#! /bin/sh /usr/share/dpatch/dpatch-run ## zapmicro-zma8xx.dpatch by Joey Korkames ## ## All lines beginning with `## DP:' are a description of the patch. ## DP: A minimal patch to zaptel-base.c to integrate the oslec echo ## DP: canceller. The zaptap device is not included. @DPATCH@ --- ../zaptel.sysconfig.old 2007-09-09 16:06:54.816787898 -0700 +++ ../zaptel.sysconfig 2007-09-09 16:07:03.060053758 -0700 @@ -6,6 +6,8 @@ MODULES="$MODULES tor2" # T400P - Quad Span T1 Card # E400P - Quad Span E1 Card +MODULES="$MODULES zma8xx" # ZMA8XX - Modular FXS/FXO interface (1-8 ports) + MODULES="$MODULES wct4xxp" # TE405P - Quad Span T1/E1 Card (5v version) # TE410P - Quad Span T1/E1 Card (3.3v version) #wct4xxp_ARGS="t1e1override=15" # Additional parameters for TE4xxP driver --- ../zma8xx.c.old 2007-09-04 16:07:03.070054080 -0700 +++ ../zma8xx.c 2007-09-09 16:07:03.070054080 -0700 @@ -0,0 +1,2612 @@ +/* + * Zapmicro ZMA8xx TDM FXS/FXO Interface Driver for Zapata Telephony interface + * + * Derived from wctdm.c written by Mark Spencer + * Matthew Fredrickson + * + * Copyright (C) 2006, Zapmicro Technology Co.,Ltd. + * Copyright (C) 2001, Linux Support Services, Inc. + * + * All rights reserved. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "proslic.h" +/* + * Define for audio vs. register based ring detection + * + */ +/* #define AUDIO_RINGCHECK */ + +/* + Experimental max loop current limit for the proslic + Loop current limit is from 20 mA to 41 mA in steps of 3 + (according to datasheet) + So set the value below to: + 0x00 : 20mA (default) + 0x01 : 23mA + 0x02 : 26mA + 0x03 : 29mA + 0x04 : 32mA + 0x05 : 35mA + 0x06 : 37mA + 0x07 : 41mA +*/ +static int loopcurrent = 20; + +static int reversepolarity = 0; + +static alpha indirect_regs[] = +{ +{0,255,"DTMF_ROW_0_PEAK",0x55C2}, +{1,255,"DTMF_ROW_1_PEAK",0x51E6}, +{2,255,"DTMF_ROW2_PEAK",0x4B85}, +{3,255,"DTMF_ROW3_PEAK",0x4937}, +{4,255,"DTMF_COL1_PEAK",0x3333}, +{5,255,"DTMF_FWD_TWIST",0x0202}, +{6,255,"DTMF_RVS_TWIST",0x0202}, +{7,255,"DTMF_ROW_RATIO_TRES",0x0198}, +{8,255,"DTMF_COL_RATIO_TRES",0x0198}, +{9,255,"DTMF_ROW_2ND_ARM",0x0611}, +{10,255,"DTMF_COL_2ND_ARM",0x0202}, +{11,255,"DTMF_PWR_MIN_TRES",0x00E5}, +{12,255,"DTMF_OT_LIM_TRES",0x0A1C}, +{13,0,"OSC1_COEF",0x7B30}, +{14,1,"OSC1X",0x0063}, +{15,2,"OSC1Y",0x0000}, +{16,3,"OSC2_COEF",0x7870}, +{17,4,"OSC2X",0x007D}, +{18,5,"OSC2Y",0x0000}, +{19,6,"RING_V_OFF",0x0000}, +{20,7,"RING_OSC",0x7EF0}, +{21,8,"RING_X",0x0160}, +{22,9,"RING_Y",0x0000}, +{23,255,"PULSE_ENVEL",0x2000}, +{24,255,"PULSE_X",0x2000}, +{25,255,"PULSE_Y",0x0000}, +//{26,13,"RECV_DIGITAL_GAIN",0x4000}, // playback volume set lower +{26,13,"RECV_DIGITAL_GAIN",0x4000}, +{27,14,"XMIT_DIGITAL_GAIN",0x4000}, +//{27,14,"XMIT_DIGITAL_GAIN",0x2000}, +{28,15,"LOOP_CLOSE_TRES",0x1000}, +{29,16,"RING_TRIP_TRES",0x3600}, +{30,17,"COMMON_MIN_TRES",0x1000}, +{31,18,"COMMON_MAX_TRES",0x0200}, +{32,19,"PWR_ALARM_Q1Q2",0x07C0}, +{33,20,"PWR_ALARM_Q3Q4",0x2600}, +{34,21,"PWR_ALARM_Q5Q6",0x1B80}, +{35,22,"LOOP_CLOSURE_FILTER",0x8000}, +{36,23,"RING_TRIP_FILTER",0x0320}, +{37,24,"TERM_LP_POLE_Q1Q2",0x008C}, +{38,25,"TERM_LP_POLE_Q3Q4",0x0100}, +{39,26,"TERM_LP_POLE_Q5Q6",0x0010}, +{40,27,"CM_BIAS_RINGING",0x0C00}, +{41,64,"DCDC_MIN_V",0x0C00}, +{42,255,"DCDC_XTRA",0x1000}, +{43,66,"LOOP_CLOSE_TRES_LOW",0x1000}, +}; + +static struct fxo_mode { + char *name; + /* FXO */ + int ohs; + int ohs2; + int rz; + int rt; + int ilim; + int dcv; + int mini; + int acim; + int ring_osc; + int ring_x; +} fxo_modes[] = +{ + { "FCC", 0, 0, 0, 1, 0, 0x3, 0, 0, }, /* US, Canada */ + { "TBR21", 0, 0, 0, 0, 1, 0x3, 0, 0x2, 0x7e6c, 0x023a, }, + /* Austria, Belgium, Denmark, Finland, France, Germany, + Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, + Norway, Portugal, Spain, Sweden, Switzerland, and UK */ + { "ARGENTINA", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "AUSTRALIA", 1, 0, 0, 0, 0, 0, 0x3, 0x3, }, + { "AUSTRIA", 0, 1, 0, 0, 1, 0x3, 0, 0x3, }, + { "BAHRAIN", 0, 0, 0, 0, 1, 0x3, 0, 0x2, }, + { "BELGIUM", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "BRAZIL", 0, 0, 0, 0, 0, 0, 0x3, 0, }, + { "BULGARIA", 0, 0, 0, 0, 1, 0x3, 0x0, 0x3, }, + { "CANADA", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "CHILE", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "CHINA", 0, 0, 0, 0, 0, 0, 0x3, 0xf, }, + { "COLUMBIA", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "CROATIA", 0, 0, 0, 0, 1, 0x3, 0, 0x2, }, + { "CYRPUS", 0, 0, 0, 0, 1, 0x3, 0, 0x2, }, + { "CZECH", 0, 0, 0, 0, 1, 0x3, 0, 0x2, }, + { "DENMARK", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "ECUADOR", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "EGYPT", 0, 0, 0, 0, 0, 0, 0x3, 0, }, + { "ELSALVADOR", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "FINLAND", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "FRANCE", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "GERMANY", 0, 1, 0, 0, 1, 0x3, 0, 0x3, }, + { "GREECE", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "GUAM", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "HONGKONG", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "HUNGARY", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "ICELAND", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "INDIA", 0, 0, 0, 0, 0, 0x3, 0, 0x4, }, + { "INDONESIA", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "IRELAND", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "ISRAEL", 0, 0, 0, 0, 1, 0x3, 0, 0x2, }, + { "ITALY", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "JAPAN", 0, 0, 0, 0, 0, 0, 0x3, 0, }, + { "JORDAN", 0, 0, 0, 0, 0, 0, 0x3, 0, }, + { "KAZAKHSTAN", 0, 0, 0, 0, 0, 0x3, 0, }, + { "KUWAIT", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "LATVIA", 0, 0, 0, 0, 1, 0x3, 0, 0x2, }, + { "LEBANON", 0, 0, 0, 0, 1, 0x3, 0, 0x2, }, + { "LUXEMBOURG", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "MACAO", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "MALAYSIA", 0, 0, 0, 0, 0, 0, 0x3, 0, }, /* Current loop >= 20ma */ + { "MALTA", 0, 0, 0, 0, 1, 0x3, 0, 0x2, }, + { "MEXICO", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "MOROCCO", 0, 0, 0, 0, 1, 0x3, 0, 0x2, }, + { "NETHERLANDS", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "NEWZEALAND", 0, 0, 0, 0, 0, 0x3, 0, 0x4, }, + { "NIGERIA", 0, 0, 0, 0, 0x1, 0x3, 0, 0x2, }, + { "NORWAY", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "OMAN", 0, 0, 0, 0, 0, 0, 0x3, 0, }, + { "PAKISTAN", 0, 0, 0, 0, 0, 0, 0x3, 0, }, + { "PERU", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "PHILIPPINES", 0, 0, 0, 0, 0, 0, 0x3, 0, }, + { "POLAND", 0, 0, 1, 1, 0, 0x3, 0, 0, }, + { "PORTUGAL", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "ROMANIA", 0, 0, 0, 0, 0, 3, 0, 0, }, + { "RUSSIA", 0, 0, 0, 0, 0, 0, 0x3, 0, }, + { "SAUDIARABIA", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "SINGAPORE", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "SLOVAKIA", 0, 0, 0, 0, 0, 0x3, 0, 0x3, }, + { "SLOVENIA", 0, 0, 0, 0, 0, 0x3, 0, 0x2, }, + { "SOUTHAFRICA", 1, 0, 1, 0, 0, 0x3, 0, 0x3, }, + { "SOUTHKOREA", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "SPAIN", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "SWEDEN", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "SWITZERLAND", 0, 1, 0, 0, 1, 0x3, 0, 0x2, }, + { "SYRIA", 0, 0, 0, 0, 0, 0, 0x3, 0, }, + { "TAIWAN", 0, 0, 0, 0, 0, 0, 0x3, 0, }, + { "THAILAND", 0, 0, 0, 0, 0, 0, 0x3, 0, }, + { "UAE", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "UK", 0, 1, 0, 0, 1, 0x3, 0, 0x5, }, + { "USA", 0, 0, 0, 0, 0, 0x3, 0, 0, }, + { "YEMEN", 0, 0, 0, 0, 0, 0x3, 0, 0, }, +}; + +#ifdef STANDALONE_ZAPATA +#include "zaptel.h" +#else +#include +#endif + +#ifdef LINUX26 +#include +#endif + +#define NUM_FXO_REGS 60 + +#define WC_MAX_IFACES 128 + +#define WC_CNTL 0x00 +#define WC_OPER 0x01 +#define WC_AUXC 0x02 +#define WC_AUXD 0x03 +#define WC_MASK0 0x04 +#define WC_MASK1 0x05 +#define WC_INTSTAT 0x06 +#define WC_AUXR 0x07 + +#define WC_DMAWS 0x08 +#define WC_DMAWI 0x0c +#define WC_DMAWE 0x10 +#define WC_DMARS 0x18 +#define WC_DMARI 0x1c +#define WC_DMARE 0x20 + +#define WC_AUXFUNC 0x2b +#define WC_SERCTL 0x2d +#define WC_FSCDELAY 0x2f + +#define WC_REGBASE 0xc0 + +#define WC_SYNC 0x0 +#define WC_TEST 0x1 +#define WC_CS 0x2 +#define WC_VER 0x3 +#define YS_SLC 0x4 + +#define BIT_SYNC (1 << 0) +#define BIT_CS (1 << 2) +#define BIT_SCLK (1 << 3) +#define BIT_SDI (1 << 4) +#define BIT_SDO (1 << 5) + +#define FLAG_EMPTY 0 +#define FLAG_WRITE 1 +#define FLAG_READ 2 + +/* the constants below control the 'debounce' periods enforced by the + check_hook routines; these routines are called once every 4 interrupts + (the interrupt cycles around the four modules), so the periods are + specified in _4 millisecond_ increments +*/ +#define RING_DEBOUNCE 4 /* Ringer Debounce (64 ms) */ +#define DEFAULT_BATT_DEBOUNCE 4 /* Battery debounce (64 ms) */ +#define POLARITY_DEBOUNCE 4 /* Polarity debounce (64 ms) */ +#define DEFAULT_BATT_THRESH 3 /* Anything under this is "no battery" */ + +#define OHT_TIMER 6000 /* How long after RING to retain OHT */ + +#define FLAG_3215 (1 << 0) + +#define NUM_CARDS 8 + +#define MAX_ALARMS 10 + +#define MOD_TYPE_FXS 0 +#define MOD_TYPE_FXO 1 + +#define MINPEGTIME 10 * 8 /* 30 ms peak to peak gets us no more than 100 Hz */ +#define PEGTIME 50 * 8 /* 50ms peak to peak gets us rings of 10 Hz or more */ +#define PEGCOUNT 5 /* 5 cycles of pegging means RING */ + +#define NUM_CAL_REGS 12 + +struct calregs { + unsigned char vals[NUM_CAL_REGS]; +}; + +enum proslic_power_warn { + PROSLIC_POWER_UNKNOWN = 0, + PROSLIC_POWER_ON, + PROSLIC_POWER_WARNED, +}; + +#define NUM_REGS 109 +#define NUM_INDIRECT_REGS 105 + +struct zma_stats { + int tipvolt; /* TIP voltage (mV) */ + int ringvolt; /* RING voltage (mV) */ + int batvolt; /* VBAT voltage (mV) */ +}; + +struct zma_regs { + unsigned char direct[NUM_REGS]; + unsigned short indirect[NUM_INDIRECT_REGS]; +}; + +struct zma_regop { + int indirect; + unsigned char reg; + unsigned short val; +}; + +struct zma_echo_coefs { + unsigned char acim; + unsigned char coef1; + unsigned char coef2; + unsigned char coef3; + unsigned char coef4; + unsigned char coef5; + unsigned char coef6; + unsigned char coef7; + unsigned char coef8; +}; + +#define WCTDM_GET_STATS _IOR (ZT_CODE, 60, struct zma_stats) +#define WCTDM_GET_REGS _IOR (ZT_CODE, 61, struct zma_regs) +#define WCTDM_SET_REG _IOW (ZT_CODE, 62, struct zma_regop) +#define WCTDM_SET_ECHOTUNE _IOW (ZT_CODE, 63, struct zma_echo_coefs) + +struct zma { + struct pci_dev *dev; + char *variety; + struct zt_span span; + unsigned char ios; + int usecount; + unsigned int intcount; + int dead; + int pos; + int flags[NUM_CARDS]; + int freeregion; + int alt; + int curcard; + int cardflag; /* Bit-map of present cards */ + enum proslic_power_warn proslic_power; + spinlock_t lock; + + union { + struct { +#ifdef AUDIO_RINGCHECK + unsigned int pegtimer; + int pegcount; + int peg; + int ring; +#else + int wasringing; +#endif + int ringdebounce; + int offhook; + int battdebounce; + int nobatttimer; + int battery; + int lastpol; + int polarity; + int polaritydebounce; + } fxo; + struct { + int oldrxhook; + int debouncehook; + int lastrxhook; + int debounce; + int ohttimer; + int idletxhookstate; /* IDLE changing hook state */ + int lasttxhook; + int palarms; + struct calregs calregs; + } fxs; + } mod[NUM_CARDS]; + + /* Receive hook state and debouncing */ + int modtype[NUM_CARDS]; + unsigned char reg0shadow[NUM_CARDS]; + unsigned char reg1shadow[NUM_CARDS]; + + unsigned long ioaddr; + dma_addr_t readdma; + dma_addr_t writedma; + volatile unsigned int *writechunk; /* Double-word aligned write memory */ + volatile unsigned int *readchunk; /* Double-word aligned read memory */ + struct zt_chan chans[NUM_CARDS]; +}; + + +struct zma_desc { + char *name; + int flags; +}; + +static struct zma_desc zmae = { "ZMA8xx REV E", 0 }; +static int acim2tiss[16] = { 0x0, 0x1, 0x4, 0x5, 0x7, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0, 0x2, 0x0, 0x3 }; + +static struct zma *ifaces[WC_MAX_IFACES]; + +static void zma_release(struct zma *wc); + +static int battdebounce = DEFAULT_BATT_DEBOUNCE; +static int battthresh = DEFAULT_BATT_THRESH; +static int debug = 0; +static int robust = 0; +static int timingonly = 0; +static int lowpower = 0; +static int boostringer = 0; +static int fastringer = 0; +static int _opermode = 0; +static char *opermode = "FCC"; +static int fxshonormode = 0; +static int alawoverride = 0; +static int fastpickup = 0; +static int fxotxgain = 0; +static int fxorxgain = 0; +static int fxstxgain = 0; +static int fxsrxgain = 0; + +static int zma_init_proslic(struct zma *wc, int card, int fast , int manual, int sane); + +static inline void zma_transmitprep(struct zma *wc, unsigned char ints) +{ + volatile unsigned int *writechunk; + int x; + if (ints & 0x01) + /* Write is at interrupt address. Start writing from normal offset */ + writechunk = wc->writechunk; + else + writechunk = wc->writechunk + ZT_CHUNKSIZE * (NUM_CARDS / 4); + /* Calculate Transmission */ + zt_transmit(&wc->span); + + for (x=0;xcardflag & (1 << 7)) + writechunk[2 * x] |= (wc->chans[7].writechunk[x]); + if (wc->cardflag & (1 << 6)) + writechunk[2 * x] |= (wc->chans[6].writechunk[x] << 8); + if (wc->cardflag & (1 << 5)) + writechunk[2 * x] |= (wc->chans[5].writechunk[x] << 16); + if (wc->cardflag & (1 << 4)) + writechunk[2 * x] |= (wc->chans[4].writechunk[x] << 24); + + if (wc->cardflag & (1 << 3)) + writechunk[2 * x + 1] |= (wc->chans[3].writechunk[x]); + if (wc->cardflag & (1 << 2)) + writechunk[2 * x + 1] |= (wc->chans[2].writechunk[x] << 8); + if (wc->cardflag & (1 << 1)) + writechunk[2 * x + 1] |= (wc->chans[1].writechunk[x] << 16); + if (wc->cardflag & (1 << 0)) + writechunk[2 * x + 1] |= (wc->chans[0].writechunk[x] << 24); +#else + if (wc->cardflag & (1 << 7)) + writechunk[2 * x] |= (wc->chans[7].writechunk[x] << 24); + if (wc->cardflag & (1 << 6)) + writechunk[2 * x] |= (wc->chans[6].writechunk[x] << 16); + if (wc->cardflag & (1 << 5)) + writechunk[2 * x] |= (wc->chans[5].writechunk[x] << 8); + if (wc->cardflag & (1 << 4)) + writechunk[2 * x] |= (wc->chans[4].writechunk[x]); + + if (wc->cardflag & (1 << 3)) + writechunk[2 * x + 1] |= (wc->chans[3].writechunk[x] << 24); + if (wc->cardflag & (1 << 2)) + writechunk[2 * x + 1] |= (wc->chans[2].writechunk[x] << 16); + if (wc->cardflag & (1 << 1)) + writechunk[2 * x + 1] |= (wc->chans[1].writechunk[x] << 8); + if (wc->cardflag & (1 << 0)) + writechunk[2 * x + 1] |= (wc->chans[0].writechunk[x]); +#endif + } + +} + +#ifdef AUDIO_RINGCHECK +static inline void ring_check(struct zma *wc, int card) +{ + int x; + short sample; + if (wc->modtype[card] != MOD_TYPE_FXO) + return; + wc->mod[card].fxo.pegtimer += ZT_CHUNKSIZE; + for (x=0;xchans[card].readchunk[x], (&(wc->chans[card]))); + if ((sample > 10000) && (wc->mod[card].fxo.peg != 1)) { + if (debug > 1) printk("High peg!\n"); + if ((wc->mod[card].fxo.pegtimer < PEGTIME) && (wc->mod[card].fxo.pegtimer > MINPEGTIME)) + wc->mod[card].fxo.pegcount++; + wc->mod[card].fxo.pegtimer = 0; + wc->mod[card].fxo.peg = 1; + } else if ((sample < -10000) && (wc->mod[card].fxo.peg != -1)) { + if (debug > 1) printk("Low peg!\n"); + if ((wc->mod[card].fxo.pegtimer < (PEGTIME >> 2)) && (wc->mod[card].fxo.pegtimer > (MINPEGTIME >> 2))) + wc->mod[card].fxo.pegcount++; + wc->mod[card].fxo.pegtimer = 0; + wc->mod[card].fxo.peg = -1; + } + } + if (wc->mod[card].fxo.pegtimer > PEGTIME) { + /* Reset pegcount if our timer expires */ + wc->mod[card].fxo.pegcount = 0; + } + /* Decrement debouncer if appropriate */ + if (wc->mod[card].fxo.ringdebounce) + wc->mod[card].fxo.ringdebounce--; + if (!wc->mod[card].fxo.offhook && !wc->mod[card].fxo.ringdebounce) { + if (!wc->mod[card].fxo.ring && (wc->mod[card].fxo.pegcount > PEGCOUNT)) { + /* It's ringing */ + if (debug) + printk("RING on %d/%d!\n", wc->span.spanno, card + 1); + if (!wc->mod[card].fxo.offhook) + zt_hooksig(&wc->chans[card], ZT_RXSIG_RING); + wc->mod[card].fxo.ring = 1; + } + if (wc->mod[card].fxo.ring && !wc->mod[card].fxo.pegcount) { + /* No more ring */ + if (debug) + printk("NO RING on %d/%d!\n", wc->span.spanno, card + 1); + zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); + wc->mod[card].fxo.ring = 0; + } + } +} +#endif +static inline void zma_receiveprep(struct zma *wc, unsigned char ints) +{ + volatile unsigned int *readchunk; + int x; + + if (ints & 0x08) + readchunk = wc->readchunk + ZT_CHUNKSIZE * (NUM_CARDS / 4); + else + /* Read is at interrupt address. Valid data is available at normal offset */ + readchunk = wc->readchunk; + for (x=0;xcardflag & (1 << 7)) + wc->chans[7].readchunk[x] = (readchunk[2 * x + 1]) & 0xff; + if (wc->cardflag & (1 << 6)) + wc->chans[6].readchunk[x] = (readchunk[2 * x + 1] >> 8) & 0xff; + if (wc->cardflag & (1 << 5)) + wc->chans[5].readchunk[x] = (readchunk[2 * x + 1] >> 16) & 0xff; + if (wc->cardflag & (1 << 4)) + wc->chans[4].readchunk[x] = (readchunk[2 * x + 1] >> 24) & 0xff; + + if (wc->cardflag & (1 << 3)) + wc->chans[3].readchunk[x] = (readchunk[2 * x]) & 0xff; + if (wc->cardflag & (1 << 2)) + wc->chans[2].readchunk[x] = (readchunk[2 * x] >> 8) & 0xff; + if (wc->cardflag & (1 << 1)) + wc->chans[1].readchunk[x] = (readchunk[2 * x] >> 16) & 0xff; + if (wc->cardflag & (1 << 0)) + wc->chans[0].readchunk[x] = (readchunk[2 * x] >> 24) & 0xff; +#else + if (wc->cardflag & (1 << 7)) + wc->chans[7].readchunk[x] = (readchunk[2 * x + 1] >> 24) & 0xff; + if (wc->cardflag & (1 << 6)) + wc->chans[6].readchunk[x] = (readchunk[2 * x + 1] >> 16) & 0xff; + if (wc->cardflag & (1 << 5)) + wc->chans[5].readchunk[x] = (readchunk[2 * x + 1] >> 8) & 0xff; + if (wc->cardflag & (1 << 4)) + wc->chans[4].readchunk[x] = (readchunk[2 * x + 1]) & 0xff; + + if (wc->cardflag & (1 << 3)) + wc->chans[3].readchunk[x] = (readchunk[2 * x] >> 24) & 0xff; + if (wc->cardflag & (1 << 2)) + wc->chans[2].readchunk[x] = (readchunk[2 * x] >> 16) & 0xff; + if (wc->cardflag & (1 << 1)) + wc->chans[1].readchunk[x] = (readchunk[2 * x] >> 8) & 0xff; + if (wc->cardflag & (1 << 0)) + wc->chans[0].readchunk[x] = (readchunk[2 * x]) & 0xff; +#endif + } +#ifdef AUDIO_RINGCHECK + for (x=0;xcards;x++) + ring_check(wc, x); +#endif + /* XXX We're wasting 8 taps. We should get closer :( */ + for (x = 0; x < NUM_CARDS; x++) { + if (wc->cardflag & (1 << x)) + zt_ec_chunk(&wc->chans[x], wc->chans[x].readchunk, wc->chans[x].writechunk); + } + zt_receive(&wc->span); +} + +static void zma_stop_dma(struct zma *wc); +static void zma_reset_tdm(struct zma *wc); +static void zma_restart_dma(struct zma *wc); + +static inline void __write_8bits(struct zma *wc, unsigned char bits) +{ + /* Drop chip select */ + int x; + wc->ios |= BIT_SCLK; + outb(wc->ios, wc->ioaddr + WC_AUXD); + wc->ios &= ~BIT_CS; + outb(wc->ios, wc->ioaddr + WC_AUXD); + for (x=0;x<8;x++) { + /* Send out each bit, MSB first, drop SCLK as we do so */ + if (bits & 0x80) + wc->ios |= BIT_SDI; + else + wc->ios &= ~BIT_SDI; + wc->ios &= ~BIT_SCLK; + outb(wc->ios, wc->ioaddr + WC_AUXD); + /* Now raise SCLK high again and repeat */ + wc->ios |= BIT_SCLK; + outb(wc->ios, wc->ioaddr + WC_AUXD); + bits <<= 1; + } + /* Finally raise CS back high again */ + wc->ios |= BIT_CS; + outb(wc->ios, wc->ioaddr + WC_AUXD); + +} + +static inline void __reset_spi(struct zma *wc) +{ + /* Drop chip select and clock once and raise and clock once */ + wc->ios |= BIT_SCLK; + outb(wc->ios, wc->ioaddr + WC_AUXD); + wc->ios &= ~BIT_CS; + outb(wc->ios, wc->ioaddr + WC_AUXD); + wc->ios |= BIT_SDI; + wc->ios &= ~BIT_SCLK; + outb(wc->ios, wc->ioaddr + WC_AUXD); + /* Now raise SCLK high again and repeat */ + wc->ios |= BIT_SCLK; + outb(wc->ios, wc->ioaddr + WC_AUXD); + /* Finally raise CS back high again */ + wc->ios |= BIT_CS; + outb(wc->ios, wc->ioaddr + WC_AUXD); + /* Clock again */ + wc->ios &= ~BIT_SCLK; + outb(wc->ios, wc->ioaddr + WC_AUXD); + /* Now raise SCLK high again and repeat */ + wc->ios |= BIT_SCLK; + outb(wc->ios, wc->ioaddr + WC_AUXD); + +} + +static inline unsigned char __read_8bits(struct zma *wc) +{ + unsigned char res=0, c; + int x; + wc->ios |= BIT_SCLK; + outb(wc->ios, wc->ioaddr + WC_AUXD); + /* Drop chip select */ + wc->ios &= ~BIT_CS; + outb(wc->ios, wc->ioaddr + WC_AUXD); + for (x=0;x<8;x++) { + res <<= 1; + /* Get SCLK */ + wc->ios &= ~BIT_SCLK; + outb(wc->ios, wc->ioaddr + WC_AUXD); + /* Read back the value */ + c = inb(wc->ioaddr + WC_AUXR); + if (c & BIT_SDO) + res |= 1; + /* Now raise SCLK high again */ + wc->ios |= BIT_SCLK; + outb(wc->ios, wc->ioaddr + WC_AUXD); + } + /* Finally raise CS back high again */ + wc->ios |= BIT_CS; + outb(wc->ios, wc->ioaddr + WC_AUXD); + wc->ios &= ~BIT_SCLK; + outb(wc->ios, wc->ioaddr + WC_AUXD); + + /* And return our result */ + return res; +} + +static void __zma_setcreg(struct zma *wc, unsigned char reg, unsigned char val) +{ + outb(val, wc->ioaddr + WC_REGBASE + ((reg & 0xf) << 2)); +} + +static unsigned char __zma_getcreg(struct zma *wc, unsigned char reg) +{ + return inb(wc->ioaddr + WC_REGBASE + ((reg & 0xf) << 2)); +} + +static inline void __zma_setcard(struct zma *wc, int card) +{ + if (wc->curcard != card) { + __zma_setcreg(wc, WC_CS, (1 << card)); + wc->curcard = card; + } +} + +static void __zma_setreg(struct zma *wc, int card, unsigned char reg, unsigned char value) +{ + __zma_setcard(wc, card); + if (wc->modtype[card] == MOD_TYPE_FXO) { + __write_8bits(wc, 0x20); + __write_8bits(wc, reg & 0x7f); + } else { + __write_8bits(wc, reg & 0x7f); + } + __write_8bits(wc, value); +} + +static void zma_setreg(struct zma *wc, int card, unsigned char reg, unsigned char value) +{ + unsigned long flags; + spin_lock_irqsave(&wc->lock, flags); + __zma_setreg(wc, card, reg, value); + spin_unlock_irqrestore(&wc->lock, flags); +} + +static unsigned char __zma_getreg(struct zma *wc, int card, unsigned char reg) +{ + __zma_setcard(wc, card); + if (wc->modtype[card] == MOD_TYPE_FXO) { + __write_8bits(wc, 0x60); + __write_8bits(wc, reg & 0x7f); + } else { + __write_8bits(wc, reg | 0x80); + } + return __read_8bits(wc); +} + +static inline void reset_spi(struct zma *wc, int card) +{ + unsigned long flags; + spin_lock_irqsave(&wc->lock, flags); + __zma_setcard(wc, card); + __reset_spi(wc); + __reset_spi(wc); + spin_unlock_irqrestore(&wc->lock, flags); +} + +static unsigned char zma_getreg(struct zma *wc, int card, unsigned char reg) +{ + unsigned long flags; + unsigned char res; + spin_lock_irqsave(&wc->lock, flags); + res = __zma_getreg(wc, card, reg); + spin_unlock_irqrestore(&wc->lock, flags); + return res; +} + +static int __wait_access(struct zma *wc, int card) +{ + unsigned char data = 0; + long origjiffies; + int count = 0; + + #define MAX 6000 /* attempts */ + + + origjiffies = jiffies; + /* Wait for indirect access */ + while (count++ < MAX) + { + data = __zma_getreg(wc, card, I_STATUS); + + if (!data) + return 0; + + } + + if(count > (MAX-1)) printk(" ##### Loop error (%02x) #####\n", data); + + return 0; +} + +static unsigned char translate_3215(unsigned char address) +{ + int x; + for (x=0;xflags[card] & FLAG_3215) { + address = translate_3215(address); + if (address == 255) + return 0; + } + spin_lock_irqsave(&wc->lock, flags); + if(!__wait_access(wc, card)) { + __zma_setreg(wc, card, IDA_LO,(unsigned char)(data & 0xFF)); + __zma_setreg(wc, card, IDA_HI,(unsigned char)((data & 0xFF00)>>8)); + __zma_setreg(wc, card, IAA,address); + res = 0; + }; + spin_unlock_irqrestore(&wc->lock, flags); + return res; +} + +static int zma_proslic_getreg_indirect(struct zma *wc, int card, unsigned char address) +{ + unsigned long flags; + int res = -1; + char *p=NULL; + /* Translate 3215 addresses */ + if (wc->flags[card] & FLAG_3215) { + address = translate_3215(address); + if (address == 255) + return 0; + } + spin_lock_irqsave(&wc->lock, flags); + if (!__wait_access(wc, card)) { + __zma_setreg(wc, card, IAA, address); + if (!__wait_access(wc, card)) { + unsigned char data1, data2; + data1 = __zma_getreg(wc, card, IDA_LO); + data2 = __zma_getreg(wc, card, IDA_HI); + res = data1 | (data2 << 8); + } else + p = "Failed to wait inside\n"; + } else + p = "failed to wait\n"; + spin_unlock_irqrestore(&wc->lock, flags); + if (p) + printk(p); + return res; +} + +static int zma_proslic_init_indirect_regs(struct zma *wc, int card) +{ + unsigned char i; + + for (i=0; iflags[card] & FLAG_3215) || (indirect_regs[i].altaddr != 255))) + { + printk("!!!!!!! %s iREG %X = %X should be %X\n", + indirect_regs[i].name,indirect_regs[i].address,j,initial ); + passed = 0; + } + } + + if (passed) { + if (debug) + printk("Init Indirect Registers completed successfully.\n"); + } else { + printk(" !!!!! Init Indirect Registers UNSUCCESSFULLY.\n"); + return -1; + } + return 0; +} + +static inline void zma_proslic_recheck_sanity(struct zma *wc, int card) +{ + int res; + /* Check loopback */ + res = wc->reg1shadow[card]; + if (!res && (res != wc->mod[card].fxs.lasttxhook)) { + res = zma_getreg(wc, card, 8); + if (res) { + printk("Ouch, part reset, quickly restoring reality (%d)\n", card); + zma_init_proslic(wc, card, 1, 0, 1); + } else { + if (wc->mod[card].fxs.palarms++ < MAX_ALARMS) { + printk("Power alarm on module %d, resetting!\n", card + 1); + if (wc->mod[card].fxs.lasttxhook == 4) + wc->mod[card].fxs.lasttxhook = 1; + zma_setreg(wc, card, 64, wc->mod[card].fxs.lasttxhook); + } else { + if (wc->mod[card].fxs.palarms == MAX_ALARMS) + printk("Too many power alarms on card %d, NOT resetting!\n", card + 1); + } + } + } +} + +static inline void zma_voicedaa_check_hook(struct zma *wc, int card) +{ +#ifndef AUDIO_RINGCHECK + unsigned char res; +#endif + signed char b; + int poopy = 0; + /* Try to track issues that plague slot one FXO's */ + b = wc->reg0shadow[card]; + if ((b & 0x2) || !(b & 0x8)) { + /* Not good -- don't look at anything else */ + if (debug) + printk("Poopy (%02x) on card %d!\n", b, card + 1); + poopy++; + } + b &= 0x9b; + if (wc->mod[card].fxo.offhook) { + if (b != 0x9) + zma_setreg(wc, card, 5, 0x9); + } else { + if (b != 0x8) + zma_setreg(wc, card, 5, 0x8); + } + if (poopy) + return; +#ifndef AUDIO_RINGCHECK + if (!wc->mod[card].fxo.offhook) { + res = wc->reg0shadow[card]; + if ((res & 0x60) && wc->mod[card].fxo.battery) { + wc->mod[card].fxo.ringdebounce += (ZT_CHUNKSIZE * 16); + if (wc->mod[card].fxo.ringdebounce >= ZT_CHUNKSIZE * 64) { + if (!wc->mod[card].fxo.wasringing) { + wc->mod[card].fxo.wasringing = 1; + zt_hooksig(&wc->chans[card], ZT_RXSIG_RING); + if (debug) + printk("RING on %d/%d!\n", wc->span.spanno, card + 1); + } + wc->mod[card].fxo.ringdebounce = ZT_CHUNKSIZE * 64; + } + } else { + wc->mod[card].fxo.ringdebounce -= ZT_CHUNKSIZE * 4; + if (wc->mod[card].fxo.ringdebounce <= 0) { + if (wc->mod[card].fxo.wasringing) { + wc->mod[card].fxo.wasringing = 0; + zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); + if (debug) + printk("NO RING on %d/%d!\n", wc->span.spanno, card + 1); + } + wc->mod[card].fxo.ringdebounce = 0; + } + + } + } +#endif + b = wc->reg1shadow[card]; +#if 0 + { + static int count = 0; + if (!(count++ % 100)) { + printk("Card %d: Voltage: %d Debounce %d\n", card + 1, + b, wc->mod[card].fxo.battdebounce); + } + } +#endif + if (abs(b) < battthresh) { + wc->mod[card].fxo.nobatttimer++; +#if 0 + if (wc->mod[card].fxo.battery) + printk("Battery loss: %d (%d debounce)\n", b, wc->mod[card].fxo.battdebounce); +#endif + if (wc->mod[card].fxo.battery && !wc->mod[card].fxo.battdebounce) { + if (debug) + printk("NO BATTERY on %d/%d!\n", wc->span.spanno, card + 1); + wc->mod[card].fxo.battery = 0; +#ifdef JAPAN + if ((!wc->ohdebounce) && wc->offhook) { + zt_hooksig(&wc->chans[card], ZT_RXSIG_ONHOOK); + if (debug) + printk("Signalled On Hook\n"); +#ifdef ZERO_BATT_RING + wc->onhook++; +#endif + } +#else + zt_hooksig(&wc->chans[card], ZT_RXSIG_ONHOOK); +#endif + wc->mod[card].fxo.battdebounce = battdebounce; + } else if (!wc->mod[card].fxo.battery) + wc->mod[card].fxo.battdebounce = battdebounce; + } else if (abs(b) > battthresh) { + if (!wc->mod[card].fxo.battery && !wc->mod[card].fxo.battdebounce) { + if (debug) + printk("BATTERY on %d/%d (%s)!\n", wc->span.spanno, card + 1, + (b < 0) ? "-" : "+"); +#ifdef ZERO_BATT_RING + if (wc->onhook) { + wc->onhook = 0; + zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); + if (debug) + printk("Signalled Off Hook\n"); + } +#else + zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); +#endif + wc->mod[card].fxo.battery = 1; + wc->mod[card].fxo.nobatttimer = 0; + wc->mod[card].fxo.battdebounce = battdebounce; + } else if (wc->mod[card].fxo.battery) + wc->mod[card].fxo.battdebounce = battdebounce; + + if (wc->mod[card].fxo.lastpol >= 0) { + if (b < 0) { + wc->mod[card].fxo.lastpol = -1; + wc->mod[card].fxo.polaritydebounce = POLARITY_DEBOUNCE; + } + } + if (wc->mod[card].fxo.lastpol <= 0) { + if (b > 0) { + wc->mod[card].fxo.lastpol = 1; + wc->mod[card].fxo.polaritydebounce = POLARITY_DEBOUNCE; + } + } + } else { + /* It's something else... */ + wc->mod[card].fxo.battdebounce = battdebounce; + } + if (wc->mod[card].fxo.battdebounce) + wc->mod[card].fxo.battdebounce--; + if (wc->mod[card].fxo.polaritydebounce) { + wc->mod[card].fxo.polaritydebounce--; + if (wc->mod[card].fxo.polaritydebounce < 1) { + if (wc->mod[card].fxo.lastpol != wc->mod[card].fxo.polarity) { + if (debug) + printk("%lu Polarity reversed (%d -> %d)\n", jiffies, + wc->mod[card].fxo.polarity, + wc->mod[card].fxo.lastpol); + if (wc->mod[card].fxo.polarity) + zt_qevent_lock(&wc->chans[card], ZT_EVENT_POLARITY); + wc->mod[card].fxo.polarity = wc->mod[card].fxo.lastpol; + } + } + } +} + +static inline void zma_proslic_check_hook(struct zma *wc, int card) +{ + char res; + int hook; + + /* For some reason we have to debounce the + hook detector. */ + + res = wc->reg0shadow[card]; + hook = (res & 1); + if (hook != wc->mod[card].fxs.lastrxhook) { + /* Reset the debounce (must be multiple of 4ms) */ + wc->mod[card].fxs.debounce = 8 * (4 * 8); +#if 0 + printk("Resetting debounce card %d hook %d, %d\n", card, hook, wc->mod[card].fxs.debounce); +#endif + } else { + if (wc->mod[card].fxs.debounce > 0) { + wc->mod[card].fxs.debounce-= 16 * ZT_CHUNKSIZE; +#if 0 + printk("Sustaining hook %d, %d\n", hook, wc->mod[card].fxs.debounce); +#endif + if (!wc->mod[card].fxs.debounce) { +#if 0 + printk("Counted down debounce, newhook: %d...\n", hook); +#endif + wc->mod[card].fxs.debouncehook = hook; + } + if (!wc->mod[card].fxs.oldrxhook && wc->mod[card].fxs.debouncehook) { + /* Off hook */ +#if 1 + if (debug) +#endif + printk("zma: Card %d Going off hook\n", card); + zt_hooksig(&wc->chans[card], ZT_RXSIG_OFFHOOK); + if (robust) + zma_init_proslic(wc, card, 1, 0, 1); + wc->mod[card].fxs.oldrxhook = 1; + + } else if (wc->mod[card].fxs.oldrxhook && !wc->mod[card].fxs.debouncehook) { + /* On hook */ +#if 1 + if (debug) +#endif + printk("zma: Card %d Going on hook\n", card); + zt_hooksig(&wc->chans[card], ZT_RXSIG_ONHOOK); + wc->mod[card].fxs.oldrxhook = 0; + } + } + } + wc->mod[card].fxs.lastrxhook = hook; +} + +ZAP_IRQ_HANDLER(zma_interrupt) +{ + struct zma *wc = dev_id; + unsigned char ints; + int x; + int mode; + + ints = inb(wc->ioaddr + WC_INTSTAT); + + if (!ints) +#ifdef LINUX26 + return IRQ_NONE; +#else + return; +#endif + + outb(ints, wc->ioaddr + WC_INTSTAT); + + if (ints & 0x10) { + /* Stop DMA, wait for watchdog */ + printk("TDM PCI Master abort\n"); + zma_stop_dma(wc); +#ifdef LINUX26 + return IRQ_RETVAL(1); +#else + return; +#endif + } + + if (ints & 0x20) { + printk("PCI Target abort\n"); +#ifdef LINUX26 + return IRQ_RETVAL(1); +#else + return; +#endif + } + + for (x=0;xcardflag & (1 << x) && + (wc->modtype[x] == MOD_TYPE_FXS)) { + if (wc->mod[x].fxs.lasttxhook == 0x4) { + /* RINGing, prepare for OHT */ + wc->mod[x].fxs.ohttimer = OHT_TIMER << 3; + if (reversepolarity) + wc->mod[x].fxs.idletxhookstate = 0x6; /* OHT mode when idle */ + else + wc->mod[x].fxs.idletxhookstate = 0x2; + } else { + if (wc->mod[x].fxs.ohttimer) { + wc->mod[x].fxs.ohttimer-= ZT_CHUNKSIZE; + if (!wc->mod[x].fxs.ohttimer) { + if (reversepolarity) + wc->mod[x].fxs.idletxhookstate = 0x5; /* Switch to active */ + else + wc->mod[x].fxs.idletxhookstate = 0x1; + if ((wc->mod[x].fxs.lasttxhook == 0x2) || (wc->mod[x].fxs.lasttxhook == 0x6)) { + /* Apply the change if appropriate */ + if (reversepolarity) + wc->mod[x].fxs.lasttxhook = 0x5; + else + wc->mod[x].fxs.lasttxhook = 0x1; + zma_setreg(wc, x, 64, wc->mod[x].fxs.lasttxhook); + } + } + } + } + } + } + + if (ints & 0x0f) { + wc->intcount++; + x = wc->intcount & 0x7; + mode = wc->intcount & 0x18; + if (wc->cardflag & (1 << x)) { + switch(mode) { + case 0: + /* Rest */ + break; + case 8: + /* Read first shadow reg */ + if (wc->modtype[x] == MOD_TYPE_FXS) + wc->reg0shadow[x] = zma_getreg(wc, x, 68); + else if (wc->modtype[x] == MOD_TYPE_FXO) + wc->reg0shadow[x] = zma_getreg(wc, x, 5); + break; + case 16: + /* Read second shadow reg */ + if (wc->modtype[x] == MOD_TYPE_FXS) + wc->reg1shadow[x] = zma_getreg(wc, x, 64); + else if (wc->modtype[x] == MOD_TYPE_FXO) + wc->reg1shadow[x] = zma_getreg(wc, x, 29); + break; + case 24: + /* Perform processing */ + if (wc->modtype[x] == MOD_TYPE_FXS) { + zma_proslic_check_hook(wc, x); + if (!(wc->intcount & 0xf0)) + zma_proslic_recheck_sanity(wc, x); + } else if (wc->modtype[x] == MOD_TYPE_FXO) { + zma_voicedaa_check_hook(wc, x); + } + break; + } + } + if (!(wc->intcount % 10000)) { + /* Accept an alarm once per 10 seconds */ + for (x=0;xmodtype[x] == MOD_TYPE_FXS) { + if (wc->mod[x].fxs.palarms) + wc->mod[x].fxs.palarms--; + } + } + zma_receiveprep(wc, ints); + zma_transmitprep(wc, ints); + } +#ifdef LINUX26 + return IRQ_RETVAL(1); +#endif + +} + +static int zma_voicedaa_insane(struct zma *wc, int card) +{ + int blah; + blah = zma_getreg(wc, card, 2); + if (blah != 0x3) + return -2; + blah = zma_getreg(wc, card, 11); + if (debug) + printk("VoiceDAA System: %02x\n", blah & 0xf); + return 0; +} + +static int zma_proslic_insane(struct zma *wc, int card) +{ + int blah,insane_report; + insane_report=0; + + blah = zma_getreg(wc, card, 0); + if (debug) + printk("ProSLIC on module %d, product %d, version %d\n", card, (blah & 0x30) >> 4, (blah & 0xf)); + +#if 0 + if ((blah & 0x30) >> 4) { + printk("ProSLIC on module %d is not a 3210.\n", card); + return -1; + } +#endif + if (((blah & 0xf) == 0) || ((blah & 0xf) == 0xf)) { + /* SLIC not loaded */ + return -1; + } + if ((blah & 0xf) < 2) { + printk("ProSLIC 3210 version %d is too old\n", blah & 0xf); + return -1; + } + if (zma_getreg(wc, card, 1) & 0x80) + /* ProSLIC 3215, not a 3210 */ + wc->flags[card] |= FLAG_3215; + + blah = zma_getreg(wc, card, 8); + if (blah != 0x2) { + printk("ProSLIC on module %d insane (1) %d should be 2\n", card, blah); + return -1; + } else if ( insane_report) + printk("ProSLIC on module %d Reg 8 Reads %d Expected is 0x2\n",card,blah); + + blah = zma_getreg(wc, card, 64); + if (blah != 0x0) { + printk("ProSLIC on module %d insane (2)\n", card); + return -1; + } else if ( insane_report) + printk("ProSLIC on module %d Reg 64 Reads %d Expected is 0x0\n",card,blah); + + blah = zma_getreg(wc, card, 11); + if (blah != 0x33) { + printk("ProSLIC on module %d insane (3)\n", card); + return -1; + } else if ( insane_report) + printk("ProSLIC on module %d Reg 11 Reads %d Expected is 0x33\n",card,blah); + + /* Just be sure it's setup right. */ + zma_setreg(wc, card, 30, 0); + + if (debug) + printk("ProSLIC on module %d seems sane.\n", card); + return 0; +} + +static int zma_proslic_powerleak_test(struct zma *wc, int card) +{ + unsigned long origjiffies; + unsigned char vbat; + + /* Turn off linefeed */ + zma_setreg(wc, card, 64, 0); + + /* Power down */ + zma_setreg(wc, card, 14, 0x10); + + /* Wait for one second */ + origjiffies = jiffies; + + while((vbat = zma_getreg(wc, card, 82)) > 0x6) { + if ((jiffies - origjiffies) >= (HZ/2)) + break;; + } + + if (vbat < 0x06) { + printk("Excessive leakage detected on module %d: %d volts (%02x) after %d ms\n", card, + 376 * vbat / 1000, vbat, (int)((jiffies - origjiffies) * 1000 / HZ)); + return -1; + } else if (debug) { + printk("Post-leakage voltage: %d volts\n", 376 * vbat / 1000); + } + return 0; +} + +static int zma_powerup_proslic(struct zma *wc, int card, int fast) +{ + unsigned char vbat; + unsigned long origjiffies; + int lim; + + /* Set period of DC-DC converter to 1/64 khz */ + zma_setreg(wc, card, 92, 0xff /* was 0xff */); + + /* Wait for VBat to powerup */ + origjiffies = jiffies; + + /* Disable powerdown */ + zma_setreg(wc, card, 14, 0); + + /* If fast, don't bother checking anymore */ + if (fast) + return 0; + + while((vbat = zma_getreg(wc, card, 82)) < 0xc0) { + /* Wait no more than 500ms */ + if ((jiffies - origjiffies) > HZ/2) { + break; + } + } + + if (vbat < 0xc0) { + if (wc->proslic_power == PROSLIC_POWER_UNKNOWN) + printk("ProSLIC on module %d failed to powerup within %d ms (%d mV only)\n\n -- DID YOU REMEMBER TO PLUG IN THE HD POWER CABLE TO THE ZMA8xx??\n", + card, (int)(((jiffies - origjiffies) * 1000 / HZ)), + vbat * 375); + wc->proslic_power = PROSLIC_POWER_WARNED; + return -1; + } else if (debug) { + printk("ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n", + card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ))); + } + wc->proslic_power = PROSLIC_POWER_ON; + + /* Proslic max allowed loop current, reg 71 LOOP_I_LIMIT */ + /* If out of range, just set it to the default value */ + lim = (loopcurrent - 20) / 3; + if ( loopcurrent > 41 ) { + lim = 0; + if (debug) + printk("Loop current out of range! Setting to default 20mA!\n"); + } + else if (debug) + printk("Loop current set to %dmA!\n",(lim*3)+20); + zma_setreg(wc,card,LOOP_I_LIMIT,lim); + + /* Engage DC-DC converter */ + zma_setreg(wc, card, 93, 0x19 /* was 0x19 */); +#if 0 + origjiffies = jiffies; + while(0x80 & zma_getreg(wc, card, 93)) { + if ((jiffies - origjiffies) > 2 * HZ) { + printk("Timeout waiting for DC-DC calibration on module %d\n", card); + return -1; + } + } + +#if 0 + /* Wait a full two seconds */ + while((jiffies - origjiffies) < 2 * HZ); + + /* Just check to be sure */ + vbat = zma_getreg(wc, card, 82); + printk("ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n", + card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ))); +#endif +#endif + return 0; + +} + +static int zma_proslic_manual_calibrate(struct zma *wc, int card){ + unsigned long origjiffies; + unsigned char i; + + zma_setreg(wc, card, 21, 0);//(0) Disable all interupts in DR21 + zma_setreg(wc, card, 22, 0);//(0)Disable all interupts in DR21 + zma_setreg(wc, card, 23, 0);//(0)Disable all interupts in DR21 + zma_setreg(wc, card, 64, 0);//(0) + + zma_setreg(wc, card, 97, 0x18); //(0x18)Calibrations without the ADC and DAC offset and without common mode calibration. + zma_setreg(wc, card, 96, 0x47); //(0x47) Calibrate common mode and differential DAC mode DAC + ILIM + + origjiffies=jiffies; + while( zma_getreg(wc,card,96)!=0 ){ + if((jiffies-origjiffies)>80) + return -1; + } +//Initialized DR 98 and 99 to get consistant results. +// 98 and 99 are the results registers and the search should have same intial conditions. + +/*******************************The following is the manual gain mismatch calibration****************************/ +/*******************************This is also available as a function *******************************************/ + // Delay 10ms + origjiffies=jiffies; + while((jiffies-origjiffies)<1); + zma_proslic_setreg_indirect(wc, card, 88,0); + zma_proslic_setreg_indirect(wc,card,89,0); + zma_proslic_setreg_indirect(wc,card,90,0); + zma_proslic_setreg_indirect(wc,card,91,0); + zma_proslic_setreg_indirect(wc,card,92,0); + zma_proslic_setreg_indirect(wc,card,93,0); + + zma_setreg(wc, card, 98,0x10); // This is necessary if the calibration occurs other than at reset time + zma_setreg(wc, card, 99,0x10); + + for ( i=0x1f; i>0; i--) + { + zma_setreg(wc, card, 98,i); + origjiffies=jiffies; + while((jiffies-origjiffies)<4); + if((zma_getreg(wc,card,88)) == 0) + break; + } // for + + for ( i=0x1f; i>0; i--) + { + zma_setreg(wc, card, 99,i); + origjiffies=jiffies; + while((jiffies-origjiffies)<4); + if((zma_getreg(wc,card,89)) == 0) + break; + }//for + +/*******************************The preceding is the manual gain mismatch calibration****************************/ +/**********************************The following is the longitudinal Balance Cal***********************************/ + zma_setreg(wc,card,64,1); + while((jiffies-origjiffies)<10); // Sleep 100? + + zma_setreg(wc, card, 64, 0); + zma_setreg(wc, card, 23, 0x4); // enable interrupt for the balance Cal + zma_setreg(wc, card, 97, 0x1); // this is a singular calibration bit for longitudinal calibration + zma_setreg(wc, card, 96,0x40); + + zma_getreg(wc,card,96); /* Read Reg 96 just cause */ + + zma_setreg(wc, card, 21, 0xFF); + zma_setreg(wc, card, 22, 0xFF); + zma_setreg(wc, card, 23, 0xFF); + + /**The preceding is the longitudinal Balance Cal***/ + return(0); + +} +#if 1 +static int zma_proslic_calibrate(struct zma *wc, int card) +{ + unsigned long origjiffies; + int x; + /* Perform all calibrations */ + zma_setreg(wc, card, 97, 0x1f); + + /* Begin, no speedup */ + zma_setreg(wc, card, 96, 0x5f); + + /* Wait for it to finish */ + origjiffies = jiffies; + while(zma_getreg(wc, card, 96)) { + if ((jiffies - origjiffies) > 2 * HZ) { + printk("Timeout waiting for calibration of module %d\n", card); + return -1; + } + } + + if (debug) { + /* Print calibration parameters */ + printk("Calibration Vector Regs 98 - 107: \n"); + for (x=98;x<108;x++) { + printk("%d: %02x\n", x, zma_getreg(wc, card, x)); + } + } + return 0; +} +#endif + +static void wait_just_a_bit(int foo) +{ + long newjiffies; + newjiffies = jiffies + foo; + while(jiffies < newjiffies); +} + +static int zma_init_voicedaa(struct zma *wc, int card, int fast, int manual, int sane) +{ + unsigned char reg16=0, reg26=0, reg30=0, reg31=0; + long newjiffies; + wc->modtype[card] = MOD_TYPE_FXO; + /* Sanity check the ProSLIC */ + reset_spi(wc, card); + if (!sane && zma_voicedaa_insane(wc, card)) + return -2; + + /* Software reset */ + zma_setreg(wc, card, 1, 0x80); + + /* Wait just a bit */ + wait_just_a_bit(HZ/10); + + /* Enable PCM, ulaw */ + if (alawoverride) + zma_setreg(wc, card, 33, 0x20); + else + zma_setreg(wc, card, 33, 0x28); + + /* Set On-hook speed, Ringer impedence, and ringer threshold */ + reg16 |= (fxo_modes[_opermode].ohs << 6); + reg16 |= (fxo_modes[_opermode].rz << 1); + reg16 |= (fxo_modes[_opermode].rt); + zma_setreg(wc, card, 16, reg16); + + /* Set DC Termination: + Tip/Ring voltage adjust, minimum operational current, current limitation */ + reg26 |= (fxo_modes[_opermode].dcv << 6); + reg26 |= (fxo_modes[_opermode].mini << 4); + reg26 |= (fxo_modes[_opermode].ilim << 1); + zma_setreg(wc, card, 26, reg26); + + /* Set AC Impedence */ + reg30 = (fxo_modes[_opermode].acim); + zma_setreg(wc, card, 30, reg30); + + /* Misc. DAA parameters */ + if (fastpickup) + reg31 = 0xb3; + else + reg31 = 0xa3; + reg31 |= (fxo_modes[_opermode].ohs2 << 3); + zma_setreg(wc, card, 31, reg31); + + /* Set Transmit/Receive timeslot */ + if (card < NUM_CARDS/2) { + zma_setreg(wc, card, 34, (3-card) * 8); + zma_setreg(wc, card, 35, 0x00); + zma_setreg(wc, card, 36, (3-card) * 8); + zma_setreg(wc, card, 37, 0x00); + } else { + zma_setreg(wc, card, 34, (3-(card-NUM_CARDS/2)+16) * 8); + zma_setreg(wc, card, 35, 0x00); + zma_setreg(wc, card, 36, (3-(card-NUM_CARDS/2)+16) * 8); + zma_setreg(wc, card, 37, 0x00); + } + + /* Enable ISO-Cap */ + zma_setreg(wc, card, 6, 0x00); + + if (fastpickup) + zma_setreg(wc, card, 17, zma_getreg(wc, card, 17) | 0x20); + + /* Wait 1000ms for ISO-cap to come up */ + newjiffies = jiffies; + newjiffies += 2 * HZ; + while((jiffies < newjiffies) && !(zma_getreg(wc, card, 11) & 0xf0)) + wait_just_a_bit(HZ/10); + + if (!(zma_getreg(wc, card, 11) & 0xf0)) { + printk("VoiceDAA did not bring up ISO link properly!\n"); + return -1; + } + if (debug) + printk("ISO-Cap is now up, line side: %02x rev %02x\n", + zma_getreg(wc, card, 11) >> 4, + (zma_getreg(wc, card, 13) >> 2) & 0xf); + /* Enable on-hook line monitor */ + zma_setreg(wc, card, 5, 0x08); + + /* Take values for fxotxgain and fxorxgain and apply them to module */ + if (fxotxgain) { + if (fxotxgain >= -150 && fxotxgain < 0) { + zma_setreg(wc, card, 38, 16 + (fxotxgain/-10)); + if(fxotxgain % 10) { + zma_setreg(wc, card, 40, 16 + (-fxotxgain%10)); + } + } + else if (fxotxgain <= 120 && fxotxgain > 0) { + zma_setreg(wc, card, 38, fxotxgain/10); + if(fxotxgain%10) { + zma_setreg(wc, card, 40, (fxotxgain%10)); + } + } + } + if (fxorxgain) { + if (fxorxgain >= -150 && fxorxgain < 0) { + zma_setreg(wc, card, 39, 16 + (fxorxgain/-10)); + if(fxotxgain%10) { + zma_setreg(wc, card, 41, 16 + (-fxorxgain%10)); + } + } + else if (fxorxgain <= 120 && fxorxgain > 0) { + zma_setreg(wc, card, 39, fxorxgain/10); + if(fxorxgain % 10) { + zma_setreg(wc, card, 41, (fxorxgain%10)); + } + } + } + + /* NZ -- crank the tx gain up by 7 dB */ + if (!strcmp(fxo_modes[_opermode].name, "NEWZEALAND")) { + printk("Adjusting gain\n"); + zma_setreg(wc, card, 38, 0x7); + } + /* KR -- crank the rv gain up by 9 dB */ + if (!strcmp(fxo_modes[_opermode].name, "SOUTHKOREA")) { + printk("Adjusting gain\n"); + zma_setreg(wc, card, 39, 0x9); + } + + if(debug) + printk("DEBUG fxotxgain:%i.%i fxorxgain:%i.%i\n", (zma_getreg(wc, card, 38)/16)?-(zma_getreg(wc, card, 38) - 16) : zma_getreg(wc, card, 38), (zma_getreg(wc, card, 40)/16)? -(zma_getreg(wc, card, 40) - 16):zma_getreg(wc, card, 40), (zma_getreg(wc, card, 39)/16)? -(zma_getreg(wc, card, 39) - 16) : zma_getreg(wc, card, 39),(zma_getreg(wc, card, 41)/16)?-(zma_getreg(wc, card, 41) - 16):zma_getreg(wc, card, 41)); + + return 0; + +} + +static int zma_init_proslic(struct zma *wc, int card, int fast, int manual, int sane) +{ + + unsigned short tmp[5]; + unsigned char r19,r9; + int x; + int fxsmode=0; + + /* By default, don't send on hook */ + if (reversepolarity) + wc->mod[card].fxs.idletxhookstate = 5; + else + wc->mod[card].fxs.idletxhookstate = 1; + + /* Sanity check the ProSLIC */ + if (!sane && zma_proslic_insane(wc, card)) + return -2; + + if (sane) { + /* Make sure we turn off the DC->DC converter to prevent anything from blowing up */ + zma_setreg(wc, card, 14, 0x10); + } + + if (zma_proslic_init_indirect_regs(wc, card)) { + printk(KERN_INFO "Indirect Registers failed to initialize on module %d.\n", card); + return -1; + } + + /* Clear scratch pad area */ + zma_proslic_setreg_indirect(wc, card, 97,0); + + /* Clear digital loopback */ + zma_setreg(wc, card, 8, 0); + + /* Revision C optimization */ + zma_setreg(wc, card, 108, 0xeb); + + /* Disable automatic VBat switching for safety to prevent + Q7 from accidently turning on and burning out. */ + zma_setreg(wc, card, 67, 0x17); + + /* Turn off Q7 */ + zma_setreg(wc, card, 66, 1); + + /* Flush ProSLIC digital filters by setting to clear, while + saving old values */ + for (x=0;x<5;x++) { + tmp[x] = zma_proslic_getreg_indirect(wc, card, x + 35); + zma_proslic_setreg_indirect(wc, card, x + 35, 0x8000); + } + + /* Power up the DC-DC converter */ + if (zma_powerup_proslic(wc, card, fast)) { + printk("Unable to do INITIAL ProSLIC powerup on module %d\n", card); + return -1; + } + + if (!fast) { + + /* Check for power leaks */ + if (zma_proslic_powerleak_test(wc, card)) { + printk("ProSLIC module %d failed leakage test. Check for short circuit\n", card); + } + /* Power up again */ + if (zma_powerup_proslic(wc, card, fast)) { + printk("Unable to do FINAL ProSLIC powerup on module %d\n", card); + return -1; + } +#ifndef NO_CALIBRATION + /* Perform calibration */ + if(manual) { + if (zma_proslic_manual_calibrate(wc, card)) { + //printk("Proslic failed on Manual Calibration\n"); + if (zma_proslic_manual_calibrate(wc, card)) { + printk("Proslic Failed on Second Attempt to Calibrate Manually. (Try -DNO_CALIBRATION in Makefile)\n"); + return -1; + } + printk("Proslic Passed Manual Calibration on Second Attempt\n"); + } + } + else { + if(zma_proslic_calibrate(wc, card)) { + //printk("ProSlic died on Auto Calibration.\n"); + if (zma_proslic_calibrate(wc, card)) { + printk("Proslic Failed on Second Attempt to Auto Calibrate\n"); + return -1; + } + printk("Proslic Passed Auto Calibration on Second Attempt\n"); + } + } + /* Perform DC-DC calibration */ + zma_setreg(wc, card, 93, 0x99); + r19 = zma_getreg(wc, card, 107); + if ((r19 < 0x2) || (r19 > 0xd)) { + printk("DC-DC cal has a surprising direct 107 of 0x%02x!\n", r19); + zma_setreg(wc, card, 107, 0x8); + } + + /* Save calibration vectors */ + for (x=0;xmod[card].fxs.calregs.vals[x] = zma_getreg(wc, card, 96 + x); +#endif + + } else { + /* Restore calibration registers */ + for (x=0;xmod[card].fxs.calregs.vals[x]); + } + /* Calibration complete, restore original values */ + for (x=0;x<5;x++) { + zma_proslic_setreg_indirect(wc, card, x + 35, tmp[x]); + } + + if (zma_proslic_verify_indirect_regs(wc, card)) { + printk(KERN_INFO "Indirect Registers failed verification.\n"); + return -1; + } + + +#if 0 + /* Disable Auto Power Alarm Detect and other "features" */ + zma_setreg(wc, card, 67, 0x0e); + blah = zma_getreg(wc, card, 67); +#endif + +#if 0 + if (zma_proslic_setreg_indirect(wc, card, 97, 0x0)) { // Stanley: for the bad recording fix + printk(KERN_INFO "ProSlic IndirectReg Died.\n"); + return -1; + } +#endif + + if (alawoverride) + zma_setreg(wc, card, 1, 0x20); + else + zma_setreg(wc, card, 1, 0x28); + // U-Law 8-bit interface + if (card < NUM_CARDS/2) { + zma_setreg(wc, card, 2, (3-card) * 8); // Tx Start count low byte 0 + zma_setreg(wc, card, 3, 0); // Tx Start count high byte 0 + zma_setreg(wc, card, 4, (3-card) * 8); // Rx Start count low byte 0 + zma_setreg(wc, card, 5, 0); // Rx Start count high byte 0 + } else { + zma_setreg(wc, card, 2, (3-(card-NUM_CARDS/2)+16) * 8); // Tx Start count low byte 0 + zma_setreg(wc, card, 3, 0); // Tx Start count high byte 0 + zma_setreg(wc, card, 4, (3-(card-NUM_CARDS/2)+16) * 8); // Rx Start count low byte 0 + zma_setreg(wc, card, 5, 0); // Rx Start count high byte 0 + } + zma_setreg(wc, card, 18, 0xff); // clear all interrupt + zma_setreg(wc, card, 19, 0xff); + zma_setreg(wc, card, 20, 0xff); + zma_setreg(wc, card, 73, 0x04); + if (fxshonormode) { + fxsmode = acim2tiss[fxo_modes[_opermode].acim]; + zma_setreg(wc, card, 10, 0x08 | fxsmode); + if (fxo_modes[_opermode].ring_osc) + zma_proslic_setreg_indirect(wc, card, 20, fxo_modes[_opermode].ring_osc); + if (fxo_modes[_opermode].ring_x) + zma_proslic_setreg_indirect(wc, card, 21, fxo_modes[_opermode].ring_x); + } + if (lowpower) + zma_setreg(wc, card, 72, 0x10); + +#if 0 + zma_setreg(wc, card, 21, 0x00); // enable interrupt + zma_setreg(wc, card, 22, 0x02); // Loop detection interrupt + zma_setreg(wc, card, 23, 0x01); // DTMF detection interrupt +#endif + +#if 0 + /* Enable loopback */ + zma_setreg(wc, card, 8, 0x2); + zma_setreg(wc, card, 14, 0x0); + zma_setreg(wc, card, 64, 0x0); + zma_setreg(wc, card, 1, 0x08); +#endif + + if (fastringer) { + /* Speed up Ringer */ + zma_proslic_setreg_indirect(wc, card, 20, 0x7e6d); + zma_proslic_setreg_indirect(wc, card, 21, 0x01b9); + /* Beef up Ringing voltage to 89V */ + if (boostringer) { + zma_setreg(wc, card, 74, 0x3f); + if (zma_proslic_setreg_indirect(wc, card, 21, 0x247)) + return -1; + printk("Boosting fast ringer on slot %d (89V peak)\n", card + 1); + } else if (lowpower) { + if (zma_proslic_setreg_indirect(wc, card, 21, 0x14b)) + return -1; + printk("Reducing fast ring power on slot %d (50V peak)\n", card + 1); + } else + printk("Speeding up ringer on slot %d (25Hz)\n", card + 1); + } else { + /* Beef up Ringing voltage to 89V */ + if (boostringer) { + zma_setreg(wc, card, 74, 0x3f); + if (zma_proslic_setreg_indirect(wc, card, 21, 0x1d1)) + return -1; + printk("Boosting ringer on slot %d (89V peak)\n", card + 1); + } else if (lowpower) { + if (zma_proslic_setreg_indirect(wc, card, 21, 0x108)) + return -1; + printk("Reducing ring power on slot %d (50V peak)\n", card + 1); + } + } + + if(fxstxgain || fxsrxgain) { + r9 = zma_getreg(wc, card, 9); + switch (fxstxgain) { + + case 35: + r9+=8; + break; + case -35: + r9+=4; + break; + case 0: + break; + } + + switch (fxsrxgain) { + + case 35: + r9+=2; + break; + case -35: + r9+=1; + break; + case 0: + break; + } + zma_setreg(wc,card,9,r9); + } + + if(debug) + printk("DEBUG: fxstxgain:%s fxsrxgain:%s\n",((zma_getreg(wc, card, 9)/8) == 1)?"3.5":(((zma_getreg(wc,card,9)/4) == 1)?"-3.5":"0.0"),((zma_getreg(wc, card, 9)/2) == 1)?"3.5":((zma_getreg(wc,card,9)%2)?"-3.5":"0.0")); + + zma_setreg(wc, card, 64, 0x01); + return 0; +} + + +static int zma_ioctl(struct zt_chan *chan, unsigned int cmd, unsigned long data) +{ + struct zma_stats stats; + struct zma_regs regs; + struct zma_regop regop; + struct zma_echo_coefs echoregs; + struct zma *wc = chan->pvt; + int x; + switch (cmd) { + case ZT_ONHOOKTRANSFER: + if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) + return -EINVAL; + if (get_user(x, (int *)data)) + return -EFAULT; + wc->mod[chan->chanpos - 1].fxs.ohttimer = x << 3; + if (reversepolarity) + wc->mod[chan->chanpos - 1].fxs.idletxhookstate = 0x6; /* OHT mode when idle */ + else + wc->mod[chan->chanpos - 1].fxs.idletxhookstate = 0x2; + if (wc->mod[chan->chanpos - 1].fxs.lasttxhook == 0x1) { + /* Apply the change if appropriate */ + if (reversepolarity) + wc->mod[chan->chanpos - 1].fxs.lasttxhook = 0x6; + else + wc->mod[chan->chanpos - 1].fxs.lasttxhook = 0x2; + zma_setreg(wc, chan->chanpos - 1, 64, wc->mod[chan->chanpos - 1].fxs.lasttxhook); + } + break; + case ZT_SETPOLARITY: + if (get_user(x, (int *)data)) + return -EFAULT; + if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) + return -EINVAL; + /* Can't change polarity while ringing or when open */ + if ((wc->mod[chan->chanpos -1 ].fxs.lasttxhook == 0x04) || + (wc->mod[chan->chanpos -1 ].fxs.lasttxhook == 0x00)) + return -EINVAL; + + if ((x && !reversepolarity) || (!x && reversepolarity)) + wc->mod[chan->chanpos - 1].fxs.lasttxhook |= 0x04; + else + wc->mod[chan->chanpos - 1].fxs.lasttxhook &= ~0x04; + zma_setreg(wc, chan->chanpos - 1, 64, wc->mod[chan->chanpos - 1].fxs.lasttxhook); + break; + case WCTDM_GET_STATS: + if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) { + stats.tipvolt = zma_getreg(wc, chan->chanpos - 1, 80) * -376; + stats.ringvolt = zma_getreg(wc, chan->chanpos - 1, 81) * -376; + stats.batvolt = zma_getreg(wc, chan->chanpos - 1, 82) * -376; + } else if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) { + stats.tipvolt = (signed char)zma_getreg(wc, chan->chanpos - 1, 29) * 1000; + stats.ringvolt = (signed char)zma_getreg(wc, chan->chanpos - 1, 29) * 1000; + stats.batvolt = (signed char)zma_getreg(wc, chan->chanpos - 1, 29) * 1000; + } else + return -EINVAL; + if (copy_to_user((struct zma_stats *)data, &stats, sizeof(stats))) + return -EFAULT; + break; + case WCTDM_GET_REGS: + if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) { + for (x=0;xchanpos -1, x); + for (x=0;xchanpos - 1, x); + } else { + memset(®s, 0, sizeof(regs)); + for (x=0;xchanpos - 1, x); + } + if (copy_to_user((struct zma_regs *)data, ®s, sizeof(regs))) + return -EFAULT; + break; + case WCTDM_SET_REG: + if (copy_from_user(®op, (struct zma_regop *)data, sizeof(regop))) + return -EFAULT; + if (regop.indirect) { + if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) + return -EINVAL; + printk("Setting indirect %d to 0x%04x on %d\n", regop.reg, regop.val, chan->chanpos); + zma_proslic_setreg_indirect(wc, chan->chanpos - 1, regop.reg, regop.val); + } else { + regop.val &= 0xff; + printk("Setting direct %d to %04x on %d\n", regop.reg, regop.val, chan->chanpos); + zma_setreg(wc, chan->chanpos - 1, regop.reg, regop.val); + } + break; + case WCTDM_SET_ECHOTUNE: + printk("-- Setting echo registers: \n"); + if (copy_from_user(&echoregs, (struct zma_echo_coefs*)data, sizeof(echoregs))) + return -EFAULT; + + if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) { + /* Set the ACIM register */ + zma_setreg(wc, chan->chanpos - 1, 30, echoregs.acim); + + /* Set the digital echo canceller registers */ + zma_setreg(wc, chan->chanpos - 1, 45, echoregs.coef1); + zma_setreg(wc, chan->chanpos - 1, 46, echoregs.coef2); + zma_setreg(wc, chan->chanpos - 1, 47, echoregs.coef3); + zma_setreg(wc, chan->chanpos - 1, 48, echoregs.coef4); + zma_setreg(wc, chan->chanpos - 1, 49, echoregs.coef5); + zma_setreg(wc, chan->chanpos - 1, 50, echoregs.coef6); + zma_setreg(wc, chan->chanpos - 1, 51, echoregs.coef7); + zma_setreg(wc, chan->chanpos - 1, 52, echoregs.coef8); + + printk("-- Set echo registers successfully\n"); + + break; + } else { + return -EINVAL; + + } + break; + default: + return -ENOTTY; + } + return 0; + +} + +static int zma_open(struct zt_chan *chan) +{ + struct zma *wc = chan->pvt; + if (!(wc->cardflag & (1 << (chan->chanpos - 1)))) + return -ENODEV; + if (wc->dead) + return -ENODEV; + wc->usecount++; +#ifndef LINUX26 + MOD_INC_USE_COUNT; +#else + try_module_get(THIS_MODULE); +#endif + return 0; +} + +static int zma_watchdog(struct zt_span *span, int event) +{ + printk("TDM: Restarting DMA\n"); + zma_restart_dma(span->pvt); + return 0; +} + +static int zma_close(struct zt_chan *chan) +{ + struct zma *wc = chan->pvt; + wc->usecount--; +#ifndef LINUX26 + MOD_DEC_USE_COUNT; +#else + module_put(THIS_MODULE); +#endif + if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) { + if (reversepolarity) + wc->mod[chan->chanpos - 1].fxs.idletxhookstate = 5; + else + wc->mod[chan->chanpos - 1].fxs.idletxhookstate = 1; + } + /* If we're dead, release us now */ + if (!wc->usecount && wc->dead) + zma_release(wc); + return 0; +} + +static int zma_hooksig(struct zt_chan *chan, zt_txsig_t txsig) +{ + struct zma *wc = chan->pvt; + int reg=0; + if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) { + /* XXX Enable hooksig for FXO XXX */ + switch(txsig) { + case ZT_TXSIG_START: + case ZT_TXSIG_OFFHOOK: + wc->mod[chan->chanpos - 1].fxo.offhook = 1; + zma_setreg(wc, chan->chanpos - 1, 5, 0x9); + break; + case ZT_TXSIG_ONHOOK: + wc->mod[chan->chanpos - 1].fxo.offhook = 0; + zma_setreg(wc, chan->chanpos - 1, 5, 0x8); + break; + default: + printk("wcfxo: Can't set tx state to %d\n", txsig); + } + } else { + switch(txsig) { + case ZT_TXSIG_ONHOOK: + switch(chan->sig) { + case ZT_SIG_EM: + case ZT_SIG_FXOKS: + case ZT_SIG_FXOLS: + wc->mod[chan->chanpos-1].fxs.lasttxhook = wc->mod[chan->chanpos-1].fxs.idletxhookstate; + break; + case ZT_SIG_FXOGS: + wc->mod[chan->chanpos-1].fxs.lasttxhook = 3; + break; + } + break; + case ZT_TXSIG_OFFHOOK: + switch(chan->sig) { + case ZT_SIG_EM: + wc->mod[chan->chanpos-1].fxs.lasttxhook = 5; + break; + default: + wc->mod[chan->chanpos-1].fxs.lasttxhook = wc->mod[chan->chanpos-1].fxs.idletxhookstate; + break; + } + break; + case ZT_TXSIG_START: + wc->mod[chan->chanpos-1].fxs.lasttxhook = 4; + break; + case ZT_TXSIG_KEWL: + wc->mod[chan->chanpos-1].fxs.lasttxhook = 0; + break; + default: + printk("zma: Can't set tx state to %d\n", txsig); + } + if (debug) + printk("Setting FXS hook state to %d (%02x)\n", txsig, reg); + +#if 1 + zma_setreg(wc, chan->chanpos - 1, 64, wc->mod[chan->chanpos-1].fxs.lasttxhook); +#endif + } + return 0; +} + +static int zma_initialize(struct zma *wc) +{ + int x; + + /* Zapata stuff */ + sprintf(wc->span.name, "WCTDM/%d", wc->pos); + sprintf(wc->span.desc, "%s Board %d", wc->variety, wc->pos + 1); + if (alawoverride) { + printk("ALAW override parameter detected. Device will be operating in ALAW\n"); + wc->span.deflaw = ZT_LAW_ALAW; + } else + wc->span.deflaw = ZT_LAW_MULAW; + for (x = 0; x < NUM_CARDS; x++) { + sprintf(wc->chans[x].name, "WCTDM/%d/%d", wc->pos, x); + wc->chans[x].sigcap = ZT_SIG_FXOKS | ZT_SIG_FXOLS | ZT_SIG_FXOGS | ZT_SIG_SF | ZT_SIG_EM | ZT_SIG_CLEAR; + wc->chans[x].sigcap |= ZT_SIG_FXSKS | ZT_SIG_FXSLS | ZT_SIG_SF | ZT_SIG_CLEAR; + wc->chans[x].chanpos = x+1; + wc->chans[x].pvt = wc; + } + wc->span.chans = wc->chans; + wc->span.channels = NUM_CARDS; + wc->span.hooksig = zma_hooksig; + wc->span.open = zma_open; + wc->span.close = zma_close; + wc->span.flags = ZT_FLAG_RBS; + wc->span.ioctl = zma_ioctl; + wc->span.watchdog = zma_watchdog; + init_waitqueue_head(&wc->span.maintq); + + wc->span.pvt = wc; + if (zt_register(&wc->span, 0)) { + printk("Unable to register span with zaptel\n"); + return -1; + } + return 0; +} + +static void zma_post_initialize(struct zma *wc) +{ + int x; + /* Finalize signalling */ + for (x = 0; x < NUM_CARDS; x++) { + if (wc->cardflag & (1 << x)) { + if (wc->modtype[x] == MOD_TYPE_FXO) + wc->chans[x].sigcap = ZT_SIG_FXSKS | ZT_SIG_FXSLS | ZT_SIG_SF | ZT_SIG_CLEAR; + else + wc->chans[x].sigcap = ZT_SIG_FXOKS | ZT_SIG_FXOLS | ZT_SIG_FXOGS | ZT_SIG_SF | ZT_SIG_EM | ZT_SIG_CLEAR; + } + } +} + +static int zma_hardware_init(struct zma *wc) +{ + /* Hardware stuff */ + unsigned char ver; + unsigned char x,y; + unsigned char ol = 0, sl = 0; + int failed; + + /* Signal Reset */ + outb(0x01, wc->ioaddr + WC_CNTL); + + /* Check Freshmaker chip */ + x=inb(wc->ioaddr + WC_CNTL); + ver = __zma_getcreg(wc, WC_VER); + failed = 0; + if (ver != 0x59) { + printk("Freshmaker version: %02x\n", ver); + for (x=0;x<255;x++) { + /* Test registers */ + if (ver >= 0x70) { + __zma_setcreg(wc, WC_CS, x); + y = __zma_getcreg(wc, WC_CS); + } else { + __zma_setcreg(wc, WC_TEST, x); + y = __zma_getcreg(wc, WC_TEST); + } + if (x != y) { + printk("%02x != %02x\n", x, y); + failed++; + } + } + if (!failed) { + printk("Freshmaker passed register test\n"); + } else { + printk("Freshmaker failed register test\n"); + return -1; + } + } else { + printk("No freshmaker chip\n"); + } + + /* Reset PCI Interface chip and registers (and serial) */ + outb(0x06, wc->ioaddr + WC_CNTL); + /* Setup our proper outputs for when we switch for our "serial" port */ + wc->ios = BIT_CS | BIT_SCLK | BIT_SDI | BIT_SYNC; + + outb(wc->ios, wc->ioaddr + WC_AUXD); + + /* Set all to outputs except AUX 5, which is an input */ + outb(0xdf, wc->ioaddr + WC_AUXC); + + /* Wait 1/4 of a sec */ + wait_just_a_bit(HZ/4); + + /* Back to normal, with automatic DMA wrap around */ + outb(0x30 | 0x01, wc->ioaddr + WC_CNTL); + + /* Make sure serial port and DMA are out of reset */ + outb(inb(wc->ioaddr + WC_CNTL) & 0xf9, wc->ioaddr + WC_CNTL); + + /* Configure serial port for MSB->LSB operation */ + outb(0xc1, wc->ioaddr + WC_SERCTL); + + /* Delay FSC by 0 so it's properly aligned */ + outb(0x0, wc->ioaddr + WC_FSCDELAY); + + /* Setup DMA Addresses */ + outl(wc->writedma, wc->ioaddr + WC_DMAWS); /* Write start */ + outl(wc->writedma + ZT_CHUNKSIZE * NUM_CARDS - 4, wc->ioaddr + WC_DMAWI); /* Middle (interrupt) */ + outl(wc->writedma + 2 * ZT_CHUNKSIZE * NUM_CARDS - 4, wc->ioaddr + WC_DMAWE); /* End */ + + outl(wc->readdma, wc->ioaddr + WC_DMARS); /* Read start */ + outl(wc->readdma + ZT_CHUNKSIZE * NUM_CARDS - 4, wc->ioaddr + WC_DMARI); /* Middle (interrupt) */ + outl(wc->readdma + 2 * ZT_CHUNKSIZE * NUM_CARDS - 4, wc->ioaddr + WC_DMARE); /* End */ + + /* Clear interrupts */ + outb(0xff, wc->ioaddr + WC_INTSTAT); + + /* Wait 1/4 of a second more */ + wait_just_a_bit(HZ/4); + + for (x = 0; x < NUM_CARDS; x++) { + int sane=0,ret=0,readi=0; +#if 1 + /* Init with Auto Calibration */ + if (!(ret=zma_init_proslic(wc, x, 0, 0, sane))) { + wc->cardflag |= (1 << x); + sl |= (1 << x); + if (debug) { + readi = zma_getreg(wc,x,LOOP_I_LIMIT); + printk("Proslic module %d loop current is %dmA\n",x, + ((readi*3)+20)); + } + printk("Module %d: Installed -- AUTO FXS/DPO\n",x); + } else { + if(ret!=-2) { + sane=1; + /* Init with Manual Calibration */ + if (!zma_init_proslic(wc, x, 0, 1, sane)) { + wc->cardflag |= (1 << x); + sl |= (1 << x); + if (debug) { + readi = zma_getreg(wc,x,LOOP_I_LIMIT); + printk("Proslic module %d loop current is %dmA\n",x, + ((readi*3)+20)); + } + printk("Module %d: Installed -- MANUAL FXS\n",x); + } else { + printk("Module %d: FAILED FXS (%s)\n", x, fxshonormode ? fxo_modes[_opermode].name : "FCC"); + } + } else if (!(ret = zma_init_voicedaa(wc, x, 0, 0, sane))) { + wc->cardflag |= (1 << x); + ol |= (1 << x); + printk("Module %d: Installed -- AUTO FXO (%s mode)\n",x, fxo_modes[_opermode].name); + } else + printk("Module %d: Not installed\n", x); + } +#endif + } + + /* Return error if nothing initialized okay. */ + if (!wc->cardflag && !timingonly) + return -1; + if(ver == 0x88) + __zma_setcreg(wc, WC_SYNC, wc->cardflag); + else{ + __zma_setcreg(wc, WC_SYNC, ol); + __zma_setcreg(wc, YS_SLC, sl); + } + return 0; +} + +static void zma_enable_interrupts(struct zma *wc) +{ + /* Enable interrupts (we care about all of them) */ + outb(0x3f, wc->ioaddr + WC_MASK0); + /* No external interrupts */ + outb(0x00, wc->ioaddr + WC_MASK1); +} + +static void zma_restart_dma(struct zma *wc) +{ + /* Reset Master and TDM */ + outb(0x01, wc->ioaddr + WC_CNTL); + outb(0x01, wc->ioaddr + WC_OPER); +} + +static void zma_start_dma(struct zma *wc) +{ + /* Reset Master and TDM */ + outb(0x0f, wc->ioaddr + WC_CNTL); + wc->ios &= ~BIT_SYNC; + outb(wc->ios, wc->ioaddr + WC_AUXD); + set_current_state(TASK_INTERRUPTIBLE); + schedule_timeout(1); + wc->ios |= BIT_SYNC; + outb(wc->ios, wc->ioaddr + WC_AUXD); + outb(0x01, wc->ioaddr + WC_CNTL); + outb(0x01, wc->ioaddr + WC_OPER); + __zma_setcreg(wc, WC_TEST, (__zma_getcreg(wc, WC_TEST) | 0x01)); +} + +static void zma_stop_dma(struct zma *wc) +{ + wc->ios &= ~BIT_SYNC; + outb(wc->ios, wc->ioaddr + WC_AUXD); + outb(0x00, wc->ioaddr + WC_OPER); + __zma_setcreg(wc, WC_TEST, (__zma_getcreg(wc, WC_TEST) & 0xFE)); +} + +static void zma_reset_tdm(struct zma *wc) +{ + /* Reset TDM */ + outb(0x0f, wc->ioaddr + WC_CNTL); +} + +static void zma_disable_interrupts(struct zma *wc) +{ + outb(0x00, wc->ioaddr + WC_MASK0); + outb(0x00, wc->ioaddr + WC_MASK1); +} + +static int __devinit zma_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) +{ + int res; + struct zma *wc; + struct zma_desc *d = (struct zma_desc *)ent->driver_data; + int x; + int y; + static int initd_ifaces=0; + + if(initd_ifaces){ + memset((void *)ifaces,0,(sizeof(struct zma *))*WC_MAX_IFACES); + initd_ifaces=1; + } + for (x=0;x= WC_MAX_IFACES) { + printk("Too many interfaces\n"); + return -EIO; + } + + if (pci_enable_device(pdev)) { + res = -EIO; + } else { + wc = kmalloc(sizeof(struct zma), GFP_KERNEL); + if (wc) { + int cardcount = 0; + + ifaces[x] = wc; + memset(wc, 0, sizeof(struct zma)); + spin_lock_init(&wc->lock); + wc->curcard = -1; + wc->ioaddr = pci_resource_start(pdev, 0); + wc->dev = pdev; + wc->pos = x; + wc->variety = d->name; + for (y=0;yflags[y] = d->flags; + /* Keep track of whether we need to free the region */ + if (request_region(wc->ioaddr, 0xff, "zma")) + wc->freeregion = 1; + + /* Allocate enough memory for two zt chunks, receive and transmit. Each sample uses + 32 bits. Allocate an extra set just for control too */ + wc->writechunk = pci_alloc_consistent(pdev, ZT_MAX_CHUNKSIZE * 2 * 2 * 2 * NUM_CARDS, &wc->writedma); + if (!wc->writechunk) { + printk("zma: Unable to allocate DMA-able memory\n"); + if (wc->freeregion) + release_region(wc->ioaddr, 0xff); + return -ENOMEM; + } + + wc->readchunk = wc->writechunk + 2 * ZT_MAX_CHUNKSIZE * (NUM_CARDS / 4); /* in doublewords */ + wc->readdma = wc->writedma + 2 * ZT_MAX_CHUNKSIZE * (NUM_CARDS / 1); /* in bytes */ + + if (zma_initialize(wc)) { + printk("zma: Unable to intialize FXS\n"); + /* Set Reset Low */ + x=inb(wc->ioaddr + WC_CNTL); + outb((~0x1)&x, wc->ioaddr + WC_CNTL); + /* Free Resources */ + free_irq(pdev->irq, wc); + if (wc->freeregion) + release_region(wc->ioaddr, 0xff); + pci_free_consistent(pdev, ZT_MAX_CHUNKSIZE * 2 * 2 * 2 * NUM_CARDS, (void *)wc->writechunk, wc->writedma); + kfree(wc); + return -EIO; + } + + /* Enable bus mastering */ + pci_set_master(pdev); + + /* Keep track of which device we are */ + pci_set_drvdata(pdev, wc); + + if (request_irq(pdev->irq, zma_interrupt, SA_SHIRQ, "zma", wc)) { + printk("zma: Unable to request IRQ %d\n", pdev->irq); + if (wc->freeregion) + release_region(wc->ioaddr, 0xff); + pci_free_consistent(pdev, ZT_MAX_CHUNKSIZE * 2 * 2 * 2 * NUM_CARDS, (void *)wc->writechunk, wc->writedma); + pci_set_drvdata(pdev, NULL); + kfree(wc); + return -EIO; + } + + + if (zma_hardware_init(wc)) { + unsigned char x; + + /* Set Reset Low */ + x=inb(wc->ioaddr + WC_CNTL); + outb((~0x1)&x, wc->ioaddr + WC_CNTL); + /* Free Resources */ + free_irq(pdev->irq, wc); + if (wc->freeregion) + release_region(wc->ioaddr, 0xff); + pci_free_consistent(pdev, ZT_MAX_CHUNKSIZE * 2 * 2 * 2 * NUM_CARDS, (void *)wc->writechunk, wc->writedma); + pci_set_drvdata(pdev, NULL); + zt_unregister(&wc->span); + kfree(wc); + return -EIO; + + } + + zma_post_initialize(wc); + + /* Enable interrupts */ + zma_enable_interrupts(wc); + /* Initialize Write/Buffers to all blank data */ + memset((void *)wc->writechunk,0,ZT_MAX_CHUNKSIZE * 2 * 2 * NUM_CARDS); + + /* Start DMA */ + zma_start_dma(wc); + + for (x = 0; x < NUM_CARDS; x++) { + if (wc->cardflag & (1 << x)) + cardcount++; + } + + printk("Found a ZMA8xx: %s (%d modules)\n", wc->variety, cardcount); + res = 0; + } else + res = -ENOMEM; + } + return res; +} + +static void zma_release(struct zma *wc) +{ + zt_unregister(&wc->span); + if (wc->freeregion) + release_region(wc->ioaddr, 0xff); + kfree(wc); + printk("Freed a Wildcard\n"); +} + +static void __devexit zma_remove_one(struct pci_dev *pdev) +{ + struct zma *wc = pci_get_drvdata(pdev); + if (wc) { + + /* Stop any DMA */ + zma_stop_dma(wc); + zma_reset_tdm(wc); + + /* In case hardware is still there */ + zma_disable_interrupts(wc); + + /* Immediately free resources */ + pci_free_consistent(pdev, ZT_MAX_CHUNKSIZE * 2 * 2 * 2 * NUM_CARDS, (void *)wc->writechunk, wc->writedma); + free_irq(pdev->irq, wc); + + /* Reset PCI chip and registers */ + outb(0x0e, wc->ioaddr + WC_CNTL); + + /* Release span, possibly delayed */ + if (!wc->usecount) + zma_release(wc); + else + wc->dead = 1; + } +} + +static struct pci_device_id zma_pci_tbl[] = { + { 0xe159, 0x0001, 0x2151, PCI_ANY_ID, 0, 0, (unsigned long) &zmae }, + { 0 } +}; + +MODULE_DEVICE_TABLE(pci, zma_pci_tbl); + +static struct pci_driver zma_driver = { + name: "zma", + probe: zma_init_one, +#ifdef LINUX26 + remove: __devexit_p(zma_remove_one), +#else + remove: zma_remove_one, +#endif + suspend: NULL, + resume: NULL, + id_table: zma_pci_tbl, +}; + +static int __init zma_init(void) +{ + int res; + int x; + for (x=0;x<(sizeof(fxo_modes) / sizeof(fxo_modes[0])); x++) { + if (!strcmp(fxo_modes[x].name, opermode)) + break; + } + if (x < sizeof(fxo_modes) / sizeof(fxo_modes[0])) { + _opermode = x; + } else { + printk("Invalid/unknown operating mode '%s' specified. Please choose one of:\n", opermode); + for (x=0;x"); +#if defined(MODULE_ALIAS) +MODULE_ALIAS("wcfxs"); +#endif +#ifdef MODULE_LICENSE +MODULE_LICENSE("GPL"); +#endif + +module_init(zma_init); +module_exit(zma_cleanup); --- ../Makefile.old 2007-09-09 16:13:21.628238899 -0700 +++ ../Makefile 2007-09-09 16:13:42.314906080 -0700 @@ -98,7 +98,7 @@ BUILD_XPP:=yes endif -TOPDIR_MODULES:=pciradio tor2 torisa wcfxo wct1xxp wctdm wcte11xp wcusb zaptel ztd-eth ztd-loc ztdummy ztdynamic zttranscode wcte12xp +TOPDIR_MODULES:=pciradio tor2 torisa wcfxo wct1xxp wctdm wcte11xp wcusb zaptel ztd-eth ztd-loc ztdummy ztdynamic zttranscode wcte12xp zma8xx SUBDIR_MODULES:=wct4xxp wctc4xxp xpp wctdm24xxp TOPDIR_MODULES+=$(MODULES_EXTRA) SUBDIR_MODULES+=$(SUBDIRS_EXTRA)