
Distributed Concurrent Downloading of Common

Content in a BitTorrent Peer Group

Sukhbir Singh
R.B.I.E.B.T

 Abstract- In the BitTorrent peer-to-peer file sharing protocol, it

is observed that when a group of peers known to each other (due

to geographical proximity or otherwise) are aiming for the same

file, it is downloaded by a single peer and then shared within the

group or it is downloaded individually. This is an inefficient

approach as the fidelity rests on one peer or all peers (promoting

redundancy), thus resulting in wastage of bandwidth and time. In

this paper, we propose a solution to counter these problems by

encouraging equal participation of the peer group in the

download process. We show how the bandwidth of each peer is

utilized to the maximum (thus reducing download time) by

segregating a file into smaller sized parts with each peer

downloading a part of the file in parallel and then merging the

individual parts to form the complete data. We also add to the

above proposition how one peer can effectively resume the

interrupted download of another peer, remotely. Using

simulation, we validate and demonstrate the effectiveness of the

proposed strategy by taking real world examples showing large

amounts of data being transferred at massive speeds and in a

very short period of time.

 Keywords- parallel downloading; peer-to-peer/ content

distribution works; bittorrent

I. INTRODUCTION

The BitTorrent protocol is the most common and widely

implemented peer-to-peer file sharing protocol for transferring

large amounts of data, accounting for more than 45 – 78% of

all peer-to-peer traffic, which roughly amounts to 27 – 55% of

all Internet traffic, depending on the geographical location [1].

The plethora of websites which index content that can be

downloaded using the protocol serve 200 million peers and

index 4 million torrent files [2]

The protocol allows downloading of content by a single peer

only; neither the protocol nor any of its known implementation

provides support for a commonly occurring scenario wherein

all the peers in a known peer group are aiming to download a

common file which is required by each peer individually. By

such a peer group, we meant to include those peers which are

in close geographical proximity; meaning they can exchange

data physically (over sneakernet) or over a local area network

[3]. The most suitable examples would be, though not limited

to – students in a dormitory or a group of friends living within

the same city. In such a case when the entire peer group is

aiming for the same file, either a single peer downloads it and

shares it within the group or each peer in the group downloads

its own copy of the file.

Both the above mentioned approaches are inefficient – if a

single peer is downloading the given file, the entire download

process from initiation to completion is dependent upon it. If

all the peers in the group are downloading their own copy

individually, it leads to redundancy. Though ultimately all the

peers are aiming for the same file, yet they are not

contributing their resources proportionally to the download

process; it depends on a single peer or it depends on each peer

individually. There is unequal participation in the process and

hence waste of bandwidth and time in both the cases. A

conventional BitTorrent download is handled in this way for

common data that is to be shared within a peer group as the

protocol itself provides no support; peers have to rely on

uneconomical means to achieve such a transfer.

To tackle the above problem, we propose the concept of

distributed concurrent downloading within peers which can

exchange data physically or over a local area network. In this

paper, we describe this approach in detail and show how it can

be used to transfer very large amounts of data in a very short

period of time while maintaining the integrity of the

download. After analyzing the data that is obtained from our

experiment, we show how this approach:

1) Drastically increases download speeds by a factor which

depends on the number of peers in the group and their relative

bandwidths.

2) Improves the scalability of the global swarm that is

downloading the said file by providing an increase in the

number of seeders.

3) Supports resuming the interrupted download of a peer by

another peer in the group, remotely.

We first begin by describing the concept of distributed

concurrent downloading, how it works and the need for its

implementation.

II. CONCURRENT DOWNLOADING

In a BitTorrent download, it is observed that if the same

content is required by a group of peers known to each other, it

is downloaded by a single peer and shared amongst the group

or it is downloaded by each peer individually. Conventionally,

this approach is followed, however as described above it is

slow and inefficient. There is rampant wastage of peer

bandwidth and time. This problem can be simplified if the file

to be downloaded is split into smaller parts with each peer in

the group downloading a part of that file in parallel and then

Peer 1

Tracker

74% 100% 19% 54%

Seeder

Peer 2 Peer 3

Secondary Storage Devices/ LAN

P
h

a
s

e
 1

Peer 1 Peer 2 Peer 3

Peer Group

P
h

a
s

e
 2

(a)

Peer 1 Peer 2 Peer 3

Peer Group

Peer 2 Peer 3Peer 1

(b)

Swarm

File: x GB

Pieces 300

Piece 0 – 99 Piece 100 – 199 Piece 200 - 300

P
a

rt
 2

P
a

rt
 1

P
a

rt
 3

Part 1 + Part 2 + Part 3 =

Complete Content

Transport the parts over secondary media or over

LAN and then combine them on any peer machine

Fig. 1. The two ways in which common data is downloaded. (a) shows the conventional BitTorrent approach. (b) shows our solution with increased efficiency.

merging it later. Hence the word, distributed concurrent

sharing.

To explain our approach, we present the two

aforementioned cases diagrammatically in Fig. 1(a) and Fig

1(b). The former shows how data is usually transferred while

the latter shows our solution and its operation.

A. The Usual Approach

In the first case, a single peer downloads the data, shown in

Phase 1, as in any normal BitTorrent download. We assume

that Peer 1 has a high speed internet connection, so the peer

group decides that that peer will download the content and

then share it later within the group. Peer 1 initiates the

download, as shown in Phase 1. After the download is

complete, Peer 1 then transfers the data (shown in Phase 2)

through a secondary storage device such as a flash drive or

over a LAN (if they are in a local area network) to Peer 2 and

Peer 3.

This approach is inherently flawed. The download depends

entirely on Peer 1; Peer 2 and Peer 3 are mere spectators in

the process. They want the data, yet they are not contributing

their bandwidths to the download. Also, both the peers are at

the mercy of Peer 1 to fetch the content for them; they have no

say in the process. If Peer 1 has to abort the download, or if it

fails, the entire group suffers.

If each peer resorts to downloading its own copy of the

content, it will lead to redundancy. After all, if all the peers are

aiming for the same file, they should be able to participate in

downloading it collectively. So this approach is also

ineffective.

As we have seen, neither the BitTorrent protocol nor any of

its implementation offers a conclusive solution to this

problem. Peers ultimately have to rely on the uneconomical

methods presented in Fig. 1(a). We intend to remove all these

drawbacks in our solution, which follows next.

B. Our Solution

 We propose a simple and viable solution. Refer to Fig. 1(b).

The content to be downloaded is divided among the peer

group in such a way that the content is (virtually) split into

parts, with each peer in the group downloading a part of the

content. After each peer has downloaded its part, the

individual parts are collected on any peer machine and are

merged to form the complete content. This approach is highly

economical and utilizes the resources of each peer to the

maximum. We next illustrate this with an example.

 Before we begin, we completely exclude the protocol; all

the changes are to be made on the client-side, thus allowing

our solution to be deployed easily. We make a few

assumptions, but the intention is purely to simplify

understanding of the concept. As we show later, the

assumptions hold true.

In a normal BitTorrent download, a file is split into different

pieces, with the peer downloading multiple pieces of a file to

form the complete file [4]. To allow for a file to be split on the

client side to implement our approach, we fix piece count

between the peers, thus allowing the file to be split virtually.

Original File

Peer 1 Pieces

Peer 3 Pieces

Peer 2 Pieces

X

X

XXX

XX

X X XX X

1 2 3 4 5 6 7 8 9 10 11
V

ir
tu

a
lly

 S
p

lit

X XX XX XXX XX

Fig. 2. The file is virtually split by changing the piece count each peer

downloads.

Refer to Fig. 2. Let us suppose that the file to be

downloaded is made up of 11 pieces. Theoretically, the

number of pieces a file contains depends on its size [4].

However, our assumption on a small scale of piece count

holds true for larger files also, since only the piece count will

increase, the method will remain exactly the same.

We present a step-by-step approach as to how the peers can

successfully perform a download using our concept. We also

explain side-by-side the technicality of our setup.

1) The peer group has 3 peers, which are all aiming for the

same file. The peers interact among themselves using verbal

communication or social networking sites, email, chat, or any

other medium of communication, the piece count each peer

will download. The peer group is an arbitrary number;

theoretically it is limited only by how many peers are aiming

for the same content, or how many peers can actually transfer

data physically with each other. For larger file sizes, there can

be more peers and for smaller, less.

2) Peer 1 has the fastest internet connection, so the peer

group decides that Peer 1 will download the maximum

number of pieces, while Peer 2 and Peer 3 will download

fewer pieces. The piece count is finalized - Peer 1 will

download 1 – 5, Peer 2 6 – 8 and Peer 3 9 – 11, as shown in

Fig. 2. The piece count each peer downloads is also a purely

arbitrary number, so as to allow the peer group to decide on it

according to various resource constraints. This makes it

possible for a peer with a higher download rate to download

more pieces, while a peer with a slower connection can choose

to download fewer pieces. This is another plus point of our

approach; we utilize the bandwidth of each peer to the

maximum in the most effective manner possible.

3) After the peer group and piece count is fixed, all the peers

initiate the download using a torrent file as they normally

would in a conventional BitTorrent download. When the client

starts the download, it asks each peer their respective piece

count. Since that has already been decided, the peers enter

their counts and the download starts.

We would like to point out here that even though we are

restricting piece count, there is no change in the way the file is

usually downloaded. All the BitTorrent protocol specifications

still hold true. The mechanisms the protocol uses to transfer

files, such as tit-for-tat, rarest piece first [5], all hold true.

This is because what we are effectively doing is restricting

piece count. By doing that, the client doesn’t request pieces

other than those specified by the peer. This is equivalent to a

client not requesting pieces it has already downloaded, which

is what happens in a conventional download. The protocol

functions the way it normally would even if it is forced to

restrict downloading between a specified piece limit.

4) After each peer finishes downloading its part of the

content, the merging stage comes up. This involves transfer of

the content parts from peer machines to any given peer

machine (even outside the group), so that the parts can be

merged to form the complete content. We note a few

important things here.

First, we take into account the decreasing cost of secondary

storage media [6], and increasing data transfer speeds for

them. We also refer to [7] the speed limits of a LAN, and to

[8] for the maximum speed in a WLAN. From [6, 7, 8] it

infers that transporting data over secondary storage devices or

a LAN, is faster and cheaper; in respect to our approach, it

implies that the transporting the individual parts is much more

economical than the approach shown in Fig. 1(a). So moving

the individual data parts is not a hassle, though it might seem

so. Even with files of larger sizes, with fast storage media

available, data can be physically shared easily.

The peers use the means above to transfer the data amongst

them. Any given peer machine is selected, preferably the peer

which is closer to the group collectively, so that each peer can

bring over its part of the file for merging. Note that it is not

necessary for the peer machine to be selected for the merger to

be that of a peer in the group, any machine can be selected; all

that is required is the torrent file that was used to initiate the

download and the individual file parts. An important issue

comes up in this regard, which is maintaining file integrity for

each part of the file.

BitTorrent already calculates the SHA1 checksum for all

pieces in a file. [4] This data is stored in the torrent file for the

content that is downloaded. The client then uses the

checksums in that file to check for any bad data after all the

pieces of the file have been downloaded.

Since the file has checksums for individual pieces, verifying

integrity is easy. Refer to Fig. 2, suppose Peer 1 is selected for

merging the file. Peer 2 and 3 bring their parts of the file over

to Peer 1’s machine. The client software on Peer 1 initiates

checksum verification (shown later) for each part received by

comparing it against the checksum in the torrent file. Since

Peer 1 had downloaded pieces 1 – 5, the client matches the

checksum only for those pieces. If a bad piece is found, the

client reports it; only that piece is to be downloaded again, not

the entire file (or part).

C. Positive gains from our solution

If our solution is applied to the downloading process, we

notice some positive side effects which strengthen our

solution’s effectiveness even more. We present them below

and support them with experimental data later.

1) Since the file is split virtually, we notice a very

interesting side-effect. Consider the same peer group in Fig. 2.

Let us suppose that Peer 1 has to abort its download due to

some reason. The other peers are unaffected due to our

approach, however the download still suffers since Peer 1 was

contributing the maximum bandwidth. We now put forward a

method that allows the download to be resumed remotely by

another peer.

When a peer is downloading a part of the file, the client

keeps note of all the pieces that have been downloaded, or are

to be downloaded. When a peer abandons the download, the

client has all the information necessary for another peer to

resume it. Consider our previous example. The piece count of

Peer 1 was restrained to 1 – 5. Now during the download

suppose that it downloaded pieces {1, 2, 5}. Piece 3 and 4 was

still left but the peer had to pause/ abort the process.

Next consider another peer is made to join the group to

resume the aborted download of Peer 1. Peer 1 publishes its

piece list, i.e. the detailed piece statistics of its download,

which is already maintained by the client and sends them over

to Peer 4, who is the new peer in the group. Peer 4 then feeds

the piece list to its torrent client, and finds out which pieces

are to be downloaded and which are to be ignored. The pieces

which Peer 1 downloaded are ignored, while the pieces which

are still left, piece 3 and 4, are put to download. When the

downloading completes, we have 4 parts of the file. All other

sub-processes are exactly the same; instead of 3 parts there are

4 now, but the overall process including that of verification is

the same.

Hence, we see that using this approach it is possible to

sustain the download process even if one or more than one

peer exists. This ensures maximum efficiency and the

download uptime is enhanced since there are no bottlenecks.

2) We also notice that the scalability of the file download is

increased manifold. If our approach is followed, there are

theoretically more seeders in the swarm than there are in a

conventional download. In a normal download usually, there

are more peers than seeders. In our case, there are more

seeders than the peers, which is how a swarm should be.

The explanation is simple. During the download,

theoretically a single peer is downloading the file. Because the

file is split on the basis of piece count, virtually there is only

peer in the swarm that is utilizing the swarm bandwidth.

Though in reality there are many peers downloading the file,

but in fact all of them are downloading a single copy of that

same file, and hence the swarm treats that as a single peer.

Also, when the download has finished and the peers have

exchanged the file, all peers have now become seeders - since

they have the complete file now, they will be contributing it

fully to the swarm. So even though a single peer started the

download, it evolved into multiple seeders later thus

increasing the scalability of the file many times over.

III. EXPERIMENTAL DATA

To validate the effectiveness of our proposed strategy, we

present below experimental data to confirm the same.

Consider a case where there are a total of n peers in the

group x1, x2 … xn downloading the content in our specified

manner. The download speeds be d1, d2 … dn If there was only

one peer downloading the time required would have been:

Now if the peer group takes the responsibility, the total size

for each peer reduces to a part of the file. Let the parts be p1,

p2 … pn. Download time for i
th

peer become:

 or

Total download time = max (); 1 ≤ i ≤ n

If we consider the virtual concept, the download speed of

one peer has been increased to sum of all the peers. Thus,

download speed for considering the whole system as one peer

can be reduced to:

or,

Deciding on the division of pieces between the peers:

It is very obvious that the peer with the highest speed would

get the maximum bunch of download to implement the

algorithm properly.

piece count ;

 (1)

5.375 9.375

300 kb

s
iz

e

time

16 kbps32 kbps 8 kbps

Fig. 3. Reduction in download time.

Consider a case with a data of 300 kb to be downloaded by

three peers with download speeds 8 kbps, 16 kbps and 32

kbps on an average.

Individually,

Peer 1 would take (300 / 8) = 37.5 seconds

Peer 2 would take (300 / 16) = 18.75 seconds

Peer 3 would take (300 / 32) = 9.375 seconds

Now, dividing the 300 kb data into three pieces of length p1,

p2 and p3, we observe from Fig. 3, that for certain

configurations the download time is drastically reduced.

We require that the total download time should be less than

9.375 seconds as can be achieved if only Peer 3 downloads.

Considering that Peer 1 downloads x kb of data, Peer 3

downloads y kb and the remaining (300—x—y) is done by

Peer 2.

Time for Peer 1 = x / 32

Time for Peer 2 = (300—x—y) / 16

Time for Peer 3 = y / 8

The algorithm will be feasible only when time for

downloading the piece allotted to the slower peers is less than

what is required for the fastest one. Thus we require,

 x / 32 > (300—x—y) / 16, and

x / 32 > y / 8

Solving for boundary conditions:

x = 171 kb,

y = 43 kb

TABLE I

OBSERVED DOWNLOAD SPEEDS OF PEERS IN A BITTORRENT DOWNLOAD IN A TIME
FRAME OF 8 SECONDS

Peer 1 Peer 2 Peer 3

7.2 28.2 44.2

8.1 31 44.4

7.6 33.4 45

7.8 27.5 43.8

8.2 30.7 43.6

6.3 32.1 44

6.9 29.9 44.3

7.5 28.4 44.7

Fig. 4. The varying download speed of our selected peers in a BitTorrent

download.

This would amount to a time of 5.4 seconds approximately,

which is way less than what was required by Peer 1.

Also, in synchronization with the prescribed formula, the

pieces are in the ratio of 1:2:4, which can be found out by

putting m = 1 in the (1).

Our actual analysis was limited to 3 peers (see Table 1,

Table II and Fig. 5) only because taking into account the

nature of our experiment, a smaller sample size would be

better in showing results in a coherent manner rather than a

large sample size where it would be difficult to make out what

is being said. As we have proved above, our result is equally

valid no matter how many peers are there.

To carry out the actual analysis, the root mean square (rms)

values are used to approximate the minimum possible error

count. (See Table 2)

The rms download speeds are in the ratio

44.25: 30.21: 7.47

Using the algorithm devised in (1), the piece count should

be divided as:

44.25
m
: 30.21

m
: 7.47

m

TABLE II
ACTUAL TIME TAKEN FOR DOWNLOADING 38.72 MB IN PIECES

Download Size Peer 1 Peer 2 Peer 3

0 0 0 0

3 401.6 99.3 67.8

6 803.21 198.6 135.6

9 1204.81 297.9 203.4

12 1606.42 397.2 271.2

15 2008.03 496.52 338.98

18 2409.63 595.8 406.8

21 2811.2 695.13 474.57

24 3212.85 794.43 542.4

27 3614.45 893.74 610.16

30 4016.06 993.05 677.96

33 4417.67 1092.35 745.76

36 4819.27 1191.65 813.6

39 5220.88 1290.96 881.3

0

10

20

30

40

50

1 2 3 4 5 6 7 8

Peer1

Peer2

Peer3

Time

Fig. 5. Pieces v/s download time measurements

The possible solution to the above equation with positive m

comes out as:

7:5:1

Time required for download in the above case:

max{(Peer3) → 7 pieces, (Peer2) → 5 pieces, (Peer 1) → 1 piece}

This comes out to be 474.57 seconds. If only Peer3

downloaded the whole content, time required was 881.3

seconds. Thus, the time is drastically reduced with the

participation from each peer as per the algorithm.

III. APPLICATION

Our approach has wide area of application, thus making its

implementation prolific. We present some of the most

prominent ones below.

1) Students in a dormitory can make use of distributed

downloading and collaborate on downloading data. Consider a

common case and the requirement which led to development

of this idea originally. A Linux distro is released as DVD ISO

image for download via BitTorrent and is required by a group

of students in a dormitory (also called flash crowd effect [11]).

Now instead of each student in the dormitory downloading its

own copy of the distro or a single student downloading and

then giving it to the group, the students use our approach and

download the ISO image in parts. After the downloading is

complete, the students then merge the individual parts over

their high speed LAN connection. Everyone gets the complete

Linux distro theoretically within a few minutes, taking into

account the high speed internet access in universities and the

fast data transfer rates over a LAN.

This is also applicable to friends living within the same city

that are in a position to exchange data physically.

2) In developing countries, fast internet access is still not

widespread enough [9] [10]. Even if the availability is there, a

connection with high speed is expensive. So downloading of

large amounts of data is not viable. Our approach is perfectly

suited for use in such a scenario. If peers make use of our

approach, downloading of large files is also possible.

So basically we see two specific domain applications of

what we proposed. Firstly it makes it possible to download

files of very large sizes even, since the speed depends on the

number of peers in the group. If larger file sizes are to be

downloaded, more peers in the group can be added and so on.

Secondly, it is a social BitTorrent concept, where peers

socialize with each other and download content. If a peer

group wants to download content and it uses our approach,

every peer in the group benefits. Thus, the potential this idea

has is immense.

IV. RELATED WORK

Realizing the need of such an approach where peer groups

download data in parallel, there has been some work done in

this field already. Though not related to our work in general,

the research carried out laid stress on the need for a social

based file sharing network, which is exactly what we propose.

Azureus (now Vuze) [12], one of the most popular BitTorrent

clients implemented a feature called Friend Boost. Under this,

it was possible for a peer to upload pieces at a higher speed

(preferentially) to another peer which was designated as a

Friend. However, this feature was later dropped from the

client [13]. It failed because it still did not solve the problem

of distributed sharing – what we proposed and proved in our

paper. Also, an important mention is F2F or friend-to-friend

networks, which is another attempt to create a social file

sharing based network [14]. However, as far as we are aware,

our idea has not been implemented in any BitTorrent

implementation or otherwise.

REFERENCES

[1] BitTorrent Still King of P2P Traffic.

http://torrentfreak.com/bittorrent-still-king-of-p2p-traffic-090218/

[2] Isohunt Tracker Statistics.
http://isohunt.com/stats.php?mode=btSites

[3] Sneakernet Redux: Walk Your Data.

http://www.wired.com/culture/lifestyle/news/2002/08/54739
[4] BitTorrent Protocol Specification v1.0. Retrieved from

http://wiki.theory.org/BitTorrentSpecification#Metainfo_File_Stru

cture
[5] B. Cohen, ―Incentives Build Robustness in BitTorrent‖. 1st

Workshop on Economics of Peer-to-Peer Systems, 2003.

[6] J. Palm, ―The Digital Black Hole‖. Retrieved from www.tape-
online.net/docs/Palm_Black_Hole.pd

[7] Ethernet Speeds. Retrieved from
http://en.wikipedia.org/wiki/Ethernet#Varieties_of_Ethernet

[8] Wireless LAN Association High-Speed Wireless LAN Options.

Retrieved from http://www.wlana.org/pdf/highspeed.pdf
[9] The cost of internet access in developing countries. Retrieved from

http://www.itu.int/asean2001/documents/pdf/Document-16.pdf

[10] Internet Usage in India. Retrieved from
http://www.internetworldstats.com/asia/in.htm

[11] J. A. Pouwelse, ―The BitTorrent P2P File-Sharing System:

Measurement and Analysis‖. In IPTPS, 2005.
[12] Vuze BitTorrent client. www.vuze.com

[13] Discontinuation of Friend Boost.

http://blog.vuze.com/2009/11/12/vuze-update-less-is-more/
[14] W. Galuba, ―Friend-to-Friend Computing: Building the Social

Web at the Internet Edges‖.

http://lsirpeople.epfl.ch/galuba/papers/f2f.pdf

