------------------------%
+-c        | *  Make a copy of all the Ritz values.                      |
+-c        | *  Transform the Ritz values back to the original system.   |
+-c        |    For TYPE = 'SHIFTI' the transformation is                |
+-c        |             lambda = 1/theta + sigma                        |
+-c        |    For TYPE = 'BUCKLE' the transformation is                |
+-c        |             lambda = sigma * theta / ( theta - 1 )          |
+-c        |    For TYPE = 'CAYLEY' the transformation is                |
+-c        |             lambda = sigma * (theta + 1) / (theta - 1 )     |
+-c        |    where the theta are the Ritz values returned by ssaupd.  |
+-c        | NOTES:                                                      |
+-c        | *The Ritz vectors are not affected by the transformation.   |
+-c        |  They are only reordered.                                   |
+-c        %-------------------------------------------------------------%
+-c
+-         call scopy (ncv, workl(ihd), 1, workl(iw), 1)
+-         if (type .eq. 'SHIFTI') then 
+-            do 40 k=1, ncv
+-               workl(ihd+k-1) = one / workl(ihd+k-1) + sigma
+-  40        continue
+-         else if (type .eq. 'BUCKLE') then
+-            do 50 k=1, ncv
+-               workl(ihd+k-1) = sigma * workl(ihd+k-1) / 
+-     &                          (workl(ihd+k-1) - one)
+-  50        continue
+-         else if (type .eq. 'CAYLEY') then
+-            do 60 k=1, ncv
+-               workl(ihd+k-1) = sigma * (workl(ihd+k-1) + one) /
+-     &                          (workl(ihd+k-1) - one)
+-  60        continue
+-         end if
+-c 
+-c        %-------------------------------------------------------------%
+-c        | *  Store the wanted NCONV lambda values into D.             |
+-c        | *  Sort the NCONV wanted lambda in WORKL(IHD:IHD+NCONV-1)   |
+-c        |    into ascending order and apply sort to the NCONV theta   |
+-c        |    values in the transformed system. We will need this to   |
+-c        |    compute Ritz estimates in the original system.           |
+-c        | *  Finally sort the lambda`s into ascending order and apply |
+-c        |    to Ritz vectors if wanted. Else just sort lambda`s into  |
+-c        |    ascending order.                                         |
+-c        | NOTES:                                                      |
+-c        | *workl(iw:iw+ncv-1) contain the theta ordered so that they  |
+-c        |  match the ordering of the lambda. We`ll use them again for |
+-c        |  Ritz vector purification.                                  |
+-c        %-------------------------------------------------------------%
+-c
+-         call scopy(nconv, workl(ihd), 1, d, 1)
+-         call ssortr('LA', .true., nconv, workl(ihd), workl(iw))
+-         if (rvec) then
+-            call ssesrt('LA', rvec , nconv, d, ncv, workl(iq), ldq)
+-         else
+-            call scopy(ncv, workl(bounds), 1, workl(ihb), 1)
+-            call sscal(ncv, bnorm2/rnorm, workl(ihb), 1)
+-            call ssortr('LA', .true., nconv, d, workl(ihb))
+-         end if
+-c
+-      end if 
+-c 
+-c     %------------------------------------------------%
+-c     | Compute the Ritz vectors. Transform the wanted |
+-c     | eigenvectors of the symmetric tridiagonal H by |
+-c     | the Lanczos basis matrix V.                    |
+-c     %------------------------------------------------%
+-c
+-      if (rvec .and. howmny .eq. 'A') then
+-c    
+-c        %----------------------------------------------------------%
+-c        | Compute the QR factorization of the matrix representing  |
+-c        | the wanted invariant subspace located in the first NCONV |
+-c        | columns of workl(iq,ldq).                                |
+-c        %----------------------------------------------------------%
+-c     
+-         call sgeqr2(ncv, nconv        , workl(iq) ,
+-     &                ldq, workl(iw+ncv), workl(ihb),
+-     &                ierr)
+-c
+-c        %--------------------------------------------------------%
+-c        | * Postmultiply V by Q.                                 |   
+-c        | * Copy the first NCONV columns of VQ into Z.           |
+-c        | The N by NCONV matrix Z is now a matrix representation |
+-c        | of the approximate invariant subspace associated with  |
+-c        | the Ritz values in workl(ihd).                         |
+-c        %--------------------------------------------------------%
+-c     
+-         call sorm2r('Right', 'Notranspose', n        ,
+-     &                ncv    , nconv        , workl(iq),
+-     &                ldq    , workl(iw+ncv), v        ,
+-     &                ldv    , workd(n+1)   , ierr)
+-         call slacpy('All', n, nconv, v, ldv, z, ldz)
+-c
+-c        %-----------------------------------------------------%
+-c        | In order to compute the Ritz estimates for the Ritz |
+-c        | values in both systems, need the last row of the    |
+-c        | eigenvector matrix. Remember, it`s in factored form |
+-c        %-----------------------------------------------------%
+-c
+-         do 65 j = 1, ncv-1
+-            workl(ihb+j-1) = zero 
+-  65     continue
+-         workl(ihb+ncv-1) = one
+-         call sorm2r('Left', 'Transpose'  , ncv       ,
+-     &                1     , nconv        , workl(iq) ,
+-     &                ldq   , workl(iw+ncv), workl(ihb),
+-     &                ncv   , temp         , ierr)
+-c
+-      else if (rvec .and. howmny .eq. 'S') then
+-c
+-c     Not yet implemented. See remark 2 above.
+-c
+-      end if
+-c
+-      if (type .eq. 'REGULR' .and. rvec) then
+-c
+-            do 70 j=1, ncv
+-               workl(ihb+j-1) = rnorm * abs( workl(ihb+j-1) )
+- 70         continue
+-c
+-      else if (type .ne. 'REGULR' .and. rvec) then
+-c
+-c        %-------------------------------------------------%
+-c        | *  Determine Ritz estimates of the theta.       |
+-c        |    If RVEC = .true. then compute Ritz estimates |
+-c        |               of the theta.                     |
+-c        |    If RVEC = .false. then copy Ritz estimates   |
+-c        |              as computed by ssaupd.             |
+-c        | *  Determine Ritz estimates of the lambda.      |
+-c        %-------------------------------------------------%
+-c
+-         call sscal (ncv, bnorm2, workl(ihb), 1)
+-         if (type .eq. 'SHIFTI') then 
+-c
+-            do 80 k=1, ncv
+-               workl(ihb+k-1) = abs( workl(ihb+k-1) ) 
+-     &                        / workl(iw+k-1)**2
+- 80         continue
+-c
+-         else if (type .eq. 'BUCKLE') then
+-c
+-            do 90 k=1, ncv
+-               workl(ihb+k-1) = sigma * abs( workl(ihb+k-1) )
+-     &                        / (workl(iw+k-1)-one )**2
+- 90         continue
+-c
+-         else if (type .eq. 'CAYLEY') then
+-c
+-            do 100 k=1, ncv
+-               workl(ihb+k-1) = abs( workl(ihb+k-1)
+-     &                        / workl(iw+k-1)*(workl(iw+k-1)-one) )
+- 100        continue
+-c
+-         end if
+-c
+-      end if
+-c
+-      if (type .ne. 'REGULR' .and. msglvl .gt. 1) then
+-         call svout(logfil, nconv, d, ndigit,
+-     &          '_seupd: Untransformed converged Ritz values')
+-         call svout(logfil, nconv, workl(ihb), ndigit, 
+-     &     '_seupd: Ritz estimates of the untransformed Ritz values')
+-      else if (msglvl .gt. 1) then
+-         call svout(logfil, nconv, d, ndigit,
+-     &          '_seupd: Converged Ritz values')
+-         call svout(logfil, nconv, workl(ihb), ndigit, 
+-     &     '_seupd: Associated Ritz estimates')
+-      end if
+-c 
+-c     %-------------------------------------------------%
+-c     | Ritz vector purification step. Formally perform |
+-c     | one of inverse subspace iteration. Only used    |
+-c     | for MODE = 3,4,5. See reference 7               |
+-c     %-------------------------------------------------%
+-c
+-      if (rvec .and. (type .eq. 'SHIFTI' .or. type .eq. 'CAYLEY')) then
+-c
+-         do 110 k=0, nconv-1
+-            workl(iw+k) = workl(iq+k*ldq+ncv-1)
+-     &                  / workl(iw+k)
+- 110     continue
+-c
+-      else if (rvec .and. type .eq. 'BUCKLE') then
+-c
+-         do 120 k=0, nconv-1
+-            workl(iw+k) = workl(iq+k*ldq+ncv-1)
+-     &                  / (workl(iw+k)-one)
+- 120     continue
+-c
+-      end if 
+-c
+-      if (type .ne. 'REGULR')
+-     &   call sger (n, nconv, one, resid, 1, workl(iw), 1, z, ldz)
+-c
+- 9000 continue
+-c
+-      return
+-c
+-c     %---------------%
+-c     | End of sseupd|
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/ssgets.f
++++ /dev/null
+@@ -1,219 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: ssgets
+-c
+-c\Description: 
+-c  Given the eigenvalues of the symmetric tridiagonal matrix H,
+-c  computes the NP shifts AMU that are zeros of the polynomial of 
+-c  degree NP which filters out components of the unwanted eigenvectors 
+-c  corresponding to the AMU's based on some given criteria.
+-c
+-c  NOTE: This is called even in the case of user specified shifts in 
+-c  order to sort the eigenvalues, and error bounds of H for later use.
+-c
+-c\Usage:
+-c  call ssgets
+-c     ( ISHIFT, WHICH, KEV, NP, RITZ, BOUNDS, SHIFTS )
+-c
+-c\Arguments
+-c  ISHIFT  Integer.  (INPUT)
+-c          Method for selecting the implicit shifts at each iteration.
+-c          ISHIFT = 0: user specified shifts
+-c          ISHIFT = 1: exact shift with respect to the matrix H.
+-c
+-c  WHICH   Character*2.  (INPUT)
+-c          Shift selection criteria.
+-c          'LM' -> KEV eigenvalues of largest magnitude are retained.
+-c          'SM' -> KEV eigenvalues of smallest magnitude are retained.
+-c          'LA' -> KEV eigenvalues of largest value are retained.
+-c          'SA' -> KEV eigenvalues of smallest value are retained.
+-c          'BE' -> KEV eigenvalues, half from each end of the spectrum.
+-c                  If KEV is odd, compute one more from the high end.
+-c
+-c  KEV      Integer.  (INPUT)
+-c          KEV+NP is the size of the matrix H.
+-c
+-c  NP      Integer.  (INPUT)
+-c          Number of implicit shifts to be computed.
+-c
+-c  RITZ    Real array of length KEV+NP.  (INPUT/OUTPUT)
+-c          On INPUT, RITZ contains the eigenvalues of H.
+-c          On OUTPUT, RITZ are sorted so that the unwanted eigenvalues 
+-c          are in the first NP locations and the wanted part is in 
+-c          the last KEV locations.  When exact shifts are selected, the
+-c          unwanted part corresponds to the shifts to be applied.
+-c
+-c  BOUNDS  Real array of length KEV+NP.  (INPUT/OUTPUT)
+-c          Error bounds corresponding to the ordering in RITZ.
+-c
+-c  SHIFTS  Real array of length NP.  (INPUT/OUTPUT)
+-c          On INPUT:  contains the user specified shifts if ISHIFT = 0.
+-c          On OUTPUT: contains the shifts sorted into decreasing order 
+-c          of magnitude with respect to the Ritz estimates contained in
+-c          BOUNDS. If ISHIFT = 0, SHIFTS is not modified on exit.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     ssortr  ARPACK utility sorting routine.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     svout   ARPACK utility routine that prints vectors.
+-c     scopy   Level 1 BLAS that copies one vector to another.
+-c     sswap   Level 1 BLAS that swaps the contents of two vectors.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\Revision history:
+-c     xx/xx/93: Version ' 2.1'
+-c
+-c\SCCS Information: @(#) 
+-c FILE: sgets.F   SID: 2.4   DATE OF SID: 4/19/96   RELEASE: 2
+-c
+-c\Remarks
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine ssgets ( ishift, which, kev, np, ritz, bounds, shifts )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character*2 which
+-      integer    ishift, kev, np
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Real
+-     &           bounds(kev+np), ritz(kev+np), shifts(np)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Real
+-     &           one, zero
+-      parameter (one = 1.0E+0, zero = 0.0E+0)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    kevd2, msglvl
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   sswap, scopy, ssortr, arscnd
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic    max, min
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c 
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c
+-      call arscnd (t0)
+-      msglvl = msgets
+-c 
+-      if (which .eq. 'BE') then
+-c
+-c        %-----------------------------------------------------%
+-c        | Both ends of the spectrum are requested.            |
+-c        | Sort the eigenvalues into algebraically increasing  |
+-c        | order first then swap high end of the spectrum next |
+-c        | to low end in appropriate locations.                |
+-c        | NOTE: when np < floor(kev/2) be careful not to swap |
+-c        | overlapping locations.                              |
+-c        %-----------------------------------------------------%
+-c
+-         call ssortr ('LA', .true., kev+np, ritz, bounds)
+-         kevd2 = kev / 2 
+-         if ( kev .gt. 1 ) then
+-            call sswap ( min(kevd2,np), ritz, 1, 
+-     &                   ritz( max(kevd2,np)+1 ), 1)
+-            call sswap ( min(kevd2,np), bounds, 1, 
+-     &                   bounds( max(kevd2,np)+1 ), 1)
+-         end if
+-c
+-      else
+-c
+-c        %----------------------------------------------------%
+-c        | LM, SM, LA, SA case.                               |
+-c        | Sort the eigenvalues of H into the desired order   |
+-c        | and apply the resulting order to BOUNDS.           |
+-c        | The eigenvalues are sorted so that the wanted part |
+-c        | are always in the last KEV locations.               |
+-c        %----------------------------------------------------%
+-c
+-         call ssortr (which, .true., kev+np, ritz, bounds)
+-      end if
+-c
+-      if (ishift .eq. 1 .and. np .gt. 0) then
+-c     
+-c        %-------------------------------------------------------%
+-c        | Sort the unwanted Ritz values used as shifts so that  |
+-c        | the ones with largest Ritz estimates are first.       |
+-c        | This will tend to minimize the effects of the         |
+-c        | forward instability of the iteration when the shifts  |
+-c        | are applied in subroutine ssapps.                     |
+-c        %-------------------------------------------------------%
+-c     
+-         call ssortr ('SM', .true., np, bounds, ritz)
+-         call scopy (np, ritz, 1, shifts, 1)
+-      end if
+-c 
+-      call arscnd (t1)
+-      tsgets = tsgets + (t1 - t0)
+-c
+-      if (msglvl .gt. 0) then
+-         call ivout (logfil, 1, kev, ndigit, '_sgets: KEV is')
+-         call ivout (logfil, 1, np, ndigit, '_sgets: NP is')
+-         call svout (logfil, kev+np, ritz, ndigit,
+-     &        '_sgets: Eigenvalues of current H matrix')
+-         call svout (logfil, kev+np, bounds, ndigit, 
+-     &        '_sgets: Associated Ritz estimates')
+-      end if
+-c 
+-      return
+-c
+-c     %---------------%
+-c     | End of ssgets |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/ssortc.f
++++ /dev/null
+@@ -1,344 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: ssortc
+-c
+-c\Description:
+-c  Sorts the complex array in XREAL and XIMAG into the order 
+-c  specified by WHICH and optionally applies the permutation to the
+-c  real array Y. It is assumed that if an element of XIMAG is
+-c  nonzero, then its negative is also an element. In other words,
+-c  both members of a complex conjugate pair are to be sorted and the
+-c  pairs are kept adjacent to each other.
+-c
+-c\Usage:
+-c  call ssortc
+-c     ( WHICH, APPLY, N, XREAL, XIMAG, Y )
+-c
+-c\Arguments
+-c  WHICH   Character*2.  (Input)
+-c          'LM' -> sort XREAL,XIMAG into increasing order of magnitude.
+-c          'SM' -> sort XREAL,XIMAG into decreasing order of magnitude.
+-c          'LR' -> sort XREAL into increasing order of algebraic.
+-c          'SR' -> sort XREAL into decreasing order of algebraic.
+-c          'LI' -> sort XIMAG into increasing order of magnitude.
+-c          'SI' -> sort XIMAG into decreasing order of magnitude.
+-c          NOTE: If an element of XIMAG is non-zero, then its negative
+-c                is also an element.
+-c
+-c  APPLY   Logical.  (Input)
+-c          APPLY = .TRUE.  -> apply the sorted order to array Y.
+-c          APPLY = .FALSE. -> do not apply the sorted order to array Y.
+-c
+-c  N       Integer.  (INPUT)
+-c          Size of the arrays.
+-c
+-c  XREAL,  Real array of length N.  (INPUT/OUTPUT)
+-c  XIMAG   Real and imaginary part of the array to be sorted.
+-c
+-c  Y       Real array of length N.  (INPUT/OUTPUT)
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\Revision history:
+-c     xx/xx/92: Version ' 2.1'
+-c               Adapted from the sort routine in LANSO.
+-c
+-c\SCCS Information: @(#) 
+-c FILE: sortc.F   SID: 2.3   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine ssortc (which, apply, n, xreal, ximag, y)
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character*2 which
+-      logical    apply
+-      integer    n
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Real     
+-     &           xreal(0:n-1), ximag(0:n-1), y(0:n-1)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i, igap, j
+-      Real     
+-     &           temp, temp1, temp2
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Real     
+-     &           slapy2
+-      external   slapy2
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      igap = n / 2
+-c 
+-      if (which .eq. 'LM') then
+-c
+-c        %------------------------------------------------------%
+-c        | Sort XREAL,XIMAG into increasing order of magnitude. |
+-c        %------------------------------------------------------%
+-c
+-   10    continue
+-         if (igap .eq. 0) go to 9000
+-c
+-         do 30 i = igap, n-1
+-            j = i-igap
+-   20       continue
+-c
+-            if (j.lt.0) go to 30
+-c
+-            temp1 = slapy2(xreal(j),ximag(j))
+-            temp2 = slapy2(xreal(j+igap),ximag(j+igap))
+-c
+-            if (temp1.gt.temp2) then
+-                temp = xreal(j)
+-                xreal(j) = xreal(j+igap)
+-                xreal(j+igap) = temp
+-c
+-                temp = ximag(j)
+-                ximag(j) = ximag(j+igap)
+-                ximag(j+igap) = temp
+-c
+-                if (apply) then
+-                    temp = y(j)
+-                    y(j) = y(j+igap)
+-                    y(j+igap) = temp
+-                end if
+-            else
+-                go to 30
+-            end if
+-            j = j-igap
+-            go to 20
+-   30    continue
+-         igap = igap / 2
+-         go to 10
+-c
+-      else if (which .eq. 'SM') then
+-c
+-c        %------------------------------------------------------%
+-c        | Sort XREAL,XIMAG into decreasing order of magnitude. |
+-c        %------------------------------------------------------%
+-c
+-   40    continue
+-         if (igap .eq. 0) go to 9000
+-c
+-         do 60 i = igap, n-1
+-            j = i-igap
+-   50       continue
+-c
+-            if (j .lt. 0) go to 60
+-c
+-            temp1 = slapy2(xreal(j),ximag(j))
+-            temp2 = slapy2(xreal(j+igap),ximag(j+igap))
+-c
+-            if (temp1.lt.temp2) then
+-               temp = xreal(j)
+-               xreal(j) = xreal(j+igap)
+-               xreal(j+igap) = temp
+-c
+-               temp = ximag(j)
+-               ximag(j) = ximag(j+igap)
+-               ximag(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 60
+-            endif
+-            j = j-igap
+-            go to 50
+-   60    continue
+-         igap = igap / 2
+-         go to 40
+-c 
+-      else if (which .eq. 'LR') then
+-c
+-c        %------------------------------------------------%
+-c        | Sort XREAL into increasing order of algebraic. |
+-c        %------------------------------------------------%
+-c
+-   70    continue
+-         if (igap .eq. 0) go to 9000
+-c
+-         do 90 i = igap, n-1
+-            j = i-igap
+-   80       continue
+-c
+-            if (j.lt.0) go to 90
+-c
+-            if (xreal(j).gt.xreal(j+igap)) then
+-               temp = xreal(j)
+-               xreal(j) = xreal(j+igap)
+-               xreal(j+igap) = temp
+-c
+-               temp = ximag(j)
+-               ximag(j) = ximag(j+igap)
+-               ximag(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 90
+-            endif
+-            j = j-igap
+-            go to 80
+-   90    continue
+-         igap = igap / 2
+-         go to 70
+-c 
+-      else if (which .eq. 'SR') then
+-c
+-c        %------------------------------------------------%
+-c        | Sort XREAL into decreasing order of algebraic. |
+-c        %------------------------------------------------%
+-c
+-  100    continue
+-         if (igap .eq. 0) go to 9000
+-         do 120 i = igap, n-1
+-            j = i-igap
+-  110       continue
+-c
+-            if (j.lt.0) go to 120
+-c
+-            if (xreal(j).lt.xreal(j+igap)) then
+-               temp = xreal(j)
+-               xreal(j) = xreal(j+igap)
+-               xreal(j+igap) = temp
+-c
+-               temp = ximag(j)
+-               ximag(j) = ximag(j+igap)
+-               ximag(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 120
+-            endif
+-            j = j-igap
+-            go to 110
+-  120    continue
+-         igap = igap / 2
+-         go to 100
+-c 
+-      else if (which .eq. 'LI') then
+-c
+-c        %------------------------------------------------%
+-c        | Sort XIMAG into increasing order of magnitude. |
+-c        %------------------------------------------------%
+-c
+-  130    continue
+-         if (igap .eq. 0) go to 9000
+-         do 150 i = igap, n-1
+-            j = i-igap
+-  140       continue
+-c
+-            if (j.lt.0) go to 150
+-c
+-            if (abs(ximag(j)).gt.abs(ximag(j+igap))) then
+-               temp = xreal(j)
+-               xreal(j) = xreal(j+igap)
+-               xreal(j+igap) = temp
+-c
+-               temp = ximag(j)
+-               ximag(j) = ximag(j+igap)
+-               ximag(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 150
+-            endif
+-            j = j-igap
+-            go to 140
+-  150    continue
+-         igap = igap / 2
+-         go to 130
+-c 
+-      else if (which .eq. 'SI') then
+-c
+-c        %------------------------------------------------%
+-c        | Sort XIMAG into decreasing order of magnitude. |
+-c        %------------------------------------------------%
+-c
+-  160    continue
+-         if (igap .eq. 0) go to 9000
+-         do 180 i = igap, n-1
+-            j = i-igap
+-  170       continue
+-c
+-            if (j.lt.0) go to 180
+-c
+-            if (abs(ximag(j)).lt.abs(ximag(j+igap))) then
+-               temp = xreal(j)
+-               xreal(j) = xreal(j+igap)
+-               xreal(j+igap) = temp
+-c
+-               temp = ximag(j)
+-               ximag(j) = ximag(j+igap)
+-               ximag(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 180
+-            endif
+-            j = j-igap
+-            go to 170
+-  180    continue
+-         igap = igap / 2
+-         go to 160
+-      end if
+-c 
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of ssortc |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/ssortr.f
++++ /dev/null
+@@ -1,218 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: ssortr
+-c
+-c\Description:
+-c  Sort the array X1 in the order specified by WHICH and optionally 
+-c  applies the permutation to the array X2.
+-c
+-c\Usage:
+-c  call ssortr
+-c     ( WHICH, APPLY, N, X1, X2 )
+-c
+-c\Arguments
+-c  WHICH   Character*2.  (Input)
+-c          'LM' -> X1 is sorted into increasing order of magnitude.
+-c          'SM' -> X1 is sorted into decreasing order of magnitude.
+-c          'LA' -> X1 is sorted into increasing order of algebraic.
+-c          'SA' -> X1 is sorted into decreasing order of algebraic.
+-c
+-c  APPLY   Logical.  (Input)
+-c          APPLY = .TRUE.  -> apply the sorted order to X2.
+-c          APPLY = .FALSE. -> do not apply the sorted order to X2.
+-c
+-c  N       Integer.  (INPUT)
+-c          Size of the arrays.
+-c
+-c  X1      Real array of length N.  (INPUT/OUTPUT)
+-c          The array to be sorted.
+-c
+-c  X2      Real array of length N.  (INPUT/OUTPUT)
+-c          Only referenced if APPLY = .TRUE.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University 
+-c     Dept. of Computational &     Houston, Texas 
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\Revision history:
+-c     12/16/93: Version ' 2.1'.
+-c               Adapted from the sort routine in LANSO.
+-c
+-c\SCCS Information: @(#) 
+-c FILE: sortr.F   SID: 2.3   DATE OF SID: 4/19/96   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine ssortr (which, apply, n, x1, x2)
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character*2 which
+-      logical    apply
+-      integer    n
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Real
+-     &           x1(0:n-1), x2(0:n-1)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i, igap, j
+-      Real
+-     &           temp
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      igap = n / 2
+-c 
+-      if (which .eq. 'SA') then
+-c
+-c        X1 is sorted into decreasing order of algebraic.
+-c
+-   10    continue
+-         if (igap .eq. 0) go to 9000
+-         do 30 i = igap, n-1
+-            j = i-igap
+-   20       continue
+-c
+-            if (j.lt.0) go to 30
+-c
+-            if (x1(j).lt.x1(j+igap)) then
+-               temp = x1(j)
+-               x1(j) = x1(j+igap)
+-               x1(j+igap) = temp
+-               if (apply) then
+-                  temp = x2(j)
+-                  x2(j) = x2(j+igap)
+-                  x2(j+igap) = temp
+-               end if
+-            else
+-               go to 30
+-            endif
+-            j = j-igap
+-            go to 20
+-   30    continue
+-         igap = igap / 2
+-         go to 10
+-c
+-      else if (which .eq. 'SM') then
+-c
+-c        X1 is sorted into decreasing order of magnitude.
+-c
+-   40    continue
+-         if (igap .eq. 0) go to 9000
+-         do 60 i = igap, n-1
+-            j = i-igap
+-   50       continue
+-c
+-            if (j.lt.0) go to 60
+-c
+-            if (abs(x1(j)).lt.abs(x1(j+igap))) then
+-               temp = x1(j)
+-               x1(j) = x1(j+igap)
+-               x1(j+igap) = temp
+-               if (apply) then
+-                  temp = x2(j)
+-                  x2(j) = x2(j+igap)
+-                  x2(j+igap) = temp
+-               end if
+-            else
+-               go to 60
+-            endif
+-            j = j-igap
+-            go to 50
+-   60    continue
+-         igap = igap / 2
+-         go to 40
+-c
+-      else if (which .eq. 'LA') then
+-c
+-c        X1 is sorted into increasing order of algebraic.
+-c
+-   70    continue
+-         if (igap .eq. 0) go to 9000
+-         do 90 i = igap, n-1
+-            j = i-igap
+-   80       continue
+-c
+-            if (j.lt.0) go to 90
+-c           
+-            if (x1(j).gt.x1(j+igap)) then
+-               temp = x1(j)
+-               x1(j) = x1(j+igap)
+-               x1(j+igap) = temp
+-               if (apply) then
+-                  temp = x2(j)
+-                  x2(j) = x2(j+igap)
+-                  x2(j+igap) = temp
+-               end if
+-            else
+-               go to 90
+-            endif
+-            j = j-igap
+-            go to 80
+-   90    continue
+-         igap = igap / 2
+-         go to 70
+-c 
+-      else if (which .eq. 'LM') then
+-c
+-c        X1 is sorted into increasing order of magnitude.
+-c
+-  100    continue
+-         if (igap .eq. 0) go to 9000
+-         do 120 i = igap, n-1
+-            j = i-igap
+-  110       continue
+-c
+-            if (j.lt.0) go to 120
+-c
+-            if (abs(x1(j)).gt.abs(x1(j+igap))) then
+-               temp = x1(j)
+-               x1(j) = x1(j+igap)
+-               x1(j+igap) = temp
+-               if (apply) then
+-                  temp = x2(j)
+-                  x2(j) = x2(j+igap)
+-                  x2(j+igap) = temp
+-               end if
+-            else
+-               go to 120
+-            endif
+-            j = j-igap
+-            go to 110
+-  120    continue
+-         igap = igap / 2
+-         go to 100
+-      end if
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of ssortr |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/sstatn.f
++++ /dev/null
+@@ -1,61 +0,0 @@
+-c
+-c     %---------------------------------------------%
+-c     | Initialize statistic and timing information |
+-c     | for nonsymmetric Arnoldi code.              |
+-c     %---------------------------------------------%
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas    
+-c
+-c\SCCS Information: @(#) 
+-c FILE: statn.F   SID: 2.4   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-      subroutine sstatn
+-c
+-c     %--------------------------------%
+-c     | See stat.doc for documentation |
+-c     %--------------------------------%
+-c
+-      include   'stat.h'
+-c 
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      nopx   = 0
+-      nbx    = 0
+-      nrorth = 0
+-      nitref = 0
+-      nrstrt = 0
+-c 
+-      tnaupd = 0.0E+0
+-      tnaup2 = 0.0E+0
+-      tnaitr = 0.0E+0
+-      tneigh = 0.0E+0
+-      tngets = 0.0E+0
+-      tnapps = 0.0E+0
+-      tnconv = 0.0E+0
+-      titref = 0.0E+0
+-      tgetv0 = 0.0E+0
+-      trvec  = 0.0E+0
+-c 
+-c     %----------------------------------------------------%
+-c     | User time including reverse communication overhead |
+-c     %----------------------------------------------------%
+-c
+-      tmvopx = 0.0E+0
+-      tmvbx  = 0.0E+0
+-c 
+-      return
+-c
+-c
+-c     %---------------%
+-c     | End of sstatn |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/sstats.f
++++ /dev/null
+@@ -1,47 +0,0 @@
+-c
+-c\SCCS Information: @(#) 
+-c FILE: stats.F   SID: 2.1   DATE OF SID: 4/19/96   RELEASE: 2
+-c     %---------------------------------------------%
+-c     | Initialize statistic and timing information |
+-c     | for symmetric Arnoldi code.                 |
+-c     %---------------------------------------------%
+- 
+-      subroutine sstats
+-
+-c     %--------------------------------%
+-c     | See stat.doc for documentation |
+-c     %--------------------------------%
+-      include   'stat.h'
+- 
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-
+-      nopx   = 0
+-      nbx    = 0
+-      nrorth = 0
+-      nitref = 0
+-      nrstrt = 0
+- 
+-      tsaupd = 0.0E+0
+-      tsaup2 = 0.0E+0
+-      tsaitr = 0.0E+0
+-      tseigt = 0.0E+0
+-      tsgets = 0.0E+0
+-      tsapps = 0.0E+0
+-      tsconv = 0.0E+0
+-      titref = 0.0E+0
+-      tgetv0 = 0.0E+0
+-      trvec  = 0.0E+0
+- 
+-c     %----------------------------------------------------%
+-c     | User time including reverse communication overhead |
+-c     %----------------------------------------------------%
+-      tmvopx = 0.0E+0
+-      tmvbx  = 0.0E+0
+- 
+-      return
+-c
+-c     End of sstats
+-c
+-      end
+--- a/libcruft/arpack/src/sstqrb.f
++++ /dev/null
+@@ -1,594 +0,0 @@
+-c-----------------------------------------------------------------------
+-c\BeginDoc
+-c
+-c\Name: sstqrb
+-c
+-c\Description:
+-c  Computes all eigenvalues and the last component of the eigenvectors
+-c  of a symmetric tridiagonal matrix using the implicit QL or QR method.
+-c
+-c  This is mostly a modification of the LAPACK routine ssteqr.
+-c  See Remarks.
+-c
+-c\Usage:
+-c  call sstqrb
+-c     ( N, D, E, Z, WORK, INFO )
+-c
+-c\Arguments
+-c  N       Integer.  (INPUT)
+-c          The number of rows and columns in the matrix.  N >= 0.
+-c
+-c  D       Real array, dimension (N).  (INPUT/OUTPUT)
+-c          On entry, D contains the diagonal elements of the
+-c          tridiagonal matrix.
+-c          On exit, D contains the eigenvalues, in ascending order.
+-c          If an error exit is made, the eigenvalues are correct
+-c          for indices 1,2,...,INFO-1, but they are unordered and
+-c          may not be the smallest eigenvalues of the matrix.
+-c
+-c  E       Real array, dimension (N-1).  (INPUT/OUTPUT)
+-c          On entry, E contains the subdiagonal elements of the
+-c          tridiagonal matrix in positions 1 through N-1.
+-c          On exit, E has been destroyed.
+-c
+-c  Z       Real array, dimension (N).  (OUTPUT)
+-c          On exit, Z contains the last row of the orthonormal 
+-c          eigenvector matrix of the symmetric tridiagonal matrix.  
+-c          If an error exit is made, Z contains the last row of the
+-c          eigenvector matrix associated with the stored eigenvalues.
+-c
+-c  WORK    Real array, dimension (max(1,2*N-2)).  (WORKSPACE)
+-c          Workspace used in accumulating the transformation for 
+-c          computing the last components of the eigenvectors.
+-c
+-c  INFO    Integer.  (OUTPUT)
+-c          = 0:  normal return.
+-c          < 0:  if INFO = -i, the i-th argument had an illegal value.
+-c          > 0:  if INFO = +i, the i-th eigenvalue has not converged
+-c                              after a total of  30*N  iterations.
+-c
+-c\Remarks
+-c  1. None.
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  real
+-c
+-c\Routines called:
+-c     saxpy   Level 1 BLAS that computes a vector triad.
+-c     scopy   Level 1 BLAS that copies one vector to another.
+-c     sswap   Level 1 BLAS that swaps the contents of two vectors.
+-c     lsame   LAPACK character comparison routine.
+-c     slae2   LAPACK routine that computes the eigenvalues of a 2-by-2 
+-c             symmetric matrix.
+-c     slaev2  LAPACK routine that eigendecomposition of a 2-by-2 symmetric 
+-c             matrix.
+-c     slamch  LAPACK routine that determines machine constants.
+-c     slanst  LAPACK routine that computes the norm of a matrix.
+-c     slapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     slartg  LAPACK Givens rotation construction routine.
+-c     slascl  LAPACK routine for careful scaling of a matrix.
+-c     slaset  LAPACK matrix initialization routine.
+-c     slasr   LAPACK routine that applies an orthogonal transformation to 
+-c             a matrix.
+-c     slasrt  LAPACK sorting routine.
+-c     ssteqr  LAPACK routine that computes eigenvalues and eigenvectors
+-c             of a symmetric tridiagonal matrix.
+-c     xerbla  LAPACK error handler routine.
+-c
+-c\Authors
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\SCCS Information: @(#) 
+-c FILE: stqrb.F   SID: 2.5   DATE OF SID: 8/27/96   RELEASE: 2
+-c
+-c\Remarks
+-c     1. Starting with version 2.5, this routine is a modified version
+-c        of LAPACK version 2.0 subroutine SSTEQR. No lines are deleted,
+-c        only commeted out and new lines inserted.
+-c        All lines commented out have "c$$$" at the beginning.
+-c        Note that the LAPACK version 1.0 subroutine SSTEQR contained
+-c        bugs. 
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine sstqrb ( n, d, e, z, work, info )
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    info, n
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Real
+-     &           d( n ), e( n-1 ), z( n ), work( 2*n-2 )
+-c
+-c     .. parameters ..
+-      Real               
+-     &                   zero, one, two, three
+-      parameter          ( zero = 0.0E+0, one = 1.0E+0, 
+-     &                     two = 2.0E+0, three = 3.0E+0 )
+-      integer            maxit
+-      parameter          ( maxit = 30 )
+-c     ..
+-c     .. local scalars ..
+-      integer            i, icompz, ii, iscale, j, jtot, k, l, l1, lend,
+-     &                   lendm1, lendp1, lendsv, lm1, lsv, m, mm, mm1,
+-     &                   nm1, nmaxit
+-      Real               
+-     &                   anorm, b, c, eps, eps2, f, g, p, r, rt1, rt2,
+-     &                   s, safmax, safmin, ssfmax, ssfmin, tst
+-c     ..
+-c     .. external functions ..
+-      logical            lsame
+-      Real
+-     &                   slamch, slanst, slapy2
+-      external           lsame, slamch, slanst, slapy2
+-c     ..
+-c     .. external subroutines ..
+-      external           slae2, slaev2, slartg, slascl, slaset, slasr,
+-     &                   slasrt, sswap, xerbla
+-c     ..
+-c     .. intrinsic functions ..
+-      intrinsic          abs, max, sign, sqrt
+-c     ..
+-c     .. executable statements ..
+-c
+-c     test the input parameters.
+-c
+-      info = 0
+-c
+-c$$$      IF( LSAME( COMPZ, 'N' ) ) THEN
+-c$$$         ICOMPZ = 0
+-c$$$      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
+-c$$$         ICOMPZ = 1
+-c$$$      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
+-c$$$         ICOMPZ = 2
+-c$$$      ELSE
+-c$$$         ICOMPZ = -1
+-c$$$      END IF
+-c$$$      IF( ICOMPZ.LT.0 ) THEN
+-c$$$         INFO = -1
+-c$$$      ELSE IF( N.LT.0 ) THEN
+-c$$$         INFO = -2
+-c$$$      ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
+-c$$$     $         N ) ) ) THEN
+-c$$$         INFO = -6
+-c$$$      END IF
+-c$$$      IF( INFO.NE.0 ) THEN
+-c$$$         CALL XERBLA( 'SSTEQR', -INFO )
+-c$$$         RETURN
+-c$$$      END IF
+-c
+-c    *** New starting with version 2.5 ***
+-c
+-      icompz = 2
+-c    *************************************
+-c
+-c     quick return if possible
+-c
+-      if( n.eq.0 )
+-     $   return
+-c
+-      if( n.eq.1 ) then
+-         if( icompz.eq.2 )  z( 1 ) = one
+-         return
+-      end if
+-c
+-c     determine the unit roundoff and over/underflow thresholds.
+-c
+-      eps = slamch( 'e' )
+-      eps2 = eps**2
+-      safmin = slamch( 's' )
+-      safmax = one / safmin
+-      ssfmax = sqrt( safmax ) / three
+-      ssfmin = sqrt( safmin ) / eps2
+-c
+-c     compute the eigenvalues and eigenvectors of the tridiagonal
+-c     matrix.
+-c
+-c$$      if( icompz.eq.2 )
+-c$$$     $   call slaset( 'full', n, n, zero, one, z, ldz )
+-c
+-c     *** New starting with version 2.5 ***
+-c
+-      if ( icompz .eq. 2 ) then
+-         do 5 j = 1, n-1
+-            z(j) = zero
+-  5      continue
+-         z( n ) = one
+-      end if
+-c     *************************************
+-c
+-      nmaxit = n*maxit
+-      jtot = 0
+-c
+-c     determine where the matrix splits and choose ql or qr iteration
+-c     for each block, according to whether top or bottom diagonal
+-c     element is smaller.
+-c
+-      l1 = 1
+-      nm1 = n - 1
+-c
+-   10 continue
+-      if( l1.gt.n )
+-     $   go to 160
+-      if( l1.gt.1 )
+-     $   e( l1-1 ) = zero
+-      if( l1.le.nm1 ) then
+-         do 20 m = l1, nm1
+-            tst = abs( e( m ) )
+-            if( tst.eq.zero )
+-     $         go to 30
+-            if( tst.le.( sqrt( abs( d( m ) ) )*sqrt( abs( d( m+
+-     $          1 ) ) ) )*eps ) then
+-               e( m ) = zero
+-               go to 30
+-            end if
+-   20    continue
+-      end if
+-      m = n
+-c
+-   30 continue
+-      l = l1
+-      lsv = l
+-      lend = m
+-      lendsv = lend
+-      l1 = m + 1
+-      if( lend.eq.l )
+-     $   go to 10
+-c
+-c     scale submatrix in rows and columns l to lend
+-c
+-      anorm = slanst( 'i', lend-l+1, d( l ), e( l ) )
+-      iscale = 0
+-      if( anorm.eq.zero )
+-     $   go to 10
+-      if( anorm.gt.ssfmax ) then
+-         iscale = 1
+-         call slascl( 'g', 0, 0, anorm, ssfmax, lend-l+1, 1, d( l ), n,
+-     $                info )
+-         call slascl( 'g', 0, 0, anorm, ssfmax, lend-l, 1, e( l ), n,
+-     $                info )
+-      else if( anorm.lt.ssfmin ) then
+-         iscale = 2
+-         call slascl( 'g', 0, 0, anorm, ssfmin, lend-l+1, 1, d( l ), n,
+-     $                info )
+-         call slascl( 'g', 0, 0, anorm, ssfmin, lend-l, 1, e( l ), n,
+-     $                info )
+-      end if
+-c
+-c     choose between ql and qr iteration
+-c
+-      if( abs( d( lend ) ).lt.abs( d( l ) ) ) then
+-         lend = lsv
+-         l = lendsv
+-      end if
+-c
+-      if( lend.gt.l ) then
+-c
+-c        ql iteration
+-c
+-c        look for small subdiagonal element.
+-c
+-   40    continue
+-         if( l.ne.lend ) then
+-            lendm1 = lend - 1
+-            do 50 m = l, lendm1
+-               tst = abs( e( m ) )**2
+-               if( tst.le.( eps2*abs( d( m ) ) )*abs( d( m+1 ) )+
+-     $             safmin )go to 60
+-   50       continue
+-         end if
+-c
+-         m = lend
+-c
+-   60    continue
+-         if( m.lt.lend )
+-     $      e( m ) = zero
+-         p = d( l )
+-         if( m.eq.l )
+-     $      go to 80
+-c
+-c        if remaining matrix is 2-by-2, use slae2 or slaev2
+-c        to compute its eigensystem.
+-c
+-         if( m.eq.l+1 ) then
+-            if( icompz.gt.0 ) then
+-               call slaev2( d( l ), e( l ), d( l+1 ), rt1, rt2, c, s )
+-               work( l ) = c
+-               work( n-1+l ) = s
+-c$$$               call slasr( 'r', 'v', 'b', n, 2, work( l ),
+-c$$$     $                     work( n-1+l ), z( 1, l ), ldz )
+-c
+-c              *** New starting with version 2.5 ***
+-c
+-               tst      = z(l+1)
+-               z(l+1) = c*tst - s*z(l)
+-               z(l)   = s*tst + c*z(l)
+-c              *************************************
+-            else
+-               call slae2( d( l ), e( l ), d( l+1 ), rt1, rt2 )
+-            end if
+-            d( l ) = rt1
+-            d( l+1 ) = rt2
+-            e( l ) = zero
+-            l = l + 2
+-            if( l.le.lend )
+-     $         go to 40
+-            go to 140
+-         end if
+-c
+-         if( jtot.eq.nmaxit )
+-     $      go to 140
+-         jtot = jtot + 1
+-c
+-c        form shift.
+-c
+-         g = ( d( l+1 )-p ) / ( two*e( l ) )
+-         r = slapy2( g, one )
+-         g = d( m ) - p + ( e( l ) / ( g+sign( r, g ) ) )
+-c
+-         s = one
+-         c = one
+-         p = zero
+-c
+-c        inner loop
+-c
+-         mm1 = m - 1
+-         do 70 i = mm1, l, -1
+-            f = s*e( i )
+-            b = c*e( i )
+-            call slartg( g, f, c, s, r )
+-            if( i.ne.m-1 )
+-     $         e( i+1 ) = r
+-            g = d( i+1 ) - p
+-            r = ( d( i )-g )*s + two*c*b
+-            p = s*r
+-            d( i+1 ) = g + p
+-            g = c*r - b
+-c
+-c           if eigenvectors are desired, then save rotations.
+-c
+-            if( icompz.gt.0 ) then
+-               work( i ) = c
+-               work( n-1+i ) = -s
+-            end if
+-c
+-   70    continue
+-c
+-c        if eigenvectors are desired, then apply saved rotations.
+-c
+-         if( icompz.gt.0 ) then
+-            mm = m - l + 1
+-c$$$            call slasr( 'r', 'v', 'b', n, mm, work( l ), work( n-1+l ),
+-c$$$     $                  z( 1, l ), ldz )
+-c
+-c             *** New starting with version 2.5 ***
+-c
+-              call slasr( 'r', 'v', 'b', 1, mm, work( l ), 
+-     &                    work( n-1+l ), z( l ), 1 )
+-c             *************************************                             
+-         end if
+-c
+-         d( l ) = d( l ) - p
+-         e( l ) = g
+-         go to 40
+-c
+-c        eigenvalue found.
+-c
+-   80    continue
+-         d( l ) = p
+-c
+-         l = l + 1
+-         if( l.le.lend )
+-     $      go to 40
+-         go to 140
+-c
+-      else
+-c
+-c        qr iteration
+-c
+-c        look for small superdiagonal element.
+-c
+-   90    continue
+-         if( l.ne.lend ) then
+-            lendp1 = lend + 1
+-            do 100 m = l, lendp1, -1
+-               tst = abs( e( m-1 ) )**2
+-               if( tst.le.( eps2*abs( d( m ) ) )*abs( d( m-1 ) )+
+-     $             safmin )go to 110
+-  100       continue
+-         end if
+-c
+-         m = lend
+-c
+-  110    continue
+-         if( m.gt.lend )
+-     $      e( m-1 ) = zero
+-         p = d( l )
+-         if( m.eq.l )
+-     $      go to 130
+-c
+-c        if remaining matrix is 2-by-2, use slae2 or slaev2
+-c        to compute its eigensystem.
+-c
+-         if( m.eq.l-1 ) then
+-            if( icompz.gt.0 ) then
+-               call slaev2( d( l-1 ), e( l-1 ), d( l ), rt1, rt2, c, s )
+-c$$$               work( m ) = c
+-c$$$               work( n-1+m ) = s
+-c$$$               call slasr( 'r', 'v', 'f', n, 2, work( m ),
+-c$$$     $                     work( n-1+m ), z( 1, l-1 ), ldz )
+-c
+-c               *** New starting with version 2.5 ***
+-c
+-                tst      = z(l)
+-                z(l)   = c*tst - s*z(l-1)
+-                z(l-1) = s*tst + c*z(l-1)
+-c               ************************************* 
+-            else
+-               call slae2( d( l-1 ), e( l-1 ), d( l ), rt1, rt2 )
+-            end if
+-            d( l-1 ) = rt1
+-            d( l ) = rt2
+-            e( l-1 ) = zero
+-            l = l - 2
+-            if( l.ge.lend )
+-     $         go to 90
+-            go to 140
+-         end if
+-c
+-         if( jtot.eq.nmaxit )
+-     $      go to 140
+-         jtot = jtot + 1
+-c
+-c        form shift.
+-c
+-         g = ( d( l-1 )-p ) / ( two*e( l-1 ) )
+-         r = slapy2( g, one )
+-         g = d( m ) - p + ( e( l-1 ) / ( g+sign( r, g ) ) )
+-c
+-         s = one
+-         c = one
+-         p = zero
+-c
+-c        inner loop
+-c
+-         lm1 = l - 1
+-         do 120 i = m, lm1
+-            f = s*e( i )
+-            b = c*e( i )
+-            call slartg( g, f, c, s, r )
+-            if( i.ne.m )
+-     $         e( i-1 ) = r
+-            g = d( i ) - p
+-            r = ( d( i+1 )-g )*s + two*c*b
+-            p = s*r
+-            d( i ) = g + p
+-            g = c*r - b
+-c
+-c           if eigenvectors are desired, then save rotations.
+-c
+-            if( icompz.gt.0 ) then
+-               work( i ) = c
+-               work( n-1+i ) = s
+-            end if
+-c
+-  120    continue
+-c
+-c        if eigenvectors are desired, then apply saved rotations.
+-c
+-         if( icompz.gt.0 ) then
+-            mm = l - m + 1
+-c$$$            call slasr( 'r', 'v', 'f', n, mm, work( m ), work( n-1+m ),
+-c$$$     $                  z( 1, m ), ldz )
+-c
+-c           *** New starting with version 2.5 ***
+-c
+-            call slasr( 'r', 'v', 'f', 1, mm, work( m ), work( n-1+m ),
+-     &                  z( m ), 1 )
+-c           *************************************                             
+-         end if
+-c
+-         d( l ) = d( l ) - p
+-         e( lm1 ) = g
+-         go to 90
+-c
+-c        eigenvalue found.
+-c
+-  130    continue
+-         d( l ) = p
+-c
+-         l = l - 1
+-         if( l.ge.lend )
+-     $      go to 90
+-         go to 140
+-c
+-      end if
+-c
+-c     undo scaling if necessary
+-c
+-  140 continue
+-      if( iscale.eq.1 ) then
+-         call slascl( 'g', 0, 0, ssfmax, anorm, lendsv-lsv+1, 1,
+-     $                d( lsv ), n, info )
+-         call slascl( 'g', 0, 0, ssfmax, anorm, lendsv-lsv, 1, e( lsv ),
+-     $                n, info )
+-      else if( iscale.eq.2 ) then
+-         call slascl( 'g', 0, 0, ssfmin, anorm, lendsv-lsv+1, 1,
+-     $                d( lsv ), n, info )
+-         call slascl( 'g', 0, 0, ssfmin, anorm, lendsv-lsv, 1, e( lsv ),
+-     $                n, info )
+-      end if
+-c
+-c     check for no convergence to an eigenvalue after a total
+-c     of n*maxit iterations.
+-c
+-      if( jtot.lt.nmaxit )
+-     $   go to 10
+-      do 150 i = 1, n - 1
+-         if( e( i ).ne.zero )
+-     $      info = info + 1
+-  150 continue
+-      go to 190
+-c
+-c     order eigenvalues and eigenvectors.
+-c
+-  160 continue
+-      if( icompz.eq.0 ) then
+-c
+-c        use quick sort
+-c
+-         call slasrt( 'i', n, d, info )
+-c
+-      else
+-c
+-c        use selection sort to minimize swaps of eigenvectors
+-c
+-         do 180 ii = 2, n
+-            i = ii - 1
+-            k = i
+-            p = d( i )
+-            do 170 j = ii, n
+-               if( d( j ).lt.p ) then
+-                  k = j
+-                  p = d( j )
+-               end if
+-  170       continue
+-            if( k.ne.i ) then
+-               d( k ) = d( i )
+-               d( i ) = p
+-c$$$               call sswap( n, z( 1, i ), 1, z( 1, k ), 1 )
+-c           *** New starting with version 2.5 ***
+-c
+-               p    = z(k)
+-               z(k) = z(i)
+-               z(i) = p
+-c           *************************************
+-            end if
+-  180    continue
+-      end if
+-c
+-  190 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of sstqrb |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/zgetv0.f
++++ /dev/null
+@@ -1,414 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: zgetv0
+-c
+-c\Description: 
+-c  Generate a random initial residual vector for the Arnoldi process.
+-c  Force the residual vector to be in the range of the operator OP.  
+-c
+-c\Usage:
+-c  call zgetv0
+-c     ( IDO, BMAT, ITRY, INITV, N, J, V, LDV, RESID, RNORM, 
+-c       IPNTR, WORKD, IERR )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.  IDO must be zero on the first
+-c          call to zgetv0.
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    This is for the initialization phase to force the
+-c                    starting vector into the range of OP.
+-c          IDO =  2: compute  Y = B * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of the matrix B in the (generalized)
+-c          eigenvalue problem A*x = lambda*B*x.
+-c          B = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          B = 'G' -> generalized eigenvalue problem A*x = lambda*B*x
+-c
+-c  ITRY    Integer.  (INPUT)
+-c          ITRY counts the number of times that zgetv0 is called.  
+-c          It should be set to 1 on the initial call to zgetv0.
+-c
+-c  INITV   Logical variable.  (INPUT)
+-c          .TRUE.  => the initial residual vector is given in RESID.
+-c          .FALSE. => generate a random initial residual vector.
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the problem.
+-c
+-c  J       Integer.  (INPUT)
+-c          Index of the residual vector to be generated, with respect to
+-c          the Arnoldi process.  J > 1 in case of a "restart".
+-c
+-c  V       Complex*16 N by J array.  (INPUT)
+-c          The first J-1 columns of V contain the current Arnoldi basis
+-c          if this is a "restart".
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling 
+-c          program.
+-c
+-c  RESID   Complex*16 array of length N.  (INPUT/OUTPUT)
+-c          Initial residual vector to be generated.  If RESID is 
+-c          provided, force RESID into the range of the operator OP.
+-c
+-c  RNORM   Double precision scalar.  (OUTPUT)
+-c          B-norm of the generated residual.
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c
+-c  WORKD   Complex*16 work array of length 2*N.  (REVERSE COMMUNICATION).
+-c          On exit, WORK(1:N) = B*RESID to be used in SSAITR.
+-c
+-c  IERR    Integer.  (OUTPUT)
+-c          =  0: Normal exit.
+-c          = -1: Cannot generate a nontrivial restarted residual vector
+-c                in the range of the operator OP.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  Complex*16
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c
+-c\Routines called:
+-c     arscnd  ARPACK utility routine for timing.
+-c     zvout   ARPACK utility routine that prints vectors.
+-c     zlarnv  LAPACK routine for generating a random vector. 
+-c     zgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     zcopy   Level 1 BLAS that copies one vector to another.
+-c     zdotc   Level 1 BLAS that computes the scalar product of two vectors.
+-c     dznrm2  Level 1 BLAS that computes the norm of a vector. 
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas            
+-c
+-c\SCCS Information: @(#)
+-c FILE: getv0.F   SID: 2.3   DATE OF SID: 08/27/96   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine zgetv0 
+-     &   ( ido, bmat, itry, initv, n, j, v, ldv, resid, rnorm, 
+-     &     ipntr, workd, ierr )
+-c 
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1
+-      logical    initv
+-      integer    ido, ierr, itry, j, ldv, n
+-      Double precision
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(3)
+-      Complex*16
+-     &           resid(n), v(ldv,j), workd(2*n)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex*16
+-     &           one, zero
+-      Double precision
+-     &           rzero
+-      parameter  (one = (1.0D+0, 0.0D+0), zero = (0.0D+0, 0.0D+0),
+-     &            rzero = 0.0D+0)
+-c
+-c     %------------------------%
+-c     | Local Scalars & Arrays |
+-c     %------------------------%
+-c
+-      logical    first, inits, orth
+-      integer    idist, iseed(4), iter, msglvl, jj
+-      Double precision
+-     &           rnorm0
+-      Complex*16
+-     &           cnorm
+-      save       first, iseed, inits, iter, msglvl, orth, rnorm0
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   zcopy, zgemv, zlarnv, zvout, arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision 
+-     &           dznrm2, dlapy2
+-      Complex*16
+-     &           zdotc
+-      external   zdotc, dznrm2, dlapy2
+-c
+-c     %-----------------%
+-c     | Data Statements |
+-c     %-----------------%
+-c
+-      data       inits /.true./
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-c
+-c     %-----------------------------------%
+-c     | Initialize the seed of the LAPACK |
+-c     | random number generator           |
+-c     %-----------------------------------%
+-c
+-      if (inits) then
+-          iseed(1) = 1
+-          iseed(2) = 3
+-          iseed(3) = 5
+-          iseed(4) = 7
+-          inits = .false.
+-      end if
+-c
+-      if (ido .eq.  0) then
+-c 
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call arscnd (t0)
+-         msglvl = mgetv0
+-c 
+-         ierr   = 0
+-         iter   = 0
+-         first  = .FALSE.
+-         orth   = .FALSE.
+-c
+-c        %-----------------------------------------------------%
+-c        | Possibly generate a random starting vector in RESID |
+-c        | Use a LAPACK random number generator used by the    |
+-c        | matrix generation routines.                         |
+-c        |    idist = 1: uniform (0,1)  distribution;          |
+-c        |    idist = 2: uniform (-1,1) distribution;          |
+-c        |    idist = 3: normal  (0,1)  distribution;          |
+-c        %-----------------------------------------------------%
+-c
+-         if (.not.initv) then
+-            idist = 2
+-            call zlarnv (idist, iseed, n, resid)
+-         end if
+-c 
+-c        %----------------------------------------------------------%
+-c        | Force the starting vector into the range of OP to handle |
+-c        | the generalized problem when B is possibly (singular).   |
+-c        %----------------------------------------------------------%
+-c
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nopx = nopx + 1
+-            ipntr(1) = 1
+-            ipntr(2) = n + 1
+-            call zcopy (n, resid, 1, workd, 1)
+-            ido = -1
+-            go to 9000
+-         end if
+-      end if
+-c 
+-c     %----------------------------------------%
+-c     | Back from computing B*(initial-vector) |
+-c     %----------------------------------------%
+-c
+-      if (first) go to 20
+-c
+-c     %-----------------------------------------------%
+-c     | Back from computing B*(orthogonalized-vector) |
+-c     %-----------------------------------------------%
+-c
+-      if (orth)  go to 40
+-c 
+-      call arscnd (t3)
+-      tmvopx = tmvopx + (t3 - t2)
+-c 
+-c     %------------------------------------------------------%
+-c     | Starting vector is now in the range of OP; r = OP*r; |
+-c     | Compute B-norm of starting vector.                   |
+-c     %------------------------------------------------------%
+-c
+-      call arscnd (t2)
+-      first = .TRUE.
+-      if (bmat .eq. 'G') then
+-         nbx = nbx + 1
+-         call zcopy (n, workd(n+1), 1, resid, 1)
+-         ipntr(1) = n + 1
+-         ipntr(2) = 1
+-         ido = 2
+-         go to 9000
+-      else if (bmat .eq. 'I') then
+-         call zcopy (n, resid, 1, workd, 1)
+-      end if
+-c 
+-   20 continue
+-c
+-      if (bmat .eq. 'G') then
+-         call arscnd (t3)
+-         tmvbx = tmvbx + (t3 - t2)
+-      end if
+-c 
+-      first = .FALSE.
+-      if (bmat .eq. 'G') then
+-          cnorm  = zdotc (n, resid, 1, workd, 1)
+-          rnorm0 = sqrt(dlapy2(dble(cnorm),dimag(cnorm)))
+-      else if (bmat .eq. 'I') then
+-           rnorm0 = dznrm2(n, resid, 1)
+-      end if
+-      rnorm  = rnorm0
+-c
+-c     %---------------------------------------------%
+-c     | Exit if this is the very first Arnoldi step |
+-c     %---------------------------------------------%
+-c
+-      if (j .eq. 1) go to 50
+-c 
+-c     %----------------------------------------------------------------
+-c     | Otherwise need to B-orthogonalize the starting vector against |
+-c     | the current Arnoldi basis using Gram-Schmidt with iter. ref.  |
+-c     | This is the case where an invariant subspace is encountered   |
+-c     | in the middle of the Arnoldi factorization.                   |
+-c     |                                                               |
+-c     |       s = V^{T}*B*r;   r = r - V*s;                           |
+-c     |                                                               |
+-c     | Stopping criteria used for iter. ref. is discussed in         |
+-c     | Parlett's book, page 107 and in Gragg & Reichel TOMS paper.   |
+-c     %---------------------------------------------------------------%
+-c
+-      orth = .TRUE.
+-   30 continue
+-c
+-      call zgemv ('C', n, j-1, one, v, ldv, workd, 1, 
+-     &            zero, workd(n+1), 1)
+-      call zgemv ('N', n, j-1, -one, v, ldv, workd(n+1), 1, 
+-     &            one, resid, 1)
+-c 
+-c     %----------------------------------------------------------%
+-c     | Compute the B-norm of the orthogonalized starting vector |
+-c     %----------------------------------------------------------%
+-c
+-      call arscnd (t2)
+-      if (bmat .eq. 'G') then
+-         nbx = nbx + 1
+-         call zcopy (n, resid, 1, workd(n+1), 1)
+-         ipntr(1) = n + 1
+-         ipntr(2) = 1
+-         ido = 2
+-         go to 9000
+-      else if (bmat .eq. 'I') then
+-         call zcopy (n, resid, 1, workd, 1)
+-      end if
+-c 
+-   40 continue
+-c
+-      if (bmat .eq. 'G') then
+-         call arscnd (t3)
+-         tmvbx = tmvbx + (t3 - t2)
+-      end if
+-c 
+-      if (bmat .eq. 'G') then
+-         cnorm = zdotc (n, resid, 1, workd, 1)
+-         rnorm = sqrt(dlapy2(dble(cnorm),dimag(cnorm)))
+-      else if (bmat .eq. 'I') then
+-         rnorm = dznrm2(n, resid, 1)
+-      end if
+-c
+-c     %--------------------------------------%
+-c     | Check for further orthogonalization. |
+-c     %--------------------------------------%
+-c
+-      if (msglvl .gt. 2) then
+-          call dvout (logfil, 1, rnorm0, ndigit, 
+-     &                '_getv0: re-orthonalization ; rnorm0 is')
+-          call dvout (logfil, 1, rnorm, ndigit, 
+-     &                '_getv0: re-orthonalization ; rnorm is')
+-      end if
+-c
+-      if (rnorm .gt. 0.717*rnorm0) go to 50
+-c 
+-      iter = iter + 1
+-      if (iter .le. 1) then
+-c
+-c        %-----------------------------------%
+-c        | Perform iterative refinement step |
+-c        %-----------------------------------%
+-c
+-         rnorm0 = rnorm
+-         go to 30
+-      else
+-c
+-c        %------------------------------------%
+-c        | Iterative refinement step "failed" |
+-c        %------------------------------------%
+-c
+-         do 45 jj = 1, n
+-            resid(jj) = zero
+-   45    continue
+-         rnorm = rzero
+-         ierr = -1
+-      end if
+-c 
+-   50 continue
+-c
+-      if (msglvl .gt. 0) then
+-         call dvout (logfil, 1, rnorm, ndigit,
+-     &        '_getv0: B-norm of initial / restarted starting vector')
+-      end if
+-      if (msglvl .gt. 2) then
+-         call zvout (logfil, n, resid, ndigit,
+-     &        '_getv0: initial / restarted starting vector')
+-      end if
+-      ido = 99
+-c 
+-      call arscnd (t1)
+-      tgetv0 = tgetv0 + (t1 - t0)
+-c 
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of zgetv0 |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/znaitr.f
++++ /dev/null
+@@ -1,850 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: znaitr
+-c
+-c\Description: 
+-c  Reverse communication interface for applying NP additional steps to 
+-c  a K step nonsymmetric Arnoldi factorization.
+-c
+-c  Input:  OP*V_{k}  -  V_{k}*H = r_{k}*e_{k}^T
+-c
+-c          with (V_{k}^T)*B*V_{k} = I, (V_{k}^T)*B*r_{k} = 0.
+-c
+-c  Output: OP*V_{k+p}  -  V_{k+p}*H = r_{k+p}*e_{k+p}^T
+-c
+-c          with (V_{k+p}^T)*B*V_{k+p} = I, (V_{k+p}^T)*B*r_{k+p} = 0.
+-c
+-c  where OP and B are as in znaupd.  The B-norm of r_{k+p} is also
+-c  computed and returned.
+-c
+-c\Usage:
+-c  call znaitr
+-c     ( IDO, BMAT, N, K, NP, NB, RESID, RNORM, V, LDV, H, LDH, 
+-c       IPNTR, WORKD, INFO )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y.
+-c                    This is for the restart phase to force the new
+-c                    starting vector into the range of OP.
+-c          IDO =  1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y,
+-c                    IPNTR(3) is the pointer into WORK for B * X.
+-c          IDO =  2: compute  Y = B * X  where
+-c                    IPNTR(1) is the pointer into WORK for X,
+-c                    IPNTR(2) is the pointer into WORK for Y.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c          When the routine is used in the "shift-and-invert" mode, the
+-c          vector B * Q is already available and do not need to be
+-c          recomputed in forming OP * Q.
+-c
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of the matrix B that defines the
+-c          semi-inner product for the operator OP.  See znaupd.
+-c          B = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          B = 'G' -> generalized eigenvalue problem A*x = lambda*M**x
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the eigenproblem.
+-c
+-c  K       Integer.  (INPUT)
+-c          Current size of V and H.
+-c
+-c  NP      Integer.  (INPUT)
+-c          Number of additional Arnoldi steps to take.
+-c
+-c  NB      Integer.  (INPUT)
+-c          Blocksize to be used in the recurrence.          
+-c          Only work for NB = 1 right now.  The goal is to have a 
+-c          program that implement both the block and non-block method.
+-c
+-c  RESID   Complex*16 array of length N.  (INPUT/OUTPUT)
+-c          On INPUT:  RESID contains the residual vector r_{k}.
+-c          On OUTPUT: RESID contains the residual vector r_{k+p}.
+-c
+-c  RNORM   Double precision scalar.  (INPUT/OUTPUT)
+-c          B-norm of the starting residual on input.
+-c          B-norm of the updated residual r_{k+p} on output.
+-c
+-c  V       Complex*16 N by K+NP array.  (INPUT/OUTPUT)
+-c          On INPUT:  V contains the Arnoldi vectors in the first K 
+-c          columns.
+-c          On OUTPUT: V contains the new NP Arnoldi vectors in the next
+-c          NP columns.  The first K columns are unchanged.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling 
+-c          program.
+-c
+-c  H       Complex*16 (K+NP) by (K+NP) array.  (INPUT/OUTPUT)
+-c          H is used to store the generated upper Hessenberg matrix.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling 
+-c          program.
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORK for 
+-c          vectors used by the Arnoldi iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X.
+-c          IPNTR(2): pointer to the current result vector Y.
+-c          IPNTR(3): pointer to the vector B * X when used in the 
+-c                    shift-and-invert mode.  X is the current operand.
+-c          -------------------------------------------------------------
+-c          
+-c  WORKD   Complex*16 work array of length 3*N.  (REVERSE COMMUNICATION)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The calling program should not 
+-c          use WORKD as temporary workspace during the iteration !!!!!!
+-c          On input, WORKD(1:N) = B*RESID and is used to save some 
+-c          computation at the first step.
+-c
+-c  INFO    Integer.  (OUTPUT)
+-c          = 0: Normal exit.
+-c          > 0: Size of the spanning invariant subspace of OP found.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  Complex*16
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c
+-c\Routines called:
+-c     zgetv0  ARPACK routine to generate the initial vector.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     zmout   ARPACK utility routine that prints matrices
+-c     zvout   ARPACK utility routine that prints vectors.
+-c     zlanhs  LAPACK routine that computes various norms of a matrix.
+-c     zlascl  LAPACK routine for careful scaling of a matrix.
+-c     dlabad  LAPACK routine for defining the underflow and overflow
+-c             limits.
+-c     dlamch  LAPACK routine that determines machine constants.
+-c     dlapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     zgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     zaxpy   Level 1 BLAS that computes a vector triad.
+-c     zcopy   Level 1 BLAS that copies one vector to another .
+-c     zdotc   Level 1 BLAS that computes the scalar product of two vectors. 
+-c     zscal   Level 1 BLAS that scales a vector.
+-c     zdscal  Level 1 BLAS that scales a complex vector by a real number. 
+-c     dznrm2  Level 1 BLAS that computes the norm of a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas 
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas 
+-c 
+-c\SCCS Information: @(#)
+-c FILE: naitr.F   SID: 2.3   DATE OF SID: 8/27/96   RELEASE: 2
+-c
+-c\Remarks
+-c  The algorithm implemented is:
+-c  
+-c  restart = .false.
+-c  Given V_{k} = [v_{1}, ..., v_{k}], r_{k}; 
+-c  r_{k} contains the initial residual vector even for k = 0;
+-c  Also assume that rnorm = || B*r_{k} || and B*r_{k} are already 
+-c  computed by the calling program.
+-c
+-c  betaj = rnorm ; p_{k+1} = B*r_{k} ;
+-c  For  j = k+1, ..., k+np  Do
+-c     1) if ( betaj < tol ) stop or restart depending on j.
+-c        ( At present tol is zero )
+-c        if ( restart ) generate a new starting vector.
+-c     2) v_{j} = r(j-1)/betaj;  V_{j} = [V_{j-1}, v_{j}];  
+-c        p_{j} = p_{j}/betaj
+-c     3) r_{j} = OP*v_{j} where OP is defined as in znaupd
+-c        For shift-invert mode p_{j} = B*v_{j} is already available.
+-c        wnorm = || OP*v_{j} ||
+-c     4) Compute the j-th step residual vector.
+-c        w_{j} =  V_{j}^T * B * OP * v_{j}
+-c        r_{j} =  OP*v_{j} - V_{j} * w_{j}
+-c        H(:,j) = w_{j};
+-c        H(j,j-1) = rnorm
+-c        rnorm = || r_(j) ||
+-c        If (rnorm > 0.717*wnorm) accept step and go back to 1)
+-c     5) Re-orthogonalization step:
+-c        s = V_{j}'*B*r_{j}
+-c        r_{j} = r_{j} - V_{j}*s;  rnorm1 = || r_{j} ||
+-c        alphaj = alphaj + s_{j};   
+-c     6) Iterative refinement step:
+-c        If (rnorm1 > 0.717*rnorm) then
+-c           rnorm = rnorm1
+-c           accept step and go back to 1)
+-c        Else
+-c           rnorm = rnorm1
+-c           If this is the first time in step 6), go to 5)
+-c           Else r_{j} lies in the span of V_{j} numerically.
+-c              Set r_{j} = 0 and rnorm = 0; go to 1)
+-c        EndIf 
+-c  End Do
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine znaitr
+-     &   (ido, bmat, n, k, np, nb, resid, rnorm, v, ldv, h, ldh, 
+-     &    ipntr, workd, info)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1
+-      integer    ido, info, k, ldh, ldv, n, nb, np
+-      Double precision
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(3)
+-      Complex*16
+-     &           h(ldh,k+np), resid(n), v(ldv,k+np), workd(3*n)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex*16
+-     &           one, zero
+-      Double precision
+-     &           rone, rzero
+-      parameter (one = (1.0D+0, 0.0D+0), zero = (0.0D+0, 0.0D+0), 
+-     &           rone = 1.0D+0, rzero = 0.0D+0)
+-c
+-c     %--------------%
+-c     | Local Arrays |
+-c     %--------------%
+-c
+-      Double precision
+-     &           rtemp(2)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      logical    first, orth1, orth2, rstart, step3, step4
+-      integer    ierr, i, infol, ipj, irj, ivj, iter, itry, j, msglvl,
+-     &           jj
+-      Double precision            
+-     &           ovfl, smlnum, tst1, ulp, unfl, betaj,
+-     &           temp1, rnorm1, wnorm
+-      Complex*16
+-     &           cnorm
+-c
+-      save       first, orth1, orth2, rstart, step3, step4,
+-     &           ierr, ipj, irj, ivj, iter, itry, j, msglvl, ovfl,
+-     &           betaj, rnorm1, smlnum, ulp, unfl, wnorm
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   zaxpy, zcopy, zscal, zdscal, zgemv, zgetv0, 
+-     &           dlabad, zvout, zmout, ivout, arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Complex*16
+-     &           zdotc 
+-      Double precision            
+-     &           dlamch,  dznrm2, zlanhs, dlapy2
+-      external   zdotc, dznrm2, zlanhs, dlamch, dlapy2
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic  dimag, dble, max, sqrt 
+-c
+-c     %-----------------%
+-c     | Data statements |
+-c     %-----------------%
+-c
+-      data       first / .true. /
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (first) then
+-c
+-c        %-----------------------------------------%
+-c        | Set machine-dependent constants for the |
+-c        | the splitting and deflation criterion.  |
+-c        | If norm(H) <= sqrt(OVFL),               |
+-c        | overflow should not occur.              |
+-c        | REFERENCE: LAPACK subroutine zlahqr     |
+-c        %-----------------------------------------%
+-c
+-         unfl = dlamch( 'safe minimum' )
+-         ovfl = dble(one / unfl)
+-         call dlabad( unfl, ovfl )
+-         ulp = dlamch( 'precision' )
+-         smlnum = unfl*( n / ulp )
+-         first = .false.
+-      end if
+-c
+-      if (ido .eq. 0) then
+-c 
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call arscnd (t0)
+-         msglvl = mcaitr
+-c 
+-c        %------------------------------%
+-c        | Initial call to this routine |
+-c        %------------------------------%
+-c
+-         info   = 0
+-         step3  = .false.
+-         step4  = .false.
+-         rstart = .false.
+-         orth1  = .false.
+-         orth2  = .false.
+-         j      = k + 1
+-         ipj    = 1
+-         irj    = ipj   + n
+-         ivj    = irj   + n
+-      end if
+-c 
+-c     %-------------------------------------------------%
+-c     | When in reverse communication mode one of:      |
+-c     | STEP3, STEP4, ORTH1, ORTH2, RSTART              |
+-c     | will be .true. when ....                        |
+-c     | STEP3: return from computing OP*v_{j}.          |
+-c     | STEP4: return from computing B-norm of OP*v_{j} |
+-c     | ORTH1: return from computing B-norm of r_{j+1}  |
+-c     | ORTH2: return from computing B-norm of          |
+-c     |        correction to the residual vector.       |
+-c     | RSTART: return from OP computations needed by   |
+-c     |         zgetv0.                                 |
+-c     %-------------------------------------------------%
+-c
+-      if (step3)  go to 50
+-      if (step4)  go to 60
+-      if (orth1)  go to 70
+-      if (orth2)  go to 90
+-      if (rstart) go to 30
+-c
+-c     %-----------------------------%
+-c     | Else this is the first step |
+-c     %-----------------------------%
+-c
+-c     %--------------------------------------------------------------%
+-c     |                                                              |
+-c     |        A R N O L D I     I T E R A T I O N     L O O P       |
+-c     |                                                              |
+-c     | Note:  B*r_{j-1} is already in WORKD(1:N)=WORKD(IPJ:IPJ+N-1) |
+-c     %--------------------------------------------------------------%
+- 
+- 1000 continue
+-c
+-         if (msglvl .gt. 1) then
+-            call ivout (logfil, 1, j, ndigit, 
+-     &                  '_naitr: generating Arnoldi vector number')
+-            call dvout (logfil, 1, rnorm, ndigit, 
+-     &                  '_naitr: B-norm of the current residual is')
+-         end if
+-c 
+-c        %---------------------------------------------------%
+-c        | STEP 1: Check if the B norm of j-th residual      |
+-c        | vector is zero. Equivalent to determine whether   |
+-c        | an exact j-step Arnoldi factorization is present. |
+-c        %---------------------------------------------------%
+-c
+-         betaj = rnorm
+-         if (rnorm .gt. rzero) go to 40
+-c
+-c           %---------------------------------------------------%
+-c           | Invariant subspace found, generate a new starting |
+-c           | vector which is orthogonal to the current Arnoldi |
+-c           | basis and continue the iteration.                 |
+-c           %---------------------------------------------------%
+-c
+-            if (msglvl .gt. 0) then
+-               call ivout (logfil, 1, j, ndigit,
+-     &                     '_naitr: ****** RESTART AT STEP ******')
+-            end if
+-c 
+-c           %---------------------------------------------%
+-c           | ITRY is the loop variable that controls the |
+-c           | maximum amount of times that a restart is   |
+-c           | attempted. NRSTRT is used by stat.h         |
+-c           %---------------------------------------------%
+-c 
+-            betaj  = rzero
+-            nrstrt = nrstrt + 1
+-            itry   = 1
+-   20       continue
+-            rstart = .true.
+-            ido    = 0
+-   30       continue
+-c
+-c           %--------------------------------------%
+-c           | If in reverse communication mode and |
+-c           | RSTART = .true. flow returns here.   |
+-c           %--------------------------------------%
+-c
+-            call zgetv0 (ido, bmat, itry, .false., n, j, v, ldv, 
+-     &                   resid, rnorm, ipntr, workd, ierr)
+-            if (ido .ne. 99) go to 9000
+-            if (ierr .lt. 0) then
+-               itry = itry + 1
+-               if (itry .le. 3) go to 20
+-c
+-c              %------------------------------------------------%
+-c              | Give up after several restart attempts.        |
+-c              | Set INFO to the size of the invariant subspace |
+-c              | which spans OP and exit.                       |
+-c              %------------------------------------------------%
+-c
+-               info = j - 1
+-               call arscnd (t1)
+-               tcaitr = tcaitr + (t1 - t0)
+-               ido = 99
+-               go to 9000
+-            end if
+-c 
+-   40    continue
+-c
+-c        %---------------------------------------------------------%
+-c        | STEP 2:  v_{j} = r_{j-1}/rnorm and p_{j} = p_{j}/rnorm  |
+-c        | Note that p_{j} = B*r_{j-1}. In order to avoid overflow |
+-c        | when reciprocating a small RNORM, test against lower    |
+-c        | machine bound.                                          |
+-c        %---------------------------------------------------------%
+-c
+-         call zcopy (n, resid, 1, v(1,j), 1)
+-         if ( rnorm .ge. unfl) then
+-             temp1 = rone / rnorm
+-             call zdscal (n, temp1, v(1,j), 1)
+-             call zdscal (n, temp1, workd(ipj), 1)
+-         else
+-c
+-c            %-----------------------------------------%
+-c            | To scale both v_{j} and p_{j} carefully |
+-c            | use LAPACK routine zlascl               |
+-c            %-----------------------------------------%
+-c
+-             call zlascl ('General', i, i, rnorm, rone,
+-     &                    n, 1, v(1,j), n, infol)
+-             call zlascl ('General', i, i, rnorm, rone,  
+-     &                    n, 1, workd(ipj), n, infol)
+-         end if
+-c
+-c        %------------------------------------------------------%
+-c        | STEP 3:  r_{j} = OP*v_{j}; Note that p_{j} = B*v_{j} |
+-c        | Note that this is not quite yet r_{j}. See STEP 4    |
+-c        %------------------------------------------------------%
+-c
+-         step3 = .true.
+-         nopx  = nopx + 1
+-         call arscnd (t2)
+-         call zcopy (n, v(1,j), 1, workd(ivj), 1)
+-         ipntr(1) = ivj
+-         ipntr(2) = irj
+-         ipntr(3) = ipj
+-         ido = 1
+-c 
+-c        %-----------------------------------%
+-c        | Exit in order to compute OP*v_{j} |
+-c        %-----------------------------------%
+-c 
+-         go to 9000 
+-   50    continue
+-c 
+-c        %----------------------------------%
+-c        | Back from reverse communication; |
+-c        | WORKD(IRJ:IRJ+N-1) := OP*v_{j}   |
+-c        | if step3 = .true.                |
+-c        %----------------------------------%
+-c
+-         call arscnd (t3)
+-         tmvopx = tmvopx + (t3 - t2)
+- 
+-         step3 = .false.
+-c
+-c        %------------------------------------------%
+-c        | Put another copy of OP*v_{j} into RESID. |
+-c        %------------------------------------------%
+-c
+-         call zcopy (n, workd(irj), 1, resid, 1)
+-c 
+-c        %---------------------------------------%
+-c        | STEP 4:  Finish extending the Arnoldi |
+-c        |          factorization to length j.   |
+-c        %---------------------------------------%
+-c
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            step4 = .true.
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %-------------------------------------%
+-c           | Exit in order to compute B*OP*v_{j} |
+-c           %-------------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call zcopy (n, resid, 1, workd(ipj), 1)
+-         end if
+-   60    continue
+-c 
+-c        %----------------------------------%
+-c        | Back from reverse communication; |
+-c        | WORKD(IPJ:IPJ+N-1) := B*OP*v_{j} |
+-c        | if step4 = .true.                |
+-c        %----------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c 
+-         step4 = .false.
+-c
+-c        %-------------------------------------%
+-c        | The following is needed for STEP 5. |
+-c        | Compute the B-norm of OP*v_{j}.     |
+-c        %-------------------------------------%
+-c
+-         if (bmat .eq. 'G') then  
+-             cnorm = zdotc (n, resid, 1, workd(ipj), 1)
+-             wnorm = sqrt( dlapy2(dble(cnorm),dimag(cnorm)) )
+-         else if (bmat .eq. 'I') then
+-             wnorm = dznrm2(n, resid, 1)
+-         end if
+-c
+-c        %-----------------------------------------%
+-c        | Compute the j-th residual corresponding |
+-c        | to the j step factorization.            |
+-c        | Use Classical Gram Schmidt and compute: |
+-c        | w_{j} <-  V_{j}^T * B * OP * v_{j}      |
+-c        | r_{j} <-  OP*v_{j} - V_{j} * w_{j}      |
+-c        %-----------------------------------------%
+-c
+-c
+-c        %------------------------------------------%
+-c        | Compute the j Fourier coefficients w_{j} |
+-c        | WORKD(IPJ:IPJ+N-1) contains B*OP*v_{j}.  |
+-c        %------------------------------------------%
+-c 
+-         call zgemv ('C', n, j, one, v, ldv, workd(ipj), 1,
+-     &               zero, h(1,j), 1)
+-c
+-c        %--------------------------------------%
+-c        | Orthogonalize r_{j} against V_{j}.   |
+-c        | RESID contains OP*v_{j}. See STEP 3. | 
+-c        %--------------------------------------%
+-c
+-         call zgemv ('N', n, j, -one, v, ldv, h(1,j), 1,
+-     &               one, resid, 1)
+-c
+-         if (j .gt. 1) h(j,j-1) = dcmplx(betaj, rzero)
+-c
+-         call arscnd (t4)
+-c 
+-         orth1 = .true.
+-c 
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call zcopy (n, resid, 1, workd(irj), 1)
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %----------------------------------%
+-c           | Exit in order to compute B*r_{j} |
+-c           %----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call zcopy (n, resid, 1, workd(ipj), 1)
+-         end if 
+-   70    continue
+-c 
+-c        %---------------------------------------------------%
+-c        | Back from reverse communication if ORTH1 = .true. |
+-c        | WORKD(IPJ:IPJ+N-1) := B*r_{j}.                    |
+-c        %---------------------------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c 
+-         orth1 = .false.
+-c
+-c        %------------------------------%
+-c        | Compute the B-norm of r_{j}. |
+-c        %------------------------------%
+-c
+-         if (bmat .eq. 'G') then         
+-            cnorm = zdotc (n, resid, 1, workd(ipj), 1)
+-            rnorm = sqrt( dlapy2(dble(cnorm),dimag(cnorm)) )
+-         else if (bmat .eq. 'I') then
+-            rnorm = dznrm2(n, resid, 1)
+-         end if
+-c 
+-c        %-----------------------------------------------------------%
+-c        | STEP 5: Re-orthogonalization / Iterative refinement phase |
+-c        | Maximum NITER_ITREF tries.                                |
+-c        |                                                           |
+-c        |          s      = V_{j}^T * B * r_{j}                     |
+-c        |          r_{j}  = r_{j} - V_{j}*s                         |
+-c        |          alphaj = alphaj + s_{j}                          |
+-c        |                                                           |
+-c        | The stopping criteria used for iterative refinement is    |
+-c        | discussed in Parlett's book SEP, page 107 and in Gragg &  |
+-c        | Reichel ACM TOMS paper; Algorithm 686, Dec. 1990.         |
+-c        | Determine if we need to correct the residual. The goal is |
+-c        | to enforce ||v(:,1:j)^T * r_{j}|| .le. eps * || r_{j} ||  |
+-c        | The following test determines whether the sine of the     |
+-c        | angle between  OP*x and the computed residual is less     |
+-c        | than or equal to 0.717.                                   |
+-c        %-----------------------------------------------------------%
+-c
+-         if ( rnorm .gt. 0.717*wnorm ) go to 100
+-c
+-         iter  = 0
+-         nrorth = nrorth + 1
+-c 
+-c        %---------------------------------------------------%
+-c        | Enter the Iterative refinement phase. If further  |
+-c        | refinement is necessary, loop back here. The loop |
+-c        | variable is ITER. Perform a step of Classical     |
+-c        | Gram-Schmidt using all the Arnoldi vectors V_{j}  |
+-c        %---------------------------------------------------%
+-c 
+-   80    continue
+-c
+-         if (msglvl .gt. 2) then
+-            rtemp(1) = wnorm
+-            rtemp(2) = rnorm
+-            call dvout (logfil, 2, rtemp, ndigit, 
+-     &      '_naitr: re-orthogonalization; wnorm and rnorm are')
+-            call zvout (logfil, j, h(1,j), ndigit,
+-     &                  '_naitr: j-th column of H')
+-         end if
+-c
+-c        %----------------------------------------------------%
+-c        | Compute V_{j}^T * B * r_{j}.                       |
+-c        | WORKD(IRJ:IRJ+J-1) = v(:,1:J)'*WORKD(IPJ:IPJ+N-1). |
+-c        %----------------------------------------------------%
+-c
+-         call zgemv ('C', n, j, one, v, ldv, workd(ipj), 1, 
+-     &               zero, workd(irj), 1)
+-c
+-c        %---------------------------------------------%
+-c        | Compute the correction to the residual:     |
+-c        | r_{j} = r_{j} - V_{j} * WORKD(IRJ:IRJ+J-1). |
+-c        | The correction to H is v(:,1:J)*H(1:J,1:J)  |
+-c        | + v(:,1:J)*WORKD(IRJ:IRJ+J-1)*e'_j.         |
+-c        %---------------------------------------------%
+-c
+-         call zgemv ('N', n, j, -one, v, ldv, workd(irj), 1, 
+-     &               one, resid, 1)
+-         call zaxpy (j, one, workd(irj), 1, h(1,j), 1)
+-c 
+-         orth2 = .true.
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call zcopy (n, resid, 1, workd(irj), 1)
+-            ipntr(1) = irj
+-            ipntr(2) = ipj
+-            ido = 2
+-c 
+-c           %-----------------------------------%
+-c           | Exit in order to compute B*r_{j}. |
+-c           | r_{j} is the corrected residual.  |
+-c           %-----------------------------------%
+-c 
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call zcopy (n, resid, 1, workd(ipj), 1)
+-         end if 
+-   90    continue
+-c
+-c        %---------------------------------------------------%
+-c        | Back from reverse communication if ORTH2 = .true. |
+-c        %---------------------------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if 
+-c
+-c        %-----------------------------------------------------%
+-c        | Compute the B-norm of the corrected residual r_{j}. |
+-c        %-----------------------------------------------------%
+-c 
+-         if (bmat .eq. 'G') then         
+-             cnorm  = zdotc (n, resid, 1, workd(ipj), 1)
+-             rnorm1 = sqrt( dlapy2(dble(cnorm),dimag(cnorm)) )
+-         else if (bmat .eq. 'I') then
+-             rnorm1 = dznrm2(n, resid, 1)
+-         end if
+-c 
+-         if (msglvl .gt. 0 .and. iter .gt. 0 ) then
+-            call ivout (logfil, 1, j, ndigit,
+-     &           '_naitr: Iterative refinement for Arnoldi residual')
+-            if (msglvl .gt. 2) then
+-                rtemp(1) = rnorm
+-                rtemp(2) = rnorm1
+-                call dvout (logfil, 2, rtemp, ndigit,
+-     &           '_naitr: iterative refinement ; rnorm and rnorm1 are')
+-            end if
+-         end if
+-c
+-c        %-----------------------------------------%
+-c        | Determine if we need to perform another |
+-c        | step of re-orthogonalization.           |
+-c        %-----------------------------------------%
+-c
+-         if ( rnorm1 .gt. 0.717*rnorm ) then
+-c
+-c           %---------------------------------------%
+-c           | No need for further refinement.       |
+-c           | The cosine of the angle between the   |
+-c           | corrected residual vector and the old |
+-c           | residual vector is greater than 0.717 |
+-c           | In other words the corrected residual |
+-c           | and the old residual vector share an  |
+-c           | angle of less than arcCOS(0.717)      |
+-c           %---------------------------------------%
+-c
+-            rnorm = rnorm1
+-c 
+-         else
+-c
+-c           %-------------------------------------------%
+-c           | Another step of iterative refinement step |
+-c           | is required. NITREF is used by stat.h     |
+-c           %-------------------------------------------%
+-c
+-            nitref = nitref + 1
+-            rnorm  = rnorm1
+-            iter   = iter + 1
+-            if (iter .le. 1) go to 80
+-c
+-c           %-------------------------------------------------%
+-c           | Otherwise RESID is numerically in the span of V |
+-c           %-------------------------------------------------%
+-c
+-            do 95 jj = 1, n
+-               resid(jj) = zero
+-  95        continue 
+-            rnorm = rzero
+-         end if
+-c 
+-c        %----------------------------------------------%
+-c        | Branch here directly if iterative refinement |
+-c        | wasn't necessary or after at most NITER_REF  |
+-c        | steps of iterative refinement.               |
+-c        %----------------------------------------------%
+-c 
+-  100    continue
+-c 
+-         rstart = .false.
+-         orth2  = .false.
+-c 
+-         call arscnd (t5)
+-         titref = titref + (t5 - t4)
+-c 
+-c        %------------------------------------%
+-c        | STEP 6: Update  j = j+1;  Continue |
+-c        %------------------------------------%
+-c
+-         j = j + 1
+-         if (j .gt. k+np) then
+-            call arscnd (t1)
+-            tcaitr = tcaitr + (t1 - t0)
+-            ido = 99
+-            do 110 i = max(1,k), k+np-1
+-c     
+-c              %--------------------------------------------%
+-c              | Check for splitting and deflation.         |
+-c              | Use a standard test as in the QR algorithm |
+-c              | REFERENCE: LAPACK subroutine zlahqr        |
+-c              %--------------------------------------------%
+-c     
+-               tst1 = dlapy2(dble(h(i,i)),dimag(h(i,i)))
+-     &              + dlapy2(dble(h(i+1,i+1)), dimag(h(i+1,i+1)))
+-               if( tst1.eq.dble(zero) )
+-     &              tst1 = zlanhs( '1', k+np, h, ldh, workd(n+1) )
+-               if( dlapy2(dble(h(i+1,i)),dimag(h(i+1,i))) .le. 
+-     &                    max( ulp*tst1, smlnum ) ) 
+-     &             h(i+1,i) = zero
+- 110        continue
+-c     
+-            if (msglvl .gt. 2) then
+-               call zmout (logfil, k+np, k+np, h, ldh, ndigit, 
+-     &          '_naitr: Final upper Hessenberg matrix H of order K+NP')
+-            end if
+-c     
+-            go to 9000
+-         end if
+-c
+-c        %--------------------------------------------------------%
+-c        | Loop back to extend the factorization by another step. |
+-c        %--------------------------------------------------------%
+-c
+-      go to 1000
+-c 
+-c     %---------------------------------------------------------------%
+-c     |                                                               |
+-c     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  |
+-c     |                                                               |
+-c     %---------------------------------------------------------------%
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of znaitr |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/znapps.f
++++ /dev/null
+@@ -1,507 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: znapps
+-c
+-c\Description:
+-c  Given the Arnoldi factorization
+-c
+-c     A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T,
+-c
+-c  apply NP implicit shifts resulting in
+-c
+-c     A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q
+-c
+-c  where Q is an orthogonal matrix which is the product of rotations
+-c  and reflections resulting from the NP bulge change sweeps.
+-c  The updated Arnoldi factorization becomes:
+-c
+-c     A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T.
+-c
+-c\Usage:
+-c  call znapps
+-c     ( N, KEV, NP, SHIFT, V, LDV, H, LDH, RESID, Q, LDQ, 
+-c       WORKL, WORKD )
+-c
+-c\Arguments
+-c  N       Integer.  (INPUT)
+-c          Problem size, i.e. size of matrix A.
+-c
+-c  KEV     Integer.  (INPUT/OUTPUT)
+-c          KEV+NP is the size of the input matrix H.
+-c          KEV is the size of the updated matrix HNEW. 
+-c
+-c  NP      Integer.  (INPUT)
+-c          Number of implicit shifts to be applied.
+-c
+-c  SHIFT   Complex*16 array of length NP.  (INPUT)
+-c          The shifts to be applied.
+-c
+-c  V       Complex*16 N by (KEV+NP) array.  (INPUT/OUTPUT)
+-c          On INPUT, V contains the current KEV+NP Arnoldi vectors.
+-c          On OUTPUT, V contains the updated KEV Arnoldi vectors
+-c          in the first KEV columns of V.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling
+-c          program.
+-c
+-c  H       Complex*16 (KEV+NP) by (KEV+NP) array.  (INPUT/OUTPUT)
+-c          On INPUT, H contains the current KEV+NP by KEV+NP upper 
+-c          Hessenberg matrix of the Arnoldi factorization.
+-c          On OUTPUT, H contains the updated KEV by KEV upper Hessenberg
+-c          matrix in the KEV leading submatrix.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling
+-c          program.
+-c
+-c  RESID   Complex*16 array of length N.  (INPUT/OUTPUT)
+-c          On INPUT, RESID contains the the residual vector r_{k+p}.
+-c          On OUTPUT, RESID is the update residual vector rnew_{k} 
+-c          in the first KEV locations.
+-c
+-c  Q       Complex*16 KEV+NP by KEV+NP work array.  (WORKSPACE)
+-c          Work array used to accumulate the rotations and reflections
+-c          during the bulge chase sweep.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c
+-c  WORKL   Complex*16 work array of length (KEV+NP).  (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.
+-c
+-c  WORKD   Complex*16 work array of length 2*N.  (WORKSPACE)
+-c          Distributed array used in the application of the accumulated
+-c          orthogonal matrix Q.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  Complex*16
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c
+-c\Routines called:
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     zmout   ARPACK utility routine that prints matrices
+-c     zvout   ARPACK utility routine that prints vectors.
+-c     zlacpy  LAPACK matrix copy routine.
+-c     zlanhs  LAPACK routine that computes various norms of a matrix.
+-c     zlartg  LAPACK Givens rotation construction routine.
+-c     zlaset  LAPACK matrix initialization routine.
+-c     dlabad  LAPACK routine for defining the underflow and overflow
+-c             limits.
+-c     dlamch  LAPACK routine that determines machine constants.
+-c     dlapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     zgemv   Level 2 BLAS routine for matrix vector multiplication.
+-c     zaxpy   Level 1 BLAS that computes a vector triad.
+-c     zcopy   Level 1 BLAS that copies one vector to another.
+-c     zscal   Level 1 BLAS that scales a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas 
+-c
+-c\SCCS Information: @(#)
+-c FILE: napps.F   SID: 2.3   DATE OF SID: 3/28/97   RELEASE: 2
+-c
+-c\Remarks
+-c  1. In this version, each shift is applied to all the sublocks of
+-c     the Hessenberg matrix H and not just to the submatrix that it
+-c     comes from. Deflation as in LAPACK routine zlahqr (QR algorithm
+-c     for upper Hessenberg matrices ) is used.
+-c     Upon output, the subdiagonals of H are enforced to be non-negative
+-c     real numbers.
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine znapps
+-     &   ( n, kev, np, shift, v, ldv, h, ldh, resid, q, ldq, 
+-     &     workl, workd )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    kev, ldh, ldq, ldv, n, np
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Complex*16
+-     &           h(ldh,kev+np), resid(n), shift(np), 
+-     &           v(ldv,kev+np), q(ldq,kev+np), workd(2*n), workl(kev+np)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex*16
+-     &           one, zero
+-      Double precision
+-     &           rzero
+-      parameter (one = (1.0D+0, 0.0D+0), zero = (0.0D+0, 0.0D+0),
+-     &           rzero = 0.0D+0)
+-c
+-c     %------------------------%
+-c     | Local Scalars & Arrays |
+-c     %------------------------%
+-c
+-      integer    i, iend, istart, j, jj, kplusp, msglvl
+-      logical    first
+-      Complex*16
+-     &           cdum, f, g, h11, h21, r, s, sigma, t
+-      Double precision             
+-     &           c,  ovfl, smlnum, ulp, unfl, tst1
+-      save       first, ovfl, smlnum, ulp, unfl 
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   zaxpy, zcopy, zgemv, zscal, zlacpy, zlartg, 
+-     &           zvout, zlaset, dlabad, zmout, arscnd, ivout
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision                 
+-     &           zlanhs, dlamch, dlapy2
+-      external   zlanhs, dlamch, dlapy2
+-c
+-c     %----------------------%
+-c     | Intrinsics Functions |
+-c     %----------------------%
+-c
+-      intrinsic  abs, dimag, conjg, dcmplx, max, min, dble
+-c
+-c     %---------------------%
+-c     | Statement Functions |
+-c     %---------------------%
+-c
+-      Double precision     
+-     &           zabs1
+-      zabs1( cdum ) = abs( dble( cdum ) ) + abs( dimag( cdum ) )
+-c
+-c     %----------------%
+-c     | Data statments |
+-c     %----------------%
+-c
+-      data       first / .true. /
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (first) then
+-c
+-c        %-----------------------------------------------%
+-c        | Set machine-dependent constants for the       |
+-c        | stopping criterion. If norm(H) <= sqrt(OVFL), |
+-c        | overflow should not occur.                    |
+-c        | REFERENCE: LAPACK subroutine zlahqr           |
+-c        %-----------------------------------------------%
+-c
+-         unfl = dlamch( 'safe minimum' )
+-         ovfl = dble(one / unfl)
+-         call dlabad( unfl, ovfl )
+-         ulp = dlamch( 'precision' )
+-         smlnum = unfl*( n / ulp )
+-         first = .false.
+-      end if
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c
+-      call arscnd (t0)
+-      msglvl = mcapps
+-c 
+-      kplusp = kev + np 
+-c 
+-c     %--------------------------------------------%
+-c     | Initialize Q to the identity to accumulate |
+-c     | the rotations and reflections              |
+-c     %--------------------------------------------%
+-c
+-      call zlaset ('All', kplusp, kplusp, zero, one, q, ldq)
+-c
+-c     %----------------------------------------------%
+-c     | Quick return if there are no shifts to apply |
+-c     %----------------------------------------------%
+-c
+-      if (np .eq. 0) go to 9000
+-c
+-c     %----------------------------------------------%
+-c     | Chase the bulge with the application of each |
+-c     | implicit shift. Each shift is applied to the |
+-c     | whole matrix including each block.           |
+-c     %----------------------------------------------%
+-c
+-      do 110 jj = 1, np
+-         sigma = shift(jj)
+-c
+-         if (msglvl .gt. 2 ) then
+-            call ivout (logfil, 1, jj, ndigit, 
+-     &               '_napps: shift number.')
+-            call zvout (logfil, 1, sigma, ndigit, 
+-     &               '_napps: Value of the shift ')
+-         end if
+-c
+-         istart = 1
+-   20    continue
+-c
+-         do 30 i = istart, kplusp-1
+-c
+-c           %----------------------------------------%
+-c           | Check for splitting and deflation. Use |
+-c           | a standard test as in the QR algorithm |
+-c           | REFERENCE: LAPACK subroutine zlahqr    |
+-c           %----------------------------------------%
+-c
+-            tst1 = zabs1( h( i, i ) ) + zabs1( h( i+1, i+1 ) )
+-            if( tst1.eq.rzero )
+-     &         tst1 = zlanhs( '1', kplusp-jj+1, h, ldh, workl )
+-            if ( abs(dble(h(i+1,i))) 
+-     &           .le. max(ulp*tst1, smlnum) )  then
+-               if (msglvl .gt. 0) then
+-                  call ivout (logfil, 1, i, ndigit, 
+-     &                 '_napps: matrix splitting at row/column no.')
+-                  call ivout (logfil, 1, jj, ndigit, 
+-     &                 '_napps: matrix splitting with shift number.')
+-                  call zvout (logfil, 1, h(i+1,i), ndigit, 
+-     &                 '_napps: off diagonal element.')
+-               end if
+-               iend = i
+-               h(i+1,i) = zero
+-               go to 40
+-            end if
+-   30    continue
+-         iend = kplusp
+-   40    continue
+-c
+-         if (msglvl .gt. 2) then
+-             call ivout (logfil, 1, istart, ndigit, 
+-     &                   '_napps: Start of current block ')
+-             call ivout (logfil, 1, iend, ndigit, 
+-     &                   '_napps: End of current block ')
+-         end if
+-c
+-c        %------------------------------------------------%
+-c        | No reason to apply a shift to block of order 1 |
+-c        | or if the current block starts after the point |
+-c        | of compression since we'll discard this stuff  |
+-c        %------------------------------------------------%
+-c
+-         if ( istart .eq. iend .or. istart .gt. kev) go to 100
+-c
+-         h11 = h(istart,istart)
+-         h21 = h(istart+1,istart)
+-         f = h11 - sigma
+-         g = h21
+-c 
+-         do 80 i = istart, iend-1
+-c
+-c           %------------------------------------------------------%
+-c           | Construct the plane rotation G to zero out the bulge |
+-c           %------------------------------------------------------%
+-c
+-            call zlartg (f, g, c, s, r)
+-            if (i .gt. istart) then
+-               h(i,i-1) = r
+-               h(i+1,i-1) = zero
+-            end if
+-c
+-c           %---------------------------------------------%
+-c           | Apply rotation to the left of H;  H <- G'*H |
+-c           %---------------------------------------------%
+-c
+-            do 50 j = i, kplusp
+-               t        =  c*h(i,j) + s*h(i+1,j)
+-               h(i+1,j) = -conjg(s)*h(i,j) + c*h(i+1,j)
+-               h(i,j)   = t   
+-   50       continue
+-c
+-c           %---------------------------------------------%
+-c           | Apply rotation to the right of H;  H <- H*G |
+-c           %---------------------------------------------%
+-c
+-            do 60 j = 1, min(i+2,iend)
+-               t        =  c*h(j,i) + conjg(s)*h(j,i+1)
+-               h(j,i+1) = -s*h(j,i) + c*h(j,i+1)
+-               h(j,i)   = t   
+-   60       continue
+-c
+-c           %-----------------------------------------------------%
+-c           | Accumulate the rotation in the matrix Q;  Q <- Q*G' |
+-c           %-----------------------------------------------------%
+-c
+-            do 70 j = 1, min(i+jj, kplusp)
+-               t        =   c*q(j,i) + conjg(s)*q(j,i+1)
+-               q(j,i+1) = - s*q(j,i) + c*q(j,i+1)
+-               q(j,i)   = t   
+-   70       continue
+-c
+-c           %---------------------------%
+-c           | Prepare for next rotation |
+-c           %---------------------------%
+-c
+-            if (i .lt. iend-1) then
+-               f = h(i+1,i)
+-               g = h(i+2,i)
+-            end if
+-   80    continue
+-c
+-c        %-------------------------------%
+-c        | Finished applying the shift.  |
+-c        %-------------------------------%
+-c 
+-  100    continue
+-c
+-c        %---------------------------------------------------------%
+-c        | Apply the same shift to the next block if there is any. |
+-c        %---------------------------------------------------------%
+-c
+-         istart = iend + 1
+-         if (iend .lt. kplusp) go to 20
+-c
+-c        %---------------------------------------------%
+-c        | Loop back to the top to get the next shift. |
+-c        %---------------------------------------------%
+-c
+-  110 continue
+-c
+-c     %---------------------------------------------------%
+-c     | Perform a similarity transformation that makes    |
+-c     | sure that the compressed H will have non-negative |
+-c     | real subdiagonal elements.                        |
+-c     %---------------------------------------------------%
+-c
+-      do 120 j=1,kev
+-         if ( dble( h(j+1,j) ) .lt. rzero .or.
+-     &        dimag( h(j+1,j) ) .ne. rzero ) then
+-            t = h(j+1,j) / dlapy2(dble(h(j+1,j)),dimag(h(j+1,j)))
+-            call zscal( kplusp-j+1, conjg(t), h(j+1,j), ldh )
+-            call zscal( min(j+2, kplusp), t, h(1,j+1), 1 )
+-            call zscal( min(j+np+1,kplusp), t, q(1,j+1), 1 )
+-            h(j+1,j) = dcmplx( dble( h(j+1,j) ), rzero )
+-         end if
+-  120 continue
+-c
+-      do 130 i = 1, kev
+-c
+-c        %--------------------------------------------%
+-c        | Final check for splitting and deflation.   |
+-c        | Use a standard test as in the QR algorithm |
+-c        | REFERENCE: LAPACK subroutine zlahqr.       |
+-c        | Note: Since the subdiagonals of the        |
+-c        | compressed H are nonnegative real numbers, |
+-c        | we take advantage of this.                 |
+-c        %--------------------------------------------%
+-c
+-         tst1 = zabs1( h( i, i ) ) + zabs1( h( i+1, i+1 ) )
+-         if( tst1 .eq. rzero )
+-     &       tst1 = zlanhs( '1', kev, h, ldh, workl )
+-         if( dble( h( i+1,i ) ) .le. max( ulp*tst1, smlnum ) ) 
+-     &       h(i+1,i) = zero
+- 130  continue
+-c
+-c     %-------------------------------------------------%
+-c     | Compute the (kev+1)-st column of (V*Q) and      |
+-c     | temporarily store the result in WORKD(N+1:2*N). |
+-c     | This is needed in the residual update since we  |
+-c     | cannot GUARANTEE that the corresponding entry   |
+-c     | of H would be zero as in exact arithmetic.      |
+-c     %-------------------------------------------------%
+-c
+-      if ( dble( h(kev+1,kev) ) .gt. rzero )
+-     &   call zgemv ('N', n, kplusp, one, v, ldv, q(1,kev+1), 1, zero, 
+-     &                workd(n+1), 1)
+-c 
+-c     %----------------------------------------------------------%
+-c     | Compute column 1 to kev of (V*Q) in backward order       |
+-c     | taking advantage of the upper Hessenberg structure of Q. |
+-c     %----------------------------------------------------------%
+-c
+-      do 140 i = 1, kev
+-         call zgemv ('N', n, kplusp-i+1, one, v, ldv,
+-     &               q(1,kev-i+1), 1, zero, workd, 1)
+-         call zcopy (n, workd, 1, v(1,kplusp-i+1), 1)
+-  140 continue
+-c
+-c     %-------------------------------------------------%
+-c     |  Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). |
+-c     %-------------------------------------------------%
+-c
+-      call zlacpy ('A', n, kev, v(1,kplusp-kev+1), ldv, v, ldv)
+-c 
+-c     %--------------------------------------------------------------%
+-c     | Copy the (kev+1)-st column of (V*Q) in the appropriate place |
+-c     %--------------------------------------------------------------%
+-c
+-      if ( dble( h(kev+1,kev) ) .gt. rzero )
+-     &   call zcopy (n, workd(n+1), 1, v(1,kev+1), 1)
+-c 
+-c     %-------------------------------------%
+-c     | Update the residual vector:         |
+-c     |    r <- sigmak*r + betak*v(:,kev+1) |
+-c     | where                               |
+-c     |    sigmak = (e_{kev+p}'*Q)*e_{kev}  |
+-c     |    betak = e_{kev+1}'*H*e_{kev}     |
+-c     %-------------------------------------%
+-c
+-      call zscal (n, q(kplusp,kev), resid, 1)
+-      if ( dble( h(kev+1,kev) ) .gt. rzero )
+-     &   call zaxpy (n, h(kev+1,kev), v(1,kev+1), 1, resid, 1)
+-c
+-      if (msglvl .gt. 1) then
+-         call zvout (logfil, 1, q(kplusp,kev), ndigit,
+-     &        '_napps: sigmak = (e_{kev+p}^T*Q)*e_{kev}')
+-         call zvout (logfil, 1, h(kev+1,kev), ndigit,
+-     &        '_napps: betak = e_{kev+1}^T*H*e_{kev}')
+-         call ivout (logfil, 1, kev, ndigit, 
+-     &               '_napps: Order of the final Hessenberg matrix ')
+-         if (msglvl .gt. 2) then
+-            call zmout (logfil, kev, kev, h, ldh, ndigit,
+-     &      '_napps: updated Hessenberg matrix H for next iteration')
+-         end if
+-c
+-      end if
+-c
+- 9000 continue
+-      call arscnd (t1)
+-      tcapps = tcapps + (t1 - t0)
+-c 
+-      return
+-c
+-c     %---------------%
+-c     | End of znapps |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/znaup2.f
++++ /dev/null
+@@ -1,801 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: znaup2
+-c
+-c\Description:
+-c  Intermediate level interface called by znaupd .
+-c
+-c\Usage:
+-c  call znaup2
+-c     ( IDO, BMAT, N, WHICH, NEV, NP, TOL, RESID, MODE, IUPD,
+-c       ISHIFT, MXITER, V, LDV, H, LDH, RITZ, BOUNDS,
+-c       Q, LDQ, WORKL, IPNTR, WORKD, RWORK, INFO )
+-c
+-c\Arguments
+-c
+-c  IDO, BMAT, N, WHICH, NEV, TOL, RESID: same as defined in znaupd .
+-c  MODE, ISHIFT, MXITER: see the definition of IPARAM in znaupd .
+-c
+-c  NP      Integer.  (INPUT/OUTPUT)
+-c          Contains the number of implicit shifts to apply during
+-c          each Arnoldi iteration.
+-c          If ISHIFT=1, NP is adjusted dynamically at each iteration
+-c          to accelerate convergence and prevent stagnation.
+-c          This is also roughly equal to the number of matrix-vector
+-c          products (involving the operator OP) per Arnoldi iteration.
+-c          The logic for adjusting is contained within the current
+-c          subroutine.
+-c          If ISHIFT=0, NP is the number of shifts the user needs
+-c          to provide via reverse comunication. 0 < NP < NCV-NEV.
+-c          NP may be less than NCV-NEV since a leading block of the current
+-c          upper Hessenberg matrix has split off and contains "unwanted"
+-c          Ritz values.
+-c          Upon termination of the IRA iteration, NP contains the number
+-c          of "converged" wanted Ritz values.
+-c
+-c  IUPD    Integer.  (INPUT)
+-c          IUPD .EQ. 0: use explicit restart instead implicit update.
+-c          IUPD .NE. 0: use implicit update.
+-c
+-c  V       Complex*16  N by (NEV+NP) array.  (INPUT/OUTPUT)
+-c          The Arnoldi basis vectors are returned in the first NEV
+-c          columns of V.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling
+-c          program.
+-c
+-c  H       Complex*16  (NEV+NP) by (NEV+NP) array.  (OUTPUT)
+-c          H is used to store the generated upper Hessenberg matrix
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling
+-c          program.
+-c
+-c  RITZ    Complex*16  array of length NEV+NP.  (OUTPUT)
+-c          RITZ(1:NEV)  contains the computed Ritz values of OP.
+-c
+-c  BOUNDS  Complex*16  array of length NEV+NP.  (OUTPUT)
+-c          BOUNDS(1:NEV) contain the error bounds corresponding to
+-c          the computed Ritz values.
+-c
+-c  Q       Complex*16  (NEV+NP) by (NEV+NP) array.  (WORKSPACE)
+-c          Private (replicated) work array used to accumulate the
+-c          rotation in the shift application step.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c
+-c  WORKL   Complex*16  work array of length at least
+-c          (NEV+NP)**2 + 3*(NEV+NP).  (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  It is used in shifts calculation, shifts
+-c          application and convergence checking.
+-c
+-c
+-c  IPNTR   Integer array of length 3.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORKD for
+-c          vectors used by the Arnoldi iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X.
+-c          IPNTR(2): pointer to the current result vector Y.
+-c          IPNTR(3): pointer to the vector B * X when used in the
+-c                    shift-and-invert mode.  X is the current operand.
+-c          -------------------------------------------------------------
+-c
+-c  WORKD   Complex*16  work array of length 3*N.  (WORKSPACE)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The user should not use WORKD
+-c          as temporary workspace during the iteration !!!!!!!!!!
+-c          See Data Distribution Note in ZNAUPD .
+-c
+-c  RWORK   Double precision    work array of length  NEV+NP ( WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.
+-c
+-c  INFO    Integer.  (INPUT/OUTPUT)
+-c          If INFO .EQ. 0, a randomly initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          Error flag on output.
+-c          =     0: Normal return.
+-c          =     1: Maximum number of iterations taken.
+-c                   All possible eigenvalues of OP has been found.
+-c                   NP returns the number of converged Ritz values.
+-c          =     2: No shifts could be applied.
+-c          =    -8: Error return from LAPACK eigenvalue calculation;
+-c                   This should never happen.
+-c          =    -9: Starting vector is zero.
+-c          = -9999: Could not build an Arnoldi factorization.
+-c                   Size that was built in returned in NP.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  Complex*16
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c
+-c\Routines called:
+-c     zgetv0   ARPACK initial vector generation routine.
+-c     znaitr   ARPACK Arnoldi factorization routine.
+-c     znapps   ARPACK application of implicit shifts routine.
+-c     zneigh   ARPACK compute Ritz values and error bounds routine.
+-c     zngets   ARPACK reorder Ritz values and error bounds routine.
+-c     zsortc   ARPACK sorting routine.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     zmout    ARPACK utility routine that prints matrices
+-c     zvout    ARPACK utility routine that prints vectors.
+-c     dvout    ARPACK utility routine that prints vectors.
+-c     dlamch   LAPACK routine that determines machine constants.
+-c     dlapy2   LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c     zcopy    Level 1 BLAS that copies one vector to another .
+-c     zdotc    Level 1 BLAS that computes the scalar product of two vectors.
+-c     zswap    Level 1 BLAS that swaps two vectors.
+-c     dznrm2   Level 1 BLAS that computes the norm of a vector.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice Universitya
+-c     Chao Yang                    Houston, Texas
+-c     Dept. of Computational &
+-c     Applied Mathematics
+-c     Rice University
+-c     Houston, Texas
+-c
+-c\SCCS Information: @(#)
+-c FILE: naup2.F   SID: 2.6   DATE OF SID: 06/01/00   RELEASE: 2
+-c
+-c\Remarks
+-c     1. None
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine znaup2
+-     &   ( ido, bmat, n, which, nev, np, tol, resid, mode, iupd,
+-     &     ishift, mxiter, v, ldv, h, ldh, ritz, bounds,
+-     &     q, ldq, workl, ipntr, workd, rwork, info )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1, which*2
+-      integer    ido, info, ishift, iupd, mode, ldh, ldq, ldv, mxiter,
+-     &           n, nev, np
+-      Double precision
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    ipntr(13)
+-      Complex*16
+-     &           bounds(nev+np), h(ldh,nev+np), q(ldq,nev+np),
+-     &           resid(n), ritz(nev+np),  v(ldv,nev+np),
+-     &           workd(3*n), workl( (nev+np)*(nev+np+3) )
+-       Double precision
+-     &           rwork(nev+np)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex*16
+-     &           one, zero
+-      Double precision
+-     &           rzero
+-      parameter (one = (1.0D+0, 0.0D+0) , zero = (0.0D+0, 0.0D+0) ,
+-     &           rzero = 0.0D+0 )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      logical    cnorm , getv0, initv , update, ushift
+-      integer    ierr  , iter , kplusp, msglvl, nconv,
+-     &           nevbef, nev0 , np0   , nptemp, i    ,
+-     &           j
+-      Complex*16
+-     &           cmpnorm
+-      Double precision
+-     &           rnorm , eps23, rtemp
+-      character  wprime*2
+-c
+-      save       cnorm,  getv0, initv , update, ushift,
+-     &           rnorm,  iter , kplusp, msglvl, nconv ,
+-     &           nevbef, nev0 , np0   , eps23
+-c
+-c
+-c     %-----------------------%
+-c     | Local array arguments |
+-c     %-----------------------%
+-c
+-      integer    kp(3)
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   zcopy , zgetv0 , znaitr , zneigh , zngets , znapps ,
+-     &           zsortc , zswap , zmout , zvout , ivout, arscnd
+-c
+-c     %--------------------%
+-c     | External functions |
+-c     %--------------------%
+-c
+-      Complex*16
+-     &           zdotc
+-      Double precision
+-     &           dznrm2 , dlamch , dlapy2
+-      external   zdotc , dznrm2 , dlamch , dlapy2
+-c
+-c     %---------------------%
+-c     | Intrinsic Functions |
+-c     %---------------------%
+-c
+-      intrinsic  dimag , dble , min, max
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (ido .eq. 0) then
+-c
+-         call arscnd (t0)
+-c
+-         msglvl = mcaup2
+-c
+-         nev0   = nev
+-         np0    = np
+-c
+-c        %-------------------------------------%
+-c        | kplusp is the bound on the largest  |
+-c        |        Lanczos factorization built. |
+-c        | nconv is the current number of      |
+-c        |        "converged" eigenvalues.     |
+-c        | iter is the counter on the current  |
+-c        |      iteration step.                |
+-c        %-------------------------------------%
+-c
+-         kplusp = nev + np
+-         nconv  = 0
+-         iter   = 0
+-c
+-c        %---------------------------------%
+-c        | Get machine dependent constant. |
+-c        %---------------------------------%
+-c
+-         eps23 = dlamch ('Epsilon-Machine')
+-         eps23 = eps23**(2.0D+0  / 3.0D+0 )
+-c
+-c        %---------------------------------------%
+-c        | Set flags for computing the first NEV |
+-c        | steps of the Arnoldi factorization.   |
+-c        %---------------------------------------%
+-c
+-         getv0    = .true.
+-         update   = .false.
+-         ushift   = .false.
+-         cnorm    = .false.
+-c
+-         if (info .ne. 0) then
+-c
+-c           %--------------------------------------------%
+-c           | User provides the initial residual vector. |
+-c           %--------------------------------------------%
+-c
+-            initv = .true.
+-            info  = 0
+-         else
+-            initv = .false.
+-         end if
+-      end if
+-c
+-c     %---------------------------------------------%
+-c     | Get a possibly random starting vector and   |
+-c     | force it into the range of the operator OP. |
+-c     %---------------------------------------------%
+-c
+-   10 continue
+-c
+-      if (getv0) then
+-         call zgetv0  (ido, bmat, 1, initv, n, 1, v, ldv, resid, rnorm,
+-     &                ipntr, workd, info)
+-c
+-         if (ido .ne. 99) go to 9000
+-c
+-         if (rnorm .eq. rzero) then
+-c
+-c           %-----------------------------------------%
+-c           | The initial vector is zero. Error exit. |
+-c           %-----------------------------------------%
+-c
+-            info = -9
+-            go to 1100
+-         end if
+-         getv0 = .false.
+-         ido  = 0
+-      end if
+-c
+-c     %-----------------------------------%
+-c     | Back from reverse communication : |
+-c     | continue with update step         |
+-c     %-----------------------------------%
+-c
+-      if (update) go to 20
+-c
+-c     %-------------------------------------------%
+-c     | Back from computing user specified shifts |
+-c     %-------------------------------------------%
+-c
+-      if (ushift) go to 50
+-c
+-c     %-------------------------------------%
+-c     | Back from computing residual norm   |
+-c     | at the end of the current iteration |
+-c     %-------------------------------------%
+-c
+-      if (cnorm)  go to 100
+-c
+-c     %----------------------------------------------------------%
+-c     | Compute the first NEV steps of the Arnoldi factorization |
+-c     %----------------------------------------------------------%
+-c
+-      call znaitr  (ido, bmat, n, 0, nev, mode, resid, rnorm, v, ldv,
+-     &             h, ldh, ipntr, workd, info)
+-c
+-      if (ido .ne. 99) go to 9000
+-c
+-      if (info .gt. 0) then
+-         np   = info
+-         mxiter = iter
+-         info = -9999
+-         go to 1200
+-      end if
+-c
+-c     %--------------------------------------------------------------%
+-c     |                                                              |
+-c     |           M A I N  ARNOLDI  I T E R A T I O N  L O O P       |
+-c     |           Each iteration implicitly restarts the Arnoldi     |
+-c     |           factorization in place.                            |
+-c     |                                                              |
+-c     %--------------------------------------------------------------%
+-c
+- 1000 continue
+-c
+-         iter = iter + 1
+-c
+-         if (msglvl .gt. 0) then
+-            call ivout (logfil, 1, iter, ndigit,
+-     &           '_naup2: **** Start of major iteration number ****')
+-         end if
+-c
+-c        %-----------------------------------------------------------%
+-c        | Compute NP additional steps of the Arnoldi factorization. |
+-c        | Adjust NP since NEV might have been updated by last call  |
+-c        | to the shift application routine znapps .                  |
+-c        %-----------------------------------------------------------%
+-c
+-         np  = kplusp - nev
+-c
+-         if (msglvl .gt. 1) then
+-            call ivout (logfil, 1, nev, ndigit,
+-     &     '_naup2: The length of the current Arnoldi factorization')
+-            call ivout (logfil, 1, np, ndigit,
+-     &           '_naup2: Extend the Arnoldi factorization by')
+-         end if
+-c
+-c        %-----------------------------------------------------------%
+-c        | Compute NP additional steps of the Arnoldi factorization. |
+-c        %-----------------------------------------------------------%
+-c
+-         ido = 0
+-   20    continue
+-         update = .true.
+-c
+-         call znaitr (ido, bmat, n, nev, np,    mode,  resid, rnorm,
+-     &               v  , ldv , h, ldh, ipntr, workd, info)
+-c
+-         if (ido .ne. 99) go to 9000
+-c
+-         if (info .gt. 0) then
+-            np = info
+-            mxiter = iter
+-            info = -9999
+-            go to 1200
+-         end if
+-         update = .false.
+-c
+-         if (msglvl .gt. 1) then
+-            call dvout  (logfil, 1, rnorm, ndigit,
+-     &           '_naup2: Corresponding B-norm of the residual')
+-         end if
+-c
+-c        %--------------------------------------------------------%
+-c        | Compute the eigenvalues and corresponding error bounds |
+-c        | of the current upper Hessenberg matrix.                |
+-c        %--------------------------------------------------------%
+-c
+-         call zneigh  (rnorm, kplusp, h, ldh, ritz, bounds,
+-     &                q, ldq, workl, rwork,  ierr)
+-c
+-         if (ierr .ne. 0) then
+-            info = -8
+-            go to 1200
+-         end if
+-c
+-c        %---------------------------------------------------%
+-c        | Select the wanted Ritz values and their bounds    |
+-c        | to be used in the convergence test.               |
+-c        | The wanted part of the spectrum and corresponding |
+-c        | error bounds are in the last NEV loc. of RITZ,    |
+-c        | and BOUNDS respectively.                          |
+-c        %---------------------------------------------------%
+-c
+-         nev = nev0
+-         np = np0
+-c
+-c        %--------------------------------------------------%
+-c        | Make a copy of Ritz values and the corresponding |
+-c        | Ritz estimates obtained from zneigh .             |
+-c        %--------------------------------------------------%
+-c
+-         call zcopy (kplusp,ritz,1,workl(kplusp**2+1),1)
+-         call zcopy (kplusp,bounds,1,workl(kplusp**2+kplusp+1),1)
+-c
+-c        %---------------------------------------------------%
+-c        | Select the wanted Ritz values and their bounds    |
+-c        | to be used in the convergence test.               |
+-c        | The wanted part of the spectrum and corresponding |
+-c        | bounds are in the last NEV loc. of RITZ           |
+-c        | BOUNDS respectively.                              |
+-c        %---------------------------------------------------%
+-c
+-         call zngets  (ishift, which, nev, np, ritz, bounds)
+-c
+-c        %------------------------------------------------------------%
+-c        | Convergence test: currently we use the following criteria. |
+-c        | The relative accuracy of a Ritz value is considered        |
+-c        | acceptable if:                                             |
+-c        |                                                            |
+-c        | error_bounds(i) .le. tol*max(eps23, magnitude_of_ritz(i)). |
+-c        |                                                            |
+-c        %------------------------------------------------------------%
+-c
+-         nconv  = 0
+-c
+-         do 25 i = 1, nev
+-            rtemp = max( eps23, dlapy2 ( dble (ritz(np+i)),
+-     &                                  dimag (ritz(np+i)) ) )
+-            if ( dlapy2 (dble (bounds(np+i)),dimag (bounds(np+i)))
+-     &                 .le. tol*rtemp ) then
+-               nconv = nconv + 1
+-            end if
+-   25    continue
+-c
+-         if (msglvl .gt. 2) then
+-            kp(1) = nev
+-            kp(2) = np
+-            kp(3) = nconv
+-            call ivout (logfil, 3, kp, ndigit,
+-     &                  '_naup2: NEV, NP, NCONV are')
+-            call zvout  (logfil, kplusp, ritz, ndigit,
+-     &           '_naup2: The eigenvalues of H')
+-            call zvout  (logfil, kplusp, bounds, ndigit,
+-     &          '_naup2: Ritz estimates of the current NCV Ritz values')
+-         end if
+-c
+-c        %---------------------------------------------------------%
+-c        | Count the number of unwanted Ritz values that have zero |
+-c        | Ritz estimates. If any Ritz estimates are equal to zero |
+-c        | then a leading block of H of order equal to at least    |
+-c        | the number of Ritz values with zero Ritz estimates has  |
+-c        | split off. None of these Ritz values may be removed by  |
+-c        | shifting. Decrease NP the number of shifts to apply. If |
+-c        | no shifts may be applied, then prepare to exit          |
+-c        %---------------------------------------------------------%
+-c
+-         nptemp = np
+-         do 30 j=1, nptemp
+-            if (bounds(j) .eq. zero) then
+-               np = np - 1
+-               nev = nev + 1
+-            end if
+- 30      continue
+-c
+-         if ( (nconv .ge. nev0) .or.
+-     &        (iter .gt. mxiter) .or.
+-     &        (np .eq. 0) ) then
+-c
+-            if (msglvl .gt. 4) then
+-               call zvout (logfil, kplusp, workl(kplusp**2+1), ndigit,
+-     &             '_naup2: Eigenvalues computed by _neigh:')
+-               call zvout (logfil, kplusp, workl(kplusp**2+kplusp+1),
+-     &                     ndigit,
+-     &             '_naup2: Ritz estimates computed by _neigh:')
+-            end if
+-c
+-c           %------------------------------------------------%
+-c           | Prepare to exit. Put the converged Ritz values |
+-c           | and corresponding bounds in RITZ(1:NCONV) and  |
+-c           | BOUNDS(1:NCONV) respectively. Then sort. Be    |
+-c           | careful when NCONV > NP                        |
+-c           %------------------------------------------------%
+-c
+-c           %------------------------------------------%
+-c           |  Use h( 3,1 ) as storage to communicate  |
+-c           |  rnorm to zneupd  if needed               |
+-c           %------------------------------------------%
+-
+-            h(3,1) = dcmplx (rnorm,rzero)
+-c
+-c           %----------------------------------------------%
+-c           | Sort Ritz values so that converged Ritz      |
+-c           | values appear within the first NEV locations |
+-c           | of ritz and bounds, and the most desired one |
+-c           | appears at the front.                        |
+-c           %----------------------------------------------%
+-c
+-            if (which .eq. 'LM') wprime = 'SM'
+-            if (which .eq. 'SM') wprime = 'LM'
+-            if (which .eq. 'LR') wprime = 'SR'
+-            if (which .eq. 'SR') wprime = 'LR'
+-            if (which .eq. 'LI') wprime = 'SI'
+-            if (which .eq. 'SI') wprime = 'LI'
+-c
+-            call zsortc (wprime, .true., kplusp, ritz, bounds)
+-c
+-c           %--------------------------------------------------%
+-c           | Scale the Ritz estimate of each Ritz value       |
+-c           | by 1 / max(eps23, magnitude of the Ritz value).  |
+-c           %--------------------------------------------------%
+-c
+-            do 35 j = 1, nev0
+-                rtemp = max( eps23, dlapy2 ( dble (ritz(j)),
+-     &                                       dimag (ritz(j)) ) )
+-                bounds(j) = bounds(j)/rtemp
+- 35         continue
+-c
+-c           %---------------------------------------------------%
+-c           | Sort the Ritz values according to the scaled Ritz |
+-c           | estimates.  This will push all the converged ones |
+-c           | towards the front of ritz, bounds (in the case    |
+-c           | when NCONV < NEV.)                                |
+-c           %---------------------------------------------------%
+-c
+-            wprime = 'LM'
+-            call zsortc (wprime, .true., nev0, bounds, ritz)
+-c
+-c           %----------------------------------------------%
+-c           | Scale the Ritz estimate back to its original |
+-c           | value.                                       |
+-c           %----------------------------------------------%
+-c
+-            do 40 j = 1, nev0
+-                rtemp = max( eps23, dlapy2 ( dble (ritz(j)),
+-     &                                       dimag (ritz(j)) ) )
+-                bounds(j) = bounds(j)*rtemp
+- 40         continue
+-c
+-c           %-----------------------------------------------%
+-c           | Sort the converged Ritz values again so that  |
+-c           | the "threshold" value appears at the front of |
+-c           | ritz and bound.                               |
+-c           %-----------------------------------------------%
+-c
+-            call zsortc (which, .true., nconv, ritz, bounds)
+-c
+-            if (msglvl .gt. 1) then
+-               call zvout  (logfil, kplusp, ritz, ndigit,
+-     &            '_naup2: Sorted eigenvalues')
+-               call zvout  (logfil, kplusp, bounds, ndigit,
+-     &            '_naup2: Sorted ritz estimates.')
+-            end if
+-c
+-c           %------------------------------------%
+-c           | Max iterations have been exceeded. |
+-c           %------------------------------------%
+-c
+-            if (iter .gt. mxiter .and. nconv .lt. nev0) info = 1
+-c
+-c           %---------------------%
+-c           | No shifts to apply. |
+-c           %---------------------%
+-c
+-            if (np .eq. 0 .and. nconv .lt. nev0)  info = 2
+-c
+-            np = nconv
+-            go to 1100
+-c
+-         else if ( (nconv .lt. nev0) .and. (ishift .eq. 1) ) then
+-c
+-c           %-------------------------------------------------%
+-c           | Do not have all the requested eigenvalues yet.  |
+-c           | To prevent possible stagnation, adjust the size |
+-c           | of NEV.                                         |
+-c           %-------------------------------------------------%
+-c
+-            nevbef = nev
+-            nev = nev + min(nconv, np/2)
+-            if (nev .eq. 1 .and. kplusp .ge. 6) then
+-               nev = kplusp / 2
+-            else if (nev .eq. 1 .and. kplusp .gt. 3) then
+-               nev = 2
+-            end if
+-            np = kplusp - nev
+-c
+-c           %---------------------------------------%
+-c           | If the size of NEV was just increased |
+-c           | resort the eigenvalues.               |
+-c           %---------------------------------------%
+-c
+-            if (nevbef .lt. nev)
+-     &         call zngets  (ishift, which, nev, np, ritz, bounds)
+-c
+-         end if
+-c
+-         if (msglvl .gt. 0) then
+-            call ivout (logfil, 1, nconv, ndigit,
+-     &           '_naup2: no. of "converged" Ritz values at this iter.')
+-            if (msglvl .gt. 1) then
+-               kp(1) = nev
+-               kp(2) = np
+-               call ivout (logfil, 2, kp, ndigit,
+-     &              '_naup2: NEV and NP are')
+-               call zvout  (logfil, nev, ritz(np+1), ndigit,
+-     &              '_naup2: "wanted" Ritz values ')
+-               call zvout  (logfil, nev, bounds(np+1), ndigit,
+-     &              '_naup2: Ritz estimates of the "wanted" values ')
+-            end if
+-         end if
+-c
+-         if (ishift .eq. 0) then
+-c
+-c           %-------------------------------------------------------%
+-c           | User specified shifts: pop back out to get the shifts |
+-c           | and return them in the first 2*NP locations of WORKL. |
+-c           %-------------------------------------------------------%
+-c
+-            ushift = .true.
+-            ido = 3
+-            go to 9000
+-         end if
+-   50    continue
+-         ushift = .false.
+-c
+-         if ( ishift .ne. 1 ) then
+-c
+-c            %----------------------------------%
+-c            | Move the NP shifts from WORKL to |
+-c            | RITZ, to free up WORKL           |
+-c            | for non-exact shift case.        |
+-c            %----------------------------------%
+-c
+-             call zcopy  (np, workl, 1, ritz, 1)
+-         end if
+-c
+-         if (msglvl .gt. 2) then
+-            call ivout (logfil, 1, np, ndigit,
+-     &                  '_naup2: The number of shifts to apply ')
+-            call zvout  (logfil, np, ritz, ndigit,
+-     &                  '_naup2: values of the shifts')
+-            if ( ishift .eq. 1 )
+-     &          call zvout  (logfil, np, bounds, ndigit,
+-     &                  '_naup2: Ritz estimates of the shifts')
+-         end if
+-c
+-c        %---------------------------------------------------------%
+-c        | Apply the NP implicit shifts by QR bulge chasing.       |
+-c        | Each shift is applied to the whole upper Hessenberg     |
+-c        | matrix H.                                               |
+-c        | The first 2*N locations of WORKD are used as workspace. |
+-c        %---------------------------------------------------------%
+-c
+-         call znapps  (n, nev, np, ritz, v, ldv,
+-     &                h, ldh, resid, q, ldq, workl, workd)
+-c
+-c        %---------------------------------------------%
+-c        | Compute the B-norm of the updated residual. |
+-c        | Keep B*RESID in WORKD(1:N) to be used in    |
+-c        | the first step of the next call to znaitr .  |
+-c        %---------------------------------------------%
+-c
+-         cnorm = .true.
+-         call arscnd (t2)
+-         if (bmat .eq. 'G') then
+-            nbx = nbx + 1
+-            call zcopy  (n, resid, 1, workd(n+1), 1)
+-            ipntr(1) = n + 1
+-            ipntr(2) = 1
+-            ido = 2
+-c
+-c           %----------------------------------%
+-c           | Exit in order to compute B*RESID |
+-c           %----------------------------------%
+-c
+-            go to 9000
+-         else if (bmat .eq. 'I') then
+-            call zcopy  (n, resid, 1, workd, 1)
+-         end if
+-c
+-  100    continue
+-c
+-c        %----------------------------------%
+-c        | Back from reverse communication; |
+-c        | WORKD(1:N) := B*RESID            |
+-c        %----------------------------------%
+-c
+-         if (bmat .eq. 'G') then
+-            call arscnd (t3)
+-            tmvbx = tmvbx + (t3 - t2)
+-         end if
+-c
+-         if (bmat .eq. 'G') then
+-            cmpnorm = zdotc  (n, resid, 1, workd, 1)
+-            rnorm = sqrt(dlapy2 (dble (cmpnorm),dimag (cmpnorm)))
+-         else if (bmat .eq. 'I') then
+-            rnorm = dznrm2 (n, resid, 1)
+-         end if
+-         cnorm = .false.
+-c
+-         if (msglvl .gt. 2) then
+-            call dvout  (logfil, 1, rnorm, ndigit,
+-     &      '_naup2: B-norm of residual for compressed factorization')
+-            call zmout  (logfil, nev, nev, h, ldh, ndigit,
+-     &        '_naup2: Compressed upper Hessenberg matrix H')
+-         end if
+-c
+-      go to 1000
+-c
+-c     %---------------------------------------------------------------%
+-c     |                                                               |
+-c     |  E N D     O F     M A I N     I T E R A T I O N     L O O P  |
+-c     |                                                               |
+-c     %---------------------------------------------------------------%
+-c
+- 1100 continue
+-c
+-      mxiter = iter
+-      nev = nconv
+-c
+- 1200 continue
+-      ido = 99
+-c
+-c     %------------%
+-c     | Error Exit |
+-c     %------------%
+-c
+-      call arscnd (t1)
+-      tcaup2 = t1 - t0
+-c
+- 9000 continue
+-c
+-c     %---------------%
+-c     | End of znaup2  |
+-c     %---------------%
+-c
+-      return
+-      end
+--- a/libcruft/arpack/src/znaupd.f
++++ /dev/null
+@@ -1,664 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: znaupd
+-c
+-c\Description:
+-c  Reverse communication interface for the Implicitly Restarted Arnoldi
+-c  iteration. This is intended to be used to find a few eigenpairs of a
+-c  complex linear operator OP with respect to a semi-inner product defined
+-c  by a hermitian positive semi-definite real matrix B. B may be the identity
+-c  matrix.  NOTE: if both OP and B are real, then dsaupd  or dnaupd  should
+-c  be used.
+-c
+-c
+-c  The computed approximate eigenvalues are called Ritz values and
+-c  the corresponding approximate eigenvectors are called Ritz vectors.
+-c
+-c  znaupd  is usually called iteratively to solve one of the
+-c  following problems:
+-c
+-c  Mode 1:  A*x = lambda*x.
+-c           ===> OP = A  and  B = I.
+-c
+-c  Mode 2:  A*x = lambda*M*x, M hermitian positive definite
+-c           ===> OP = inv[M]*A  and  B = M.
+-c           ===> (If M can be factored see remark 3 below)
+-c
+-c  Mode 3:  A*x = lambda*M*x, M hermitian semi-definite
+-c           ===> OP =  inv[A - sigma*M]*M   and  B = M.
+-c           ===> shift-and-invert mode
+-c           If OP*x = amu*x, then lambda = sigma + 1/amu.
+-c
+-c
+-c  NOTE: The action of w <- inv[A - sigma*M]*v or w <- inv[M]*v
+-c        should be accomplished either by a direct method
+-c        using a sparse matrix factorization and solving
+-c
+-c           [A - sigma*M]*w = v  or M*w = v,
+-c
+-c        or through an iterative method for solving these
+-c        systems.  If an iterative method is used, the
+-c        convergence test must be more stringent than
+-c        the accuracy requirements for the eigenvalue
+-c        approximations.
+-c
+-c\Usage:
+-c  call znaupd
+-c     ( IDO, BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM,
+-c       IPNTR, WORKD, WORKL, LWORKL, RWORK, INFO )
+-c
+-c\Arguments
+-c  IDO     Integer.  (INPUT/OUTPUT)
+-c          Reverse communication flag.  IDO must be zero on the first
+-c          call to znaupd .  IDO will be set internally to
+-c          indicate the type of operation to be performed.  Control is
+-c          then given back to the calling routine which has the
+-c          responsibility to carry out the requested operation and call
+-c          znaupd  with the result.  The operand is given in
+-c          WORKD(IPNTR(1)), the result must be put in WORKD(IPNTR(2)).
+-c          -------------------------------------------------------------
+-c          IDO =  0: first call to the reverse communication interface
+-c          IDO = -1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    This is for the initialization phase to force the
+-c                    starting vector into the range of OP.
+-c          IDO =  1: compute  Y = OP * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c                    In mode 3, the vector B * X is already
+-c                    available in WORKD(ipntr(3)).  It does not
+-c                    need to be recomputed in forming OP * X.
+-c          IDO =  2: compute  Y = M * X  where
+-c                    IPNTR(1) is the pointer into WORKD for X,
+-c                    IPNTR(2) is the pointer into WORKD for Y.
+-c          IDO =  3: compute and return the shifts in the first
+-c                    NP locations of WORKL.
+-c          IDO = 99: done
+-c          -------------------------------------------------------------
+-c          After the initialization phase, when the routine is used in
+-c          the "shift-and-invert" mode, the vector M * X is already
+-c          available and does not need to be recomputed in forming OP*X.
+-c
+-c  BMAT    Character*1.  (INPUT)
+-c          BMAT specifies the type of the matrix B that defines the
+-c          semi-inner product for the operator OP.
+-c          BMAT = 'I' -> standard eigenvalue problem A*x = lambda*x
+-c          BMAT = 'G' -> generalized eigenvalue problem A*x = lambda*M*x
+-c
+-c  N       Integer.  (INPUT)
+-c          Dimension of the eigenproblem.
+-c
+-c  WHICH   Character*2.  (INPUT)
+-c          'LM' -> want the NEV eigenvalues of largest magnitude.
+-c          'SM' -> want the NEV eigenvalues of smallest magnitude.
+-c          'LR' -> want the NEV eigenvalues of largest real part.
+-c          'SR' -> want the NEV eigenvalues of smallest real part.
+-c          'LI' -> want the NEV eigenvalues of largest imaginary part.
+-c          'SI' -> want the NEV eigenvalues of smallest imaginary part.
+-c
+-c  NEV     Integer.  (INPUT)
+-c          Number of eigenvalues of OP to be computed. 0 < NEV < N-1.
+-c
+-c  TOL     Double precision   scalar.  (INPUT)
+-c          Stopping criteria: the relative accuracy of the Ritz value
+-c          is considered acceptable if BOUNDS(I) .LE. TOL*ABS(RITZ(I))
+-c          where ABS(RITZ(I)) is the magnitude when RITZ(I) is complex.
+-c          DEFAULT = dlamch ('EPS')  (machine precision as computed
+-c                    by the LAPACK auxiliary subroutine dlamch ).
+-c
+-c  RESID   Complex*16  array of length N.  (INPUT/OUTPUT)
+-c          On INPUT:
+-c          If INFO .EQ. 0, a random initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          On OUTPUT:
+-c          RESID contains the final residual vector.
+-c
+-c  NCV     Integer.  (INPUT)
+-c          Number of columns of the matrix V. NCV must satisfy the two
+-c          inequalities 1 <= NCV-NEV and NCV <= N.
+-c          This will indicate how many Arnoldi vectors are generated
+-c          at each iteration.  After the startup phase in which NEV
+-c          Arnoldi vectors are generated, the algorithm generates
+-c          approximately NCV-NEV Arnoldi vectors at each subsequent update
+-c          iteration. Most of the cost in generating each Arnoldi vector is
+-c          in the matrix-vector operation OP*x. (See remark 4 below.)
+-c
+-c  V       Complex*16  array N by NCV.  (OUTPUT)
+-c          Contains the final set of Arnoldi basis vectors.
+-c
+-c  LDV     Integer.  (INPUT)
+-c          Leading dimension of V exactly as declared in the calling program.
+-c
+-c  IPARAM  Integer array of length 11.  (INPUT/OUTPUT)
+-c          IPARAM(1) = ISHIFT: method for selecting the implicit shifts.
+-c          The shifts selected at each iteration are used to filter out
+-c          the components of the unwanted eigenvector.
+-c          -------------------------------------------------------------
+-c          ISHIFT = 0: the shifts are to be provided by the user via
+-c                      reverse communication.  The NCV eigenvalues of
+-c                      the Hessenberg matrix H are returned in the part
+-c                      of WORKL array corresponding to RITZ.
+-c          ISHIFT = 1: exact shifts with respect to the current
+-c                      Hessenberg matrix H.  This is equivalent to
+-c                      restarting the iteration from the beginning
+-c                      after updating the starting vector with a linear
+-c                      combination of Ritz vectors associated with the
+-c                      "wanted" eigenvalues.
+-c          ISHIFT = 2: other choice of internal shift to be defined.
+-c          -------------------------------------------------------------
+-c
+-c          IPARAM(2) = No longer referenced
+-c
+-c          IPARAM(3) = MXITER
+-c          On INPUT:  maximum number of Arnoldi update iterations allowed.
+-c          On OUTPUT: actual number of Arnoldi update iterations taken.
+-c
+-c          IPARAM(4) = NB: blocksize to be used in the recurrence.
+-c          The code currently works only for NB = 1.
+-c
+-c          IPARAM(5) = NCONV: number of "converged" Ritz values.
+-c          This represents the number of Ritz values that satisfy
+-c          the convergence criterion.
+-c
+-c          IPARAM(6) = IUPD
+-c          No longer referenced. Implicit restarting is ALWAYS used.
+-c
+-c          IPARAM(7) = MODE
+-c          On INPUT determines what type of eigenproblem is being solved.
+-c          Must be 1,2,3; See under \Description of znaupd  for the
+-c          four modes available.
+-c
+-c          IPARAM(8) = NP
+-c          When ido = 3 and the user provides shifts through reverse
+-c          communication (IPARAM(1)=0), _naupd returns NP, the number
+-c          of shifts the user is to provide. 0 < NP < NCV-NEV.
+-c
+-c          IPARAM(9) = NUMOP, IPARAM(10) = NUMOPB, IPARAM(11) = NUMREO,
+-c          OUTPUT: NUMOP  = total number of OP*x operations,
+-c                  NUMOPB = total number of B*x operations if BMAT='G',
+-c                  NUMREO = total number of steps of re-orthogonalization.
+-c
+-c  IPNTR   Integer array of length 14.  (OUTPUT)
+-c          Pointer to mark the starting locations in the WORKD and WORKL
+-c          arrays for matrices/vectors used by the Arnoldi iteration.
+-c          -------------------------------------------------------------
+-c          IPNTR(1): pointer to the current operand vector X in WORKD.
+-c          IPNTR(2): pointer to the current result vector Y in WORKD.
+-c          IPNTR(3): pointer to the vector B * X in WORKD when used in
+-c                    the shift-and-invert mode.
+-c          IPNTR(4): pointer to the next available location in WORKL
+-c                    that is untouched by the program.
+-c          IPNTR(5): pointer to the NCV by NCV upper Hessenberg
+-c                    matrix H in WORKL.
+-c          IPNTR(6): pointer to the  ritz value array  RITZ
+-c          IPNTR(7): pointer to the (projected) ritz vector array Q
+-c          IPNTR(8): pointer to the error BOUNDS array in WORKL.
+-c          IPNTR(14): pointer to the NP shifts in WORKL. See Remark 5 below.
+-c
+-c          Note: IPNTR(9:13) is only referenced by zneupd . See Remark 2 below.
+-c
+-c          IPNTR(9): pointer to the NCV RITZ values of the
+-c                    original system.
+-c          IPNTR(10): Not Used
+-c          IPNTR(11): pointer to the NCV corresponding error bounds.
+-c          IPNTR(12): pointer to the NCV by NCV upper triangular
+-c                     Schur matrix for H.
+-c          IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors
+-c                     of the upper Hessenberg matrix H. Only referenced by
+-c                     zneupd  if RVEC = .TRUE. See Remark 2 below.
+-c
+-c          -------------------------------------------------------------
+-c
+-c  WORKD   Complex*16  work array of length 3*N.  (REVERSE COMMUNICATION)
+-c          Distributed array to be used in the basic Arnoldi iteration
+-c          for reverse communication.  The user should not use WORKD
+-c          as temporary workspace during the iteration !!!!!!!!!!
+-c          See Data Distribution Note below.
+-c
+-c  WORKL   Complex*16  work array of length LWORKL.  (OUTPUT/WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  See Data Distribution Note below.
+-c
+-c  LWORKL  Integer.  (INPUT)
+-c          LWORKL must be at least 3*NCV**2 + 5*NCV.
+-c
+-c  RWORK   Double precision   work array of length NCV (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.
+-c
+-c
+-c  INFO    Integer.  (INPUT/OUTPUT)
+-c          If INFO .EQ. 0, a randomly initial residual vector is used.
+-c          If INFO .NE. 0, RESID contains the initial residual vector,
+-c                          possibly from a previous run.
+-c          Error flag on output.
+-c          =  0: Normal exit.
+-c          =  1: Maximum number of iterations taken.
+-c                All possible eigenvalues of OP has been found. IPARAM(5)
+-c                returns the number of wanted converged Ritz values.
+-c          =  2: No longer an informational error. Deprecated starting
+-c                with release 2 of ARPACK.
+-c          =  3: No shifts could be applied during a cycle of the
+-c                Implicitly restarted Arnoldi iteration. One possibility
+-c                is to increase the size of NCV relative to NEV.
+-c                See remark 4 below.
+-c          = -1: N must be positive.
+-c          = -2: NEV must be positive.
+-c          = -3: NCV-NEV >= 2 and less than or equal to N.
+-c          = -4: The maximum number of Arnoldi update iteration
+-c                must be greater than zero.
+-c          = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'
+-c          = -6: BMAT must be one of 'I' or 'G'.
+-c          = -7: Length of private work array is not sufficient.
+-c          = -8: Error return from LAPACK eigenvalue calculation;
+-c          = -9: Starting vector is zero.
+-c          = -10: IPARAM(7) must be 1,2,3.
+-c          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
+-c          = -12: IPARAM(1) must be equal to 0 or 1.
+-c          = -9999: Could not build an Arnoldi factorization.
+-c                   User input error highly likely.  Please
+-c                   check actual array dimensions and layout.
+-c                   IPARAM(5) returns the size of the current Arnoldi
+-c                   factorization.
+-c
+-c\Remarks
+-c  1. The computed Ritz values are approximate eigenvalues of OP. The
+-c     selection of WHICH should be made with this in mind when using
+-c     Mode = 3.  When operating in Mode = 3 setting WHICH = 'LM' will
+-c     compute the NEV eigenvalues of the original problem that are
+-c     closest to the shift SIGMA . After convergence, approximate eigenvalues
+-c     of the original problem may be obtained with the ARPACK subroutine zneupd .
+-c
+-c  2. If a basis for the invariant subspace corresponding to the converged Ritz
+-c     values is needed, the user must call zneupd  immediately following
+-c     completion of znaupd . This is new starting with release 2 of ARPACK.
+-c
+-c  3. If M can be factored into a Cholesky factorization M = LL`
+-c     then Mode = 2 should not be selected.  Instead one should use
+-c     Mode = 1 with  OP = inv(L)*A*inv(L`).  Appropriate triangular
+-c     linear systems should be solved with L and L` rather
+-c     than computing inverses.  After convergence, an approximate
+-c     eigenvector z of the original problem is recovered by solving
+-c     L`z = x  where x is a Ritz vector of OP.
+-c
+-c  4. At present there is no a-priori analysis to guide the selection
+-c     of NCV relative to NEV.  The only formal requirement is that NCV > NEV + 1.
+-c     However, it is recommended that NCV .ge. 2*NEV.  If many problems of
+-c     the same type are to be solved, one should experiment with increasing
+-c     NCV while keeping NEV fixed for a given test problem.  This will
+-c     usually decrease the required number of OP*x operations but it
+-c     also increases the work and storage required to maintain the orthogonal
+-c     basis vectors.  The optimal "cross-over" with respect to CPU time
+-c     is problem dependent and must be determined empirically.
+-c     See Chapter 8 of Reference 2 for further information.
+-c
+-c  5. When IPARAM(1) = 0, and IDO = 3, the user needs to provide the
+-c     NP = IPARAM(8) complex shifts in locations
+-c     WORKL(IPNTR(14)), WORKL(IPNTR(14)+1), ... , WORKL(IPNTR(14)+NP).
+-c     Eigenvalues of the current upper Hessenberg matrix are located in
+-c     WORKL(IPNTR(6)) through WORKL(IPNTR(6)+NCV-1). They are ordered
+-c     according to the order defined by WHICH.  The associated Ritz estimates
+-c     are located in WORKL(IPNTR(8)), WORKL(IPNTR(8)+1), ... ,
+-c     WORKL(IPNTR(8)+NCV-1).
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\Data Distribution Note:
+-c
+-c  Fortran-D syntax:
+-c  ================
+-c  Complex*16  resid(n), v(ldv,ncv), workd(3*n), workl(lworkl)
+-c  decompose  d1(n), d2(n,ncv)
+-c  align      resid(i) with d1(i)
+-c  align      v(i,j)   with d2(i,j)
+-c  align      workd(i) with d1(i)     range (1:n)
+-c  align      workd(i) with d1(i-n)   range (n+1:2*n)
+-c  align      workd(i) with d1(i-2*n) range (2*n+1:3*n)
+-c  distribute d1(block), d2(block,:)
+-c  replicated workl(lworkl)
+-c
+-c  Cray MPP syntax:
+-c  ===============
+-c  Complex*16  resid(n), v(ldv,ncv), workd(n,3), workl(lworkl)
+-c  shared     resid(block), v(block,:), workd(block,:)
+-c  replicated workl(lworkl)
+-c
+-c  CM2/CM5 syntax:
+-c  ==============
+-c
+-c-----------------------------------------------------------------------
+-c
+-c     include   'ex-nonsym.doc'
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  Complex*16
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c  3. B.N. Parlett & Y. Saad, "_Complex_ Shift and Invert Strategies for
+-c     _Real_ Matrices", Linear Algebra and its Applications, vol 88/89,
+-c     pp 575-595, (1987).
+-c
+-c\Routines called:
+-c     znaup2   ARPACK routine that implements the Implicitly Restarted
+-c             Arnoldi Iteration.
+-c     zstatn   ARPACK routine that initializes the timing variables.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     zvout    ARPACK utility routine that prints vectors.
+-c     arscnd  ARPACK utility routine for timing.
+-c     dlamch   LAPACK routine that determines machine constants.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics
+-c     Rice University
+-c     Houston, Texas
+-c
+-c\SCCS Information: @(#)
+-c FILE: naupd.F   SID: 2.8   DATE OF SID: 04/10/01   RELEASE: 2
+-c
+-c\Remarks
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine znaupd
+-     &   ( ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam,
+-     &     ipntr, workd, workl, lworkl, rwork, info )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat*1, which*2
+-      integer    ido, info, ldv, lworkl, n, ncv, nev
+-      Double precision
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    iparam(11), ipntr(14)
+-      Complex*16
+-     &           resid(n), v(ldv,ncv), workd(3*n), workl(lworkl)
+-      Double precision
+-     &           rwork(ncv)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex*16
+-     &           one, zero
+-      parameter (one = (1.0D+0, 0.0D+0) , zero = (0.0D+0, 0.0D+0) )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    bounds, ierr, ih, iq, ishift, iupd, iw,
+-     &           ldh, ldq, levec, mode, msglvl, mxiter, nb,
+-     &           nev0, next, np, ritz, j
+-      save       bounds, ih, iq, ishift, iupd, iw,
+-     &           ldh, ldq, levec, mode, msglvl, mxiter, nb,
+-     &           nev0, next, np, ritz
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   znaup2 , zvout , ivout, arscnd, zstatn
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision
+-     &           dlamch
+-      external   dlamch
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      if (ido .eq. 0) then
+-c
+-c        %-------------------------------%
+-c        | Initialize timing statistics  |
+-c        | & message level for debugging |
+-c        %-------------------------------%
+-c
+-         call zstatn
+-         call arscnd (t0)
+-         msglvl = mcaupd
+-c
+-c        %----------------%
+-c        | Error checking |
+-c        %----------------%
+-c
+-         ierr   = 0
+-         ishift = iparam(1)
+-c         levec  = iparam(2)
+-         mxiter = iparam(3)
+-c         nb     = iparam(4)
+-         nb     = 1
+-c
+-c        %--------------------------------------------%
+-c        | Revision 2 performs only implicit restart. |
+-c        %--------------------------------------------%
+-c
+-         iupd   = 1
+-         mode   = iparam(7)
+-c
+-         if (n .le. 0) then
+-             ierr = -1
+-         else if (nev .le. 0) then
+-             ierr = -2
+-         else if (ncv .le. nev .or.  ncv .gt. n) then
+-             ierr = -3
+-         else if (mxiter .le. 0) then
+-             ierr = -4
+-         else if (which .ne. 'LM' .and.
+-     &       which .ne. 'SM' .and.
+-     &       which .ne. 'LR' .and.
+-     &       which .ne. 'SR' .and.
+-     &       which .ne. 'LI' .and.
+-     &       which .ne. 'SI') then
+-            ierr = -5
+-         else if (bmat .ne. 'I' .and. bmat .ne. 'G') then
+-            ierr = -6
+-         else if (lworkl .lt. 3*ncv**2 + 5*ncv) then
+-            ierr = -7
+-         else if (mode .lt. 1 .or. mode .gt. 3) then
+-                                                ierr = -10
+-         else if (mode .eq. 1 .and. bmat .eq. 'G') then
+-                                                ierr = -11
+-         end if
+-c
+-c        %------------%
+-c        | Error Exit |
+-c        %------------%
+-c
+-         if (ierr .ne. 0) then
+-            info = ierr
+-            ido  = 99
+-            go to 9000
+-         end if
+-c
+-c        %------------------------%
+-c        | Set default parameters |
+-c        %------------------------%
+-c
+-         if (nb .le. 0)				nb = 1
+-         if (tol .le. 0.0D+0  )			tol = dlamch ('EpsMach')
+-         if (ishift .ne. 0  .and.
+-     &       ishift .ne. 1  .and.
+-     &       ishift .ne. 2) 			ishift = 1
+-c
+-c        %----------------------------------------------%
+-c        | NP is the number of additional steps to      |
+-c        | extend the length NEV Lanczos factorization. |
+-c        | NEV0 is the local variable designating the   |
+-c        | size of the invariant subspace desired.      |
+-c        %----------------------------------------------%
+-c
+-         np     = ncv - nev
+-         nev0   = nev
+-c
+-c        %-----------------------------%
+-c        | Zero out internal workspace |
+-c        %-----------------------------%
+-c
+-         do 10 j = 1, 3*ncv**2 + 5*ncv
+-            workl(j) = zero
+-  10     continue
+-c
+-c        %-------------------------------------------------------------%
+-c        | Pointer into WORKL for address of H, RITZ, BOUNDS, Q        |
+-c        | etc... and the remaining workspace.                         |
+-c        | Also update pointer to be used on output.                   |
+-c        | Memory is laid out as follows:                              |
+-c        | workl(1:ncv*ncv) := generated Hessenberg matrix             |
+-c        | workl(ncv*ncv+1:ncv*ncv+ncv) := the ritz values             |
+-c        | workl(ncv*ncv+ncv+1:ncv*ncv+2*ncv)   := error bounds        |
+-c        | workl(ncv*ncv+2*ncv+1:2*ncv*ncv+2*ncv) := rotation matrix Q |
+-c        | workl(2*ncv*ncv+2*ncv+1:3*ncv*ncv+5*ncv) := workspace       |
+-c        | The final workspace is needed by subroutine zneigh  called   |
+-c        | by znaup2 . Subroutine zneigh  calls LAPACK routines for      |
+-c        | calculating eigenvalues and the last row of the eigenvector |
+-c        | matrix.                                                     |
+-c        %-------------------------------------------------------------%
+-c
+-         ldh    = ncv
+-         ldq    = ncv
+-         ih     = 1
+-         ritz   = ih     + ldh*ncv
+-         bounds = ritz   + ncv
+-         iq     = bounds + ncv
+-         iw     = iq     + ldq*ncv
+-         next   = iw     + ncv**2 + 3*ncv
+-c
+-         ipntr(4) = next
+-         ipntr(5) = ih
+-         ipntr(6) = ritz
+-         ipntr(7) = iq
+-         ipntr(8) = bounds
+-         ipntr(14) = iw
+-      end if
+-c
+-c     %-------------------------------------------------------%
+-c     | Carry out the Implicitly restarted Arnoldi Iteration. |
+-c     %-------------------------------------------------------%
+-c
+-      call znaup2
+-     &   ( ido, bmat, n, which, nev0, np, tol, resid, mode, iupd,
+-     &     ishift, mxiter, v, ldv, workl(ih), ldh, workl(ritz),
+-     &     workl(bounds), workl(iq), ldq, workl(iw),
+-     &     ipntr, workd, rwork, info )
+-c
+-c     %--------------------------------------------------%
+-c     | ido .ne. 99 implies use of reverse communication |
+-c     | to compute operations involving OP.              |
+-c     %--------------------------------------------------%
+-c
+-      if (ido .eq. 3) iparam(8) = np
+-      if (ido .ne. 99) go to 9000
+-c
+-      iparam(3) = mxiter
+-      iparam(5) = np
+-      iparam(9) = nopx
+-      iparam(10) = nbx
+-      iparam(11) = nrorth
+-c
+-c     %------------------------------------%
+-c     | Exit if there was an informational |
+-c     | error within znaup2 .               |
+-c     %------------------------------------%
+-c
+-      if (info .lt. 0) go to 9000
+-      if (info .eq. 2) info = 3
+-c
+-      if (msglvl .gt. 0) then
+-         call ivout (logfil, 1, mxiter, ndigit,
+-     &               '_naupd: Number of update iterations taken')
+-         call ivout (logfil, 1, np, ndigit,
+-     &               '_naupd: Number of wanted "converged" Ritz values')
+-         call zvout  (logfil, np, workl(ritz), ndigit,
+-     &               '_naupd: The final Ritz values')
+-         call zvout  (logfil, np, workl(bounds), ndigit,
+-     &               '_naupd: Associated Ritz estimates')
+-      end if
+-c
+-      call arscnd (t1)
+-      tcaupd = t1 - t0
+-c
+-      if (msglvl .gt. 0) then
+-c
+-c        %--------------------------------------------------------%
+-c        | Version Number & Version Date are defined in version.h |
+-c        %--------------------------------------------------------%
+-c
+-         write (6,1000)
+-         write (6,1100) mxiter, nopx, nbx, nrorth, nitref, nrstrt,
+-     &                  tmvopx, tmvbx, tcaupd, tcaup2, tcaitr, titref,
+-     &                  tgetv0, tceigh, tcgets, tcapps, tcconv, trvec
+- 1000    format (//,
+-     &      5x, '=============================================',/
+-     &      5x, '= Complex implicit Arnoldi update code      =',/
+-     &      5x, '= Version Number: ', ' 2.3' , 21x, ' =',/
+-     &      5x, '= Version Date:   ', ' 07/31/96' , 16x,   ' =',/
+-     &      5x, '=============================================',/
+-     &      5x, '= Summary of timing statistics              =',/
+-     &      5x, '=============================================',//)
+- 1100    format (
+-     &      5x, 'Total number update iterations             = ', i5,/
+-     &      5x, 'Total number of OP*x operations            = ', i5,/
+-     &      5x, 'Total number of B*x operations             = ', i5,/
+-     &      5x, 'Total number of reorthogonalization steps  = ', i5,/
+-     &      5x, 'Total number of iterative refinement steps = ', i5,/
+-     &      5x, 'Total number of restart steps              = ', i5,/
+-     &      5x, 'Total time in user OP*x operation          = ', f12.6,/
+-     &      5x, 'Total time in user B*x operation           = ', f12.6,/
+-     &      5x, 'Total time in Arnoldi update routine       = ', f12.6,/
+-     &      5x, 'Total time in naup2 routine                = ', f12.6,/
+-     &      5x, 'Total time in basic Arnoldi iteration loop = ', f12.6,/
+-     &      5x, 'Total time in reorthogonalization phase    = ', f12.6,/
+-     &      5x, 'Total time in (re)start vector generation  = ', f12.6,/
+-     &      5x, 'Total time in Hessenberg eig. subproblem   = ', f12.6,/
+-     &      5x, 'Total time in getting the shifts           = ', f12.6,/
+-     &      5x, 'Total time in applying the shifts          = ', f12.6,/
+-     &      5x, 'Total time in convergence testing          = ', f12.6,/
+-     &      5x, 'Total time in computing final Ritz vectors = ', f12.6/)
+-      end if
+-c
+- 9000 continue
+-c
+-      return
+-c
+-c     %---------------%
+-c     | End of znaupd  |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/zneigh.f
++++ /dev/null
+@@ -1,257 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: zneigh
+-c
+-c\Description:
+-c  Compute the eigenvalues of the current upper Hessenberg matrix
+-c  and the corresponding Ritz estimates given the current residual norm.
+-c
+-c\Usage:
+-c  call zneigh
+-c     ( RNORM, N, H, LDH, RITZ, BOUNDS, Q, LDQ, WORKL, RWORK, IERR )
+-c
+-c\Arguments
+-c  RNORM   Double precision scalar.  (INPUT)
+-c          Residual norm corresponding to the current upper Hessenberg 
+-c          matrix H.
+-c
+-c  N       Integer.  (INPUT)
+-c          Size of the matrix H.
+-c
+-c  H       Complex*16 N by N array.  (INPUT)
+-c          H contains the current upper Hessenberg matrix.
+-c
+-c  LDH     Integer.  (INPUT)
+-c          Leading dimension of H exactly as declared in the calling
+-c          program.
+-c
+-c  RITZ    Complex*16 array of length N.  (OUTPUT)
+-c          On output, RITZ(1:N) contains the eigenvalues of H.
+-c
+-c  BOUNDS  Complex*16 array of length N.  (OUTPUT)
+-c          On output, BOUNDS contains the Ritz estimates associated with
+-c          the eigenvalues held in RITZ.  This is equal to RNORM 
+-c          times the last components of the eigenvectors corresponding 
+-c          to the eigenvalues in RITZ.
+-c
+-c  Q       Complex*16 N by N array.  (WORKSPACE)
+-c          Workspace needed to store the eigenvectors of H.
+-c
+-c  LDQ     Integer.  (INPUT)
+-c          Leading dimension of Q exactly as declared in the calling
+-c          program.
+-c
+-c  WORKL   Complex*16 work array of length N**2 + 3*N.  (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end.  This is needed to keep the full Schur form
+-c          of H and also in the calculation of the eigenvectors of H.
+-c
+-c  RWORK   Double precision  work array of length N (WORKSPACE)
+-c          Private (replicated) array on each PE or array allocated on
+-c          the front end. 
+-c
+-c  IERR    Integer.  (OUTPUT)
+-c          Error exit flag from zlahqr or ztrevc.
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  Complex*16
+-c
+-c\Routines called:
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     zmout   ARPACK utility routine that prints matrices
+-c     zvout   ARPACK utility routine that prints vectors.
+-c     dvout   ARPACK utility routine that prints vectors.
+-c     zlacpy  LAPACK matrix copy routine.
+-c     zlahqr  LAPACK routine to compute the Schur form of an
+-c             upper Hessenberg matrix.
+-c     zlaset  LAPACK matrix initialization routine.
+-c     ztrevc  LAPACK routine to compute the eigenvectors of a matrix
+-c             in upper triangular form
+-c     zcopy   Level 1 BLAS that copies one vector to another. 
+-c     zdscal  Level 1 BLAS that scales a complex vector by a real number.
+-c     dznrm2  Level 1 BLAS that computes the norm of a vector.
+-c     
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas 
+-c
+-c\SCCS Information: @(#)
+-c FILE: neigh.F   SID: 2.2   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c\Remarks
+-c     None
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine zneigh (rnorm, n, h, ldh, ritz, bounds, 
+-     &                   q, ldq, workl, rwork, ierr)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      integer    ierr, n, ldh, ldq
+-      Double precision     
+-     &           rnorm
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Complex*16     
+-     &           bounds(n), h(ldh,n), q(ldq,n), ritz(n),
+-     &           workl(n*(n+3)) 
+-      Double precision 
+-     &           rwork(n)
+-c 
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex*16     
+-     &           one, zero
+-      Double precision
+-     &           rone
+-      parameter  (one = (1.0D+0, 0.0D+0), zero = (0.0D+0, 0.0D+0),
+-     &           rone = 1.0D+0)
+-c 
+-c     %------------------------%
+-c     | Local Scalars & Arrays |
+-c     %------------------------%
+-c
+-      logical    select(1)
+-      integer    j,  msglvl
+-      Complex*16     
+-     &           vl(1)
+-      Double precision
+-     &           temp
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   zlacpy, zlahqr, ztrevc, zcopy, 
+-     &           zdscal, zmout, zvout, arscnd
+-c
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision 
+-     &           dznrm2
+-      external   dznrm2
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c
+-      call arscnd (t0)
+-      msglvl = mceigh
+-c 
+-      if (msglvl .gt. 2) then
+-          call zmout (logfil, n, n, h, ldh, ndigit, 
+-     &         '_neigh: Entering upper Hessenberg matrix H ')
+-      end if
+-c 
+-c     %----------------------------------------------------------%
+-c     | 1. Compute the eigenvalues, the last components of the   |
+-c     |    corresponding Schur vectors and the full Schur form T |
+-c     |    of the current upper Hessenberg matrix H.             |
+-c     |    zlahqr returns the full Schur form of H               | 
+-c     |    in WORKL(1:N**2), and the Schur vectors in q.         |
+-c     %----------------------------------------------------------%
+-c
+-      call zlacpy ('All', n, n, h, ldh, workl, n)
+-      call zlaset ('All', n, n, zero, one, q, ldq)
+-      call zlahqr (.true., .true., n, 1, n, workl, ldh, ritz,
+-     &             1, n, q, ldq, ierr)
+-      if (ierr .ne. 0) go to 9000
+-c
+-      call zcopy (n, q(n-1,1), ldq, bounds, 1)
+-      if (msglvl .gt. 1) then
+-         call zvout (logfil, n, bounds, ndigit,
+-     &              '_neigh: last row of the Schur matrix for H')
+-      end if
+-c
+-c     %----------------------------------------------------------%
+-c     | 2. Compute the eigenvectors of the full Schur form T and |
+-c     |    apply the Schur vectors to get the corresponding      |
+-c     |    eigenvectors.                                         |
+-c     %----------------------------------------------------------%
+-c
+-      call ztrevc ('Right', 'Back', select, n, workl, n, vl, n, q, 
+-     &             ldq, n, n, workl(n*n+1), rwork, ierr)
+-c
+-      if (ierr .ne. 0) go to 9000
+-c
+-c     %------------------------------------------------%
+-c     | Scale the returning eigenvectors so that their |
+-c     | Euclidean norms are all one. LAPACK subroutine |
+-c     | ztrevc returns each eigenvector normalized so  |
+-c     | that the element of largest magnitude has      |
+-c     | magnitude 1; here the magnitude of a complex   |
+-c     | number (x,y) is taken to be |x| + |y|.         |
+-c     %------------------------------------------------%
+-c
+-      do 10 j=1, n
+-            temp = dznrm2( n, q(1,j), 1 )
+-            call zdscal ( n, rone / temp, q(1,j), 1 )
+-   10 continue
+-c
+-      if (msglvl .gt. 1) then
+-         call zcopy(n, q(n,1), ldq, workl, 1)
+-         call zvout (logfil, n, workl, ndigit,
+-     &              '_neigh: Last row of the eigenvector matrix for H')
+-      end if
+-c
+-c     %----------------------------%
+-c     | Compute the Ritz estimates |
+-c     %----------------------------%
+-c
+-      call zcopy(n, q(n,1), n, bounds, 1)
+-      call zdscal(n, rnorm, bounds, 1)
+-c
+-      if (msglvl .gt. 2) then
+-         call zvout (logfil, n, ritz, ndigit,
+-     &              '_neigh: The eigenvalues of H')
+-         call zvout (logfil, n, bounds, ndigit,
+-     &              '_neigh: Ritz estimates for the eigenvalues of H')
+-      end if
+-c
+-      call arscnd(t1)
+-      tceigh = tceigh + (t1 - t0)
+-c
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of zneigh |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/zneupd.f
++++ /dev/null
+@@ -1,876 +0,0 @@
+-c\BeginDoc
+-c 
+-c\Name: zneupd  
+-c 
+-c\Description: 
+-c  This subroutine returns the converged approximations to eigenvalues 
+-c  of A*z = lambda*B*z and (optionally): 
+-c 
+-c      (1) The corresponding approximate eigenvectors; 
+-c 
+-c      (2) An orthonormal basis for the associated approximate 
+-c          invariant subspace; 
+-c 
+-c      (3) Both.  
+-c
+-c  There is negligible additional cost to obtain eigenvectors.  An orthonormal 
+-c  basis is always computed.  There is an additional storage cost of n*nev
+-c  if both are requested (in this case a separate array Z must be supplied). 
+-c
+-c  The approximate eigenvalues and eigenvectors of  A*z = lambda*B*z
+-c  are derived from approximate eigenvalues and eigenvectors of
+-c  of the linear operator OP prescribed by the MODE selection in the
+-c  call to ZNAUPD .  ZNAUPD  must be called before this routine is called.
+-c  These approximate eigenvalues and vectors are commonly called Ritz
+-c  values and Ritz vectors respectively.  They are referred to as such 
+-c  in the comments that follow.   The computed orthonormal basis for the 
+-c  invariant subspace corresponding to these Ritz values is referred to as a 
+-c  Schur basis. 
+-c 
+-c  The definition of OP as well as other terms and the relation of computed
+-c  Ritz values and vectors of OP with respect to the given problem
+-c  A*z = lambda*B*z may be found in the header of ZNAUPD .  For a brief 
+-c  description, see definitions of IPARAM(7), MODE and WHICH in the
+-c  documentation of ZNAUPD .
+-c
+-c\Usage:
+-c  call zneupd  
+-c     ( RVEC, HOWMNY, SELECT, D, Z, LDZ, SIGMA, WORKEV, BMAT, 
+-c       N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD, 
+-c       WORKL, LWORKL, RWORK, INFO )
+-c
+-c\Arguments:
+-c  RVEC    LOGICAL  (INPUT)
+-c          Specifies whether a basis for the invariant subspace corresponding
+-c          to the converged Ritz value approximations for the eigenproblem 
+-c          A*z = lambda*B*z is computed.
+-c
+-c             RVEC = .FALSE.     Compute Ritz values only.
+-c
+-c             RVEC = .TRUE.      Compute Ritz vectors or Schur vectors.
+-c                                See Remarks below.
+-c
+-c  HOWMNY  Character*1  (INPUT)
+-c          Specifies the form of the basis for the invariant subspace 
+-c          corresponding to the converged Ritz values that is to be computed.
+-c
+-c          = 'A': Compute NEV Ritz vectors;
+-c          = 'P': Compute NEV Schur vectors;
+-c          = 'S': compute some of the Ritz vectors, specified
+-c                 by the logical array SELECT.
+-c
+-c  SELECT  Logical array of dimension NCV.  (INPUT)
+-c          If HOWMNY = 'S', SELECT specifies the Ritz vectors to be
+-c          computed. To select the  Ritz vector corresponding to a
+-c          Ritz value D(j), SELECT(j) must be set to .TRUE.. 
+-c          If HOWMNY = 'A' or 'P', SELECT need not be initialized 
+-c          but it is used as internal workspace.
+-c
+-c  D       Complex*16  array of dimension NEV+1.  (OUTPUT)
+-c          On exit, D contains the  Ritz  approximations 
+-c          to the eigenvalues lambda for A*z = lambda*B*z.
+-c
+-c  Z       Complex*16  N by NEV array    (OUTPUT)
+-c          On exit, if RVEC = .TRUE. and HOWMNY = 'A', then the columns of 
+-c          Z represents approximate eigenvectors (Ritz vectors) corresponding 
+-c          to the NCONV=IPARAM(5) Ritz values for eigensystem
+-c          A*z = lambda*B*z.
+-c
+-c          If RVEC = .FALSE. or HOWMNY = 'P', then Z is NOT REFERENCED.
+-c
+-c          NOTE: If if RVEC = .TRUE. and a Schur basis is not required, 
+-c          the array Z may be set equal to first NEV+1 columns of the Arnoldi 
+-c          basis array V computed by ZNAUPD .  In this case the Arnoldi basis 
+-c          will be destroyed and overwritten with the eigenvector basis.
+-c
+-c  LDZ     Integer.  (INPUT)
+-c          The leading dimension of the array Z.  If Ritz vectors are
+-c          desired, then  LDZ .ge.  max( 1, N ) is required.  
+-c          In any case,  LDZ .ge. 1 is required.
+-c
+-c  SIGMA   Complex*16   (INPUT)
+-c          If IPARAM(7) = 3 then SIGMA represents the shift. 
+-c          Not referenced if IPARAM(7) = 1 or 2.
+-c
+-c  WORKEV  Complex*16  work array of dimension 2*NCV.  (WORKSPACE)
+-c
+-c  **** The remaining arguments MUST be the same as for the   ****
+-c  **** call to ZNAUPD  that was just completed.               ****
+-c
+-c  NOTE: The remaining arguments 
+-c
+-c           BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, 
+-c           WORKD, WORKL, LWORKL, RWORK, INFO 
+-c
+-c         must be passed directly to ZNEUPD  following the last call 
+-c         to ZNAUPD .  These arguments MUST NOT BE MODIFIED between
+-c         the the last call to ZNAUPD  and the call to ZNEUPD .
+-c
+-c  Three of these parameters (V, WORKL and INFO) are also output parameters:
+-c
+-c  V       Complex*16  N by NCV array.  (INPUT/OUTPUT)
+-c
+-c          Upon INPUT: the NCV columns of V contain the Arnoldi basis
+-c                      vectors for OP as constructed by ZNAUPD  .
+-c
+-c          Upon OUTPUT: If RVEC = .TRUE. the first NCONV=IPARAM(5) columns
+-c                       contain approximate Schur vectors that span the
+-c                       desired invariant subspace.
+-c
+-c          NOTE: If the array Z has been set equal to first NEV+1 columns
+-c          of the array V and RVEC=.TRUE. and HOWMNY= 'A', then the
+-c          Arnoldi basis held by V has been overwritten by the desired
+-c          Ritz vectors.  If a separate array Z has been passed then
+-c          the first NCONV=IPARAM(5) columns of V will contain approximate
+-c          Schur vectors that span the desired invariant subspace.
+-c
+-c  WORKL   Double precision  work array of length LWORKL.  (OUTPUT/WORKSPACE)
+-c          WORKL(1:ncv*ncv+2*ncv) contains information obtained in
+-c          znaupd .  They are not changed by zneupd .
+-c          WORKL(ncv*ncv+2*ncv+1:3*ncv*ncv+4*ncv) holds the
+-c          untransformed Ritz values, the untransformed error estimates of 
+-c          the Ritz values, the upper triangular matrix for H, and the
+-c          associated matrix representation of the invariant subspace for H.
+-c
+-c          Note: IPNTR(9:13) contains the pointer into WORKL for addresses
+-c          of the above information computed by zneupd .
+-c          -------------------------------------------------------------
+-c          IPNTR(9):  pointer to the NCV RITZ values of the
+-c                     original system.
+-c          IPNTR(10): Not used
+-c          IPNTR(11): pointer to the NCV corresponding error estimates.
+-c          IPNTR(12): pointer to the NCV by NCV upper triangular
+-c                     Schur matrix for H.
+-c          IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors
+-c                     of the upper Hessenberg matrix H. Only referenced by
+-c                     zneupd  if RVEC = .TRUE. See Remark 2 below.
+-c          -------------------------------------------------------------
+-c
+-c  INFO    Integer.  (OUTPUT)
+-c          Error flag on output.
+-c          =  0: Normal exit.
+-c
+-c          =  1: The Schur form computed by LAPACK routine csheqr
+-c                could not be reordered by LAPACK routine ztrsen .
+-c                Re-enter subroutine zneupd  with IPARAM(5)=NCV and
+-c                increase the size of the array D to have
+-c                dimension at least dimension NCV and allocate at least NCV
+-c                columns for Z. NOTE: Not necessary if Z and V share
+-c                the same space. Please notify the authors if this error
+-c                occurs.
+-c
+-c          = -1: N must be positive.
+-c          = -2: NEV must be positive.
+-c          = -3: NCV-NEV >= 2 and less than or equal to N.
+-c          = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'
+-c          = -6: BMAT must be one of 'I' or 'G'.
+-c          = -7: Length of private work WORKL array is not sufficient.
+-c          = -8: Error return from LAPACK eigenvalue calculation.
+-c                This should never happened.
+-c          = -9: Error return from calculation of eigenvectors.
+-c                Informational error from LAPACK routine ztrevc .
+-c          = -10: IPARAM(7) must be 1,2,3
+-c          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
+-c          = -12: HOWMNY = 'S' not yet implemented
+-c          = -13: HOWMNY must be one of 'A' or 'P' if RVEC = .true.
+-c          = -14: ZNAUPD  did not find any eigenvalues to sufficient
+-c                 accuracy.
+-c          = -15: ZNEUPD  got a different count of the number of converged
+-c                 Ritz values than ZNAUPD  got.  This indicates the user
+-c                 probably made an error in passing data from ZNAUPD  to
+-c                 ZNEUPD  or that the data was modified before entering
+-c                 ZNEUPD 
+-c
+-c\BeginLib
+-c
+-c\References:
+-c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
+-c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
+-c     pp 357-385.
+-c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
+-c     Restarted Arnoldi Iteration", Rice University Technical Report
+-c     TR95-13, Department of Computational and Applied Mathematics.
+-c  3. B. Nour-Omid, B. N. Parlett, T. Ericsson and P. S. Jensen,
+-c     "How to Implement the Spectral Transformation", Math Comp.,
+-c     Vol. 48, No. 178, April, 1987 pp. 664-673. 
+-c
+-c\Routines called:
+-c     ivout   ARPACK utility routine that prints integers.
+-c     zmout    ARPACK utility routine that prints matrices
+-c     zvout    ARPACK utility routine that prints vectors.
+-c     zgeqr2   LAPACK routine that computes the QR factorization of 
+-c             a matrix.
+-c     zlacpy   LAPACK matrix copy routine.
+-c     zlahqr   LAPACK routine that computes the Schur form of a
+-c             upper Hessenberg matrix.
+-c     zlaset   LAPACK matrix initialization routine.
+-c     ztrevc   LAPACK routine to compute the eigenvectors of a matrix
+-c             in upper triangular form.
+-c     ztrsen   LAPACK routine that re-orders the Schur form.
+-c     zunm2r   LAPACK routine that applies an orthogonal matrix in 
+-c             factored form.
+-c     dlamch   LAPACK routine that determines machine constants.
+-c     ztrmm    Level 3 BLAS matrix times an upper triangular matrix.
+-c     zgeru    Level 2 BLAS rank one update to a matrix.
+-c     zcopy    Level 1 BLAS that copies one vector to another .
+-c     zscal    Level 1 BLAS that scales a vector.
+-c     zdscal   Level 1 BLAS that scales a complex vector by a real number.
+-c     dznrm2   Level 1 BLAS that computes the norm of a complex vector.
+-c
+-c\Remarks
+-c
+-c  1. Currently only HOWMNY = 'A' and 'P' are implemented. 
+-c
+-c  2. Schur vectors are an orthogonal representation for the basis of
+-c     Ritz vectors. Thus, their numerical properties are often superior.
+-c     If RVEC = .true. then the relationship
+-c             A * V(:,1:IPARAM(5)) = V(:,1:IPARAM(5)) * T, and
+-c       transpose( V(:,1:IPARAM(5)) ) * V(:,1:IPARAM(5)) = I
+-c     are approximately satisfied.
+-c     Here T is the leading submatrix of order IPARAM(5) of the 
+-c     upper triangular matrix stored workl(ipntr(12)). 
+-c
+-c\Authors
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Chao Yang                    Houston, Texas 
+-c     Dept. of Computational & 
+-c     Applied Mathematics 
+-c     Rice University 
+-c     Houston, Texas
+-c
+-c\SCCS Information: @(#)
+-c FILE: neupd.F   SID: 2.7   DATE OF SID: 09/20/00   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-      subroutine zneupd (rvec , howmny, select, d     ,
+-     &                   z    , ldz   , sigma , workev,
+-     &                   bmat , n     , which , nev   ,
+-     &                   tol  , resid , ncv   , v     ,
+-     &                   ldv  , iparam, ipntr , workd ,
+-     &                   workl, lworkl, rwork , info  )
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character  bmat, howmny, which*2
+-      logical    rvec
+-      integer    info, ldz, ldv, lworkl, n, ncv, nev
+-      Complex*16      
+-     &           sigma
+-      Double precision  
+-     &           tol
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      integer    iparam(11), ipntr(14)
+-      logical    select(ncv)
+-      Double precision 
+-     &           rwork(ncv)
+-      Complex*16 
+-     &           d(nev)     , resid(n)     , v(ldv,ncv),
+-     &           z(ldz, nev), 
+-     &           workd(3*n) , workl(lworkl), workev(2*ncv)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex*16 
+-     &           one, zero
+-      parameter  (one = (1.0D+0, 0.0D+0) , zero = (0.0D+0, 0.0D+0) )
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      character  type*6
+-      integer    bounds, ierr  , ih    , ihbds, iheig , nconv ,
+-     &           invsub, iuptri, iwev  , j    , ldh   , ldq   ,
+-     &           mode  , msglvl, ritz  , wr   , k     , irz   ,
+-     &           ibd   , outncv, iq    , np   , numcnv, jj    ,
+-     &           ishift, nconv2
+-      Complex*16 
+-     &           rnorm, temp, vl(1)
+-      Double precision 
+-     &           conds, sep, rtemp, eps23
+-      logical    reord
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   zcopy  , zgeru , zgeqr2 , zlacpy , zmout ,
+-     &           zunm2r , ztrmm , zvout , ivout,
+-     &           zlahqr 
+-c  
+-c     %--------------------%
+-c     | External Functions |
+-c     %--------------------%
+-c
+-      Double precision 
+-     &           dznrm2 , dlamch , dlapy2 
+-      external   dznrm2 , dlamch , dlapy2 
+-c
+-      Complex*16 
+-     &           zdotc 
+-      external   zdotc 
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c 
+-c     %------------------------%
+-c     | Set default parameters |
+-c     %------------------------%
+-c
+-      msglvl = mceupd
+-      mode = iparam(7)
+-      nconv = iparam(5)
+-      info = 0
+-c
+-c
+-c     %---------------------------------%
+-c     | Get machine dependent constant. |
+-c     %---------------------------------%
+-c
+-      eps23 = dlamch ('Epsilon-Machine')
+-      eps23 = eps23**(2.0D+0  / 3.0D+0 )
+-c
+-c     %-------------------------------%
+-c     | Quick return                  |
+-c     | Check for incompatible input  |
+-c     %-------------------------------%
+-c
+-      ierr = 0
+-c
+-      if (nconv .le. 0) then
+-         ierr = -14
+-      else if (n .le. 0) then
+-         ierr = -1
+-      else if (nev .le. 0) then
+-         ierr = -2
+-      else if (ncv .le. nev+1 .or.  ncv .gt. n) then
+-         ierr = -3
+-      else if (which .ne. 'LM' .and.
+-     &        which .ne. 'SM' .and.
+-     &        which .ne. 'LR' .and.
+-     &        which .ne. 'SR' .and.
+-     &        which .ne. 'LI' .and.
+-     &        which .ne. 'SI') then
+-         ierr = -5
+-      else if (bmat .ne. 'I' .and. bmat .ne. 'G') then
+-         ierr = -6
+-      else if (lworkl .lt. 3*ncv**2 + 4*ncv) then
+-         ierr = -7
+-      else if ( (howmny .ne. 'A' .and.
+-     &           howmny .ne. 'P' .and.
+-     &           howmny .ne. 'S') .and. rvec ) then
+-         ierr = -13
+-      else if (howmny .eq. 'S' ) then
+-         ierr = -12
+-      end if
+-c     
+-      if (mode .eq. 1 .or. mode .eq. 2) then
+-         type = 'REGULR'
+-      else if (mode .eq. 3 ) then
+-         type = 'SHIFTI'
+-      else 
+-                                              ierr = -10
+-      end if
+-      if (mode .eq. 1 .and. bmat .eq. 'G')    ierr = -11
+-c
+-c     %------------%
+-c     | Error Exit |
+-c     %------------%
+-c
+-      if (ierr .ne. 0) then
+-         info = ierr
+-         go to 9000
+-      end if
+-c 
+-c     %--------------------------------------------------------%
+-c     | Pointer into WORKL for address of H, RITZ, WORKEV, Q   |
+-c     | etc... and the remaining workspace.                    |
+-c     | Also update pointer to be used on output.              |
+-c     | Memory is laid out as follows:                         |
+-c     | workl(1:ncv*ncv) := generated Hessenberg matrix        |
+-c     | workl(ncv*ncv+1:ncv*ncv+ncv) := ritz values            |
+-c     | workl(ncv*ncv+ncv+1:ncv*ncv+2*ncv) := error bounds     |
+-c     %--------------------------------------------------------%
+-c
+-c     %-----------------------------------------------------------%
+-c     | The following is used and set by ZNEUPD .                 |
+-c     | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := The untransformed |
+-c     |                                      Ritz values.         |
+-c     | workl(ncv*ncv+3*ncv+1:ncv*ncv+4*ncv) := The untransformed |
+-c     |                                      error bounds of      |
+-c     |                                      the Ritz values      |
+-c     | workl(ncv*ncv+4*ncv+1:2*ncv*ncv+4*ncv) := Holds the upper |
+-c     |                                      triangular matrix    |
+-c     |                                      for H.               |
+-c     | workl(2*ncv*ncv+4*ncv+1: 3*ncv*ncv+4*ncv) := Holds the    |
+-c     |                                      associated matrix    |
+-c     |                                      representation of    |
+-c     |                                      the invariant        |
+-c     |                                      subspace for H.      |
+-c     | GRAND total of NCV * ( 3 * NCV + 4 ) locations.           |
+-c     %-----------------------------------------------------------%
+-c     
+-      ih     = ipntr(5)
+-      ritz   = ipntr(6)
+-      iq     = ipntr(7)
+-      bounds = ipntr(8)
+-      ldh    = ncv
+-      ldq    = ncv
+-      iheig  = bounds + ldh
+-      ihbds  = iheig  + ldh
+-      iuptri = ihbds  + ldh
+-      invsub = iuptri + ldh*ncv
+-      ipntr(9)  = iheig
+-      ipntr(11) = ihbds
+-      ipntr(12) = iuptri
+-      ipntr(13) = invsub
+-      wr = 1
+-      iwev = wr + ncv
+-c
+-c     %-----------------------------------------%
+-c     | irz points to the Ritz values computed  |
+-c     |     by _neigh before exiting _naup2.    |
+-c     | ibd points to the Ritz estimates        |
+-c     |     computed by _neigh before exiting   |
+-c     |     _naup2.                             |
+-c     %-----------------------------------------%
+-c
+-      irz = ipntr(14) + ncv*ncv
+-      ibd = irz + ncv
+-c
+-c     %------------------------------------%
+-c     | RNORM is B-norm of the RESID(1:N). |
+-c     %------------------------------------%
+-c
+-      rnorm = workl(ih+2)
+-      workl(ih+2) = zero
+-c
+-      if (msglvl .gt. 2) then
+-         call zvout (logfil, ncv, workl(irz), ndigit,
+-     &   '_neupd: Ritz values passed in from _NAUPD.')
+-         call zvout (logfil, ncv, workl(ibd), ndigit,
+-     &   '_neupd: Ritz estimates passed in from _NAUPD.')
+-      end if
+-c
+-      if (rvec) then
+-c
+-         reord = .false.
+-c
+-c        %---------------------------------------------------%
+-c        | Use the temporary bounds array to store indices   |
+-c        | These will be used to mark the select array later |
+-c        %---------------------------------------------------%
+-c
+-         do 10 j = 1,ncv
+-            workl(bounds+j-1) = j
+-            select(j) = .false.
+-   10    continue
+-c
+-c        %-------------------------------------%
+-c        | Select the wanted Ritz values.      |
+-c        | Sort the Ritz values so that the    |
+-c        | wanted ones appear at the tailing   |
+-c        | NEV positions of workl(irr) and     |
+-c        | workl(iri).  Move the corresponding |
+-c        | error estimates in workl(ibd)       |
+-c        | accordingly.                        |
+-c        %-------------------------------------%
+-c
+-         np     = ncv - nev
+-         ishift = 0
+-         call zngets (ishift, which     , nev          ,
+-     &                np    , workl(irz), workl(bounds))
+-c
+-         if (msglvl .gt. 2) then
+-            call zvout  (logfil, ncv, workl(irz), ndigit,
+-     &      '_neupd: Ritz values after calling _NGETS.')
+-            call zvout  (logfil, ncv, workl(bounds), ndigit,
+-     &      '_neupd: Ritz value indices after calling _NGETS.')
+-         end if
+-c
+-c        %-----------------------------------------------------%
+-c        | Record indices of the converged wanted Ritz values  |
+-c        | Mark the select array for possible reordering       |
+-c        %-----------------------------------------------------%
+-c
+-         numcnv = 0
+-         do 11 j = 1,ncv
+-            rtemp = max(eps23,
+-     &                 dlapy2  ( dble (workl(irz+ncv-j)),
+-     &                          dimag (workl(irz+ncv-j)) ))
+-            jj = workl(bounds + ncv - j)
+-            if (numcnv .lt. nconv .and.
+-     &          dlapy2 ( dble (workl(ibd+jj-1)),
+-     &          dimag (workl(ibd+jj-1)) )
+-     &          .le. tol*rtemp) then
+-               select(jj) = .true.
+-               numcnv = numcnv + 1
+-               if (jj .gt. nev) reord = .true.
+-            endif
+-   11    continue
+-c
+-c        %-----------------------------------------------------------%
+-c        | Check the count (numcnv) of converged Ritz values with    |
+-c        | the number (nconv) reported by dnaupd.  If these two      |
+-c        | are different then there has probably been an error       |
+-c        | caused by incorrect passing of the dnaupd data.           |
+-c        %-----------------------------------------------------------%
+-c
+-         if (msglvl .gt. 2) then
+-             call ivout(logfil, 1, numcnv, ndigit,
+-     &            '_neupd: Number of specified eigenvalues')
+-             call ivout(logfil, 1, nconv, ndigit,
+-     &            '_neupd: Number of "converged" eigenvalues')
+-         end if
+-c
+-         if (numcnv .ne. nconv) then
+-            info = -15
+-            go to 9000
+-         end if
+-c
+-c        %-------------------------------------------------------%
+-c        | Call LAPACK routine zlahqr  to compute the Schur form |
+-c        | of the upper Hessenberg matrix returned by ZNAUPD .   |
+-c        | Make a copy of the upper Hessenberg matrix.           |
+-c        | Initialize the Schur vector matrix Q to the identity. |
+-c        %-------------------------------------------------------%
+-c
+-         call zcopy (ldh*ncv, workl(ih), 1, workl(iuptri), 1)
+-         call zlaset ('All', ncv, ncv          , 
+-     &                zero , one, workl(invsub),
+-     &                ldq)
+-         call zlahqr (.true., .true.       , ncv          , 
+-     &                1     , ncv          , workl(iuptri),
+-     &                ldh   , workl(iheig) , 1            ,
+-     &                ncv   , workl(invsub), ldq          ,
+-     &                ierr)
+-         call zcopy (ncv         , workl(invsub+ncv-1), ldq,
+-     &               workl(ihbds), 1)
+-c
+-         if (ierr .ne. 0) then
+-            info = -8
+-            go to 9000
+-         end if
+-c
+-         if (msglvl .gt. 1) then
+-            call zvout  (logfil, ncv, workl(iheig), ndigit,
+-     &           '_neupd: Eigenvalues of H')
+-            call zvout  (logfil, ncv, workl(ihbds), ndigit,
+-     &           '_neupd: Last row of the Schur vector matrix')
+-            if (msglvl .gt. 3) then
+-               call zmout  (logfil       , ncv, ncv   , 
+-     &                     workl(iuptri), ldh, ndigit,
+-     &              '_neupd: The upper triangular matrix ')
+-            end if
+-         end if
+-c
+-         if (reord) then
+-c
+-c           %-----------------------------------------------%
+-c           | Reorder the computed upper triangular matrix. |
+-c           %-----------------------------------------------%
+-c
+-            call ztrsen ('None'       , 'V'          , select      ,
+-     &                   ncv          , workl(iuptri), ldh         ,
+-     &                   workl(invsub), ldq          , workl(iheig),
+-     &                   nconv2       , conds        , sep         , 
+-     &                   workev       , ncv          , ierr)
+-c
+-            if (nconv2 .lt. nconv) then
+-               nconv = nconv2
+-            end if
+-
+-            if (ierr .eq. 1) then
+-               info = 1
+-               go to 9000
+-            end if
+-c
+-            if (msglvl .gt. 2) then
+-                call zvout  (logfil, ncv, workl(iheig), ndigit,
+-     &           '_neupd: Eigenvalues of H--reordered')
+-                if (msglvl .gt. 3) then
+-                   call zmout (logfil       , ncv, ncv   ,
+-     &                         workl(iuptri), ldq, ndigit,
+-     &              '_neupd: Triangular matrix after re-ordering')
+-                end if
+-            end if
+-c
+-         end if
+-c
+-c        %---------------------------------------------%
+-c        | Copy the last row of the Schur basis matrix |
+-c        | to workl(ihbds).  This vector will be used  |
+-c        | to compute the Ritz estimates of converged  |
+-c        | Ritz values.                                |
+-c        %---------------------------------------------%
+-c
+-         call zcopy (ncv         , workl(invsub+ncv-1), ldq,
+-     &               workl(ihbds), 1)
+-c 
+-c        %--------------------------------------------%
+-c        | Place the computed eigenvalues of H into D |
+-c        | if a spectral transformation was not used. |
+-c        %--------------------------------------------%
+-c
+-         if (type .eq. 'REGULR') then
+-            call zcopy (nconv, workl(iheig), 1, d, 1)
+-         end if
+-c
+-c        %----------------------------------------------------------%
+-c        | Compute the QR factorization of the matrix representing  |
+-c        | the wanted invariant subspace located in the first NCONV |
+-c        | columns of workl(invsub,ldq).                            |
+-c        %----------------------------------------------------------%
+-c
+-         call zgeqr2 (ncv , nconv , workl(invsub),
+-     &                ldq , workev, workev(ncv+1),
+-     &                ierr)
+-c
+-c        %--------------------------------------------------------%
+-c        | * Postmultiply V by Q using zunm2r .                    |
+-c        | * Copy the first NCONV columns of VQ into Z.           |
+-c        | * Postmultiply Z by R.                                 |
+-c        | The N by NCONV matrix Z is now a matrix representation |
+-c        | of the approximate invariant subspace associated with  |
+-c        | the Ritz values in workl(iheig). The first NCONV       | 
+-c        | columns of V are now approximate Schur vectors         |
+-c        | associated with the upper triangular matrix of order   |
+-c        | NCONV in workl(iuptri).                                |
+-c        %--------------------------------------------------------%
+-c
+-         call zunm2r ('Right', 'Notranspose', n            ,
+-     &                ncv    , nconv        , workl(invsub),
+-     &                ldq    , workev       , v            ,
+-     &                ldv    , workd(n+1)   , ierr)
+-         call zlacpy ('All', n, nconv, v, ldv, z, ldz)
+-c
+-         do 20 j=1, nconv
+-c
+-c           %---------------------------------------------------%
+-c           | Perform both a column and row scaling if the      |
+-c           | diagonal element of workl(invsub,ldq) is negative |
+-c           | I'm lazy and don't take advantage of the upper    |
+-c           | triangular form of workl(iuptri,ldq).             |
+-c           | Note that since Q is orthogonal, R is a diagonal  |
+-c           | matrix consisting of plus or minus ones.          |
+-c           %---------------------------------------------------%
+-c
+-            if ( dble ( workl(invsub+(j-1)*ldq+j-1) ) .lt. 
+-     &                  dble (zero) ) then
+-               call zscal (nconv, -one, workl(iuptri+j-1), ldq)
+-               call zscal (nconv, -one, workl(iuptri+(j-1)*ldq), 1)
+-            end if
+-c
+- 20      continue
+-c
+-         if (howmny .eq. 'A') then
+-c
+-c           %--------------------------------------------%
+-c           | Compute the NCONV wanted eigenvectors of T |
+-c           | located in workl(iuptri,ldq).              |
+-c           %--------------------------------------------%
+-c
+-            do 30 j=1, ncv
+-               if (j .le. nconv) then
+-                  select(j) = .true.
+-               else
+-                  select(j) = .false.
+-               end if
+- 30         continue
+-c
+-            call ztrevc ('Right', 'Select'     , select       ,
+-     &                   ncv    , workl(iuptri), ldq          ,
+-     &                   vl     , 1            , workl(invsub),
+-     &                   ldq    , ncv          , outncv       ,
+-     &                   workev , rwork        , ierr)
+-c
+-            if (ierr .ne. 0) then
+-                info = -9
+-                go to 9000
+-            end if
+-c
+-c           %------------------------------------------------%
+-c           | Scale the returning eigenvectors so that their |
+-c           | Euclidean norms are all one. LAPACK subroutine |
+-c           | ztrevc  returns each eigenvector normalized so  |
+-c           | that the element of largest magnitude has      |
+-c           | magnitude 1.                                   |
+-c           %------------------------------------------------%
+-c
+-            do 40 j=1, nconv
+-                  rtemp = dznrm2 (ncv, workl(invsub+(j-1)*ldq), 1)
+-                  rtemp = dble (one) / rtemp
+-                  call zdscal  ( ncv, rtemp,
+-     &                 workl(invsub+(j-1)*ldq), 1 )
+-c
+-c                 %------------------------------------------%
+-c                 | Ritz estimates can be obtained by taking |
+-c                 | the inner product of the last row of the |
+-c                 | Schur basis of H with eigenvectors of T. |
+-c                 | Note that the eigenvector matrix of T is |
+-c                 | upper triangular, thus the length of the |
+-c                 | inner product can be set to j.           |
+-c                 %------------------------------------------%
+-c 
+-                  workev(j) = zdotc (j, workl(ihbds), 1,
+-     &                        workl(invsub+(j-1)*ldq), 1)
+- 40         continue
+-c
+-            if (msglvl .gt. 2) then
+-               call zcopy (nconv, workl(invsub+ncv-1), ldq,
+-     &                    workl(ihbds), 1)
+-               call zvout  (logfil, nconv, workl(ihbds), ndigit,
+-     &            '_neupd: Last row of the eigenvector matrix for T')
+-               if (msglvl .gt. 3) then
+-                  call zmout (logfil       , ncv, ncv   ,
+-     &                        workl(invsub), ldq, ndigit,
+-     &               '_neupd: The eigenvector matrix for T')
+-               end if
+-            end if
+-c
+-c           %---------------------------------------%
+-c           | Copy Ritz estimates into workl(ihbds) |
+-c           %---------------------------------------%
+-c 
+-            call zcopy (nconv, workev, 1, workl(ihbds), 1)
+-c
+-c           %----------------------------------------------%
+-c           | The eigenvector matrix Q of T is triangular. |
+-c           | Form Z*Q.                                    |
+-c           %----------------------------------------------%
+-c
+-            call ztrmm ('Right'   , 'Upper'      , 'No transpose',
+-     &                  'Non-unit', n            , nconv         ,
+-     &                  one       , workl(invsub), ldq           ,
+-     &                  z         , ldz)
+-         end if 
+-c
+-      else
+-c
+-c        %--------------------------------------------------%
+-c        | An approximate invariant subspace is not needed. |
+-c        | Place the Ritz values computed ZNAUPD  into D.    |
+-c        %--------------------------------------------------%
+-c
+-         call zcopy (nconv, workl(ritz), 1, d, 1)
+-         call zcopy (nconv, workl(ritz), 1, workl(iheig), 1)
+-         call zcopy (nconv, workl(bounds), 1, workl(ihbds), 1)
+-c
+-      end if
+-c
+-c     %------------------------------------------------%
+-c     | Transform the Ritz values and possibly vectors |
+-c     | and corresponding error bounds of OP to those  |
+-c     | of A*x = lambda*B*x.                           |
+-c     %------------------------------------------------%
+-c
+-      if (type .eq. 'REGULR') then
+-c
+-         if (rvec) 
+-     &      call zscal (ncv, rnorm, workl(ihbds), 1)
+-c      
+-      else
+-c     
+-c        %---------------------------------------%
+-c        |   A spectral transformation was used. |
+-c        | * Determine the Ritz estimates of the |
+-c        |   Ritz values in the original system. |
+-c        %---------------------------------------%
+-c
+-         if (rvec) 
+-     &      call zscal (ncv, rnorm, workl(ihbds), 1)
+-c    
+-         do 50 k=1, ncv
+-            temp = workl(iheig+k-1)
+-            workl(ihbds+k-1) = workl(ihbds+k-1) / temp / temp
+-  50     continue
+-c  
+-      end if
+-c
+-c     %-----------------------------------------------------------%
+-c     | *  Transform the Ritz values back to the original system. |
+-c     |    For TYPE = 'SHIFTI' the transformation is              |
+-c     |             lambda = 1/theta + sigma                      |
+-c     | NOTES:                                                    |
+-c     | *The Ritz vectors are not affected by the transformation. |
+-c     %-----------------------------------------------------------%
+-c    
+-      if (type .eq. 'SHIFTI') then
+-         do 60 k=1, nconv
+-            d(k) = one / workl(iheig+k-1) + sigma
+-  60     continue
+-      end if
+-c
+-      if (type .ne. 'REGULR' .and. msglvl .gt. 1) then
+-         call zvout  (logfil, nconv, d, ndigit,
+-     &     '_neupd: Untransformed Ritz values.')
+-         call zvout  (logfil, nconv, workl(ihbds), ndigit,
+-     &     '_neupd: Ritz estimates of the untransformed Ritz values.')
+-      else if ( msglvl .gt. 1) then
+-         call zvout  (logfil, nconv, d, ndigit,
+-     &     '_neupd: Converged Ritz values.')
+-         call zvout  (logfil, nconv, workl(ihbds), ndigit,
+-     &     '_neupd: Associated Ritz estimates.')
+-      end if
+-c
+-c     %-------------------------------------------------%
+-c     | Eigenvector Purification step. Formally perform |
+-c     | one of inverse subspace iteration. Only used    |
+-c     | for MODE = 3. See reference 3.                  |
+-c     %-------------------------------------------------%
+-c
+-      if (rvec .and. howmny .eq. 'A' .and. type .eq. 'SHIFTI') then
+-c
+-c        %------------------------------------------------%
+-c        | Purify the computed Ritz vectors by adding a   |
+-c        | little bit of the residual vector:             |
+-c        |                      T                         |
+-c        |          resid(:)*( e    s ) / theta           |
+-c        |                      NCV                       |
+-c        | where H s = s theta.                           |
+-c        %------------------------------------------------%
+-c
+-         do 100 j=1, nconv
+-            if (workl(iheig+j-1) .ne. zero) then
+-               workev(j) =  workl(invsub+(j-1)*ldq+ncv-1) /
+-     &                      workl(iheig+j-1)
+-            endif
+- 100     continue
+-
+-c        %---------------------------------------%
+-c        | Perform a rank one update to Z and    |
+-c        | purify all the Ritz vectors together. |
+-c        %---------------------------------------%
+-c
+-         call zgeru  (n, nconv, one, resid, 1, workev, 1, z, ldz)
+-c
+-      end if
+-c
+- 9000 continue
+-c
+-      return
+-c     
+-c     %---------------%
+-c     | End of zneupd |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/zngets.f
++++ /dev/null
+@@ -1,178 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: zngets
+-c
+-c\Description: 
+-c  Given the eigenvalues of the upper Hessenberg matrix H,
+-c  computes the NP shifts AMU that are zeros of the polynomial of 
+-c  degree NP which filters out components of the unwanted eigenvectors
+-c  corresponding to the AMU's based on some given criteria.
+-c
+-c  NOTE: call this even in the case of user specified shifts in order
+-c  to sort the eigenvalues, and error bounds of H for later use.
+-c
+-c\Usage:
+-c  call zngets
+-c      ( ISHIFT, WHICH, KEV, NP, RITZ, BOUNDS )
+-c
+-c\Arguments
+-c  ISHIFT  Integer.  (INPUT)
+-c          Method for selecting the implicit shifts at each iteration.
+-c          ISHIFT = 0: user specified shifts
+-c          ISHIFT = 1: exact shift with respect to the matrix H.
+-c
+-c  WHICH   Character*2.  (INPUT)
+-c          Shift selection criteria.
+-c          'LM' -> want the KEV eigenvalues of largest magnitude.
+-c          'SM' -> want the KEV eigenvalues of smallest magnitude.
+-c          'LR' -> want the KEV eigenvalues of largest REAL part.
+-c          'SR' -> want the KEV eigenvalues of smallest REAL part.
+-c          'LI' -> want the KEV eigenvalues of largest imaginary part.
+-c          'SI' -> want the KEV eigenvalues of smallest imaginary part.
+-c
+-c  KEV     Integer.  (INPUT)
+-c          The number of desired eigenvalues.
+-c
+-c  NP      Integer.  (INPUT)
+-c          The number of shifts to compute.
+-c
+-c  RITZ    Complex*16 array of length KEV+NP.  (INPUT/OUTPUT)
+-c          On INPUT, RITZ contains the the eigenvalues of H.
+-c          On OUTPUT, RITZ are sorted so that the unwanted
+-c          eigenvalues are in the first NP locations and the wanted
+-c          portion is in the last KEV locations.  When exact shifts are 
+-c          selected, the unwanted part corresponds to the shifts to 
+-c          be applied. Also, if ISHIFT .eq. 1, the unwanted eigenvalues
+-c          are further sorted so that the ones with largest Ritz values
+-c          are first.
+-c
+-c  BOUNDS  Complex*16 array of length KEV+NP.  (INPUT/OUTPUT)
+-c          Error bounds corresponding to the ordering in RITZ.
+-c
+-c  
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Local variables:
+-c     xxxxxx  Complex*16
+-c
+-c\Routines called:
+-c     zsortc  ARPACK sorting routine.
+-c     ivout   ARPACK utility routine that prints integers.
+-c     arscnd  ARPACK utility routine for timing.
+-c     zvout   ARPACK utility routine that prints vectors.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas 
+-c
+-c\SCCS Information: @(#)
+-c FILE: ngets.F   SID: 2.2   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c\Remarks
+-c     1. This routine does not keep complex conjugate pairs of
+-c        eigenvalues together.
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine zngets ( ishift, which, kev, np, ritz, bounds)
+-c
+-c     %----------------------------------------------------%
+-c     | Include files for debugging and timing information |
+-c     %----------------------------------------------------%
+-c
+-      include   'debug.h'
+-      include   'stat.h'
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character*2 which
+-      integer    ishift, kev, np
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Complex*16
+-     &           bounds(kev+np), ritz(kev+np)
+-c
+-c     %------------%
+-c     | Parameters |
+-c     %------------%
+-c
+-      Complex*16
+-     &           one, zero
+-      parameter (one = (1.0D+0, 0.0D+0), zero = (0.0D+0, 0.0D+0))
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    msglvl
+-c
+-c     %----------------------%
+-c     | External Subroutines |
+-c     %----------------------%
+-c
+-      external   zvout,  zsortc, arscnd
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-c     %-------------------------------%
+-c     | Initialize timing statistics  |
+-c     | & message level for debugging |
+-c     %-------------------------------%
+-c 
+-      call arscnd (t0)
+-      msglvl = mcgets
+-c 
+-      call zsortc (which, .true., kev+np, ritz, bounds)
+-c     
+-      if ( ishift .eq. 1 ) then
+-c     
+-c        %-------------------------------------------------------%
+-c        | Sort the unwanted Ritz values used as shifts so that  |
+-c        | the ones with largest Ritz estimates are first        |
+-c        | This will tend to minimize the effects of the         |
+-c        | forward instability of the iteration when the shifts  |
+-c        | are applied in subroutine znapps.                     |
+-c        | Be careful and use 'SM' since we want to sort BOUNDS! |
+-c        %-------------------------------------------------------%
+-c     
+-         call zsortc ( 'SM', .true., np, bounds, ritz )
+-c
+-      end if
+-c     
+-      call arscnd (t1)
+-      tcgets = tcgets + (t1 - t0)
+-c
+-      if (msglvl .gt. 0) then
+-         call ivout (logfil, 1, kev, ndigit, '_ngets: KEV is')
+-         call ivout (logfil, 1, np, ndigit, '_ngets: NP is')
+-         call zvout (logfil, kev+np, ritz, ndigit,
+-     &        '_ngets: Eigenvalues of current H matrix ')
+-         call zvout (logfil, kev+np, bounds, ndigit, 
+-     &      '_ngets: Ritz estimates of the current KEV+NP Ritz values')
+-      end if
+-c     
+-      return
+-c     
+-c     %---------------%
+-c     | End of zngets |
+-c     %---------------%
+-c     
+-      end
+--- a/libcruft/arpack/src/zsortc.f
++++ /dev/null
+@@ -1,322 +0,0 @@
+-c\BeginDoc
+-c
+-c\Name: zsortc
+-c
+-c\Description:
+-c  Sorts the Complex*16 array in X into the order 
+-c  specified by WHICH and optionally applies the permutation to the
+-c  Double precision  array Y. 
+-c
+-c\Usage:
+-c  call zsortc
+-c     ( WHICH, APPLY, N, X, Y )
+-c
+-c\Arguments
+-c  WHICH   Character*2.  (Input)
+-c          'LM' -> sort X into increasing order of magnitude.
+-c          'SM' -> sort X into decreasing order of magnitude.
+-c          'LR' -> sort X with real(X) in increasing algebraic order 
+-c          'SR' -> sort X with real(X) in decreasing algebraic order
+-c          'LI' -> sort X with imag(X) in increasing algebraic order
+-c          'SI' -> sort X with imag(X) in decreasing algebraic order
+-c
+-c  APPLY   Logical.  (Input)
+-c          APPLY = .TRUE.  -> apply the sorted order to array Y.
+-c          APPLY = .FALSE. -> do not apply the sorted order to array Y.
+-c
+-c  N       Integer.  (INPUT)
+-c          Size of the arrays.
+-c
+-c  X       Complex*16 array of length N.  (INPUT/OUTPUT)
+-c          This is the array to be sorted.
+-c
+-c  Y       Complex*16 array of length N.  (INPUT/OUTPUT)
+-c
+-c\EndDoc
+-c
+-c-----------------------------------------------------------------------
+-c
+-c\BeginLib
+-c
+-c\Routines called:
+-c     dlapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
+-c
+-c\Author
+-c     Danny Sorensen               Phuong Vu
+-c     Richard Lehoucq              CRPC / Rice University
+-c     Dept. of Computational &     Houston, Texas
+-c     Applied Mathematics 
+-c     Rice University           
+-c     Houston, Texas 
+-c
+-c     Adapted from the sort routine in LANSO.
+-c
+-c\SCCS Information: @(#)
+-c FILE: sortc.F   SID: 2.2   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c\EndLib
+-c
+-c-----------------------------------------------------------------------
+-c
+-      subroutine zsortc (which, apply, n, x, y)
+-c
+-c     %------------------%
+-c     | Scalar Arguments |
+-c     %------------------%
+-c
+-      character*2 which
+-      logical    apply
+-      integer    n
+-c
+-c     %-----------------%
+-c     | Array Arguments |
+-c     %-----------------%
+-c
+-      Complex*16     
+-     &           x(0:n-1), y(0:n-1)
+-c
+-c     %---------------%
+-c     | Local Scalars |
+-c     %---------------%
+-c
+-      integer    i, igap, j
+-      Complex*16     
+-     &           temp
+-      Double precision 
+-     &           temp1, temp2
+-c
+-c     %--------------------%
+-c     | External functions |
+-c     %--------------------%
+-c
+-      Double precision
+-     &           dlapy2
+-c
+-c     %--------------------%
+-c     | Intrinsic Functions |
+-c     %--------------------%
+-       Intrinsic
+-     &           dble, dimag
+-c
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-c
+-      igap = n / 2
+-c 
+-      if (which .eq. 'LM') then
+-c
+-c        %--------------------------------------------%
+-c        | Sort X into increasing order of magnitude. |
+-c        %--------------------------------------------%
+-c
+-   10    continue
+-         if (igap .eq. 0) go to 9000
+-c
+-         do 30 i = igap, n-1
+-            j = i-igap
+-   20       continue
+-c
+-            if (j.lt.0) go to 30
+-c
+-            temp1 = dlapy2(dble(x(j)),dimag(x(j)))
+-            temp2 = dlapy2(dble(x(j+igap)),dimag(x(j+igap)))
+-c
+-            if (temp1.gt.temp2) then
+-                temp = x(j)
+-                x(j) = x(j+igap)
+-                x(j+igap) = temp
+-c
+-                if (apply) then
+-                    temp = y(j)
+-                    y(j) = y(j+igap)
+-                    y(j+igap) = temp
+-                end if
+-            else
+-                go to 30
+-            end if
+-            j = j-igap
+-            go to 20
+-   30    continue
+-         igap = igap / 2
+-         go to 10
+-c
+-      else if (which .eq. 'SM') then
+-c
+-c        %--------------------------------------------%
+-c        | Sort X into decreasing order of magnitude. |
+-c        %--------------------------------------------%
+-c
+-   40    continue
+-         if (igap .eq. 0) go to 9000
+-c
+-         do 60 i = igap, n-1
+-            j = i-igap
+-   50       continue
+-c
+-            if (j .lt. 0) go to 60
+-c
+-            temp1 = dlapy2(dble(x(j)),dimag(x(j)))
+-            temp2 = dlapy2(dble(x(j+igap)),dimag(x(j+igap)))
+-c
+-            if (temp1.lt.temp2) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 60
+-            endif
+-            j = j-igap
+-            go to 50
+-   60    continue
+-         igap = igap / 2
+-         go to 40
+-c 
+-      else if (which .eq. 'LR') then
+-c
+-c        %------------------------------------------------%
+-c        | Sort XREAL into increasing order of algebraic. |
+-c        %------------------------------------------------%
+-c
+-   70    continue
+-         if (igap .eq. 0) go to 9000
+-c
+-         do 90 i = igap, n-1
+-            j = i-igap
+-   80       continue
+-c
+-            if (j.lt.0) go to 90
+-c
+-            if (dble(x(j)).gt.dble(x(j+igap))) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 90
+-            endif
+-            j = j-igap
+-            go to 80
+-   90    continue
+-         igap = igap / 2
+-         go to 70
+-c 
+-      else if (which .eq. 'SR') then
+-c
+-c        %------------------------------------------------%
+-c        | Sort XREAL into decreasing order of algebraic. |
+-c        %------------------------------------------------%
+-c
+-  100    continue
+-         if (igap .eq. 0) go to 9000
+-         do 120 i = igap, n-1
+-            j = i-igap
+-  110       continue
+-c
+-            if (j.lt.0) go to 120
+-c
+-            if (dble(x(j)).lt.dble(x(j+igap))) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 120
+-            endif
+-            j = j-igap
+-            go to 110
+-  120    continue
+-         igap = igap / 2
+-         go to 100
+-c 
+-      else if (which .eq. 'LI') then
+-c
+-c        %--------------------------------------------%
+-c        | Sort XIMAG into increasing algebraic order |
+-c        %--------------------------------------------%
+-c
+-  130    continue
+-         if (igap .eq. 0) go to 9000
+-         do 150 i = igap, n-1
+-            j = i-igap
+-  140       continue
+-c
+-            if (j.lt.0) go to 150
+-c
+-            if (dimag(x(j)).gt.dimag(x(j+igap))) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-c
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 150
+-            endif
+-            j = j-igap
+-            go to 140
+-  150    continue
+-         igap = igap / 2
+-         go to 130
+-c 
+-      else if (which .eq. 'SI') then
+-c
+-c        %---------------------------------------------%
+-c        | Sort XIMAG into decreasing algebraic order  |
+-c        %---------------------------------------------%
+-c
+-  160    continue
+-         if (igap .eq. 0) go to 9000
+-         do 180 i = igap, n-1
+-            j = i-igap
+-  170       continue
+-c
+-            if (j.lt.0) go to 180
+-c
+-            if (dimag(x(j)).lt.dimag(x(j+igap))) then
+-               temp = x(j)
+-               x(j) = x(j+igap)
+-               x(j+igap) = temp
+-c 
+-               if (apply) then
+-                  temp = y(j)
+-                  y(j) = y(j+igap)
+-                  y(j+igap) = temp
+-               end if
+-            else
+-               go to 180
+-            endif
+-            j = j-igap
+-            go to 170
+-  180    continue
+-         igap = igap / 2
+-         go to 160
+-      end if
+-c 
+- 9000 continue
+-      return
+-c
+-c     %---------------%
+-c     | End of zsortc |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/src/zstatn.f
++++ /dev/null
+@@ -1,51 +0,0 @@
+-c
+-c\SCCS Information: @(#)
+-c FILE: statn.F   SID: 2.2   DATE OF SID: 4/20/96   RELEASE: 2
+-c
+-c     %---------------------------------------------%
+-c     | Initialize statistic and timing information |
+-c     | for complex nonsymmetric Arnoldi code.      |
+-c     %---------------------------------------------%
+-
+-      subroutine zstatn
+-c
+-c     %--------------------------------%
+-c     | See stat.doc for documentation |
+-c     %--------------------------------%
+-c
+-      include   'stat.h'
+- 
+-c     %-----------------------%
+-c     | Executable Statements |
+-c     %-----------------------%
+-
+-      nopx   = 0
+-      nbx    = 0
+-      nrorth = 0
+-      nitref = 0
+-      nrstrt = 0
+- 
+-      tcaupd = 0.0D+0
+-      tcaup2 = 0.0D+0
+-      tcaitr = 0.0D+0
+-      tceigh = 0.0D+0
+-      tcgets = 0.0D+0
+-      tcapps = 0.0D+0
+-      tcconv = 0.0D+0
+-      titref = 0.0D+0
+-      tgetv0 = 0.0D+0
+-      trvec  = 0.0D+0
+- 
+-c     %----------------------------------------------------%
+-c     | User time including reverse communication overhead |
+-c     %----------------------------------------------------%
+-      tmvopx = 0.0D+0
+-      tmvbx  = 0.0D+0
+- 
+-      return
+-c
+-c     %---------------%
+-c     | End of zstatn |
+-c     %---------------%
+-c
+-      end
+--- a/libcruft/arpack/util/cmout.f
++++ /dev/null
+@@ -1,250 +0,0 @@
+-*
+-*  Routine:    CMOUT
+-*
+-*  Purpose:    Complex matrix output routine.
+-*
+-*  Usage:      CALL CMOUT (LOUT, M, N, A, LDA, IDIGIT, IFMT)
+-*
+-*  Arguments
+-*     M      - Number of rows of A.  (Input)
+-*     N      - Number of columns of A.  (Input)
+-*     A      - Complex M by N matrix to be printed.  (Input)
+-*     LDA    - Leading dimension of A exactly as specified in the
+-*              dimension statement of the calling program.  (Input)
+-*     IFMT   - Format to be used in printing matrix A.  (Input)
+-*     IDIGIT - Print up to IABS(IDIGIT) decimal digits per number.  (In)
+-*              If IDIGIT .LT. 0, printing is done with 72 columns.
+-*              If IDIGIT .GT. 0, printing is done with 132 columns.
+-*
+-*\SCCS Information: @(#)
+-* FILE: cmout.f   SID: 2.1   DATE OF SID: 11/16/95   RELEASE: 2
+-*
+-*-----------------------------------------------------------------------
+-*
+-      SUBROUTINE CMOUT( LOUT, M, N, A, LDA, IDIGIT, IFMT )
+-*     ...
+-*     ... SPECIFICATIONS FOR ARGUMENTS
+-      INTEGER            M, N, IDIGIT, LDA, LOUT
+-      Complex
+-     &                   A( LDA, * )
+-      CHARACTER          IFMT*( * )
+-*     ...
+-*     ... SPECIFICATIONS FOR LOCAL VARIABLES
+-      INTEGER            I, J, NDIGIT, K1, K2, LLL
+-      CHARACTER*1        ICOL( 3 )
+-      CHARACTER*80       LINE
+-*     ...
+-*     ... SPECIFICATIONS INTRINSICS
+-      INTRINSIC          MIN
+-*
+-      DATA               ICOL( 1 ), ICOL( 2 ), ICOL( 3 ) / 'C', 'o',
+-     $                   'l' /
+-*     ...
+-*     ... FIRST EXECUTABLE STATEMENT
+-*
+-      LLL = MIN( LEN( IFMT ), 80 )
+-      DO 10 I = 1, LLL
+-         LINE( I: I ) = '-'
+-   10 CONTINUE
+-*
+-      DO 20 I = LLL + 1, 80
+-         LINE( I: I ) = ' '
+-   20 CONTINUE
+-*
+-      WRITE( LOUT, 9999 )IFMT, LINE( 1: LLL )
+- 9999 FORMAT( / 1X, A / 1X, A )
+-*
+-      IF( M.LE.0 .OR. N.LE.0 .OR. LDA.LE.0 )
+-     $   RETURN
+-      NDIGIT = IDIGIT
+-      IF( IDIGIT.EQ.0 )
+-     $   NDIGIT = 4
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 72 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      IF( IDIGIT.LT.0 ) THEN
+-         NDIGIT = -IDIGIT
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 40 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               WRITE( LOUT, 9998 )( ICOL, I, I = K1, K2 )
+-               DO 30 I = 1, M
+-                  IF (K1.NE.N) THEN
+-                     WRITE( LOUT, 9994 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE
+-                     WRITE( LOUT, 9984 )I, ( A( I, J ), J = K1, K2 ) 
+-                  END IF
+-   30          CONTINUE
+-   40       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 60 K1 = 1, N, 2 
+-               K2 = MIN0( N, K1+1 )
+-               WRITE( LOUT, 9997 )( ICOL, I, I = K1, K2 )
+-               DO 50 I = 1, M
+-                  IF (K1.NE.N) THEN
+-                     WRITE( LOUT, 9993 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE 
+-                     WRITE( LOUT, 9983 )I, ( A( I, J ), J = K1, K2 ) 
+-                  END IF
+-   50          CONTINUE
+-   60       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.8 ) THEN
+-            DO 80 K1 = 1, N, 2 
+-               K2 = MIN0( N, K1+1 )
+-               WRITE( LOUT, 9996 )( ICOL, I, I = K1, K2 )
+-               DO 70 I = 1, M
+-                  IF (K1.NE.N) THEN
+-                     WRITE( LOUT, 9992 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE
+-                     WRITE( LOUT, 9982 )I, ( A( I, J ), J = K1, K2 ) 
+-                  END IF 
+-   70          CONTINUE
+-   80       CONTINUE
+-*
+-         ELSE
+-            DO 100 K1 = 1, N
+-               WRITE( LOUT, 9995 ) ICOL, K1
+-               DO 90 I = 1, M
+-                  WRITE( LOUT, 9991 )I, A( I, K1 )
+-   90          CONTINUE
+-  100       CONTINUE
+-         END IF
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 132 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      ELSE
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 120 K1 = 1, N, 4
+-               K2 = MIN0( N, K1+3 )
+-               WRITE( LOUT, 9998 )( ICOL, I, I = K1, K2 )
+-               DO 110 I = 1, M
+-                  IF ((K1+3).LE.N) THEN 
+-                     WRITE( LOUT, 9974 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE IF ((K1+3-N).EQ.1) THEN
+-                     WRITE( LOUT, 9964 )I, ( A( I, J ), J = k1, K2 )
+-                  ELSE IF ((K1+3-N).EQ.2) THEN
+-                     WRITE( LOUT, 9954 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE IF ((K1+3-N).EQ.3) THEN
+-                     WRITE( LOUT, 9944 )I, ( A( I, J ), J = K1, K2 ) 
+-                  END IF
+-  110          CONTINUE
+-  120       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 140 K1 = 1, N, 3 
+-               K2 = MIN0( N, K1+ 2)
+-               WRITE( LOUT, 9997 )( ICOL, I, I = K1, K2 )
+-               DO 130 I = 1, M
+-                  IF ((K1+2).LE.N) THEN
+-                     WRITE( LOUT, 9973 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE IF ((K1+2-N).EQ.1) THEN
+-                     WRITE( LOUT, 9963 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE IF ((K1+2-N).EQ.2) THEN
+-                     WRITE( LOUT, 9953 )I, ( A( I, J ), J = K1, K2 )
+-                  END IF
+-  130          CONTINUE
+-  140       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.8 ) THEN
+-            DO 160 K1 = 1, N, 3
+-               K2 = MIN0( N, K1+2 )
+-                  WRITE( LOUT, 9996 )( ICOL, I, I = K1, K2 )
+-               DO 150 I = 1, M
+-                  IF ((K1+2).LE.N) THEN
+-                     WRITE( LOUT, 9972 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE IF ((K1+2-N).EQ.1) THEN
+-                     WRITE( LOUT, 9962 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE IF ((K1+2-N).EQ.2) THEN
+-                     WRITE( LOUT, 9952 )I, ( A( I, J ), J = K1, K2 )
+-                  END IF
+-  150          CONTINUE
+-  160       CONTINUE
+-*
+-         ELSE
+-            DO 180 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               WRITE( LOUT, 9995 )( ICOL, I, I = K1, K2 )
+-               DO 170 I = 1, M
+-                  IF ((K1+1).LE.N) THEN
+-                     WRITE( LOUT, 9971 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE
+-                     WRITE( LOUT, 9961 )I, ( A( I, J ), J = K1, K2 )
+-                  END IF
+-  170          CONTINUE
+-  180       CONTINUE
+-         END IF
+-      END IF
+-      WRITE( LOUT, 9990 )
+-*
+- 9998 FORMAT( 11X, 4( 9X, 3A1, I4, 9X ) )
+- 9997 FORMAT( 10X, 4( 11X, 3A1, I4, 11X ) )
+- 9996 FORMAT( 10X, 3( 13X, 3A1, I4, 13X ) )
+- 9995 FORMAT( 12X, 2( 18x, 3A1, I4, 18X ) ) 
+-*
+-*========================================================
+-*              FORMAT FOR 72 COLUMN
+-*========================================================
+-*
+-*            DISPLAY 4 SIGNIFICANT DIGITS
+-* 
+- 9994 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,2('(',E10.3,',',E10.3,')  ') )
+- 9984 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',E10.3,',',E10.3,')  ') )
+-*
+-*            DISPLAY 6 SIGNIFICANT DIGITS
+-*
+- 9993 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,2('(',E12.5,',',E12.5,')  ') )
+- 9983 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',E12.5,',',E12.5,')  ') )
+-*
+-*            DISPLAY 8 SIGNIFICANT DIGITS
+-*
+- 9992 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,2('(',E14.7,',',E14.7,')  ') )
+- 9982 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',E14.7,',',E14.7,')  ') )
+-*
+-*            DISPLAY 13 SIGNIFICANT DIGITS
+-*
+- 9991 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',E20.13,',',E20.13,')') )
+- 9990 FORMAT( 1X, ' ' )
+-*
+-*
+-*========================================================
+-*              FORMAT FOR 132 COLUMN
+-*========================================================
+-*
+-*            DISPLAY 4 SIGNIFICANT DIGIT
+-*
+- 9974 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,4('(',E10.3,',',E10.3,')  ') )
+- 9964 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,3('(',E10.3,',',E10.3,')  ') )
+- 9954 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,2('(',E10.3,',',E10.3,')  ') )
+- 9944 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',E10.3,',',E10.3,')  ') )
+-*
+-*            DISPLAY 6 SIGNIFICANT DIGIT
+-*
+- 9973 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,3('(',E12.5,',',E12.5,')  ') )
+- 9963 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,2('(',E12.5,',',E12.5,')  ') )
+- 9953 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',E12.5,',',E12.5,')  ') )
+-*
+-*            DISPLAY 8 SIGNIFICANT DIGIT
+-*
+- 9972 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,3('(',E14.7,',',E14.7,')  ') )
+- 9962 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,2('(',E14.7,',',E14.7,')  ') )
+- 9952 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',E14.7,',',E14.7,')  ') )
+-*
+-*            DISPLAY 13 SIGNIFICANT DIGIT
+-*
+- 9971 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,2('(',E20.13,',',E20.13,
+-     &        ')  '))
+- 9961 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',E20.13,',',E20.13,
+-     &        ')  '))
+-
+-*
+-*
+-*
+-*
+-      RETURN
+-      END
+--- a/libcruft/arpack/util/cvout.f
++++ /dev/null
+@@ -1,240 +0,0 @@
+-c-----------------------------------------------------------------------
+-c
+-c\SCCS Information: @(#)
+-c FILE: cvout.f   SID: 2.1   DATE OF SID: 11/16/95   RELEASE: 2
+-c
+-*-----------------------------------------------------------------------
+-*  Routine:    CVOUT
+-*
+-*  Purpose:    Complex vector output routine.
+-*
+-*  Usage:      CALL CVOUT (LOUT, N, CX, IDIGIT, IFMT)
+-*
+-*  Arguments
+-*     N      - Length of array CX.  (Input)
+-*     CX     - Complex array to be printed.  (Input)
+-*     IFMT   - Format to be used in printing array CX.  (Input)
+-*     IDIGIT - Print up to IABS(IDIGIT) decimal digits per number.  (In)
+-*              If IDIGIT .LT. 0, printing is done with 72 columns.
+-*              If IDIGIT .GT. 0, printing is done with 132 columns.
+-*
+-*-----------------------------------------------------------------------
+-*
+-      SUBROUTINE CVOUT( LOUT, N, CX, IDIGIT, IFMT )
+-*     ...
+-*     ... SPECIFICATIONS FOR ARGUMENTS
+-      INTEGER            N, IDIGIT, LOUT
+-      Complex
+-     &                   CX( * )
+-      CHARACTER          IFMT*( * )
+-*     ...
+-*     ... SPECIFICATIONS FOR LOCAL VARIABLES
+-      INTEGER            I, NDIGIT, K1, K2, LLL
+-      CHARACTER*80       LINE
+-*     ...
+-*     ... FIRST EXECUTABLE STATEMENT
+-*
+-*
+-      LLL = MIN( LEN( IFMT ), 80 )
+-      DO 10 I = 1, LLL
+-         LINE( I: I ) = '-'
+-   10 CONTINUE
+-*
+-      DO 20 I = LLL + 1, 80
+-         LINE( I: I ) = ' '
+-   20 CONTINUE
+-*
+-      WRITE( LOUT, 9999 )IFMT, LINE( 1: LLL )
+- 9999 FORMAT( / 1X, A / 1X, A )
+-*
+-      IF( N.LE.0 )
+-     $   RETURN
+-      NDIGIT = IDIGIT
+-      IF( IDIGIT.EQ.0 )
+-     $   NDIGIT = 4
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 72 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      IF( IDIGIT.LT.0 ) THEN
+-         NDIGIT = -IDIGIT
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 30 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               IF (K1.NE.N) THEN
+-                  WRITE( LOUT, 9998 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE
+-                  WRITE( LOUT, 9997 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 ) 
+-               END IF
+-   30       CONTINUE
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 40 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               IF (K1.NE.N) THEN
+-                  WRITE( LOUT, 9988 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE
+-                  WRITE( LOUT, 9987 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               END IF
+-   40       CONTINUE
+-         ELSE IF( NDIGIT.LE.8 ) THEN
+-            DO 50 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               IF (K1.NE.N) THEN
+-                  WRITE( LOUT, 9978 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE
+-                  WRITE( LOUT, 9977 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 ) 
+-               END IF
+-   50       CONTINUE
+-         ELSE
+-            DO 60 K1 = 1, N
+-               WRITE( LOUT, 9968 )K1, K1, CX( I )
+-   60       CONTINUE
+-         END IF
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 132 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      ELSE
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 70 K1 = 1, N, 4 
+-               K2 = MIN0( N, K1+3 )
+-               IF ((K1+3).LE.N) THEN
+-                  WRITE( LOUT, 9958 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+3-N) .EQ. 1) THEN
+-                  WRITE( LOUT, 9957 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+3-N) .EQ. 2) THEN
+-                  WRITE( LOUT, 9956 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+3-N) .EQ. 1) THEN
+-                  WRITE( LOUT, 9955 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               END IF
+-   70       CONTINUE
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 80 K1 = 1, N, 3 
+-               K2 = MIN0( N, K1+2 )
+-               IF ((K1+2).LE.N) THEN
+-                  WRITE( LOUT, 9948 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+2-N) .EQ. 1) THEN
+-                  WRITE( LOUT, 9947 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+2-N) .EQ. 2) THEN
+-                  WRITE( LOUT, 9946 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               END IF
+-   80       CONTINUE
+-         ELSE IF( NDIGIT.LE.8 ) THEN
+-            DO 90 K1 = 1, N, 3 
+-               K2 = MIN0( N, K1+2 )
+-               IF ((K1+2).LE.N) THEN
+-                  WRITE( LOUT, 9938 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+2-N) .EQ. 1) THEN
+-                  WRITE( LOUT, 9937 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+2-N) .EQ. 2) THEN
+-                  WRITE( LOUT, 9936 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               END IF
+-   90       CONTINUE
+-         ELSE
+-            DO 100 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               IF ((K1+2).LE.N) THEN
+-                  WRITE( LOUT, 9928 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+2-N) .EQ. 1) THEN
+-                  WRITE( LOUT, 9927 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               END IF
+-  100       CONTINUE
+-         END IF
+-      END IF
+-      WRITE( LOUT, 9994 )
+-      RETURN
+-*
+-*=======================================================================
+-*                   FORMAT FOR 72 COLUMNS
+-*=======================================================================
+-*
+-*                 DISPLAY 4 SIGNIFICANT DIGITS
+-*
+- 9998 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,2('(',E10.3,',',E10.3,')  ') ) 
+- 9997 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',E10.3,',',E10.3,')  ') )
+-*
+-*                 DISPLAY 6 SIGNIFICANT DIGITS
+-* 
+- 9988 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,2('(',E12.5,',',E12.5,')  ') )
+- 9987 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',E12.5,',',E12.5,')  ') )
+-*
+-*                 DISPLAY 8 SIGNIFICANT DIGITS
+-*
+- 9978 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,2('(',E14.7,',',E14.7,')  ') )
+- 9977 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',E14.7,',',E14.7,')  ') )
+-*
+-*                 DISPLAY 13 SIGNIFICANT DIGITS
+-*
+- 9968 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',E20.13,',',E20.13,')  ') ) 
+-*
+-*=========================================================================
+-*                   FORMAT FOR 132 COLUMNS
+-*=========================================================================
+-*
+-*                 DISPLAY 4 SIGNIFICANT DIGITS
+-*
+- 9958 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,4('(',E10.3,',',E10.3,')  ') )
+- 9957 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,3('(',E10.3,',',E10.3,')  ') )
+- 9956 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,2('(',E10.3,',',E10.3,')  ') )
+- 9955 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',E10.3,',',E10.3,')  ') )
+-*
+-*                 DISPLAY 6 SIGNIFICANT DIGITS
+-*
+- 9948 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,3('(',E12.5,',',E12.5,')  ') )
+- 9947 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,2('(',E12.5,',',E12.5,')  ') )
+- 9946 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',E12.5,',',E12.5,')  ') )
+-*
+-*                 DISPLAY 8 SIGNIFICANT DIGITS
+-*
+- 9938 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,3('(',E14.7,',',E14.7,')  ') )
+- 9937 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,2('(',E14.7,',',E14.7,')  ') )
+- 9936 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',E14.7,',',E14.7,')  ') )
+-*
+-*                 DISPLAY 13 SIGNIFICANT DIGITS
+-*
+- 9928 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,2('(',E20.13,',',E20.13,')  ') )
+- 9927 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',E20.13,',',E20.13,')  ') )
+-*
+-*
+-* 
+- 9994 FORMAT( 1X, ' ' )
+-      END
+--- a/libcruft/arpack/util/dmout.f
++++ /dev/null
+@@ -1,167 +0,0 @@
+-*-----------------------------------------------------------------------
+-*  Routine:    DMOUT
+-*
+-*  Purpose:    Real matrix output routine.
+-*
+-*  Usage:      CALL DMOUT (LOUT, M, N, A, LDA, IDIGIT, IFMT)
+-*
+-*  Arguments
+-*     M      - Number of rows of A.  (Input)
+-*     N      - Number of columns of A.  (Input)
+-*     A      - Real M by N matrix to be printed.  (Input)
+-*     LDA    - Leading dimension of A exactly as specified in the
+-*              dimension statement of the calling program.  (Input)
+-*     IFMT   - Format to be used in printing matrix A.  (Input)
+-*     IDIGIT - Print up to IABS(IDIGIT) decimal digits per number.  (In)
+-*              If IDIGIT .LT. 0, printing is done with 72 columns.
+-*              If IDIGIT .GT. 0, printing is done with 132 columns.
+-*
+-*-----------------------------------------------------------------------
+-*
+-      SUBROUTINE DMOUT( LOUT, M, N, A, LDA, IDIGIT, IFMT )
+-*     ...
+-*     ... SPECIFICATIONS FOR ARGUMENTS
+-*     ...
+-*     ... SPECIFICATIONS FOR LOCAL VARIABLES
+-*     .. Scalar Arguments ..
+-      CHARACTER*( * )    IFMT
+-      INTEGER            IDIGIT, LDA, LOUT, M, N
+-*     ..
+-*     .. Array Arguments ..
+-      DOUBLE PRECISION   A( LDA, * )
+-*     ..
+-*     .. Local Scalars ..
+-      CHARACTER*80       LINE
+-      INTEGER            I, J, K1, K2, LLL, NDIGIT
+-*     ..
+-*     .. Local Arrays ..
+-      CHARACTER          ICOL( 3 )
+-*     ..
+-*     .. Intrinsic Functions ..
+-      INTRINSIC          LEN, MIN, MIN0
+-*     ..
+-*     .. Data statements ..
+-      DATA               ICOL( 1 ), ICOL( 2 ), ICOL( 3 ) / 'C', 'o',
+-     $                   'l' /
+-*     ..
+-*     .. Executable Statements ..
+-*     ...
+-*     ... FIRST EXECUTABLE STATEMENT
+-*
+-      LLL = MIN( LEN( IFMT ), 80 )
+-      DO 10 I = 1, LLL
+-         LINE( I: I ) = '-'
+-   10 CONTINUE
+-*
+-      DO 20 I = LLL + 1, 80
+-         LINE( I: I ) = ' '
+-   20 CONTINUE
+-*
+-      WRITE( LOUT, FMT = 9999 )IFMT, LINE( 1: LLL )
+- 9999 FORMAT( / 1X, A, / 1X, A )
+-*
+-      IF( M.LE.0 .OR. N.LE.0 .OR. LDA.LE.0 )
+-     $   RETURN
+-      NDIGIT = IDIGIT
+-      IF( IDIGIT.EQ.0 )
+-     $   NDIGIT = 4
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 72 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      IF( IDIGIT.LT.0 ) THEN
+-         NDIGIT = -IDIGIT
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 40 K1 = 1, N, 5
+-               K2 = MIN0( N, K1+4 )
+-               WRITE( LOUT, FMT = 9998 )( ICOL, I, I = K1, K2 )
+-               DO 30 I = 1, M
+-                  WRITE( LOUT, FMT = 9994 )I, ( A( I, J ), J = K1, K2 )
+-   30          CONTINUE
+-   40       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 60 K1 = 1, N, 4
+-               K2 = MIN0( N, K1+3 )
+-               WRITE( LOUT, FMT = 9997 )( ICOL, I, I = K1, K2 )
+-               DO 50 I = 1, M
+-                  WRITE( LOUT, FMT = 9993 )I, ( A( I, J ), J = K1, K2 )
+-   50          CONTINUE
+-   60       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.10 ) THEN
+-            DO 80 K1 = 1, N, 3
+-               K2 = MIN0( N, K1+2 )
+-               WRITE( LOUT, FMT = 9996 )( ICOL, I, I = K1, K2 )
+-               DO 70 I = 1, M
+-                  WRITE( LOUT, FMT = 9992 )I, ( A( I, J ), J = K1, K2 )
+-   70          CONTINUE
+-   80       CONTINUE
+-*
+-         ELSE
+-            DO 100 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               WRITE( LOUT, FMT = 9995 )( ICOL, I, I = K1, K2 )
+-               DO 90 I = 1, M
+-                  WRITE( LOUT, FMT = 9991 )I, ( A( I, J ), J = K1, K2 )
+-   90          CONTINUE
+-  100       CONTINUE
+-         END IF
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 132 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      ELSE
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 120 K1 = 1, N, 10
+-               K2 = MIN0( N, K1+9 )
+-               WRITE( LOUT, FMT = 9998 )( ICOL, I, I = K1, K2 )
+-               DO 110 I = 1, M
+-                  WRITE( LOUT, FMT = 9994 )I, ( A( I, J ), J = K1, K2 )
+-  110          CONTINUE
+-  120       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 140 K1 = 1, N, 8
+-               K2 = MIN0( N, K1+7 )
+-               WRITE( LOUT, FMT = 9997 )( ICOL, I, I = K1, K2 )
+-               DO 130 I = 1, M
+-                  WRITE( LOUT, FMT = 9993 )I, ( A( I, J ), J = K1, K2 )
+-  130          CONTINUE
+-  140       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.10 ) THEN
+-            DO 160 K1 = 1, N, 6
+-               K2 = MIN0( N, K1+5 )
+-               WRITE( LOUT, FMT = 9996 )( ICOL, I, I = K1, K2 )
+-               DO 150 I = 1, M
+-                  WRITE( LOUT, FMT = 9992 )I, ( A( I, J ), J = K1, K2 )
+-  150          CONTINUE
+-  160       CONTINUE
+-*
+-         ELSE
+-            DO 180 K1 = 1, N, 5
+-               K2 = MIN0( N, K1+4 )
+-               WRITE( LOUT, FMT = 9995 )( ICOL, I, I = K1, K2 )
+-               DO 170 I = 1, M
+-                  WRITE( LOUT, FMT = 9991 )I, ( A( I, J ), J = K1, K2 )
+-  170          CONTINUE
+-  180       CONTINUE
+-         END IF
+-      END IF
+-      WRITE( LOUT, FMT = 9990 )
+-*
+- 9998 FORMAT( 10X, 10( 4X, 3A1, I4, 1X ) )
+- 9997 FORMAT( 10X, 8( 5X, 3A1, I4, 2X ) )
+- 9996 FORMAT( 10X, 6( 7X, 3A1, I4, 4X ) )
+- 9995 FORMAT( 10X, 5( 9X, 3A1, I4, 6X ) )
+- 9994 FORMAT( 1X, ' Row', I4, ':', 1X, 1P, 10D12.3 )
+- 9993 FORMAT( 1X, ' Row', I4, ':', 1X, 1P, 8D14.5 )
+- 9992 FORMAT( 1X, ' Row', I4, ':', 1X, 1P, 6D18.9 )
+- 9991 FORMAT( 1X, ' Row', I4, ':', 1X, 1P, 5D22.13 )
+- 9990 FORMAT( 1X, ' ' )
+-*
+-      RETURN
+-      END
+--- a/libcruft/arpack/util/dvout.f
++++ /dev/null
+@@ -1,122 +0,0 @@
+-*-----------------------------------------------------------------------
+-*  Routine:    DVOUT
+-*
+-*  Purpose:    Real vector output routine.
+-*
+-*  Usage:      CALL DVOUT (LOUT, N, SX, IDIGIT, IFMT)
+-*
+-*  Arguments
+-*     N      - Length of array SX.  (Input)
+-*     SX     - Real array to be printed.  (Input)
+-*     IFMT   - Format to be used in printing array SX.  (Input)
+-*     IDIGIT - Print up to IABS(IDIGIT) decimal digits per number.  (In)
+-*              If IDIGIT .LT. 0, printing is done with 72 columns.
+-*              If IDIGIT .GT. 0, printing is done with 132 columns.
+-*
+-*-----------------------------------------------------------------------
+-*
+-      SUBROUTINE DVOUT( LOUT, N, SX, IDIGIT, IFMT )
+-*     ...
+-*     ... SPECIFICATIONS FOR ARGUMENTS
+-*     ...
+-*     ... SPECIFICATIONS FOR LOCAL VARIABLES
+-*     .. Scalar Arguments ..
+-      CHARACTER*( * )    IFMT
+-      INTEGER            IDIGIT, LOUT, N
+-*     ..
+-*     .. Array Arguments ..
+-      DOUBLE PRECISION   SX( * )
+-*     ..
+-*     .. Local Scalars ..
+-      CHARACTER*80       LINE
+-      INTEGER            I, K1, K2, LLL, NDIGIT
+-*     ..
+-*     .. Intrinsic Functions ..
+-      INTRINSIC          LEN, MIN, MIN0
+-*     ..
+-*     .. Executable Statements ..
+-*     ...
+-*     ... FIRST EXECUTABLE STATEMENT
+-*
+-*
+-      LLL = MIN( LEN( IFMT ), 80 )
+-      DO 10 I = 1, LLL
+-         LINE( I: I ) = '-'
+-   10 CONTINUE
+-*
+-      DO 20 I = LLL + 1, 80
+-         LINE( I: I ) = ' '
+-   20 CONTINUE
+-*
+-      WRITE( LOUT, FMT = 9999 )IFMT, LINE( 1: LLL )
+- 9999 FORMAT( / 1X, A, / 1X, A )
+-*
+-      IF( N.LE.0 )
+-     $   RETURN
+-      NDIGIT = IDIGIT
+-      IF( IDIGIT.EQ.0 )
+-     $   NDIGIT = 4
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 72 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      IF( IDIGIT.LT.0 ) THEN
+-         NDIGIT = -IDIGIT
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 30 K1 = 1, N, 5
+-               K2 = MIN0( N, K1+4 )
+-               WRITE( LOUT, FMT = 9998 )K1, K2, ( SX( I ), I = K1, K2 )
+-   30       CONTINUE
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 40 K1 = 1, N, 4
+-               K2 = MIN0( N, K1+3 )
+-               WRITE( LOUT, FMT = 9997 )K1, K2, ( SX( I ), I = K1, K2 )
+-   40       CONTINUE
+-         ELSE IF( NDIGIT.LE.10 ) THEN
+-            DO 50 K1 = 1, N, 3
+-               K2 = MIN0( N, K1+2 )
+-               WRITE( LOUT, FMT = 9996 )K1, K2, ( SX( I ), I = K1, K2 )
+-   50       CONTINUE
+-         ELSE
+-            DO 60 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               WRITE( LOUT, FMT = 9995 )K1, K2, ( SX( I ), I = K1, K2 )
+-   60       CONTINUE
+-         END IF
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 132 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      ELSE
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 70 K1 = 1, N, 10
+-               K2 = MIN0( N, K1+9 )
+-               WRITE( LOUT, FMT = 9998 )K1, K2, ( SX( I ), I = K1, K2 )
+-   70       CONTINUE
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 80 K1 = 1, N, 8
+-               K2 = MIN0( N, K1+7 )
+-               WRITE( LOUT, FMT = 9997 )K1, K2, ( SX( I ), I = K1, K2 )
+-   80       CONTINUE
+-         ELSE IF( NDIGIT.LE.10 ) THEN
+-            DO 90 K1 = 1, N, 6
+-               K2 = MIN0( N, K1+5 )
+-               WRITE( LOUT, FMT = 9996 )K1, K2, ( SX( I ), I = K1, K2 )
+-   90       CONTINUE
+-         ELSE
+-            DO 100 K1 = 1, N, 5
+-               K2 = MIN0( N, K1+4 )
+-               WRITE( LOUT, FMT = 9995 )K1, K2, ( SX( I ), I = K1, K2 )
+-  100       CONTINUE
+-         END IF
+-      END IF
+-      WRITE( LOUT, FMT = 9994 )
+-      RETURN
+- 9998 FORMAT( 1X, I4, ' - ', I4, ':', 1P, 10D12.3 )
+- 9997 FORMAT( 1X, I4, ' - ', I4, ':', 1X, 1P, 8D14.5 )
+- 9996 FORMAT( 1X, I4, ' - ', I4, ':', 1X, 1P, 6D18.9 )
+- 9995 FORMAT( 1X, I4, ' - ', I4, ':', 1X, 1P, 5D24.13 )
+- 9994 FORMAT( 1X, ' ' )
+-      END
+--- a/libcruft/arpack/util/icnteq.f
++++ /dev/null
+@@ -1,18 +0,0 @@
+-c
+-c-----------------------------------------------------------------------
+-c
+-c     Count the number of elements equal to a specified integer value.
+-c
+-      integer function icnteq (n, array, value)
+-c
+-      integer    n, value
+-      integer    array(*)
+-c
+-      k = 0
+-      do 10 i = 1, n
+-         if (array(i) .eq. value) k = k + 1
+-   10 continue
+-      icnteq = k
+-c
+-      return
+-      end
+--- a/libcruft/arpack/util/icopy.f
++++ /dev/null
+@@ -1,77 +0,0 @@
+-*--------------------------------------------------------------------
+-*\Documentation
+-*
+-*\Name: ICOPY
+-*
+-*\Description:
+-*     ICOPY copies an integer vector lx to an integer vector ly.
+-*
+-*\Usage:
+-*     call icopy ( n, lx, inc, ly, incy )
+-*
+-*\Arguments:
+-*    n        integer (input)
+-*             On entry, n is the number of elements of lx to be
+-c             copied to ly.
+-*
+-*    lx       integer array (input)
+-*             On entry, lx is the integer vector to be copied.
+-*
+-*    incx     integer (input)
+-*             On entry, incx is the increment between elements of lx.
+-*
+-*    ly       integer array (input)
+-*             On exit, ly is the integer vector that contains the
+-*             copy of lx.
+-*
+-*    incy     integer (input)
+-*             On entry, incy is the increment between elements of ly.
+-*
+-*\Enddoc
+-*
+-*--------------------------------------------------------------------
+-*
+-      subroutine icopy( n, lx, incx, ly, incy )
+-*
+-*     ----------------------------
+-*     Specifications for arguments
+-*     ----------------------------
+-      integer    incx, incy, n
+-      integer    lx( 1 ), ly( 1 )
+-*
+-*     ----------------------------------
+-*     Specifications for local variables
+-*     ----------------------------------
+-      integer           i, ix, iy
+-*
+-*     --------------------------
+-*     First executable statement
+-*     --------------------------
+-      if( n.le.0 )
+-     $   return
+-      if( incx.eq.1 .and. incy.eq.1 )
+-     $   go to 20
+-c
+-c.....code for unequal increments or equal increments
+-c     not equal to 1
+-      ix = 1
+-      iy = 1
+-      if( incx.lt.0 )
+-     $   ix = ( -n+1 )*incx + 1
+-      if( incy.lt.0 )
+-     $   iy = ( -n+1 )*incy + 1
+-      do 10 i = 1, n
+-         ly( iy ) = lx( ix )
+-         ix = ix + incx
+-         iy = iy + incy
+-   10 continue
+-      return
+-c
+-c.....code for both increments equal to 1
+-c
+-   20 continue
+-      do 30 i = 1, n
+-         ly( i ) = lx( i )
+-   30 continue
+-      return
+-      end
+--- a/libcruft/arpack/util/iset.f
++++ /dev/null
+@@ -1,16 +0,0 @@
+-c
+-c-----------------------------------------------------------------------
+-c
+-c     Only work with increment equal to 1 right now.
+-c
+-      subroutine iset (n, value, array, inc)
+-c
+-      integer    n, value, inc
+-      integer    array(*)
+-c
+-      do 10 i = 1, n
+-         array(i) = value
+-   10 continue
+-c
+-      return
+-      end
+--- a/libcruft/arpack/util/iswap.f
++++ /dev/null
+@@ -1,55 +0,0 @@
+-      subroutine iswap (n,sx,incx,sy,incy)
+-c
+-c     interchanges two vectors.
+-c     uses unrolled loops for increments equal to 1.
+-c     jack dongarra, linpack, 3/11/78.
+-c
+-      integer sx(1),sy(1),stemp
+-      integer i,incx,incy,ix,iy,m,mp1,n
+-c
+-      if(n.le.0)return
+-      if(incx.eq.1.and.incy.eq.1)go to 20
+-c
+-c       code for unequal increments or equal increments not equal
+-c         to 1
+-c
+-      ix = 1
+-      iy = 1
+-      if(incx.lt.0)ix = (-n+1)*incx + 1
+-      if(incy.lt.0)iy = (-n+1)*incy + 1
+-      do 10 i = 1,n
+-        stemp = sx(ix)
+-        sx(ix) = sy(iy)
+-        sy(iy) = stemp
+-        ix = ix + incx
+-        iy = iy + incy
+-   10 continue
+-      return
+-c
+-c       code for both increments equal to 1
+-c
+-c
+-c       clean-up loop
+-c
+-   20 m = mod(n,3)
+-      if( m .eq. 0 ) go to 40
+-      do 30 i = 1,m
+-        stemp = sx(i)
+-        sx(i) = sy(i)
+-        sy(i) = stemp
+-   30 continue
+-      if( n .lt. 3 ) return
+-   40 mp1 = m + 1
+-      do 50 i = mp1,n,3
+-        stemp = sx(i)
+-        sx(i) = sy(i)
+-        sy(i) = stemp
+-        stemp = sx(i + 1)
+-        sx(i + 1) = sy(i + 1)
+-        sy(i + 1) = stemp
+-        stemp = sx(i + 2)
+-        sx(i + 2) = sy(i + 2)
+-        sy(i + 2) = stemp
+-   50 continue
+-      return
+-      end
+--- a/libcruft/arpack/util/ivout.f
++++ /dev/null
+@@ -1,120 +0,0 @@
+-C-----------------------------------------------------------------------
+-C  Routine:    IVOUT
+-C
+-C  Purpose:    Integer vector output routine.
+-C
+-C  Usage:      CALL IVOUT (LOUT, N, IX, IDIGIT, IFMT)
+-C
+-C  Arguments
+-C     N      - Length of array IX. (Input)
+-C     IX     - Integer array to be printed. (Input)
+-C     IFMT   - Format to be used in printing array IX. (Input)
+-C     IDIGIT - Print up to ABS(IDIGIT) decimal digits / number. (Input)
+-C              If IDIGIT .LT. 0, printing is done with 72 columns.
+-C              If IDIGIT .GT. 0, printing is done with 132 columns.
+-C
+-C-----------------------------------------------------------------------
+-C
+-      SUBROUTINE IVOUT (LOUT, N, IX, IDIGIT, IFMT)
+-C     ...
+-C     ... SPECIFICATIONS FOR ARGUMENTS
+-      INTEGER    IX(*), N, IDIGIT, LOUT
+-      CHARACTER  IFMT*(*)
+-C     ...
+-C     ... SPECIFICATIONS FOR LOCAL VARIABLES
+-      INTEGER    I, NDIGIT, K1, K2, LLL
+-      CHARACTER*80 LINE
+-*     ...
+-*     ... SPECIFICATIONS INTRINSICS
+-      INTRINSIC          MIN
+-*
+-C
+-      LLL = MIN ( LEN ( IFMT ), 80 )
+-      DO 1 I = 1, LLL
+-          LINE(I:I) = '-'
+-    1 CONTINUE
+-C
+-      DO 2 I = LLL+1, 80
+-          LINE(I:I) = ' '
+-    2 CONTINUE
+-C
+-      WRITE ( LOUT, 2000 ) IFMT, LINE(1:LLL)
+- 2000 FORMAT ( /1X, A  /1X, A )
+-C
+-      IF (N .LE. 0) RETURN
+-      NDIGIT = IDIGIT
+-      IF (IDIGIT .EQ. 0) NDIGIT = 4
+-C
+-C=======================================================================
+-C             CODE FOR OUTPUT USING 72 COLUMNS FORMAT
+-C=======================================================================
+-C
+-      IF (IDIGIT .LT. 0) THEN
+-C
+-      NDIGIT = -IDIGIT
+-      IF (NDIGIT .LE. 4) THEN
+-         DO 10 K1 = 1, N, 10
+-            K2 = MIN0(N,K1+9)
+-            WRITE(LOUT,1000) K1,K2,(IX(I),I=K1,K2)
+-   10    CONTINUE
+-C
+-      ELSE IF (NDIGIT .LE. 6) THEN
+-         DO 30 K1 = 1, N, 7
+-            K2 = MIN0(N,K1+6)
+-            WRITE(LOUT,1001) K1,K2,(IX(I),I=K1,K2)
+-   30    CONTINUE
+-C
+-      ELSE IF (NDIGIT .LE. 10) THEN
+-         DO 50 K1 = 1, N, 5
+-            K2 = MIN0(N,K1+4)
+-            WRITE(LOUT,1002) K1,K2,(IX(I),I=K1,K2)
+-   50    CONTINUE
+-C
+-      ELSE
+-         DO 70 K1 = 1, N, 3
+-            K2 = MIN0(N,K1+2)
+-            WRITE(LOUT,1003) K1,K2,(IX(I),I=K1,K2)
+-   70    CONTINUE
+-      END IF
+-C
+-C=======================================================================
+-C             CODE FOR OUTPUT USING 132 COLUMNS FORMAT
+-C=======================================================================
+-C
+-      ELSE
+-C
+-      IF (NDIGIT .LE. 4) THEN
+-         DO 90 K1 = 1, N, 20
+-            K2 = MIN0(N,K1+19)
+-            WRITE(LOUT,1000) K1,K2,(IX(I),I=K1,K2)
+-   90    CONTINUE
+-C
+-      ELSE IF (NDIGIT .LE. 6) THEN
+-         DO 110 K1 = 1, N, 15
+-            K2 = MIN0(N,K1+14)
+-            WRITE(LOUT,1001) K1,K2,(IX(I),I=K1,K2)
+-  110    CONTINUE
+-C
+-      ELSE IF (NDIGIT .LE. 10) THEN
+-         DO 130 K1 = 1, N, 10
+-            K2 = MIN0(N,K1+9)
+-            WRITE(LOUT,1002) K1,K2,(IX(I),I=K1,K2)
+-  130    CONTINUE
+-C
+-      ELSE
+-         DO 150 K1 = 1, N, 7
+-            K2 = MIN0(N,K1+6)
+-            WRITE(LOUT,1003) K1,K2,(IX(I),I=K1,K2)
+-  150    CONTINUE
+-      END IF
+-      END IF
+-      WRITE (LOUT,1004)
+-C
+- 1000 FORMAT(1X,I4,' - ',I4,':',20(1X,I5))
+- 1001 FORMAT(1X,I4,' - ',I4,':',15(1X,I7))
+- 1002 FORMAT(1X,I4,' - ',I4,':',10(1X,I11))
+- 1003 FORMAT(1X,I4,' - ',I4,':',7(1X,I15))
+- 1004 FORMAT(1X,' ')
+-C
+-      RETURN
+-      END
+--- a/libcruft/arpack/util/second.f
++++ /dev/null
+@@ -1,36 +0,0 @@
+-      SUBROUTINE ARSCND( T )
+-*
+-      REAL       T
+-*
+-*  -- LAPACK auxiliary routine (preliminary version) --
+-*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+-*     Courant Institute, Argonne National Lab, and Rice University
+-*     July 26, 1991
+-*
+-*  Purpose
+-*  =======
+-*
+-*  SECOND returns the user time for a process in arscnds.
+-*  This version gets the time from the system function ETIME.
+-*
+-*     .. Local Scalars ..
+-      REAL               T1
+-*     ..
+-*     .. Local Arrays ..
+-      REAL               TARRAY( 2 )
+-*     ..
+-*     .. External Functions ..
+-      REAL               ETIME
+-      INTRINSIC          ETIME
+-*     ..
+-*     .. Executable Statements ..
+-*
+-
+-      T1 = ETIME( TARRAY )
+-      T  = TARRAY( 1 )
+-
+-      RETURN
+-*
+-*     End of ARSCND
+-*
+-      END
+--- a/libcruft/arpack/util/smout.f
++++ /dev/null
+@@ -1,157 +0,0 @@
+-*-----------------------------------------------------------------------
+-*  Routine:    SMOUT
+-*
+-*  Purpose:    Real matrix output routine.
+-*
+-*  Usage:      CALL SMOUT (LOUT, M, N, A, LDA, IDIGIT, IFMT)
+-*
+-*  Arguments
+-*     M      - Number of rows of A.  (Input)
+-*     N      - Number of columns of A.  (Input)
+-*     A      - Real M by N matrix to be printed.  (Input)
+-*     LDA    - Leading dimension of A exactly as specified in the
+-*              dimension statement of the calling program.  (Input)
+-*     IFMT   - Format to be used in printing matrix A.  (Input)
+-*     IDIGIT - Print up to IABS(IDIGIT) decimal digits per number.  (In)
+-*              If IDIGIT .LT. 0, printing is done with 72 columns.
+-*              If IDIGIT .GT. 0, printing is done with 132 columns.
+-*
+-*-----------------------------------------------------------------------
+-*
+-      SUBROUTINE SMOUT( LOUT, M, N, A, LDA, IDIGIT, IFMT )
+-*     ...
+-*     ... SPECIFICATIONS FOR ARGUMENTS
+-      INTEGER            M, N, IDIGIT, LDA, LOUT
+-      REAL               A( LDA, * )
+-      CHARACTER          IFMT*( * )
+-*     ...
+-*     ... SPECIFICATIONS FOR LOCAL VARIABLES
+-      INTEGER            I, J, NDIGIT, K1, K2, LLL
+-      CHARACTER*1        ICOL( 3 )
+-      CHARACTER*80       LINE
+-*     ...
+-*     ... SPECIFICATIONS INTRINSICS
+-      INTRINSIC          MIN
+-*
+-      DATA               ICOL( 1 ), ICOL( 2 ), ICOL( 3 ) / 'C', 'o',
+-     $                   'l' /
+-*     ...
+-*     ... FIRST EXECUTABLE STATEMENT
+-*
+-      LLL = MIN( LEN( IFMT ), 80 )
+-      DO 10 I = 1, LLL
+-         LINE( I: I ) = '-'
+-   10 CONTINUE
+-*
+-      DO 20 I = LLL + 1, 80
+-         LINE( I: I ) = ' '
+-   20 CONTINUE
+-*
+-      WRITE( LOUT, 9999 )IFMT, LINE( 1: LLL )
+- 9999 FORMAT( / 1X, A / 1X, A )
+-*
+-      IF( M.LE.0 .OR. N.LE.0 .OR. LDA.LE.0 )
+-     $   RETURN
+-      NDIGIT = IDIGIT
+-      IF( IDIGIT.EQ.0 )
+-     $   NDIGIT = 4
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 72 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      IF( IDIGIT.LT.0 ) THEN
+-         NDIGIT = -IDIGIT
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 40 K1 = 1, N, 5
+-               K2 = MIN0( N, K1+4 )
+-               WRITE( LOUT, 9998 )( ICOL, I, I = K1, K2 )
+-               DO 30 I = 1, M
+-                  WRITE( LOUT, 9994 )I, ( A( I, J ), J = K1, K2 )
+-   30          CONTINUE
+-   40       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 60 K1 = 1, N, 4
+-               K2 = MIN0( N, K1+3 )
+-               WRITE( LOUT, 9997 )( ICOL, I, I = K1, K2 )
+-               DO 50 I = 1, M
+-                  WRITE( LOUT, 9993 )I, ( A( I, J ), J = K1, K2 )
+-   50          CONTINUE
+-   60       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.10 ) THEN
+-            DO 80 K1 = 1, N, 3
+-               K2 = MIN0( N, K1+2 )
+-               WRITE( LOUT, 9996 )( ICOL, I, I = K1, K2 )
+-               DO 70 I = 1, M
+-                  WRITE( LOUT, 9992 )I, ( A( I, J ), J = K1, K2 )
+-   70          CONTINUE
+-   80       CONTINUE
+-*
+-         ELSE
+-            DO 100 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               WRITE( LOUT, 9995 )( ICOL, I, I = K1, K2 )
+-               DO 90 I = 1, M
+-                  WRITE( LOUT, 9991 )I, ( A( I, J ), J = K1, K2 )
+-   90          CONTINUE
+-  100       CONTINUE
+-         END IF
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 132 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      ELSE
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 120 K1 = 1, N, 10
+-               K2 = MIN0( N, K1+9 )
+-               WRITE( LOUT, 9998 )( ICOL, I, I = K1, K2 )
+-               DO 110 I = 1, M
+-                  WRITE( LOUT, 9994 )I, ( A( I, J ), J = K1, K2 )
+-  110          CONTINUE
+-  120       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 140 K1 = 1, N, 8
+-               K2 = MIN0( N, K1+7 )
+-               WRITE( LOUT, 9997 )( ICOL, I, I = K1, K2 )
+-               DO 130 I = 1, M
+-                  WRITE( LOUT, 9993 )I, ( A( I, J ), J = K1, K2 )
+-  130          CONTINUE
+-  140       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.10 ) THEN
+-            DO 160 K1 = 1, N, 6
+-               K2 = MIN0( N, K1+5 )
+-               WRITE( LOUT, 9996 )( ICOL, I, I = K1, K2 )
+-               DO 150 I = 1, M
+-                  WRITE( LOUT, 9992 )I, ( A( I, J ), J = K1, K2 )
+-  150          CONTINUE
+-  160       CONTINUE
+-*
+-         ELSE
+-            DO 180 K1 = 1, N, 5
+-               K2 = MIN0( N, K1+4 )
+-               WRITE( LOUT, 9995 )( ICOL, I, I = K1, K2 )
+-               DO 170 I = 1, M
+-                  WRITE( LOUT, 9991 )I, ( A( I, J ), J = K1, K2 )
+-  170          CONTINUE
+-  180       CONTINUE
+-         END IF
+-      END IF
+-      WRITE( LOUT, 9990 )
+-*
+- 9998 FORMAT( 10X, 10( 4X, 3A1, I4, 1X ) )
+- 9997 FORMAT( 10X, 8( 5X, 3A1, I4, 2X ) )
+- 9996 FORMAT( 10X, 6( 7X, 3A1, I4, 4X ) )
+- 9995 FORMAT( 10X, 5( 9X, 3A1, I4, 6X ) )
+- 9994 FORMAT( 1X, ' Row', I4, ':', 1X, 1P10E12.3 )
+- 9993 FORMAT( 1X, ' Row', I4, ':', 1X, 1P8E14.5 )
+- 9992 FORMAT( 1X, ' Row', I4, ':', 1X, 1P6E18.9 )
+- 9991 FORMAT( 1X, ' Row', I4, ':', 1X, 1P5E22.13 )
+- 9990 FORMAT( 1X, ' ' )
+-*
+-      RETURN
+-      END
+--- a/libcruft/arpack/util/svout.f
++++ /dev/null
+@@ -1,112 +0,0 @@
+-*-----------------------------------------------------------------------
+-*  Routine:    SVOUT
+-*
+-*  Purpose:    Real vector output routine.
+-*
+-*  Usage:      CALL SVOUT (LOUT, N, SX, IDIGIT, IFMT)
+-*
+-*  Arguments
+-*     N      - Length of array SX.  (Input)
+-*     SX     - Real array to be printed.  (Input)
+-*     IFMT   - Format to be used in printing array SX.  (Input)
+-*     IDIGIT - Print up to IABS(IDIGIT) decimal digits per number.  (In)
+-*              If IDIGIT .LT. 0, printing is done with 72 columns.
+-*              If IDIGIT .GT. 0, printing is done with 132 columns.
+-*
+-*-----------------------------------------------------------------------
+-*
+-      SUBROUTINE SVOUT( LOUT, N, SX, IDIGIT, IFMT )
+-*     ...
+-*     ... SPECIFICATIONS FOR ARGUMENTS
+-      INTEGER            N, IDIGIT, LOUT
+-      REAL               SX( * )
+-      CHARACTER          IFMT*( * )
+-*     ...
+-*     ... SPECIFICATIONS FOR LOCAL VARIABLES
+-      INTEGER            I, NDIGIT, K1, K2, LLL
+-      CHARACTER*80       LINE
+-*     ...
+-*     ... FIRST EXECUTABLE STATEMENT
+-*
+-*
+-      LLL = MIN( LEN( IFMT ), 80 )
+-      DO 10 I = 1, LLL
+-         LINE( I: I ) = '-'
+-   10 CONTINUE
+-*
+-      DO 20 I = LLL + 1, 80
+-         LINE( I: I ) = ' '
+-   20 CONTINUE
+-*
+-      WRITE( LOUT, 9999 )IFMT, LINE( 1: LLL )
+- 9999 FORMAT( / 1X, A / 1X, A )
+-*
+-      IF( N.LE.0 )
+-     $   RETURN
+-      NDIGIT = IDIGIT
+-      IF( IDIGIT.EQ.0 )
+-     $   NDIGIT = 4
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 72 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      IF( IDIGIT.LT.0 ) THEN
+-         NDIGIT = -IDIGIT
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 30 K1 = 1, N, 5
+-               K2 = MIN0( N, K1+4 )
+-               WRITE( LOUT, 9998 )K1, K2, ( SX( I ), I = K1, K2 )
+-   30       CONTINUE
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 40 K1 = 1, N, 4
+-               K2 = MIN0( N, K1+3 )
+-               WRITE( LOUT, 9997 )K1, K2, ( SX( I ), I = K1, K2 )
+-   40       CONTINUE
+-         ELSE IF( NDIGIT.LE.10 ) THEN
+-            DO 50 K1 = 1, N, 3
+-               K2 = MIN0( N, K1+2 )
+-               WRITE( LOUT, 9996 )K1, K2, ( SX( I ), I = K1, K2 )
+-   50       CONTINUE
+-         ELSE
+-            DO 60 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               WRITE( LOUT, 9995 )K1, K2, ( SX( I ), I = K1, K2 )
+-   60       CONTINUE
+-         END IF
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 132 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      ELSE
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 70 K1 = 1, N, 10
+-               K2 = MIN0( N, K1+9 )
+-               WRITE( LOUT, 9998 )K1, K2, ( SX( I ), I = K1, K2 )
+-   70       CONTINUE
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 80 K1 = 1, N, 8
+-               K2 = MIN0( N, K1+7 )
+-               WRITE( LOUT, 9997 )K1, K2, ( SX( I ), I = K1, K2 )
+-   80       CONTINUE
+-         ELSE IF( NDIGIT.LE.10 ) THEN
+-            DO 90 K1 = 1, N, 6
+-               K2 = MIN0( N, K1+5 )
+-               WRITE( LOUT, 9996 )K1, K2, ( SX( I ), I = K1, K2 )
+-   90       CONTINUE
+-         ELSE
+-            DO 100 K1 = 1, N, 5
+-               K2 = MIN0( N, K1+4 )
+-               WRITE( LOUT, 9995 )K1, K2, ( SX( I ), I = K1, K2 )
+-  100       CONTINUE
+-         END IF
+-      END IF
+-      WRITE( LOUT, 9994 )
+-      RETURN
+- 9998 FORMAT( 1X, I4, ' - ', I4, ':', 1P10E12.3 )
+- 9997 FORMAT( 1X, I4, ' - ', I4, ':', 1X, 1P8E14.5 )
+- 9996 FORMAT( 1X, I4, ' - ', I4, ':', 1X, 1P6E18.9 )
+- 9995 FORMAT( 1X, I4, ' - ', I4, ':', 1X, 1P5E24.13 )
+- 9994 FORMAT( 1X, ' ' )
+-      END
+--- a/libcruft/arpack/util/zmout.f
++++ /dev/null
+@@ -1,250 +0,0 @@
+-*
+-*  Routine:    ZMOUT
+-*
+-*  Purpose:    Complex*16 matrix output routine.
+-*
+-*  Usage:      CALL ZMOUT (LOUT, M, N, A, LDA, IDIGIT, IFMT)
+-*
+-*  Arguments
+-*     M      - Number of rows of A.  (Input)
+-*     N      - Number of columns of A.  (Input)
+-*     A      - Complex*16 M by N matrix to be printed.  (Input)
+-*     LDA    - Leading dimension of A exactly as specified in the
+-*              dimension statement of the calling program.  (Input)
+-*     IFMT   - Format to be used in printing matrix A.  (Input)
+-*     IDIGIT - Print up to IABS(IDIGIT) decimal digits per number.  (In)
+-*              If IDIGIT .LT. 0, printing is done with 72 columns.
+-*              If IDIGIT .GT. 0, printing is done with 132 columns.
+-*
+-*\SCCS Information: @(#)
+-* FILE: zmout.f   SID: 2.1   DATE OF SID: 11/16/95   RELEASE: 2
+-*
+-*-----------------------------------------------------------------------
+-*
+-      SUBROUTINE ZMOUT( LOUT, M, N, A, LDA, IDIGIT, IFMT )
+-*     ...
+-*     ... SPECIFICATIONS FOR ARGUMENTS
+-      INTEGER            M, N, IDIGIT, LDA, LOUT
+-      Complex*16
+-     &                   A( LDA, * )
+-      CHARACTER          IFMT*( * )
+-*     ...
+-*     ... SPECIFICATIONS FOR LOCAL VARIABLES
+-      INTEGER            I, J, NDIGIT, K1, K2, LLL
+-      CHARACTER*1        ICOL( 3 )
+-      CHARACTER*80       LINE
+-*     ...
+-*     ... SPECIFICATIONS INTRINSICS
+-      INTRINSIC          MIN
+-*
+-      DATA               ICOL( 1 ), ICOL( 2 ), ICOL( 3 ) / 'C', 'o',
+-     $                   'l' /
+-*     ...
+-*     ... FIRST EXECUTABLE STATEMENT
+-*
+-      LLL = MIN( LEN( IFMT ), 80 )
+-      DO 10 I = 1, LLL
+-         LINE( I: I ) = '-'
+-   10 CONTINUE
+-*
+-      DO 20 I = LLL + 1, 80
+-         LINE( I: I ) = ' '
+-   20 CONTINUE
+-*
+-      WRITE( LOUT, 9999 )IFMT, LINE( 1: LLL )
+- 9999 FORMAT( / 1X, A / 1X, A )
+-*
+-      IF( M.LE.0 .OR. N.LE.0 .OR. LDA.LE.0 )
+-     $   RETURN
+-      NDIGIT = IDIGIT
+-      IF( IDIGIT.EQ.0 )
+-     $   NDIGIT = 4
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 72 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      IF( IDIGIT.LT.0 ) THEN
+-         NDIGIT = -IDIGIT
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 40 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               WRITE( LOUT, 9998 )( ICOL, I, I = K1, K2 )
+-               DO 30 I = 1, M
+-                  IF (K1.NE.N) THEN
+-                     WRITE( LOUT, 9994 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE
+-                     WRITE( LOUT, 9984 )I, ( A( I, J ), J = K1, K2 ) 
+-                  END IF
+-   30          CONTINUE
+-   40       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 60 K1 = 1, N, 2 
+-               K2 = MIN0( N, K1+1 )
+-               WRITE( LOUT, 9997 )( ICOL, I, I = K1, K2 )
+-               DO 50 I = 1, M
+-                  IF (K1.NE.N) THEN
+-                     WRITE( LOUT, 9993 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE 
+-                     WRITE( LOUT, 9983 )I, ( A( I, J ), J = K1, K2 ) 
+-                  END IF
+-   50          CONTINUE
+-   60       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.8 ) THEN
+-            DO 80 K1 = 1, N, 2 
+-               K2 = MIN0( N, K1+1 )
+-               WRITE( LOUT, 9996 )( ICOL, I, I = K1, K2 )
+-               DO 70 I = 1, M
+-                  IF (K1.NE.N) THEN
+-                     WRITE( LOUT, 9992 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE
+-                     WRITE( LOUT, 9982 )I, ( A( I, J ), J = K1, K2 ) 
+-                  END IF 
+-   70          CONTINUE
+-   80       CONTINUE
+-*
+-         ELSE
+-            DO 100 K1 = 1, N
+-               WRITE( LOUT, 9995 ) ICOL, K1
+-               DO 90 I = 1, M
+-                  WRITE( LOUT, 9991 )I, A( I, K1 )
+-   90          CONTINUE
+-  100       CONTINUE
+-         END IF
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 132 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      ELSE
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 120 K1 = 1, N, 4
+-               K2 = MIN0( N, K1+3 )
+-               WRITE( LOUT, 9998 )( ICOL, I, I = K1, K2 )
+-               DO 110 I = 1, M
+-                  IF ((K1+3).LE.N) THEN 
+-                     WRITE( LOUT, 9974 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE IF ((K1+3-N).EQ.1) THEN
+-                     WRITE( LOUT, 9964 )I, ( A( I, J ), J = k1, K2 )
+-                  ELSE IF ((K1+3-N).EQ.2) THEN
+-                     WRITE( LOUT, 9954 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE IF ((K1+3-N).EQ.3) THEN
+-                     WRITE( LOUT, 9944 )I, ( A( I, J ), J = K1, K2 ) 
+-                  END IF
+-  110          CONTINUE
+-  120       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 140 K1 = 1, N, 3 
+-               K2 = MIN0( N, K1+ 2)
+-               WRITE( LOUT, 9997 )( ICOL, I, I = K1, K2 )
+-               DO 130 I = 1, M
+-                  IF ((K1+2).LE.N) THEN
+-                     WRITE( LOUT, 9973 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE IF ((K1+2-N).EQ.1) THEN
+-                     WRITE( LOUT, 9963 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE IF ((K1+2-N).EQ.2) THEN
+-                     WRITE( LOUT, 9953 )I, ( A( I, J ), J = K1, K2 )
+-                  END IF
+-  130          CONTINUE
+-  140       CONTINUE
+-*
+-         ELSE IF( NDIGIT.LE.8 ) THEN
+-            DO 160 K1 = 1, N, 3
+-               K2 = MIN0( N, K1+2 )
+-                  WRITE( LOUT, 9996 )( ICOL, I, I = K1, K2 )
+-               DO 150 I = 1, M
+-                  IF ((K1+2).LE.N) THEN
+-                     WRITE( LOUT, 9972 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE IF ((K1+2-N).EQ.1) THEN
+-                     WRITE( LOUT, 9962 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE IF ((K1+2-N).EQ.2) THEN
+-                     WRITE( LOUT, 9952 )I, ( A( I, J ), J = K1, K2 )
+-                  END IF
+-  150          CONTINUE
+-  160       CONTINUE
+-*
+-         ELSE
+-            DO 180 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               WRITE( LOUT, 9995 )( ICOL, I, I = K1, K2 )
+-               DO 170 I = 1, M
+-                  IF ((K1+1).LE.N) THEN
+-                     WRITE( LOUT, 9971 )I, ( A( I, J ), J = K1, K2 )
+-                  ELSE
+-                     WRITE( LOUT, 9961 )I, ( A( I, J ), J = K1, K2 )
+-                  END IF
+-  170          CONTINUE
+-  180       CONTINUE
+-         END IF
+-      END IF
+-      WRITE( LOUT, 9990 )
+-*
+- 9998 FORMAT( 11X, 4( 9X, 3A1, I4, 9X ) )
+- 9997 FORMAT( 10X, 4( 11X, 3A1, I4, 11X ) )
+- 9996 FORMAT( 10X, 3( 13X, 3A1, I4, 13X ) )
+- 9995 FORMAT( 12X, 2( 18x, 3A1, I4, 18X ) ) 
+-*
+-*========================================================
+-*              FORMAT FOR 72 COLUMN
+-*========================================================
+-*
+-*            DISPLAY 4 SIGNIFICANT DIGITS
+-* 
+- 9994 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,2('(',D10.3,',',D10.3,')  ') )
+- 9984 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',D10.3,',',D10.3,')  ') )
+-*
+-*            DISPLAY 6 SIGNIFICANT DIGITS
+-*
+- 9993 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,2('(',D12.5,',',D12.5,')  ') )
+- 9983 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',D12.5,',',D12.5,')  ') )
+-*
+-*            DISPLAY 8 SIGNIFICANT DIGITS
+-*
+- 9992 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,2('(',D14.7,',',D14.7,')  ') )
+- 9982 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',D14.7,',',D14.7,')  ') )
+-*
+-*            DISPLAY 13 SIGNIFICANT DIGITS
+-*
+- 9991 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',D20.13,',',D20.13,')') )
+- 9990 FORMAT( 1X, ' ' )
+-*
+-*
+-*========================================================
+-*              FORMAT FOR 132 COLUMN
+-*========================================================
+-*
+-*            DISPLAY 4 SIGNIFICANT DIGIT
+-*
+- 9974 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,4('(',D10.3,',',D10.3,')  ') )
+- 9964 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,3('(',D10.3,',',D10.3,')  ') )
+- 9954 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,2('(',D10.3,',',D10.3,')  ') )
+- 9944 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',D10.3,',',D10.3,')  ') )
+-*
+-*            DISPLAY 6 SIGNIFICANT DIGIT
+-*
+- 9973 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,3('(',D12.5,',',D12.5,')  ') )
+- 9963 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,2('(',D12.5,',',D12.5,')  ') )
+- 9953 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',D12.5,',',D12.5,')  ') )
+-*
+-*            DISPLAY 8 SIGNIFICANT DIGIT
+-*
+- 9972 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,3('(',D14.7,',',D14.7,')  ') )
+- 9962 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,2('(',D14.7,',',D14.7,')  ') )
+- 9952 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',D14.7,',',D14.7,')  ') )
+-*
+-*            DISPLAY 13 SIGNIFICANT DIGIT
+-*
+- 9971 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,2('(',D20.13,',',D20.13,
+-     &        ')  '))
+- 9961 FORMAT( 1X, ' Row', I4, ':', 1X, 1P,1('(',D20.13,',',D20.13,
+-     &        ')  '))
+-
+-*
+-*
+-*
+-*
+-      RETURN
+-      END
+--- a/libcruft/arpack/util/zvout.f
++++ /dev/null
+@@ -1,240 +0,0 @@
+-c-----------------------------------------------------------------------
+-c
+-c\SCCS Information: @(#)
+-c FILE: zvout.f   SID: 2.1   DATE OF SID: 11/16/95   RELEASE: 2
+-c
+-*-----------------------------------------------------------------------
+-*  Routine:    ZVOUT
+-*
+-*  Purpose:    Complex*16 vector output routine.
+-*
+-*  Usage:      CALL ZVOUT (LOUT, N, CX, IDIGIT, IFMT)
+-*
+-*  Arguments
+-*     N      - Length of array CX.  (Input)
+-*     CX     - Complex*16 array to be printed.  (Input)
+-*     IFMT   - Format to be used in printing array CX.  (Input)
+-*     IDIGIT - Print up to IABS(IDIGIT) decimal digits per number.  (In)
+-*              If IDIGIT .LT. 0, printing is done with 72 columns.
+-*              If IDIGIT .GT. 0, printing is done with 132 columns.
+-*
+-*-----------------------------------------------------------------------
+-*
+-      SUBROUTINE ZVOUT( LOUT, N, CX, IDIGIT, IFMT )
+-*     ...
+-*     ... SPECIFICATIONS FOR ARGUMENTS
+-      INTEGER            N, IDIGIT, LOUT
+-      Complex*16
+-     &                   CX( * )
+-      CHARACTER          IFMT*( * )
+-*     ...
+-*     ... SPECIFICATIONS FOR LOCAL VARIABLES
+-      INTEGER            I, NDIGIT, K1, K2, LLL
+-      CHARACTER*80       LINE
+-*     ...
+-*     ... FIRST EXECUTABLE STATEMENT
+-*
+-*
+-      LLL = MIN( LEN( IFMT ), 80 )
+-      DO 10 I = 1, LLL
+-         LINE( I: I ) = '-'
+-   10 CONTINUE
+-*
+-      DO 20 I = LLL + 1, 80
+-         LINE( I: I ) = ' '
+-   20 CONTINUE
+-*
+-      WRITE( LOUT, 9999 )IFMT, LINE( 1: LLL )
+- 9999 FORMAT( / 1X, A / 1X, A )
+-*
+-      IF( N.LE.0 )
+-     $   RETURN
+-      NDIGIT = IDIGIT
+-      IF( IDIGIT.EQ.0 )
+-     $   NDIGIT = 4
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 72 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      IF( IDIGIT.LT.0 ) THEN
+-         NDIGIT = -IDIGIT
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 30 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               IF (K1.NE.N) THEN
+-                  WRITE( LOUT, 9998 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE
+-                  WRITE( LOUT, 9997 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 ) 
+-               END IF
+-   30       CONTINUE
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 40 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               IF (K1.NE.N) THEN
+-                  WRITE( LOUT, 9988 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE
+-                  WRITE( LOUT, 9987 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               END IF
+-   40       CONTINUE
+-         ELSE IF( NDIGIT.LE.8 ) THEN
+-            DO 50 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               IF (K1.NE.N) THEN
+-                  WRITE( LOUT, 9978 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE
+-                  WRITE( LOUT, 9977 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 ) 
+-               END IF
+-   50       CONTINUE
+-         ELSE
+-            DO 60 K1 = 1, N
+-               WRITE( LOUT, 9968 )K1, K1, CX( I )
+-   60       CONTINUE
+-         END IF
+-*
+-*=======================================================================
+-*             CODE FOR OUTPUT USING 132 COLUMNS FORMAT
+-*=======================================================================
+-*
+-      ELSE
+-         IF( NDIGIT.LE.4 ) THEN
+-            DO 70 K1 = 1, N, 4 
+-               K2 = MIN0( N, K1+3 )
+-               IF ((K1+3).LE.N) THEN
+-                  WRITE( LOUT, 9958 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+3-N) .EQ. 1) THEN
+-                  WRITE( LOUT, 9957 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+3-N) .EQ. 2) THEN
+-                  WRITE( LOUT, 9956 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+3-N) .EQ. 1) THEN
+-                  WRITE( LOUT, 9955 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               END IF
+-   70       CONTINUE
+-         ELSE IF( NDIGIT.LE.6 ) THEN
+-            DO 80 K1 = 1, N, 3 
+-               K2 = MIN0( N, K1+2 )
+-               IF ((K1+2).LE.N) THEN
+-                  WRITE( LOUT, 9948 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+2-N) .EQ. 1) THEN
+-                  WRITE( LOUT, 9947 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+2-N) .EQ. 2) THEN
+-                  WRITE( LOUT, 9946 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               END IF
+-   80       CONTINUE
+-         ELSE IF( NDIGIT.LE.8 ) THEN
+-            DO 90 K1 = 1, N, 3 
+-               K2 = MIN0( N, K1+2 )
+-               IF ((K1+2).LE.N) THEN
+-                  WRITE( LOUT, 9938 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+2-N) .EQ. 1) THEN
+-                  WRITE( LOUT, 9937 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+2-N) .EQ. 2) THEN
+-                  WRITE( LOUT, 9936 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               END IF
+-   90       CONTINUE
+-         ELSE
+-            DO 100 K1 = 1, N, 2
+-               K2 = MIN0( N, K1+1 )
+-               IF ((K1+2).LE.N) THEN
+-                  WRITE( LOUT, 9928 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               ELSE IF ((K1+2-N) .EQ. 1) THEN
+-                  WRITE( LOUT, 9927 )K1, K2, ( CX( I ), 
+-     $                   I = K1, K2 )
+-               END IF
+-  100       CONTINUE
+-         END IF
+-      END IF
+-      WRITE( LOUT, 9994 )
+-      RETURN
+-*
+-*=======================================================================
+-*                   FORMAT FOR 72 COLUMNS
+-*=======================================================================
+-*
+-*                 DISPLAY 4 SIGNIFICANT DIGITS
+-*
+- 9998 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,2('(',D10.3,',',D10.3,')  ') ) 
+- 9997 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',D10.3,',',D10.3,')  ') )
+-*
+-*                 DISPLAY 6 SIGNIFICANT DIGITS
+-* 
+- 9988 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,2('(',D12.5,',',D12.5,')  ') )
+- 9987 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',D12.5,',',D12.5,')  ') )
+-*
+-*                 DISPLAY 8 SIGNIFICANT DIGITS
+-*
+- 9978 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,2('(',D14.7,',',D14.7,')  ') )
+- 9977 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',D14.7,',',D14.7,')  ') )
+-*
+-*                 DISPLAY 13 SIGNIFICANT DIGITS
+-*
+- 9968 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',D20.13,',',D20.13,')  ') ) 
+-*
+-*=========================================================================
+-*                   FORMAT FOR 132 COLUMNS
+-*=========================================================================
+-*
+-*                 DISPLAY 4 SIGNIFICANT DIGITS
+-*
+- 9958 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,4('(',D10.3,',',D10.3,')  ') )
+- 9957 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,3('(',D10.3,',',D10.3,')  ') )
+- 9956 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,2('(',D10.3,',',D10.3,')  ') )
+- 9955 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',D10.3,',',D10.3,')  ') )
+-*
+-*                 DISPLAY 6 SIGNIFICANT DIGITS
+-*
+- 9948 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,3('(',D12.5,',',D12.5,')  ') )
+- 9947 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,2('(',D12.5,',',D12.5,')  ') )
+- 9946 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',D12.5,',',D12.5,')  ') )
+-*
+-*                 DISPLAY 8 SIGNIFICANT DIGITS
+-*
+- 9938 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,3('(',D14.7,',',D14.7,')  ') )
+- 9937 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,2('(',D14.7,',',D14.7,')  ') )
+- 9936 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',D14.7,',',D14.7,')  ') )
+-*
+-*                 DISPLAY 13 SIGNIFICANT DIGITS
+-*
+- 9928 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,2('(',D20.13,',',D20.13,')  ') )
+- 9927 FORMAT( 1X, I4, ' - ', I4, ':', 1X,
+-     $        1P,1('(',D20.13,',',D20.13,')  ') )
+-*
+-*
+-* 
+- 9994 FORMAT( 1X, ' ' )
+-      END
+--- a/libcruft/arpack/src/debug.h
++++ /dev/null
+@@ -1,16 +0,0 @@
+-c
+-c\SCCS Information: @(#) 
+-c FILE: debug.h   SID: 2.3   DATE OF SID: 11/16/95   RELEASE: 2 
+-c
+-c     %---------------------------------%
+-c     | See debug.doc for documentation |
+-c     %---------------------------------%
+-      integer  logfil, ndigit, mgetv0,
+-     &         msaupd, msaup2, msaitr, mseigt, msapps, msgets, mseupd,
+-     &         mnaupd, mnaup2, mnaitr, mneigh, mnapps, mngets, mneupd,
+-     &         mcaupd, mcaup2, mcaitr, mceigh, mcapps, mcgets, mceupd
+-      common /debug/ 
+-     &         logfil, ndigit, mgetv0,
+-     &         msaupd, msaup2, msaitr, mseigt, msapps, msgets, mseupd,
+-     &         mnaupd, mnaup2, mnaitr, mneigh, mnapps, mngets, mneupd,
+-     &         mcaupd, mcaup2, mcaitr, mceigh, mcapps, mcgets, mceupd
+--- a/libcruft/arpack/src/stat.h
++++ /dev/null
+@@ -1,21 +0,0 @@
+-c     %--------------------------------%
+-c     | See stat.doc for documentation |
+-c     %--------------------------------%
+-c
+-c\SCCS Information: @(#) 
+-c FILE: stat.h   SID: 2.2   DATE OF SID: 11/16/95   RELEASE: 2 
+-c
+-      real       t0, t1, t2, t3, t4, t5
+-      save       t0, t1, t2, t3, t4, t5
+-c
+-      integer    nopx, nbx, nrorth, nitref, nrstrt
+-      real       tsaupd, tsaup2, tsaitr, tseigt, tsgets, tsapps, tsconv,
+-     &           tnaupd, tnaup2, tnaitr, tneigh, tngets, tnapps, tnconv,
+-     &           tcaupd, tcaup2, tcaitr, tceigh, tcgets, tcapps, tcconv,
+-     &           tmvopx, tmvbx, tgetv0, titref, trvec
+-      common /timing/ 
+-     &           nopx, nbx, nrorth, nitref, nrstrt,
+-     &           tsaupd, tsaup2, tsaitr, tseigt, tsgets, tsapps, tsconv,
+-     &           tnaupd, tnaup2, tnaitr, tneigh, tngets, tnapps, tnconv,
+-     &           tcaupd, tcaup2, tcaitr, tceigh, tcgets, tcapps, tcconv,
+-     &           tmvopx, tmvbx, tgetv0, titref, trvec
+--- a/libcruft/arpack/src/version.h
++++ /dev/null
+@@ -1,30 +0,0 @@
+-/*
+-
+- In the current version, the parameter KAPPA in the Kahan's test
+- for orthogonality is set to 0.717, the same as used by Gragg & Reichel.
+- However computational experience indicates that this is a little too 
+- strict and will frequently force reorthogonalization when it is not
+- necessary to do so. 
+-
+- Also the "moving boundary" idea is not currently activated in the nonsymmetric
+- code since it is not conclusive that it's the right thing to do all the time.  
+- Requires further investigation.
+-
+- As of 02/01/93 Richard Lehoucq assumes software control of the codes from
+- Phuong Vu. On 03/01/93 all the *.F files were migrated SCCS. The 1.1 version
+- of codes are those received from Phuong Vu. The frozen version of 07/08/92
+- is now considered version 1.1.
+-
+- Version 2.1 contains two new symmetric routines, sesrt and seupd. 
+- Changes as well as bug fixes for version 1.1 codes that were only corrected 
+- for programming bugs are version 1.2. These 1.2 versions will also be in version 2.1.
+- Subroutine [d,s]saupd now requires slightly more workspace. See [d,s]saupd for the
+- details. 
+-
+- \SCCS Information: @(#) 
+-  FILE: version.h   SID: 2.3   DATE OF SID: 11/16/95   RELEASE: 2
+-
+- */
+-
+-#define VERSION_NUMBER ' 2.1'
+-#define VERSION_DATE   ' 11/15/95'

-- 
Debian packaging for octave



More information about the Pkg-octave-commit mailing list