[Pkg-octave-commit] [octave] 01/02: glpk-4.49.diff: new patch, fixes FTBFS against recent versions of GLPK

Sébastien Villemot sebastien at alioth.debian.org
Thu Aug 15 13:34:53 UTC 2013


This is an automated email from the git hooks/post-receive script.

sebastien pushed a commit to branch master
in repository octave.

commit 9db698bb09ad1a49aea52e62c1bebb7beaad1be6
Author: Sébastien Villemot <sebastien at debian.org>
Date:   Thu Aug 15 14:12:18 2013 +0200

    glpk-4.49.diff: new patch, fixes FTBFS against recent versions of GLPK
    
    Closes: #714360
---
 debian/patches/glpk-4.49.diff | 2078 +++++++++++++++++++++++++++++++++++++++++
 debian/patches/series         |    1 +
 2 files changed, 2079 insertions(+)

diff --git a/debian/patches/glpk-4.49.diff b/debian/patches/glpk-4.49.diff
new file mode 100644
index 0000000..44476d4
--- /dev/null
+++ b/debian/patches/glpk-4.49.diff
@@ -0,0 +1,2078 @@
+Description: Workaround for GLPK >= 4.49
+ That version of GLPK removed the old API. Octave still uses it, so this patch
+ adds compatibility routines that were provided by the upstream author of GLPK.
+ .
+ Note that this patch can be safely removed when packaging Octave 3.8, since the
+ latter will use the new GLPK API.
+Author: Sébastien Villemot <sebastien at debian.org>
+Bug: https://savannah.gnu.org/bugs/?func=detailitem&item_id=39038
+Bug-Debian: http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=714360
+Forwarded: not-needed
+Last-Update: 2013-08-15
+---
+This patch header follows DEP-3: http://dep.debian.net/deps/dep3/
+--- a/src/DLD-FUNCTIONS/__glpk__.cc
++++ b/src/DLD-FUNCTIONS/__glpk__.cc
+@@ -47,6 +47,2051 @@
+ #include <glpk.h>
+ #endif
+ 
++#if GLP_MINOR_VERSION >= 49
++#define LPX glp_prob
++
++// From lpx.h
++
++/* problem class: */
++#define LPX_LP          100   /* linear programming (LP) */
++#define LPX_MIP         101   /* mixed integer programming (MIP) */
++
++/* type of auxiliary/structural variable: */
++#define LPX_FR          110   /* free variable */
++#define LPX_LO          111   /* variable with lower bound */
++#define LPX_UP          112   /* variable with upper bound */
++#define LPX_DB          113   /* double-bounded variable */
++#define LPX_FX          114   /* fixed variable */
++
++/* optimization direction flag: */
++#define LPX_MIN         120   /* minimization */
++#define LPX_MAX         121   /* maximization */
++
++/* status of primal basic solution: */
++#define LPX_P_UNDEF     132   /* primal solution is undefined */
++#define LPX_P_FEAS      133   /* solution is primal feasible */
++#define LPX_P_INFEAS    134   /* solution is primal infeasible */
++#define LPX_P_NOFEAS    135   /* no primal feasible solution exists */
++
++/* status of dual basic solution: */
++#define LPX_D_UNDEF     136   /* dual solution is undefined */
++#define LPX_D_FEAS      137   /* solution is dual feasible */
++#define LPX_D_INFEAS    138   /* solution is dual infeasible */
++#define LPX_D_NOFEAS    139   /* no dual feasible solution exists */
++
++/* status of auxiliary/structural variable: */
++#define LPX_BS          140   /* basic variable */
++#define LPX_NL          141   /* non-basic variable on lower bound */
++#define LPX_NU          142   /* non-basic variable on upper bound */
++#define LPX_NF          143   /* non-basic free variable */
++#define LPX_NS          144   /* non-basic fixed variable */
++
++/* status of interior-point solution: */
++#define LPX_T_UNDEF     150   /* interior solution is undefined */
++#define LPX_T_OPT       151   /* interior solution is optimal */
++
++/* kind of structural variable: */
++#define LPX_CV          160   /* continuous variable */
++#define LPX_IV          161   /* integer variable */
++
++/* status of integer solution: */
++#define LPX_I_UNDEF     170   /* integer solution is undefined */
++#define LPX_I_OPT       171   /* integer solution is optimal */
++#define LPX_I_FEAS      172   /* integer solution is feasible */
++#define LPX_I_NOFEAS    173   /* no integer solution exists */
++
++/* status codes reported by the routine lpx_get_status: */
++#define LPX_OPT         180   /* optimal */
++#define LPX_FEAS        181   /* feasible */
++#define LPX_INFEAS      182   /* infeasible */
++#define LPX_NOFEAS      183   /* no feasible */
++#define LPX_UNBND       184   /* unbounded */
++#define LPX_UNDEF       185   /* undefined */
++
++/* exit codes returned by solver routines: */
++#define LPX_E_OK        200   /* success */
++#define LPX_E_EMPTY     201   /* empty problem */
++#define LPX_E_BADB      202   /* invalid initial basis */
++#define LPX_E_INFEAS    203   /* infeasible initial solution */
++#define LPX_E_FAULT     204   /* unable to start the search */
++#define LPX_E_OBJLL     205   /* objective lower limit reached */
++#define LPX_E_OBJUL     206   /* objective upper limit reached */
++#define LPX_E_ITLIM     207   /* iterations limit exhausted */
++#define LPX_E_TMLIM     208   /* time limit exhausted */
++#define LPX_E_NOFEAS    209   /* no feasible solution */
++#define LPX_E_INSTAB    210   /* numerical instability */
++#define LPX_E_SING      211   /* problems with basis matrix */
++#define LPX_E_NOCONV    212   /* no convergence (interior) */
++#define LPX_E_NOPFS     213   /* no primal feas. sol. (LP presolver) */
++#define LPX_E_NODFS     214   /* no dual feas. sol. (LP presolver) */
++#define LPX_E_MIPGAP    215   /* relative mip gap tolerance reached */
++
++/* control parameter identifiers: */
++#define LPX_K_MSGLEV    300   /* lp->msg_lev */
++#define LPX_K_SCALE     301   /* lp->scale */
++#define LPX_K_DUAL      302   /* lp->dual */
++#define LPX_K_PRICE     303   /* lp->price */
++#define LPX_K_RELAX     304   /* lp->relax */
++#define LPX_K_TOLBND    305   /* lp->tol_bnd */
++#define LPX_K_TOLDJ     306   /* lp->tol_dj */
++#define LPX_K_TOLPIV    307   /* lp->tol_piv */
++#define LPX_K_ROUND     308   /* lp->round */
++#define LPX_K_OBJLL     309   /* lp->obj_ll */
++#define LPX_K_OBJUL     310   /* lp->obj_ul */
++#define LPX_K_ITLIM     311   /* lp->it_lim */
++#define LPX_K_ITCNT     312   /* lp->it_cnt */
++#define LPX_K_TMLIM     313   /* lp->tm_lim */
++#define LPX_K_OUTFRQ    314   /* lp->out_frq */
++#define LPX_K_OUTDLY    315   /* lp->out_dly */
++#define LPX_K_BRANCH    316   /* lp->branch */
++#define LPX_K_BTRACK    317   /* lp->btrack */
++#define LPX_K_TOLINT    318   /* lp->tol_int */
++#define LPX_K_TOLOBJ    319   /* lp->tol_obj */
++#define LPX_K_MPSINFO   320   /* lp->mps_info */
++#define LPX_K_MPSOBJ    321   /* lp->mps_obj */
++#define LPX_K_MPSORIG   322   /* lp->mps_orig */
++#define LPX_K_MPSWIDE   323   /* lp->mps_wide */
++#define LPX_K_MPSFREE   324   /* lp->mps_free */
++#define LPX_K_MPSSKIP   325   /* lp->mps_skip */
++#define LPX_K_LPTORIG   326   /* lp->lpt_orig */
++#define LPX_K_PRESOL    327   /* lp->presol */
++#define LPX_K_BINARIZE  328   /* lp->binarize */
++#define LPX_K_USECUTS   329   /* lp->use_cuts */
++#define LPX_K_BFTYPE    330   /* lp->bfcp->type */
++#define LPX_K_MIPGAP    331   /* lp->mip_gap */
++
++#define LPX_C_COVER     0x01  /* mixed cover cuts */
++#define LPX_C_CLIQUE    0x02  /* clique cuts */
++#define LPX_C_GOMORY    0x04  /* Gomory's mixed integer cuts */
++#define LPX_C_MIR       0x08  /* mixed integer rounding cuts */
++#define LPX_C_ALL       0xFF  /* all cuts */
++
++typedef struct
++{     /* this structure contains results reported by the routines which
++         checks Karush-Kuhn-Tucker conditions (for details see comments
++         to those routines) */
++      /*--------------------------------------------------------------*/
++      /* xR - A * xS = 0 (KKT.PE) */
++      double pe_ae_max;
++      /* largest absolute error */
++      int    pe_ae_row;
++      /* number of row with largest absolute error */
++      double pe_re_max;
++      /* largest relative error */
++      int    pe_re_row;
++      /* number of row with largest relative error */
++      int    pe_quality;
++      /* quality of primal solution:
++         'H' - high
++         'M' - medium
++         'L' - low
++         '?' - primal solution is wrong */
++      /*--------------------------------------------------------------*/
++      /* l[k] <= x[k] <= u[k] (KKT.PB) */
++      double pb_ae_max;
++      /* largest absolute error */
++      int    pb_ae_ind;
++      /* number of variable with largest absolute error */
++      double pb_re_max;
++      /* largest relative error */
++      int    pb_re_ind;
++      /* number of variable with largest relative error */
++      int    pb_quality;
++      /* quality of primal feasibility:
++         'H' - high
++         'M' - medium
++         'L' - low
++         '?' - primal solution is infeasible */
++      /*--------------------------------------------------------------*/
++      /* A' * (dR - cR) + (dS - cS) = 0 (KKT.DE) */
++      double de_ae_max;
++      /* largest absolute error */
++      int    de_ae_col;
++      /* number of column with largest absolute error */
++      double de_re_max;
++      /* largest relative error */
++      int    de_re_col;
++      /* number of column with largest relative error */
++      int    de_quality;
++      /* quality of dual solution:
++         'H' - high
++         'M' - medium
++         'L' - low
++         '?' - dual solution is wrong */
++      /*--------------------------------------------------------------*/
++      /* d[k] >= 0 or d[k] <= 0 (KKT.DB) */
++      double db_ae_max;
++      /* largest absolute error */
++      int    db_ae_ind;
++      /* number of variable with largest absolute error */
++      double db_re_max;
++      /* largest relative error */
++      int    db_re_ind;
++      /* number of variable with largest relative error */
++      int    db_quality;
++      /* quality of dual feasibility:
++         'H' - high
++         'M' - medium
++         'L' - low
++         '?' - dual solution is infeasible */
++      /*--------------------------------------------------------------*/
++      /* (x[k] - bound of x[k]) * d[k] = 0 (KKT.CS) */
++      double cs_ae_max;
++      /* largest absolute error */
++      int    cs_ae_ind;
++      /* number of variable with largest absolute error */
++      double cs_re_max;
++      /* largest relative error */
++      int    cs_re_ind;
++      /* number of variable with largest relative error */
++      int    cs_quality;
++      /* quality of complementary slackness:
++         'H' - high
++         'M' - medium
++         'L' - low
++         '?' - primal and dual solutions are not complementary */
++} LPXKKT;
++
++LPX *lpx_create_prob(void);
++/* create problem object */
++
++void lpx_set_prob_name(LPX *lp, const char *name);
++/* assign (change) problem name */
++
++void lpx_set_obj_name(LPX *lp, const char *name);
++/* assign (change) objective function name */
++
++void lpx_set_obj_dir(LPX *lp, int dir);
++/* set (change) optimization direction flag */
++
++int lpx_add_rows(LPX *lp, int nrs);
++/* add new rows to problem object */
++
++int lpx_add_cols(LPX *lp, int ncs);
++/* add new columns to problem object */
++
++void lpx_set_row_name(LPX *lp, int i, const char *name);
++/* assign (change) row name */
++
++void lpx_set_col_name(LPX *lp, int j, const char *name);
++/* assign (change) column name */
++
++void lpx_set_row_bnds(LPX *lp, int i, int type, double lb, double ub);
++/* set (change) row bounds */
++
++void lpx_set_col_bnds(LPX *lp, int j, int type, double lb, double ub);
++/* set (change) column bounds */
++
++void lpx_set_obj_coef(glp_prob *lp, int j, double coef);
++/* set (change) obj. coefficient or constant term */
++
++void lpx_set_mat_row(LPX *lp, int i, int len, const int ind[],
++      const double val[]);
++/* set (replace) row of the constraint matrix */
++
++void lpx_set_mat_col(LPX *lp, int j, int len, const int ind[],
++      const double val[]);
++/* set (replace) column of the constraint matrix */
++
++void lpx_load_matrix(LPX *lp, int ne, const int ia[], const int ja[],
++      const double ar[]);
++/* load (replace) the whole constraint matrix */
++
++void lpx_del_rows(LPX *lp, int nrs, const int num[]);
++/* delete specified rows from problem object */
++
++void lpx_del_cols(LPX *lp, int ncs, const int num[]);
++/* delete specified columns from problem object */
++
++void lpx_delete_prob(LPX *lp);
++/* delete problem object */
++
++const char *lpx_get_prob_name(LPX *lp);
++/* retrieve problem name */
++
++const char *lpx_get_obj_name(LPX *lp);
++/* retrieve objective function name */
++
++int lpx_get_obj_dir(LPX *lp);
++/* retrieve optimization direction flag */
++
++int lpx_get_num_rows(LPX *lp);
++/* retrieve number of rows */
++
++int lpx_get_num_cols(LPX *lp);
++/* retrieve number of columns */
++
++const char *lpx_get_row_name(LPX *lp, int i);
++/* retrieve row name */
++
++const char *lpx_get_col_name(LPX *lp, int j);
++/* retrieve column name */
++
++int lpx_get_row_type(LPX *lp, int i);
++/* retrieve row type */
++
++double lpx_get_row_lb(LPX *lp, int i);
++/* retrieve row lower bound */
++
++double lpx_get_row_ub(LPX *lp, int i);
++/* retrieve row upper bound */
++
++void lpx_get_row_bnds(LPX *lp, int i, int *typx, double *lb,
++      double *ub);
++/* retrieve row bounds */
++
++int lpx_get_col_type(LPX *lp, int j);
++/* retrieve column type */
++
++double lpx_get_col_lb(LPX *lp, int j);
++/* retrieve column lower bound */
++
++double lpx_get_col_ub(LPX *lp, int j);
++/* retrieve column upper bound */
++
++void lpx_get_col_bnds(LPX *lp, int j, int *typx, double *lb,
++      double *ub);
++/* retrieve column bounds */
++
++double lpx_get_obj_coef(LPX *lp, int j);
++/* retrieve obj. coefficient or constant term */
++
++int lpx_get_num_nz(LPX *lp);
++/* retrieve number of constraint coefficients */
++
++int lpx_get_mat_row(LPX *lp, int i, int ind[], double val[]);
++/* retrieve row of the constraint matrix */
++
++int lpx_get_mat_col(LPX *lp, int j, int ind[], double val[]);
++/* retrieve column of the constraint matrix */
++
++void lpx_create_index(LPX *lp);
++/* create the name index */
++
++int lpx_find_row(LPX *lp, const char *name);
++/* find row by its name */
++
++int lpx_find_col(LPX *lp, const char *name);
++/* find column by its name */
++
++void lpx_delete_index(LPX *lp);
++/* delete the name index */
++
++void lpx_scale_prob(LPX *lp);
++/* scale problem data */
++
++void lpx_unscale_prob(LPX *lp);
++/* unscale problem data */
++
++void lpx_set_row_stat(LPX *lp, int i, int stat);
++/* set (change) row status */
++
++void lpx_set_col_stat(LPX *lp, int j, int stat);
++/* set (change) column status */
++
++void lpx_std_basis(LPX *lp);
++/* construct standard initial LP basis */
++
++void lpx_adv_basis(LPX *lp);
++/* construct advanced initial LP basis */
++
++void lpx_cpx_basis(LPX *lp);
++/* construct Bixby's initial LP basis */
++
++int lpx_simplex(LPX *lp);
++/* easy-to-use driver to the simplex method */
++
++int lpx_exact(LPX *lp);
++/* easy-to-use driver to the exact simplex method */
++
++int lpx_get_status(LPX *lp);
++/* retrieve generic status of basic solution */
++
++int lpx_get_prim_stat(LPX *lp);
++/* retrieve primal status of basic solution */
++
++int lpx_get_dual_stat(LPX *lp);
++/* retrieve dual status of basic solution */
++
++double lpx_get_obj_val(LPX *lp);
++/* retrieve objective value (basic solution) */
++
++int lpx_get_row_stat(LPX *lp, int i);
++/* retrieve row status (basic solution) */
++
++double lpx_get_row_prim(LPX *lp, int i);
++/* retrieve row primal value (basic solution) */
++
++double lpx_get_row_dual(LPX *lp, int i);
++/* retrieve row dual value (basic solution) */
++
++void lpx_get_row_info(LPX *lp, int i, int *tagx, double *vx,
++      double *dx);
++/* obtain row solution information */
++
++int lpx_get_col_stat(LPX *lp, int j);
++/* retrieve column status (basic solution) */
++
++double lpx_get_col_prim(LPX *lp, int j);
++/* retrieve column primal value (basic solution) */
++
++double lpx_get_col_dual(glp_prob *lp, int j);
++/* retrieve column dual value (basic solution) */
++
++void lpx_get_col_info(LPX *lp, int j, int *tagx, double *vx,
++      double *dx);
++/* obtain column solution information (obsolete) */
++
++int lpx_get_ray_info(LPX *lp);
++/* determine what causes primal unboundness */
++
++void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt);
++/* check Karush-Kuhn-Tucker conditions */
++
++int lpx_warm_up(LPX *lp);
++/* "warm up" LP basis */
++
++int lpx_eval_tab_row(LPX *lp, int k, int ind[], double val[]);
++/* compute row of the simplex table */
++
++int lpx_eval_tab_col(LPX *lp, int k, int ind[], double val[]);
++/* compute column of the simplex table */
++
++int lpx_transform_row(LPX *lp, int len, int ind[], double val[]);
++/* transform explicitly specified row */
++
++int lpx_transform_col(LPX *lp, int len, int ind[], double val[]);
++/* transform explicitly specified column */
++
++int lpx_prim_ratio_test(LPX *lp, int len, const int ind[],
++      const double val[], int how, double tol);
++/* perform primal ratio test */
++
++int lpx_dual_ratio_test(LPX *lp, int len, const int ind[],
++      const double val[], int how, double tol);
++/* perform dual ratio test */
++
++int lpx_interior(LPX *lp);
++/* easy-to-use driver to the interior point method */
++
++int lpx_ipt_status(LPX *lp);
++/* retrieve status of interior-point solution */
++
++double lpx_ipt_obj_val(LPX *lp);
++/* retrieve objective value (interior point) */
++
++double lpx_ipt_row_prim(LPX *lp, int i);
++/* retrieve row primal value (interior point) */
++
++double lpx_ipt_row_dual(LPX *lp, int i);
++/* retrieve row dual value (interior point) */
++
++double lpx_ipt_col_prim(LPX *lp, int j);
++/* retrieve column primal value (interior point) */
++
++double lpx_ipt_col_dual(LPX *lp, int j);
++/* retrieve column dual value (interior point) */
++
++void lpx_set_class(LPX *lp, int klass);
++/* set problem class */
++
++int lpx_get_class(LPX *lp);
++/* determine problem klass */
++
++void lpx_set_col_kind(LPX *lp, int j, int kind);
++/* set (change) column kind */
++
++int lpx_get_col_kind(LPX *lp, int j);
++/* retrieve column kind */
++
++int lpx_get_num_int(LPX *lp);
++/* retrieve number of integer columns */
++
++int lpx_get_num_bin(LPX *lp);
++/* retrieve number of binary columns */
++
++int lpx_integer(LPX *lp);
++/* easy-to-use driver to the branch-and-bound method */
++
++int lpx_intopt(LPX *lp);
++/* easy-to-use driver to the branch-and-bound method */
++
++int lpx_mip_status(LPX *lp);
++/* retrieve status of MIP solution */
++
++double lpx_mip_obj_val(LPX *lp);
++/* retrieve objective value (MIP solution) */
++
++double lpx_mip_row_val(LPX *lp, int i);
++/* retrieve row value (MIP solution) */
++
++double lpx_mip_col_val(LPX *lp, int j);
++/* retrieve column value (MIP solution) */
++
++void lpx_check_int(LPX *lp, LPXKKT *kkt);
++/* check integer feasibility conditions */
++
++void lpx_reset_parms(LPX *lp);
++/* reset control parameters to default values */
++
++void lpx_set_int_parm(LPX *lp, int parm, int val);
++/* set (change) integer control parameter */
++
++int lpx_get_int_parm(LPX *lp, int parm);
++/* query integer control parameter */
++
++void lpx_set_real_parm(LPX *lp, int parm, double val);
++/* set (change) real control parameter */
++
++double lpx_get_real_parm(LPX *lp, int parm);
++/* query real control parameter */
++
++LPX *lpx_read_mps(const char *fname);
++/* read problem data in fixed MPS format */
++
++int lpx_write_mps(LPX *lp, const char *fname);
++/* write problem data in fixed MPS format */
++
++int lpx_read_bas(LPX *lp, const char *fname);
++/* read LP basis in fixed MPS format */
++
++int lpx_write_bas(LPX *lp, const char *fname);
++/* write LP basis in fixed MPS format */
++
++LPX *lpx_read_freemps(const char *fname);
++/* read problem data in free MPS format */
++
++int lpx_write_freemps(LPX *lp, const char *fname);
++/* write problem data in free MPS format */
++
++LPX *lpx_read_cpxlp(const char *fname);
++/* read problem data in CPLEX LP format */
++
++int lpx_write_cpxlp(LPX *lp, const char *fname);
++/* write problem data in CPLEX LP format */
++
++LPX *lpx_read_model(const char *model, const char *data,
++      const char *output);
++/* read LP/MIP model written in GNU MathProg language */
++
++int lpx_print_prob(LPX *lp, const char *fname);
++/* write problem data in plain text format */
++
++int lpx_print_sol(LPX *lp, const char *fname);
++/* write LP problem solution in printable format */
++
++int lpx_print_sens_bnds(LPX *lp, const char *fname);
++/* write bounds sensitivity information */
++
++int lpx_print_ips(LPX *lp, const char *fname);
++/* write interior point solution in printable format */
++
++int lpx_print_mip(LPX *lp, const char *fname);
++/* write MIP problem solution in printable format */
++
++int lpx_is_b_avail(LPX *lp);
++/* check if LP basis is available */
++
++int lpx_main(int argc, const char *argv[]);
++/* stand-alone LP/MIP solver */
++
++// From lpx.c
++
++#define xassert glp_assert
++#define xerror  glp_error
++
++struct CPS
++{     /* control parameters */
++      LPX *lp;
++      /* pointer to corresponding problem object */
++      int msg_lev;
++      /* level of messages output by the solver:
++         0 - no output
++         1 - error messages only
++         2 - normal output
++         3 - full output (includes informational messages) */
++      int scale;
++      /* scaling option:
++         0 - no scaling
++         1 - equilibration scaling
++         2 - geometric mean scaling
++         3 - geometric mean scaling, then equilibration scaling */
++      int dual;
++      /* dual simplex option:
++         0 - use primal simplex
++         1 - use dual simplex */
++      int price;
++      /* pricing option (for both primal and dual simplex):
++         0 - textbook pricing
++         1 - steepest edge pricing */
++      double relax;
++      /* relaxation parameter used in the ratio test; if it is zero,
++         the textbook ratio test is used; if it is non-zero (should be
++         positive), Harris' two-pass ratio test is used; in the latter
++         case on the first pass basic variables (in the case of primal
++         simplex) or reduced costs of non-basic variables (in the case
++         of dual simplex) are allowed to slightly violate their bounds,
++         but not more than (relax * tol_bnd) or (relax * tol_dj) (thus,
++         relax is a percentage of tol_bnd or tol_dj) */
++      double tol_bnd;
++      /* relative tolerance used to check if the current basic solution
++         is primal feasible */
++      double tol_dj;
++      /* absolute tolerance used to check if the current basic solution
++         is dual feasible */
++      double tol_piv;
++      /* relative tolerance used to choose eligible pivotal elements of
++         the simplex table in the ratio test */
++      int round;
++      /* solution rounding option:
++         0 - report all computed values and reduced costs "as is"
++         1 - if possible (allowed by the tolerances), replace computed
++             values and reduced costs which are close to zero by exact
++             zeros */
++      double obj_ll;
++      /* lower limit of the objective function; if on the phase II the
++         objective function reaches this limit and continues decreasing,
++         the solver stops the search */
++      double obj_ul;
++      /* upper limit of the objective function; if on the phase II the
++         objective function reaches this limit and continues increasing,
++         the solver stops the search */
++      int it_lim;
++      /* simplex iterations limit; if this value is positive, it is
++         decreased by one each time when one simplex iteration has been
++         performed, and reaching zero value signals the solver to stop
++         the search; negative value means no iterations limit */
++      double tm_lim;
++      /* searching time limit, in seconds; if this value is positive,
++         it is decreased each time when one simplex iteration has been
++         performed by the amount of time spent for the iteration, and
++         reaching zero value signals the solver to stop the search;
++         negative value means no time limit */
++      int out_frq;
++      /* output frequency, in iterations; this parameter specifies how
++         frequently the solver sends information about the solution to
++         the standard output */
++      double out_dly;
++      /* output delay, in seconds; this parameter specifies how long
++         the solver should delay sending information about the solution
++         to the standard output; zero value means no delay */
++      int branch; /* MIP */
++      /* branching heuristic:
++         0 - branch on first variable
++         1 - branch on last variable
++         2 - branch using heuristic by Driebeck and Tomlin
++         3 - branch on most fractional variable */
++      int btrack; /* MIP */
++      /* backtracking heuristic:
++         0 - select most recent node (depth first search)
++         1 - select earliest node (breadth first search)
++         2 - select node using the best projection heuristic
++         3 - select node with best local bound */
++      double tol_int; /* MIP */
++      /* absolute tolerance used to check if the current basic solution
++         is integer feasible */
++      double tol_obj; /* MIP */
++      /* relative tolerance used to check if the value of the objective
++         function is not better than in the best known integer feasible
++         solution */
++      int mps_info; /* lpx_write_mps */
++      /* if this flag is set, the routine lpx_write_mps outputs several
++         comment cards that contains some information about the problem;
++         otherwise the routine outputs no comment cards */
++      int mps_obj; /* lpx_write_mps */
++      /* this parameter tells the routine lpx_write_mps how to output
++         the objective function row:
++         0 - never output objective function row
++         1 - always output objective function row
++         2 - output objective function row if and only if the problem
++             has no free rows */
++      int mps_orig; /* lpx_write_mps */
++      /* if this flag is set, the routine lpx_write_mps uses original
++         row and column symbolic names; otherwise the routine generates
++         plain names using ordinal numbers of rows and columns */
++      int mps_wide; /* lpx_write_mps */
++      /* if this flag is set, the routine lpx_write_mps uses all data
++         fields; otherwise the routine keeps fields 5 and 6 empty */
++      int mps_free; /* lpx_write_mps */
++      /* if this flag is set, the routine lpx_write_mps omits column
++         and vector names everytime if possible (free style); otherwise
++         the routine never omits these names (pedantic style) */
++      int mps_skip; /* lpx_write_mps */
++      /* if this flag is set, the routine lpx_write_mps skips empty
++         columns (i.e. which has no constraint coefficients); otherwise
++         the routine outputs all columns */
++      int lpt_orig; /* lpx_write_lpt */
++      /* if this flag is set, the routine lpx_write_lpt uses original
++         row and column symbolic names; otherwise the routine generates
++         plain names using ordinal numbers of rows and columns */
++      int presol; /* lpx_simplex */
++      /* LP presolver option:
++         0 - do not use LP presolver
++         1 - use LP presolver */
++      int binarize; /* lpx_intopt */
++      /* if this flag is set, the routine lpx_intopt replaces integer
++         columns by binary ones */
++      int use_cuts; /* lpx_intopt */
++      /* if this flag is set, the routine lpx_intopt tries generating
++         cutting planes:
++         LPX_C_COVER  - mixed cover cuts
++         LPX_C_CLIQUE - clique cuts
++         LPX_C_GOMORY - Gomory's mixed integer cuts
++         LPX_C_ALL    - all cuts */
++      double mip_gap; /* MIP */
++      /* relative MIP gap tolerance */
++      struct CPS *link;
++      /* pointer to CPS for another problem object */
++};
++
++static struct CPS *cps_ptr = NULL;
++/* initial pointer to CPS linked list */
++
++static struct CPS *find_cps(LPX *lp)
++{     /* find CPS for specified problem object */
++      struct CPS *cps;
++      for (cps = cps_ptr; cps != NULL; cps = cps->link)
++         if (cps->lp == lp) break;
++      /* if cps is NULL (not found), the problem object was created
++         with glp_create_prob rather than with lpx_create_prob */
++      xassert(cps != NULL);
++      return cps;
++}
++
++static void reset_cps(struct CPS *cps)
++{     /* reset control parameters to default values */
++      cps->msg_lev  = 3;
++      cps->scale    = 1;
++      cps->dual     = 0;
++      cps->price    = 1;
++      cps->relax    = 0.07;
++      cps->tol_bnd  = 1e-7;
++      cps->tol_dj   = 1e-7;
++      cps->tol_piv  = 1e-9;
++      cps->round    = 0;
++      cps->obj_ll   = -DBL_MAX;
++      cps->obj_ul   = +DBL_MAX;
++      cps->it_lim   = -1;
++      cps->tm_lim   = -1.0;
++      cps->out_frq  = 200;
++      cps->out_dly  = 0.0;
++      cps->branch   = 2;
++      cps->btrack   = 3;
++      cps->tol_int  = 1e-5;
++      cps->tol_obj  = 1e-7;
++      cps->mps_info = 1;
++      cps->mps_obj  = 2;
++      cps->mps_orig = 0;
++      cps->mps_wide = 1;
++      cps->mps_free = 0;
++      cps->mps_skip = 0;
++      cps->lpt_orig = 0;
++      cps->presol   = 0;
++      cps->binarize = 0;
++      cps->use_cuts = 0;
++      cps->mip_gap  = 0.0;
++      return;
++}
++
++LPX *lpx_create_prob(void)
++{     /* create problem object */
++      LPX *lp;
++      struct CPS *cps;
++      lp = glp_create_prob();
++      cps = (struct CPS *) glp_alloc(1, sizeof(struct CPS));
++      cps->lp = lp;
++      reset_cps(cps);
++      cps->link = cps_ptr;
++      cps_ptr = cps;
++      return lp;
++}
++
++void lpx_set_prob_name(LPX *lp, const char *name)
++{     /* assign (change) problem name */
++      glp_set_prob_name(lp, name);
++      return;
++}
++
++void lpx_set_obj_name(LPX *lp, const char *name)
++{     /* assign (change) objective function name */
++      glp_set_obj_name(lp, name);
++      return;
++}
++
++void lpx_set_obj_dir(LPX *lp, int dir)
++{     /* set (change) optimization direction flag */
++      glp_set_obj_dir(lp, dir - LPX_MIN + GLP_MIN);
++      return;
++}
++
++int lpx_add_rows(LPX *lp, int nrs)
++{     /* add new rows to problem object */
++      return glp_add_rows(lp, nrs);
++}
++
++int lpx_add_cols(LPX *lp, int ncs)
++{     /* add new columns to problem object */
++      return glp_add_cols(lp, ncs);
++}
++
++void lpx_set_row_name(LPX *lp, int i, const char *name)
++{     /* assign (change) row name */
++      glp_set_row_name(lp, i, name);
++      return;
++}
++
++void lpx_set_col_name(LPX *lp, int j, const char *name)
++{     /* assign (change) column name */
++      glp_set_col_name(lp, j, name);
++      return;
++}
++
++void lpx_set_row_bnds(LPX *lp, int i, int type, double lb, double ub)
++{     /* set (change) row bounds */
++      glp_set_row_bnds(lp, i, type - LPX_FR + GLP_FR, lb, ub);
++      return;
++}
++
++void lpx_set_col_bnds(LPX *lp, int j, int type, double lb, double ub)
++{     /* set (change) column bounds */
++      glp_set_col_bnds(lp, j, type - LPX_FR + GLP_FR, lb, ub);
++      return;
++}
++
++void lpx_set_obj_coef(glp_prob *lp, int j, double coef)
++{     /* set (change) obj. coefficient or constant term */
++      glp_set_obj_coef(lp, j, coef);
++      return;
++}
++
++void lpx_set_mat_row(LPX *lp, int i, int len, const int ind[],
++      const double val[])
++{     /* set (replace) row of the constraint matrix */
++      glp_set_mat_row(lp, i, len, ind, val);
++      return;
++}
++
++void lpx_set_mat_col(LPX *lp, int j, int len, const int ind[],
++      const double val[])
++{     /* set (replace) column of the constraint matrix */
++      glp_set_mat_col(lp, j, len, ind, val);
++      return;
++}
++
++void lpx_load_matrix(LPX *lp, int ne, const int ia[], const int ja[],
++      const double ar[])
++{     /* load (replace) the whole constraint matrix */
++      glp_load_matrix(lp, ne, ia, ja, ar);
++      return;
++}
++
++void lpx_del_rows(LPX *lp, int nrs, const int num[])
++{     /* delete specified rows from problem object */
++      glp_del_rows(lp, nrs, num);
++      return;
++}
++
++void lpx_del_cols(LPX *lp, int ncs, const int num[])
++{     /* delete specified columns from problem object */
++      glp_del_cols(lp, ncs, num);
++      return;
++}
++
++void lpx_delete_prob(LPX *lp)
++{     /* delete problem object */
++      struct CPS *cps = find_cps(lp);
++      if (cps_ptr == cps)
++         cps_ptr = cps->link;
++      else
++      {  struct CPS *prev;
++         for (prev = cps_ptr; prev != NULL; prev = prev->link)
++            if (prev->link == cps) break;
++         xassert(prev != NULL);
++         prev->link = cps->link;
++      }
++      glp_free(cps);
++      glp_delete_prob(lp);
++      return;
++}
++
++const char *lpx_get_prob_name(LPX *lp)
++{     /* retrieve problem name */
++      return glp_get_prob_name(lp);
++}
++
++const char *lpx_get_obj_name(LPX *lp)
++{     /* retrieve objective function name */
++      return glp_get_obj_name(lp);
++}
++
++int lpx_get_obj_dir(LPX *lp)
++{     /* retrieve optimization direction flag */
++      return glp_get_obj_dir(lp) - GLP_MIN + LPX_MIN;
++}
++
++int lpx_get_num_rows(LPX *lp)
++{     /* retrieve number of rows */
++      return glp_get_num_rows(lp);
++}
++
++int lpx_get_num_cols(LPX *lp)
++{     /* retrieve number of columns */
++      return glp_get_num_cols(lp);
++}
++
++const char *lpx_get_row_name(LPX *lp, int i)
++{     /* retrieve row name */
++      return glp_get_row_name(lp, i);
++}
++
++const char *lpx_get_col_name(LPX *lp, int j)
++{     /* retrieve column name */
++      return glp_get_col_name(lp, j);
++}
++
++int lpx_get_row_type(LPX *lp, int i)
++{     /* retrieve row type */
++      return glp_get_row_type(lp, i) - GLP_FR + LPX_FR;
++}
++
++double lpx_get_row_lb(glp_prob *lp, int i)
++{     /* retrieve row lower bound */
++      double lb;
++      lb = glp_get_row_lb(lp, i);
++      if (lb == -DBL_MAX) lb = 0.0;
++      return lb;
++}
++
++double lpx_get_row_ub(glp_prob *lp, int i)
++{     /* retrieve row upper bound */
++      double ub;
++      ub = glp_get_row_ub(lp, i);
++      if (ub == +DBL_MAX) ub = 0.0;
++      return ub;
++}
++
++void lpx_get_row_bnds(glp_prob *lp, int i, int *typx, double *lb,
++      double *ub)
++{     /* retrieve row bounds */
++      if (typx != NULL) *typx = lpx_get_row_type(lp, i);
++      if (lb != NULL) *lb = lpx_get_row_lb(lp, i);
++      if (ub != NULL) *ub = lpx_get_row_ub(lp, i);
++      return;
++}
++
++int lpx_get_col_type(LPX *lp, int j)
++{     /* retrieve column type */
++      return glp_get_col_type(lp, j) - GLP_FR + LPX_FR;
++}
++
++double lpx_get_col_lb(glp_prob *lp, int j)
++{     /* retrieve column lower bound */
++      double lb;
++      lb = glp_get_col_lb(lp, j);
++      if (lb == -DBL_MAX) lb = 0.0;
++      return lb;
++}
++
++double lpx_get_col_ub(glp_prob *lp, int j)
++{     /* retrieve column upper bound */
++      double ub;
++      ub = glp_get_col_ub(lp, j);
++      if (ub == +DBL_MAX) ub = 0.0;
++      return ub;
++}
++
++void lpx_get_col_bnds(glp_prob *lp, int j, int *typx, double *lb,
++      double *ub)
++{     /* retrieve column bounds */
++      if (typx != NULL) *typx = lpx_get_col_type(lp, j);
++      if (lb != NULL) *lb = lpx_get_col_lb(lp, j);
++      if (ub != NULL) *ub = lpx_get_col_ub(lp, j);
++      return;
++}
++
++double lpx_get_obj_coef(LPX *lp, int j)
++{     /* retrieve obj. coefficient or constant term */
++      return glp_get_obj_coef(lp, j);
++}
++
++int lpx_get_num_nz(LPX *lp)
++{     /* retrieve number of constraint coefficients */
++      return glp_get_num_nz(lp);
++}
++
++int lpx_get_mat_row(LPX *lp, int i, int ind[], double val[])
++{     /* retrieve row of the constraint matrix */
++      return glp_get_mat_row(lp, i, ind, val);
++}
++
++int lpx_get_mat_col(LPX *lp, int j, int ind[], double val[])
++{     /* retrieve column of the constraint matrix */
++      return glp_get_mat_col(lp, j, ind, val);
++}
++
++void lpx_create_index(LPX *lp)
++{     /* create the name index */
++      glp_create_index(lp);
++      return;
++}
++
++int lpx_find_row(LPX *lp, const char *name)
++{     /* find row by its name */
++      return glp_find_row(lp, name);
++}
++
++int lpx_find_col(LPX *lp, const char *name)
++{     /* find column by its name */
++      return glp_find_col(lp, name);
++}
++
++void lpx_delete_index(LPX *lp)
++{     /* delete the name index */
++      glp_delete_index(lp);
++      return;
++}
++
++void lpx_scale_prob(LPX *lp)
++{     /* scale problem data */
++      switch (lpx_get_int_parm(lp, LPX_K_SCALE))
++      {  case 0:
++            /* no scaling */
++            glp_unscale_prob(lp);
++            break;
++         case 1:
++            /* equilibration scaling */
++            glp_scale_prob(lp, GLP_SF_EQ);
++            break;
++         case 2:
++            /* geometric mean scaling */
++            glp_scale_prob(lp, GLP_SF_GM);
++            break;
++         case 3:
++            /* geometric mean scaling, then equilibration scaling */
++            glp_scale_prob(lp, GLP_SF_GM | GLP_SF_EQ);
++            break;
++         default:
++            xassert(lp != lp);
++      }
++      return;
++}
++
++void lpx_unscale_prob(LPX *lp)
++{     /* unscale problem data */
++      glp_unscale_prob(lp);
++      return;
++}
++
++void lpx_set_row_stat(LPX *lp, int i, int stat)
++{     /* set (change) row status */
++      glp_set_row_stat(lp, i, stat - LPX_BS + GLP_BS);
++      return;
++}
++
++void lpx_set_col_stat(LPX *lp, int j, int stat)
++{     /* set (change) column status */
++      glp_set_col_stat(lp, j, stat - LPX_BS + GLP_BS);
++      return;
++}
++
++void lpx_std_basis(LPX *lp)
++{     /* construct standard initial LP basis */
++      glp_std_basis(lp);
++      return;
++}
++
++void lpx_adv_basis(LPX *lp)
++{     /* construct advanced initial LP basis */
++      glp_adv_basis(lp, 0);
++      return;
++}
++
++void lpx_cpx_basis(LPX *lp)
++{     /* construct Bixby's initial LP basis */
++      glp_cpx_basis(lp);
++      return;
++}
++
++static void fill_smcp(LPX *lp, glp_smcp *parm)
++{     glp_init_smcp(parm);
++      switch (lpx_get_int_parm(lp, LPX_K_MSGLEV))
++      {  case 0:  parm->msg_lev = GLP_MSG_OFF;   break;
++         case 1:  parm->msg_lev = GLP_MSG_ERR;   break;
++         case 2:  parm->msg_lev = GLP_MSG_ON;    break;
++         case 3:  parm->msg_lev = GLP_MSG_ALL;   break;
++         default: xassert(lp != lp);
++      }
++      switch (lpx_get_int_parm(lp, LPX_K_DUAL))
++      {  case 0:  parm->meth = GLP_PRIMAL;       break;
++         case 1:  parm->meth = GLP_DUAL;         break;
++         default: xassert(lp != lp);
++      }
++      switch (lpx_get_int_parm(lp, LPX_K_PRICE))
++      {  case 0:  parm->pricing = GLP_PT_STD;    break;
++         case 1:  parm->pricing = GLP_PT_PSE;    break;
++         default: xassert(lp != lp);
++      }
++      if (lpx_get_real_parm(lp, LPX_K_RELAX) == 0.0)
++         parm->r_test = GLP_RT_STD;
++      else
++         parm->r_test = GLP_RT_HAR;
++      parm->tol_bnd = lpx_get_real_parm(lp, LPX_K_TOLBND);
++      parm->tol_dj  = lpx_get_real_parm(lp, LPX_K_TOLDJ);
++      parm->tol_piv = lpx_get_real_parm(lp, LPX_K_TOLPIV);
++      parm->obj_ll  = lpx_get_real_parm(lp, LPX_K_OBJLL);
++      parm->obj_ul  = lpx_get_real_parm(lp, LPX_K_OBJUL);
++      if (lpx_get_int_parm(lp, LPX_K_ITLIM) < 0)
++         parm->it_lim = INT_MAX;
++      else
++         parm->it_lim = lpx_get_int_parm(lp, LPX_K_ITLIM);
++      if (lpx_get_real_parm(lp, LPX_K_TMLIM) < 0.0)
++         parm->tm_lim = INT_MAX;
++      else
++         parm->tm_lim =
++            (int)(1000.0 * lpx_get_real_parm(lp, LPX_K_TMLIM));
++      parm->out_frq = lpx_get_int_parm(lp, LPX_K_OUTFRQ);
++      parm->out_dly =
++            (int)(1000.0 * lpx_get_real_parm(lp, LPX_K_OUTDLY));
++      switch (lpx_get_int_parm(lp, LPX_K_PRESOL))
++      {  case 0:  parm->presolve = GLP_OFF;      break;
++         case 1:  parm->presolve = GLP_ON;       break;
++         default: xassert(lp != lp);
++      }
++      return;
++}
++
++int lpx_simplex(LPX *lp)
++{     /* easy-to-use driver to the simplex method */
++      glp_smcp parm;
++      int ret;
++      fill_smcp(lp, &parm);
++      ret = glp_simplex(lp, &parm);
++      switch (ret)
++      {  case 0:           ret = LPX_E_OK;      break;
++         case GLP_EBADB:
++         case GLP_ESING:
++         case GLP_ECOND:
++         case GLP_EBOUND:  ret = LPX_E_FAULT;   break;
++         case GLP_EFAIL:   ret = LPX_E_SING;    break;
++         case GLP_EOBJLL:  ret = LPX_E_OBJLL;   break;
++         case GLP_EOBJUL:  ret = LPX_E_OBJUL;   break;
++         case GLP_EITLIM:  ret = LPX_E_ITLIM;   break;
++         case GLP_ETMLIM:  ret = LPX_E_TMLIM;   break;
++         case GLP_ENOPFS:  ret = LPX_E_NOPFS;   break;
++         case GLP_ENODFS:  ret = LPX_E_NODFS;   break;
++         default:          xassert(ret != ret);
++      }
++      return ret;
++}
++
++int lpx_exact(LPX *lp)
++{     /* easy-to-use driver to the exact simplex method */
++      glp_smcp parm;
++      int ret;
++      fill_smcp(lp, &parm);
++      ret = glp_exact(lp, &parm);
++      switch (ret)
++      {  case 0:           ret = LPX_E_OK;      break;
++         case GLP_EBADB:
++         case GLP_ESING:
++         case GLP_EBOUND:
++         case GLP_EFAIL:   ret = LPX_E_FAULT;   break;
++         case GLP_EITLIM:  ret = LPX_E_ITLIM;   break;
++         case GLP_ETMLIM:  ret = LPX_E_TMLIM;   break;
++         default:          xassert(ret != ret);
++      }
++      return ret;
++}
++
++int lpx_get_status(glp_prob *lp)
++{     /* retrieve generic status of basic solution */
++      int status;
++      switch (glp_get_status(lp))
++      {  case GLP_OPT:    status = LPX_OPT;    break;
++         case GLP_FEAS:   status = LPX_FEAS;   break;
++         case GLP_INFEAS: status = LPX_INFEAS; break;
++         case GLP_NOFEAS: status = LPX_NOFEAS; break;
++         case GLP_UNBND:  status = LPX_UNBND;  break;
++         case GLP_UNDEF:  status = LPX_UNDEF;  break;
++         default:         xassert(lp != lp);
++      }
++      return status;
++}
++
++int lpx_get_prim_stat(glp_prob *lp)
++{     /* retrieve status of primal basic solution */
++      return glp_get_prim_stat(lp) - GLP_UNDEF + LPX_P_UNDEF;
++}
++
++int lpx_get_dual_stat(glp_prob *lp)
++{     /* retrieve status of dual basic solution */
++      return glp_get_dual_stat(lp) - GLP_UNDEF + LPX_D_UNDEF;
++}
++
++double lpx_get_obj_val(LPX *lp)
++{     /* retrieve objective value (basic solution) */
++      return glp_get_obj_val(lp);
++}
++
++int lpx_get_row_stat(LPX *lp, int i)
++{     /* retrieve row status (basic solution) */
++      return glp_get_row_stat(lp, i) - GLP_BS + LPX_BS;
++}
++
++double lpx_get_row_prim(LPX *lp, int i)
++{     /* retrieve row primal value (basic solution) */
++      return glp_get_row_prim(lp, i);
++}
++
++double lpx_get_row_dual(LPX *lp, int i)
++{     /* retrieve row dual value (basic solution) */
++      return glp_get_row_dual(lp, i);
++}
++
++void lpx_get_row_info(glp_prob *lp, int i, int *tagx, double *vx,
++      double *dx)
++{     /* obtain row solution information */
++      if (tagx != NULL) *tagx = lpx_get_row_stat(lp, i);
++      if (vx != NULL) *vx = lpx_get_row_prim(lp, i);
++      if (dx != NULL) *dx = lpx_get_row_dual(lp, i);
++      return;
++}
++
++int lpx_get_col_stat(LPX *lp, int j)
++{     /* retrieve column status (basic solution) */
++      return glp_get_col_stat(lp, j) - GLP_BS + LPX_BS;
++}
++
++double lpx_get_col_prim(LPX *lp, int j)
++{     /* retrieve column primal value (basic solution) */
++      return glp_get_col_prim(lp, j);
++}
++
++double lpx_get_col_dual(glp_prob *lp, int j)
++{     /* retrieve column dual value (basic solution) */
++      return glp_get_col_dual(lp, j);
++}
++
++void lpx_get_col_info(glp_prob *lp, int j, int *tagx, double *vx,
++      double *dx)
++{     /* obtain column solution information */
++      if (tagx != NULL) *tagx = lpx_get_col_stat(lp, j);
++      if (vx != NULL) *vx = lpx_get_col_prim(lp, j);
++      if (dx != NULL) *dx = lpx_get_col_dual(lp, j);
++      return;
++}
++
++int lpx_get_ray_info(LPX *lp)
++{     /* determine what causes primal unboundness */
++      return glp_get_unbnd_ray(lp);
++}
++
++void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt)
++{     /* check Karush-Kuhn-Tucker conditions */
++      int m = glp_get_num_rows(lp);
++      int ae_ind, re_ind;
++      double ae_max, re_max;
++      xassert(scaled == scaled);
++      glp_check_kkt(lp, GLP_SOL, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
++         &re_ind);
++      kkt->pe_ae_max = ae_max;
++      kkt->pe_ae_row = ae_ind;
++      kkt->pe_re_max = re_max;
++      kkt->pe_re_row = re_ind;
++      if (re_max <= 1e-9)
++         kkt->pe_quality = 'H';
++      else if (re_max <= 1e-6)
++         kkt->pe_quality = 'M';
++      else if (re_max <= 1e-3)
++         kkt->pe_quality = 'L';
++      else
++         kkt->pe_quality = '?';
++      glp_check_kkt(lp, GLP_SOL, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
++         &re_ind);
++      kkt->pb_ae_max = ae_max;
++      kkt->pb_ae_ind = ae_ind;
++      kkt->pb_re_max = re_max;
++      kkt->pb_re_ind = re_ind;
++      if (re_max <= 1e-9)
++         kkt->pb_quality = 'H';
++      else if (re_max <= 1e-6)
++         kkt->pb_quality = 'M';
++      else if (re_max <= 1e-3)
++         kkt->pb_quality = 'L';
++      else
++         kkt->pb_quality = '?';
++      glp_check_kkt(lp, GLP_SOL, GLP_KKT_DE, &ae_max, &ae_ind, &re_max,
++         &re_ind);
++      kkt->de_ae_max = ae_max;
++      if (ae_ind == 0)
++         kkt->de_ae_col = 0;
++      else
++         kkt->de_ae_col = ae_ind - m;
++      kkt->de_re_max = re_max;
++      if (re_ind == 0)
++         kkt->de_re_col = 0;
++      else
++         kkt->de_re_col = ae_ind - m;
++      if (re_max <= 1e-9)
++         kkt->de_quality = 'H';
++      else if (re_max <= 1e-6)
++         kkt->de_quality = 'M';
++      else if (re_max <= 1e-3)
++         kkt->de_quality = 'L';
++      else
++         kkt->de_quality = '?';
++      glp_check_kkt(lp, GLP_SOL, GLP_KKT_DB, &ae_max, &ae_ind, &re_max,
++         &re_ind);
++      kkt->db_ae_max = ae_max;
++      kkt->db_ae_ind = ae_ind;
++      kkt->db_re_max = re_max;
++      kkt->db_re_ind = re_ind;
++      if (re_max <= 1e-9)
++         kkt->db_quality = 'H';
++      else if (re_max <= 1e-6)
++         kkt->db_quality = 'M';
++      else if (re_max <= 1e-3)
++         kkt->db_quality = 'L';
++      else
++         kkt->db_quality = '?';
++      kkt->cs_ae_max = 0.0, kkt->cs_ae_ind = 0;
++      kkt->cs_re_max = 0.0, kkt->cs_re_ind = 0;
++      kkt->cs_quality = 'H';
++      return;
++}
++
++int lpx_warm_up(LPX *lp)
++{     /* "warm up" LP basis */
++      int ret;
++      ret = glp_warm_up(lp);
++      if (ret == 0)
++         ret = LPX_E_OK;
++      else if (ret == GLP_EBADB)
++         ret = LPX_E_BADB;
++      else if (ret == GLP_ESING)
++         ret = LPX_E_SING;
++      else if (ret == GLP_ECOND)
++         ret = LPX_E_SING;
++      else
++         xassert(ret != ret);
++      return ret;
++}
++
++int lpx_eval_tab_row(LPX *lp, int k, int ind[], double val[])
++{     /* compute row of the simplex tableau */
++      return glp_eval_tab_row(lp, k, ind, val);
++}
++
++int lpx_eval_tab_col(LPX *lp, int k, int ind[], double val[])
++{     /* compute column of the simplex tableau */
++      return glp_eval_tab_col(lp, k, ind, val);
++}
++
++int lpx_transform_row(LPX *lp, int len, int ind[], double val[])
++{     /* transform explicitly specified row */
++      return glp_transform_row(lp, len, ind, val);
++}
++
++int lpx_transform_col(LPX *lp, int len, int ind[], double val[])
++{     /* transform explicitly specified column */
++      return glp_transform_col(lp, len, ind, val);
++}
++
++int lpx_prim_ratio_test(LPX *lp, int len, const int ind[],
++      const double val[], int how, double tol)
++{     /* perform primal ratio test */
++      int piv;
++      piv = glp_prim_rtest(lp, len, ind, val, how, tol);
++      xassert(0 <= piv && piv <= len);
++      return piv == 0 ? 0 : ind[piv];
++}
++
++int lpx_dual_ratio_test(LPX *lp, int len, const int ind[],
++      const double val[], int how, double tol)
++{     /* perform dual ratio test */
++      int piv;
++      piv = glp_dual_rtest(lp, len, ind, val, how, tol);
++      xassert(0 <= piv && piv <= len);
++      return piv == 0 ? 0 : ind[piv];
++}
++
++int lpx_interior(LPX *lp)
++{     /* easy-to-use driver to the interior-point method */
++      int ret;
++      ret = glp_interior(lp, NULL);
++      switch (ret)
++      {  case 0:           ret = LPX_E_OK;      break;
++         case GLP_EFAIL:   ret = LPX_E_FAULT;   break;
++         case GLP_ENOFEAS: ret = LPX_E_NOFEAS;  break;
++         case GLP_ENOCVG:  ret = LPX_E_NOCONV;  break;
++         case GLP_EITLIM:  ret = LPX_E_ITLIM;   break;
++         case GLP_EINSTAB: ret = LPX_E_INSTAB;  break;
++         default:          xassert(ret != ret);
++      }
++      return ret;
++}
++
++int lpx_ipt_status(glp_prob *lp)
++{     /* retrieve status of interior-point solution */
++      int status;
++      switch (glp_ipt_status(lp))
++      {  case GLP_UNDEF:  status = LPX_T_UNDEF;  break;
++         case GLP_OPT:    status = LPX_T_OPT;    break;
++         default:         xassert(lp != lp);
++      }
++      return status;
++}
++
++double lpx_ipt_obj_val(LPX *lp)
++{     /* retrieve objective value (interior point) */
++      return glp_ipt_obj_val(lp);
++}
++
++double lpx_ipt_row_prim(LPX *lp, int i)
++{     /* retrieve row primal value (interior point) */
++      return glp_ipt_row_prim(lp, i);
++}
++
++double lpx_ipt_row_dual(LPX *lp, int i)
++{     /* retrieve row dual value (interior point) */
++      return glp_ipt_row_dual(lp, i);
++}
++
++double lpx_ipt_col_prim(LPX *lp, int j)
++{     /* retrieve column primal value (interior point) */
++      return glp_ipt_col_prim(lp, j);
++}
++
++double lpx_ipt_col_dual(LPX *lp, int j)
++{     /* retrieve column dual value (interior point) */
++      return glp_ipt_col_dual(lp, j);
++}
++
++void lpx_set_class(LPX *lp, int klass)
++{     /* set problem class */
++      xassert(lp == lp);
++      if (!(klass == LPX_LP || klass == LPX_MIP))
++         xerror("lpx_set_class: invalid problem class\n");
++      return;
++}
++
++int lpx_get_class(LPX *lp)
++{     /* determine problem klass */
++      return glp_get_num_int(lp) == 0 ? LPX_LP : LPX_MIP;
++}
++
++void lpx_set_col_kind(LPX *lp, int j, int kind)
++{     /* set (change) column kind */
++      glp_set_col_kind(lp, j, kind - LPX_CV + GLP_CV);
++      return;
++}
++
++int lpx_get_col_kind(LPX *lp, int j)
++{     /* retrieve column kind */
++      return glp_get_col_kind(lp, j) == GLP_CV ? LPX_CV : LPX_IV;
++}
++
++int lpx_get_num_int(LPX *lp)
++{     /* retrieve number of integer columns */
++      return glp_get_num_int(lp);
++}
++
++int lpx_get_num_bin(LPX *lp)
++{     /* retrieve number of binary columns */
++      return glp_get_num_bin(lp);
++}
++
++static int solve_mip(LPX *lp, int presolve)
++{     glp_iocp parm;
++      int ret;
++      glp_init_iocp(&parm);
++      switch (lpx_get_int_parm(lp, LPX_K_MSGLEV))
++      {  case 0:  parm.msg_lev = GLP_MSG_OFF;   break;
++         case 1:  parm.msg_lev = GLP_MSG_ERR;   break;
++         case 2:  parm.msg_lev = GLP_MSG_ON;    break;
++         case 3:  parm.msg_lev = GLP_MSG_ALL;   break;
++         default: xassert(lp != lp);
++      }
++      switch (lpx_get_int_parm(lp, LPX_K_BRANCH))
++      {  case 0:  parm.br_tech = GLP_BR_FFV;    break;
++         case 1:  parm.br_tech = GLP_BR_LFV;    break;
++         case 2:  parm.br_tech = GLP_BR_DTH;    break;
++         case 3:  parm.br_tech = GLP_BR_MFV;    break;
++         default: xassert(lp != lp);
++      }
++      switch (lpx_get_int_parm(lp, LPX_K_BTRACK))
++      {  case 0:  parm.bt_tech = GLP_BT_DFS;    break;
++         case 1:  parm.bt_tech = GLP_BT_BFS;    break;
++         case 2:  parm.bt_tech = GLP_BT_BPH;    break;
++         case 3:  parm.bt_tech = GLP_BT_BLB;    break;
++         default: xassert(lp != lp);
++      }
++      parm.tol_int = lpx_get_real_parm(lp, LPX_K_TOLINT);
++      parm.tol_obj = lpx_get_real_parm(lp, LPX_K_TOLOBJ);
++      if (lpx_get_real_parm(lp, LPX_K_TMLIM) < 0.0 ||
++          lpx_get_real_parm(lp, LPX_K_TMLIM) > 1e6)
++         parm.tm_lim = INT_MAX;
++      else
++         parm.tm_lim =
++            (int)(1000.0 * lpx_get_real_parm(lp, LPX_K_TMLIM));
++      parm.mip_gap = lpx_get_real_parm(lp, LPX_K_MIPGAP);
++      if (lpx_get_int_parm(lp, LPX_K_USECUTS) & LPX_C_GOMORY)
++         parm.gmi_cuts = GLP_ON;
++      else
++         parm.gmi_cuts = GLP_OFF;
++      if (lpx_get_int_parm(lp, LPX_K_USECUTS) & LPX_C_MIR)
++         parm.mir_cuts = GLP_ON;
++      else
++         parm.mir_cuts = GLP_OFF;
++      if (lpx_get_int_parm(lp, LPX_K_USECUTS) & LPX_C_COVER)
++         parm.cov_cuts = GLP_ON;
++      else
++         parm.cov_cuts = GLP_OFF;
++      if (lpx_get_int_parm(lp, LPX_K_USECUTS) & LPX_C_CLIQUE)
++         parm.clq_cuts = GLP_ON;
++      else
++         parm.clq_cuts = GLP_OFF;
++      parm.presolve = presolve;
++      if (lpx_get_int_parm(lp, LPX_K_BINARIZE))
++         parm.binarize = GLP_ON;
++      ret = glp_intopt(lp, &parm);
++      switch (ret)
++      {  case 0:           ret = LPX_E_OK;      break;
++         case GLP_ENOPFS:  ret = LPX_E_NOPFS;   break;
++         case GLP_ENODFS:  ret = LPX_E_NODFS;   break;
++         case GLP_EBOUND:
++         case GLP_EROOT:   ret = LPX_E_FAULT;   break;
++         case GLP_EFAIL:   ret = LPX_E_SING;    break;
++         case GLP_EMIPGAP: ret = LPX_E_MIPGAP;  break;
++         case GLP_ETMLIM:  ret = LPX_E_TMLIM;   break;
++         default:          xassert(ret != ret);
++      }
++      return ret;
++}
++
++int lpx_integer(LPX *lp)
++{     /* easy-to-use driver to the branch-and-bound method */
++      return solve_mip(lp, GLP_OFF);
++}
++
++int lpx_intopt(LPX *lp)
++{     /* easy-to-use driver to the branch-and-bound method */
++      return solve_mip(lp, GLP_ON);
++}
++
++int lpx_mip_status(glp_prob *lp)
++{     /* retrieve status of MIP solution */
++      int status;
++      switch (glp_mip_status(lp))
++      {  case GLP_UNDEF:  status = LPX_I_UNDEF;  break;
++         case GLP_OPT:    status = LPX_I_OPT;    break;
++         case GLP_FEAS:   status = LPX_I_FEAS;   break;
++         case GLP_NOFEAS: status = LPX_I_NOFEAS; break;
++         default:         xassert(lp != lp);
++      }
++      return status;
++}
++
++double lpx_mip_obj_val(LPX *lp)
++{     /* retrieve objective value (MIP solution) */
++      return glp_mip_obj_val(lp);
++}
++
++double lpx_mip_row_val(LPX *lp, int i)
++{     /* retrieve row value (MIP solution) */
++      return glp_mip_row_val(lp, i);
++}
++
++double lpx_mip_col_val(LPX *lp, int j)
++{     /* retrieve column value (MIP solution) */
++      return glp_mip_col_val(lp, j);
++}
++
++void lpx_check_int(LPX *lp, LPXKKT *kkt)
++{     /* check integer feasibility conditions */
++      int ae_ind, re_ind;
++      double ae_max, re_max;
++      glp_check_kkt(lp, GLP_MIP, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
++         &re_ind);
++      kkt->pe_ae_max = ae_max;
++      kkt->pe_ae_row = ae_ind;
++      kkt->pe_re_max = re_max;
++      kkt->pe_re_row = re_ind;
++      if (re_max <= 1e-9)
++         kkt->pe_quality = 'H';
++      else if (re_max <= 1e-6)
++         kkt->pe_quality = 'M';
++      else if (re_max <= 1e-3)
++         kkt->pe_quality = 'L';
++      else
++         kkt->pe_quality = '?';
++      glp_check_kkt(lp, GLP_MIP, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
++         &re_ind);
++      kkt->pb_ae_max = ae_max;
++      kkt->pb_ae_ind = ae_ind;
++      kkt->pb_re_max = re_max;
++      kkt->pb_re_ind = re_ind;
++      if (re_max <= 1e-9)
++         kkt->pb_quality = 'H';
++      else if (re_max <= 1e-6)
++         kkt->pb_quality = 'M';
++      else if (re_max <= 1e-3)
++         kkt->pb_quality = 'L';
++      else
++         kkt->pb_quality = '?';
++      return;
++}
++
++void lpx_reset_parms(LPX *lp)
++{     /* reset control parameters to default values */
++      struct CPS *cps = find_cps(lp);
++      reset_cps(cps);
++      return;
++}
++
++void lpx_set_int_parm(LPX *lp, int parm, int val)
++{     /* set (change) integer control parameter */
++      struct CPS *cps = find_cps(lp);
++      switch (parm)
++      {  case LPX_K_MSGLEV:
++            if (!(0 <= val && val <= 3))
++               xerror("lpx_set_int_parm: MSGLEV = %d; invalid value\n",
++                  val);
++            cps->msg_lev = val;
++            break;
++         case LPX_K_SCALE:
++            if (!(0 <= val && val <= 3))
++               xerror("lpx_set_int_parm: SCALE = %d; invalid value\n",
++                  val);
++            cps->scale = val;
++            break;
++         case LPX_K_DUAL:
++            if (!(val == 0 || val == 1))
++               xerror("lpx_set_int_parm: DUAL = %d; invalid value\n",
++                  val);
++            cps->dual = val;
++            break;
++         case LPX_K_PRICE:
++            if (!(val == 0 || val == 1))
++               xerror("lpx_set_int_parm: PRICE = %d; invalid value\n",
++                  val);
++            cps->price = val;
++            break;
++         case LPX_K_ROUND:
++            if (!(val == 0 || val == 1))
++               xerror("lpx_set_int_parm: ROUND = %d; invalid value\n",
++                  val);
++            cps->round = val;
++            break;
++         case LPX_K_ITLIM:
++            cps->it_lim = val;
++            break;
++         case LPX_K_ITCNT:
++#if 0 /* FIXME: needs 4.53 */
++            glp_set_it_cnt(lp, val);
++#endif
++            break;
++         case LPX_K_OUTFRQ:
++            if (!(val > 0))
++               xerror("lpx_set_int_parm: OUTFRQ = %d; invalid value\n",
++                  val);
++            cps->out_frq = val;
++            break;
++         case LPX_K_BRANCH:
++            if (!(val == 0 || val == 1 || val == 2 || val == 3))
++               xerror("lpx_set_int_parm: BRANCH = %d; invalid value\n",
++                  val);
++            cps->branch = val;
++            break;
++         case LPX_K_BTRACK:
++            if (!(val == 0 || val == 1 || val == 2 || val == 3))
++               xerror("lpx_set_int_parm: BTRACK = %d; invalid value\n",
++                  val);
++            cps->btrack = val;
++            break;
++         case LPX_K_MPSINFO:
++            if (!(val == 0 || val == 1))
++               xerror("lpx_set_int_parm: MPSINFO = %d; invalid value\n",
++                  val);
++            cps->mps_info = val;
++            break;
++         case LPX_K_MPSOBJ:
++            if (!(val == 0 || val == 1 || val == 2))
++               xerror("lpx_set_int_parm: MPSOBJ = %d; invalid value\n",
++                  val);
++            cps->mps_obj = val;
++            break;
++         case LPX_K_MPSORIG:
++            if (!(val == 0 || val == 1))
++               xerror("lpx_set_int_parm: MPSORIG = %d; invalid value\n",
++                  val);
++            cps->mps_orig = val;
++            break;
++         case LPX_K_MPSWIDE:
++            if (!(val == 0 || val == 1))
++               xerror("lpx_set_int_parm: MPSWIDE = %d; invalid value\n",
++                  val);
++            cps->mps_wide = val;
++            break;
++         case LPX_K_MPSFREE:
++            if (!(val == 0 || val == 1))
++               xerror("lpx_set_int_parm: MPSFREE = %d; invalid value\n",
++                  val);
++            cps->mps_free = val;
++            break;
++         case LPX_K_MPSSKIP:
++            if (!(val == 0 || val == 1))
++               xerror("lpx_set_int_parm: MPSSKIP = %d; invalid value\n",
++                  val);
++            cps->mps_skip = val;
++            break;
++         case LPX_K_LPTORIG:
++            if (!(val == 0 || val == 1))
++               xerror("lpx_set_int_parm: LPTORIG = %d; invalid value\n",
++                  val);
++            cps->lpt_orig = val;
++            break;
++         case LPX_K_PRESOL:
++            if (!(val == 0 || val == 1))
++               xerror("lpx_set_int_parm: PRESOL = %d; invalid value\n",
++                  val);
++            cps->presol = val;
++            break;
++         case LPX_K_BINARIZE:
++            if (!(val == 0 || val == 1))
++               xerror("lpx_set_int_parm: BINARIZE = %d; invalid value\n"
++                  , val);
++            cps->binarize = val;
++            break;
++         case LPX_K_USECUTS:
++            if (val & ~LPX_C_ALL)
++            xerror("lpx_set_int_parm: USECUTS = 0x%X; invalid value\n",
++                  val);
++            cps->use_cuts = val;
++            break;
++         case LPX_K_BFTYPE:
++            {  glp_bfcp parm;
++               glp_get_bfcp(lp, &parm);
++               switch (val)
++               {  case 1:
++                     parm.type = GLP_BF_FT; break;
++                  case 2:
++                     parm.type = GLP_BF_BG; break;
++                  case 3:
++                     parm.type = GLP_BF_GR; break;
++                  default:
++                     xerror("lpx_set_int_parm: BFTYPE = %d; invalid val"
++                        "ue\n", val);
++               }
++               glp_set_bfcp(lp, &parm);
++            }
++            break;
++         default:
++            xerror("lpx_set_int_parm: parm = %d; invalid parameter\n",
++               parm);
++      }
++      return;
++}
++
++int lpx_get_int_parm(LPX *lp, int parm)
++{     /* query integer control parameter */
++      struct CPS *cps = find_cps(lp);
++      int val = 0;
++      switch (parm)
++      {  case LPX_K_MSGLEV:
++            val = cps->msg_lev; break;
++         case LPX_K_SCALE:
++            val = cps->scale; break;
++         case LPX_K_DUAL:
++            val = cps->dual; break;
++         case LPX_K_PRICE:
++            val = cps->price; break;
++         case LPX_K_ROUND:
++            val = cps->round; break;
++         case LPX_K_ITLIM:
++            val = cps->it_lim; break;
++         case LPX_K_ITCNT:
++#if 0 /* FIXME: needs 4.53 */
++            val = glp_get_it_cnt(lp); break;
++#else
++            val = 0; break;
++#endif
++         case LPX_K_OUTFRQ:
++            val = cps->out_frq; break;
++         case LPX_K_BRANCH:
++            val = cps->branch; break;
++         case LPX_K_BTRACK:
++            val = cps->btrack; break;
++         case LPX_K_MPSINFO:
++            val = cps->mps_info; break;
++         case LPX_K_MPSOBJ:
++            val = cps->mps_obj; break;
++         case LPX_K_MPSORIG:
++            val = cps->mps_orig; break;
++         case LPX_K_MPSWIDE:
++            val = cps->mps_wide; break;
++         case LPX_K_MPSFREE:
++            val = cps->mps_free; break;
++         case LPX_K_MPSSKIP:
++            val = cps->mps_skip; break;
++         case LPX_K_LPTORIG:
++            val = cps->lpt_orig; break;
++         case LPX_K_PRESOL:
++            val = cps->presol; break;
++         case LPX_K_BINARIZE:
++            val = cps->binarize; break;
++         case LPX_K_USECUTS:
++            val = cps->use_cuts; break;
++         case LPX_K_BFTYPE:
++            {  glp_bfcp parm;
++               glp_get_bfcp(lp, &parm);
++               switch (parm.type)
++               {  case GLP_BF_FT:
++                     val = 1; break;
++                  case GLP_BF_BG:
++                     val = 2; break;
++                  case GLP_BF_GR:
++                     val = 3; break;
++                  default:
++                     xassert(lp != lp);
++               }
++            }
++            break;
++         default:
++            xerror("lpx_get_int_parm: parm = %d; invalid parameter\n",
++               parm);
++      }
++      return val;
++}
++
++void lpx_set_real_parm(LPX *lp, int parm, double val)
++{     /* set (change) real control parameter */
++      struct CPS *cps = find_cps(lp);
++      switch (parm)
++      {  case LPX_K_RELAX:
++            if (!(0.0 <= val && val <= 1.0))
++               xerror("lpx_set_real_parm: RELAX = %g; invalid value\n",
++                  val);
++            cps->relax = val;
++            break;
++         case LPX_K_TOLBND:
++            if (!(DBL_EPSILON <= val && val <= 0.001))
++               xerror("lpx_set_real_parm: TOLBND = %g; invalid value\n",
++                  val);
++            cps->tol_bnd = val;
++            break;
++         case LPX_K_TOLDJ:
++            if (!(DBL_EPSILON <= val && val <= 0.001))
++               xerror("lpx_set_real_parm: TOLDJ = %g; invalid value\n",
++                  val);
++            cps->tol_dj = val;
++            break;
++         case LPX_K_TOLPIV:
++            if (!(DBL_EPSILON <= val && val <= 0.001))
++               xerror("lpx_set_real_parm: TOLPIV = %g; invalid value\n",
++                  val);
++            cps->tol_piv = val;
++            break;
++         case LPX_K_OBJLL:
++            cps->obj_ll = val;
++            break;
++         case LPX_K_OBJUL:
++            cps->obj_ul = val;
++            break;
++         case LPX_K_TMLIM:
++            cps->tm_lim = val;
++            break;
++         case LPX_K_OUTDLY:
++            cps->out_dly = val;
++            break;
++         case LPX_K_TOLINT:
++            if (!(DBL_EPSILON <= val && val <= 0.001))
++               xerror("lpx_set_real_parm: TOLINT = %g; invalid value\n",
++                  val);
++            cps->tol_int = val;
++            break;
++         case LPX_K_TOLOBJ:
++            if (!(DBL_EPSILON <= val && val <= 0.001))
++               xerror("lpx_set_real_parm: TOLOBJ = %g; invalid value\n",
++                  val);
++            cps->tol_obj = val;
++            break;
++         case LPX_K_MIPGAP:
++            if (val < 0.0)
++               xerror("lpx_set_real_parm: MIPGAP = %g; invalid value\n",
++                  val);
++            cps->mip_gap = val;
++            break;
++         default:
++            xerror("lpx_set_real_parm: parm = %d; invalid parameter\n",
++               parm);
++      }
++      return;
++}
++
++double lpx_get_real_parm(LPX *lp, int parm)
++{     /* query real control parameter */
++      struct CPS *cps = find_cps(lp);
++      double val = 0.0;
++      switch (parm)
++      {  case LPX_K_RELAX:
++            val = cps->relax;
++            break;
++         case LPX_K_TOLBND:
++            val = cps->tol_bnd;
++            break;
++         case LPX_K_TOLDJ:
++            val = cps->tol_dj;
++            break;
++         case LPX_K_TOLPIV:
++            val = cps->tol_piv;
++            break;
++         case LPX_K_OBJLL:
++            val = cps->obj_ll;
++            break;
++         case LPX_K_OBJUL:
++            val = cps->obj_ul;
++            break;
++         case LPX_K_TMLIM:
++            val = cps->tm_lim;
++            break;
++         case LPX_K_OUTDLY:
++            val = cps->out_dly;
++            break;
++         case LPX_K_TOLINT:
++            val = cps->tol_int;
++            break;
++         case LPX_K_TOLOBJ:
++            val = cps->tol_obj;
++            break;
++         case LPX_K_MIPGAP:
++            val = cps->mip_gap;
++            break;
++         default:
++            xerror("lpx_get_real_parm: parm = %d; invalid parameter\n",
++               parm);
++      }
++      return val;
++}
++
++LPX *lpx_read_mps(const char *fname)
++{     /* read problem data in fixed MPS format */
++      LPX *lp = lpx_create_prob();
++      if (glp_read_mps(lp, GLP_MPS_DECK, NULL, fname))
++         lpx_delete_prob(lp), lp = NULL;
++      return lp;
++}
++
++int lpx_write_mps(LPX *lp, const char *fname)
++{     /* write problem data in fixed MPS format */
++      return glp_write_mps(lp, GLP_MPS_DECK, NULL, fname);
++}
++
++int lpx_read_bas(LPX *lp, const char *fname)
++{     /* read LP basis in fixed MPS format */
++      xassert(lp == lp);
++      xassert(fname == fname);
++      xerror("lpx_read_bas: operation not supported\n");
++      return 0;
++}
++
++int lpx_write_bas(LPX *lp, const char *fname)
++{     /* write LP basis in fixed MPS format */
++      xassert(lp == lp);
++      xassert(fname == fname);
++      xerror("lpx_write_bas: operation not supported\n");
++      return 0;
++}
++
++LPX *lpx_read_freemps(const char *fname)
++{     /* read problem data in free MPS format */
++      LPX *lp = lpx_create_prob();
++      if (glp_read_mps(lp, GLP_MPS_FILE, NULL, fname))
++         lpx_delete_prob(lp), lp = NULL;
++      return lp;
++}
++
++int lpx_write_freemps(LPX *lp, const char *fname)
++{     /* write problem data in free MPS format */
++      return glp_write_mps(lp, GLP_MPS_FILE, NULL, fname);
++}
++
++LPX *lpx_read_cpxlp(const char *fname)
++{     /* read problem data in CPLEX LP format */
++      LPX *lp;
++      lp = lpx_create_prob();
++      if (glp_read_lp(lp, NULL, fname))
++         lpx_delete_prob(lp), lp = NULL;
++      return lp;
++}
++
++int lpx_write_cpxlp(LPX *lp, const char *fname)
++{     /* write problem data in CPLEX LP format */
++      return glp_write_lp(lp, NULL, fname);
++}
++
++LPX *lpx_read_model(const char *model, const char *data, const char
++      *output)
++{     /* read LP/MIP model written in GNU MathProg language */
++      LPX *lp = NULL;
++      glp_tran *tran;
++      /* allocate the translator workspace */
++      tran = glp_mpl_alloc_wksp();
++      /* read model section and optional data section */
++      if (glp_mpl_read_model(tran, model, data != NULL)) goto done;
++      /* read separate data section, if required */
++      if (data != NULL)
++         if (glp_mpl_read_data(tran, data)) goto done;
++      /* generate the model */
++      if (glp_mpl_generate(tran, output)) goto done;
++      /* build the problem instance from the model */
++      lp = lpx_create_prob();
++      glp_mpl_build_prob(tran, lp);
++done: /* free the translator workspace */
++      glp_mpl_free_wksp(tran);
++      /* bring the problem object to the calling program */
++      return lp;
++}
++
++int lpx_print_prob(LPX *lp, const char *fname)
++{     /* write problem data in plain text format */
++      return glp_write_lp(lp, NULL, fname);
++}
++
++int lpx_print_sol(LPX *lp, const char *fname)
++{     /* write LP problem solution in printable format */
++      return glp_print_sol(lp, fname);
++}
++
++int lpx_print_sens_bnds(LPX *lp, const char *fname)
++{     /* write bounds sensitivity information */
++      if (glp_get_status(lp) == GLP_OPT && !glp_bf_exists(lp))
++         glp_factorize(lp);
++      return glp_print_ranges(lp, 0, NULL, 0, fname);
++}
++
++int lpx_print_ips(LPX *lp, const char *fname)
++{     /* write interior point solution in printable format */
++      return glp_print_ipt(lp, fname);
++}
++
++int lpx_print_mip(LPX *lp, const char *fname)
++{     /* write MIP problem solution in printable format */
++      return glp_print_mip(lp, fname);
++}
++
++int lpx_is_b_avail(glp_prob *lp)
++{     /* check if LP basis is available */
++      return glp_bf_exists(lp);
++}
++
++int lpx_main(int argc, const char *argv[])
++{     /* stand-alone LP/MIP solver */
++      return glp_main(argc, argv);
++}
++
++#endif
++
+ #if 0
+ #ifdef GLPK_PRE_4_14
+ 
+--- a/configure.ac
++++ b/configure.ac
+@@ -751,7 +751,7 @@
+ LIBS="$Z_LDFLAGS $Z_LIBS $LIBS"
+ OCTAVE_CHECK_LIBRARY(glpk, GLPK,
+   [GLPK library not found.  The glpk function for solving linear programs will be disabled.],
+-  [glpk/glpk.h glpk.h], [_glp_lpx_simplex])
++  [glpk/glpk.h glpk.h], [glp_simplex])
+ LIBS="$save_LIBS"
+ CPPFLAGS="$save_CPPFLAGS"
+ 
diff --git a/debian/patches/series b/debian/patches/series
index 009c33d..3a17690 100644
--- a/debian/patches/series
+++ b/debian/patches/series
@@ -11,3 +11,4 @@ mkoctfile-mpi.diff
 contourc-stack-overflow.diff
 texinfo5.diff
 gcc-4.8.diff
+glpk-4.49.diff

-- 
Alioth's /home/groups/pkg-octave/bin/git-commit-notice on /srv/git.debian.org/git/pkg-octave/octave.git



More information about the Pkg-octave-commit mailing list